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Effects of product complexity
on human learning in assembly
and disassembly operations
Elisa Verna, Gianfranco Genta and Maurizio Galetto

DIGEP, Politecnico di Torino, Turin, Italy

Abstract

Purpose – The purpose of this paper is to investigate and quantify the impact of product complexity,
including architectural complexity, on operator learning, productivity and quality performance in both
assembly and disassembly operations. This topic has not been extensively investigated in previous research.
Design/methodology/approach – An extensive experimental campaign involving 84 operators was
conducted to repeatedly assemble and disassemble six different products of varying complexity to construct
productivity and quality learning curves. Data from the experiment were analysed using statistical methods.
Findings – The human learning factor of productivity increases superlinearly with the increasing
architectural complexity of products, i.e. from centralised to distributed architectures, both in assembly and
disassembly, regardless of the level of overall product complexity. On the other hand, the human learning
factor of quality performance decreases superlinearly as the architectural complexity of products increases.
The intrinsic characteristics of product architecture are the reasons for this difference in learning factor.
Practical implications –The results of the study suggest that considering product complexity, particularly
architectural complexity, in the design and planning of manufacturing processes can optimise operator
learning, productivity and quality performance, and inform decisions about improving manufacturing
operations.
Originality/value –While previous research has focussed on the effects of complexity on process time and
defect generation, this study is amongst the first to investigate and quantify the effects of product complexity,
including architectural complexity, on operator learning using an extensive experimental campaign.

Keywords Quality management, Complexity, Learning curves, Customization

Paper type Research paper

1. Introduction
Increasing complexity within products, processes and manufacturing systems, as well as in
the external environment, poses a significant challenge to modern industry (Codara and
Sgobbi, 2023; ElMaraghy et al., 2012). Therefore, it is crucial for companies to effectively
characterise and measure complexity, along with developing models to understand its
propagation from individual products throughout the manufacturing system (ElMaraghy
et al., 2012; Rodr�ıguez-Toro et al., 2003). Various approaches have been applied to investigate
the sources of complexity in engineering design and manufacturing, given its significant
impact on the quality and performance of production processes (Alkan et al., 2018; Colledani
et al., 2014; ElMaraghy et al., 2012). Particularly in manual assembly processes, recent
research has used product complexity to predict assembly times and defect rates (Alkan,
2019; Galetto et al., 2020a; Verna et al., 2021). The power-law model, which shows that
assembly times and defects increase disproportionately with complexity, has been
particularly useful (Alkan, 2019; Galetto et al., 2020a, 2020b; Sinha, 2014). With increasing
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customer demand for customised products, the industrial landscape is facing an ever-
growing challenge: companies are now expected to produce smaller batch sizes, adding a
layer of complexity to their operations. As a result, the role of operators has changed
significantly. They are now expected to exhibit a high degree of flexibility, which requires the
ability to adapt to a variety of tasks and respond quickly to unexpected events, such as the
introduction of new orders or variant products (Dan and Tseng, 2007; ElMaraghy et al., 2013;
Ulonska and Welo, 2014; Wang et al., 2017).

In the context of this evolving landscape, the importance of the learning effect comes to the
fore. Traditionally, a learning effect has been observed in manual assembly operations where
operators perform the same tasks repeatedly over long periods of time. This effect consisted
of an initial learning phase or start-up phase, followed by a steady-state phase where learning
plateaued (ElMaraghy et al., 2012). During this steady-state phase, where large quantities of
the same product were manufactured, the learning effect was often overlooked. However, in
the current era of mass customisation and personalisation, such an assumption is no longer
valid. Given the need for operators to show flexibility in their tasks and adapt to changes,
such as the introduction of new orders or product variants, the learning effect can no longer
be neglected (Cheung et al., 2015; Er and MacCarthy, 2006; Roy et al., 2011; Verna and
Maisano, 2022). In this environment, the role of learning in the context of product and process
complexity becomes paramount to understand and manage effectively.

Learning in and about complex systems is a critical factor in navigating the challenges
posed by increasing complexity (Sterman, 1994). It involves a feedback process where
decisions made by individuals alter the real world, and in turn, they receive information
feedback that prompts revisions to decisions and mental models. However, barriers to
learning, such as dynamic complexity, inadequate feedback, misperceptions and poor
reasoning skills, can hinder effective learning in complex systems (Sterman, 1994). To
overcome these barriers, effective methods for learning in and about complex dynamic
systems must include tools to elicit participant knowledge, simulation tools to assess the
dynamics of cognitive maps and methods to improve scientific reasoning skills and group
processes (Sterman, 1994).

With the shift towards low-volume production and the need for sustainable
manufacturing, it is crucial to assess the learning effect across different product types,
which are typically characterised by different levels of complexity. It is also vital that product
assemblies take into account subsequent disassembly and material reuse, contributing to
waste minimisation (Desai and Mital, 2017; Qiu et al., 2022; Tolio et al., 2017).

Despite extensive research on the effects of complexity on assembly and disassembly
processes and strategies to manage it (Alkan, 2019; Galetto et al., 2020a, 2020b; Gulivindala
et al., 2021; Sinha, 2014; Verna et al., 2021; Wang et al., 2013), the impact of complexity on
human learning is still under investigation and requires further exploration, as will be
discussed in the next Section 2.

By investigating the effects of product complexity on operator learning in assembly and
disassembly processes, the study makes a significant contribution to the understanding of
manufacturing technology and management, providing practical implications for businesses
operating in a dynamic and complexmanufacturing landscape. Unlike previous research that
has primarily focussed on process performance metrics, such as time and defects (Alkan,
2019; Galetto et al., 2020a; Verna et al., 2022a), this study specifically investigates the
implications of product complexity on operator learning. The extensive experimental
campaign involving 84 operators and products with varying levels of complexity allows for a
comprehensive analysis of these effects.

The obtained findings not only shed light on how product complexity affects operator
learning in terms of productivity, measured by task completion time and quality
performance, assessed by the number of total defects that occur during task execution and
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in the final product, but also how these effects vary depending on the specific characteristics
of the product being assembled or disassembled. These findings are valuable for companies
seeking to improve their training programmes and improve manufacturing process
efficiency by enabling the prediction of learning effects, guiding business decisions and
supporting sustainable, quality production (Frederiksen and White, 1989; Tharenou
et al., 2007).

The paper unfolds as follows: Section 2 provides a comprehensive literature review.
Section 3 establishes the theoretical background, focussing on the product structural
complexity model and the learning effect model. In Section 4, the research approach is
detailed, including the description of products, experimental setup and the analysis
methodology. The findings are presented in Section 5, and the paper concludes in Section 6
with the discussion of key insights and implications.

2. Literature review
Learning curves (LCs) have proven instrumental in the field of production and operations
management, shedding light on the learning progression of workers as they take on novel
tasks (Anzanello and Fogliatto, 2011). The practical implications of LCs extend to worker-
task assignment, production planning and cost reduction, positioning these models as
invaluable assets in the manufacturing sector. Despite their widespread use and diverse
applications, existing research has highlighted the limitations of LC models and
opportunities for further research.

The improvement in operator performance as a result of repeated execution of a manual
task has been the subject of extensive research in a wide range of industrial contexts,
including electronics, automotive, construction, software and chemicals. The drivers of
workers’ learning processes are multifaceted, including the structure of training
programmes, workers’ motivation, prior task experience and, in particular, task
complexity (Anzanello and Fogliatto, 2011).

In production economics, learning is conceptualised as the progression of performance
over time as a function of accumulated experience (Grosse et al., 2015). Myriad LC models
have been designed to capture this phenomenon, but a striking research gap is the
comparison of these models based on a rich empirical dataset. This investigation addresses
this gap by collecting, categorising and analysing LCs and their associated empirical data,
thus providing researchers with comprehensive guidance on model selection.

Recently, Glock et al. (2019) conducted a comprehensive literature review on LCs. They
outlined a framework that includes typical LC models, fundamental LC characteristics and
their practical implementation in production and operations management. While this body of
work is enlightening, it also signals future research directions.

As mass customisation continues to proliferate in manufacturing and services, there has
been a growing interest in multivariate LCs (Anzanello and Fogliatto, 2011). This area is
relatively unexplored and warrants rigorous investigation. The proliferation of data
measurement devices provides fertile ground for advancing the understanding of
multivariate LC models. Grosse et al. (2015) echo this sentiment, arguing for a renewed
research focus on group or organisational learning, with an emphasis on knowledge transfer
and mathematical modelling.

The literature broadly underscores the continuing relevance of LC models for improving
production and operations performance. However, there is a need for more empirically-based,
data-driven research to extend and refine existing LC models and to inform model selection
for different applications.

In the area of product complexity and operator learning, previous research (Kv�alseth,
1978; Nembhard and Osothsilp, 2002, 2005) has investigated the effects of task complexity on
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human learning. In particular, Kv�alseth (1978) found that task entropy, a measure of
complexity based on information theory, significantly impacts learning improvement.
Nembhard and Osothsilp (2002) further expanded on this by demonstrating the intricate
relationship between task complexity and individual learning rates, forgetting rates and
steady-state productivity rates. In their studies, task complexity was determined by relative
assembly times, with the assumption that longer assembly times indicate greater information
content and hence greater complexity level. In particular, they found increased variability in
learning rates, forgetting rates and productivity rates as task complexity increased,
especially for inexperienced workers.

These investigations have important implications for simulation studies and worker-task
assignment strategies, especially in dynamic work environments undergoing continuous product
and process changes. Building on this understanding, Nembhard andOsothsilp (2005) proposed a
method for worker selection based on individual learning and forgetting characteristics tailored to
tasks of varying complexity. They argued that this could potentially increase overall system
productivity, particularly in low and high-complexity task environments.

Furthermore, recent studies have begun to explore the effects of Industry 4.0 (I4.0) onworker
learning,with somewhat contrasting results. For example, Karacay (2018) andFareri et al. (2020)
argued that I4.0 technologies could increase task complexity, potentially hindering the learning
process. Conversely, other authors (Fantini et al., 2020; Tortorella et al., 2021, 2022) found a
positive correlation between employee engagement and technology adoption, suggesting that
proper management of this relationship could yield performance benefits.

The approach proposed in this paper differs from the above studies by focussing on the effect
of product complexity, understood in structural terms, on operator learning in assembly and
disassembly operations. This involves quantifying and modelling the interplay between product
characteristics and learning in terms of productivity, measured by task completion time and
quality, assessed by the number of defects that occur during task execution and in the final
product. While rooted in foundational research, this study introduces a new perspective by
adopting a novel paradigm for modelling product complexity based on product variant structure.
As such, this research extends the existing understanding of the impact of task complexity on
operator learning, providing new insights and potentially bridging the research gap in this area.

3. Theoretical background
3.1 Product structural complexity model
In this section, one of the most accredited models in the scientific literature to assess product
complexity from an objective standpoint is presented. This model was first proposed firstly
by Sinha (2014), readapted by Alkan and Harrison (2019), and subsequently applied in
different manufacturing contexts, including electronics, electromechanical and aerospace
industries. In the proposed approach, this model is used to assess the complexity of different
product varieties, relying solely on their structural characteristics. As a result, it serves as a
valuable tool for assessing complexity, especially during the initial stages of product design
(Verna et al., 2022b; Verna et al., 2023a).

Such a model draws its foundation from molecular theory (H€uckel, 1932) and defines
structural complexity of any network-based engineering system as a function of (1) the
complexity of the individual parts, (2) pair-wise interaction complexity between connected
parts and (3) the effects of the resultant system topology. In this analogy, structural
complexity C is formulated as:

C ¼ C1 þ C2∙C3; (1)

where C1, C2 and C3 represent part, interface and topological complexity, respectively.
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C1 is the sum of component complexities, and is defined as:

C1 ¼
XN
p¼1

γp; (2)

where N is the total number of product parts and γp is the handling complexity of part p. γp
denotes the technical difficulty associated with managing and interacting with the product
part in isolated conditions. According to the context, γp may be estimated using different
approaches, including an exponential function to derive a score from constituting elements of
a part (2019), the so-called Lucas Method to derive a normalised handling index (Alkan et al.,
2017a), and a function of standard handling time (2019). The factor γp should be calculated
based on the physical factors of size and weight, handling difficulties (delicate, flexible,
sticky, tangible, nest, sharp/abrasive, etc.) and orientation (alpha and beta symmetry).

C2, i.e. the complexity of connections/liaisons, is the sum of the complexities of pair-wise
connections existing in the product structure, as follows:

C2 ¼
XN−1

p¼1

XN
r¼pþ1

wpr∙apr; (3)

where wpr is the complexity in achieving a connection between parts p and r, and apr is the
(p,r)th entry of the binary adjacency matrixAM of the product.AM is a symmetric matrix of
size NxN where each element designates the existence of an assembly liaison between two
components. In detail, apr can assume two values: 1 if there is a connection between p and r
and 0 otherwise. The complexity wpr can be assessed by the standard completion time of the
connection in isolated conditions (Alkan, 2019), by a fraction of the connected component
complexities depending on the nature of the connectivity (Alkan and Harrison, 2019), or by
the normalised fitting index from the Lucas Method (Alkan et al., 2017a). In the matrixAM, if
any type of connection exists between two components, they are considered connected (Sinha,
2014). The connection types may be generalised into the following four categories: physical
connection (e.g. weld, bolt, socket, wiring), mass flow (e.g. toner, paper), energy flow (e.g.
electrical, mechanical, chemical flow) and information/signal flow (e.g. diagnostics
information to User Interface, sensors signals) (Sinha, 2014). Furthermore, in the case of
physical connections, the contact may be a contact point, line or surface and the connections
may be soft or hard. The different types of connections are included in the model through the
complexity factors wpr, which may assume different values depending on the considered
connection. Attributes that affect the estimation of factors wpr include the part placing (self-
holding or holding down required), the part fastening and the need for tools (screwing,
riveting, bending, mechanical deformation, adhesive, soldering or welding, etc.), the direction
of the fitting, the insertion type, the visibility and the alignment.

C3 is the topological complexity and represents the complexity related to the architectural
pattern of the assembled product. It is obtained as follows:

C3 ¼ EAM

N
¼

PN
q¼1

δq

N
; (4)

whereEAM is thematrix (or graph) energy of the adjacencymatrix, which is designated by the sum
of the corresponding singular values δq ofAM, andN is the total number of parts.As theadjacency
matrix is a symmetric matrix of sizeNxNwith the diagonal elements being all zeros, the singular
values correspond to its absolute eigenvalues (Li et al., 2012; Sinha, 2014). Matrix energy regimes
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can be divided into hyperenergetic, hypoenergetic and intermediate or transition regimes (Li et al.,
2012). The hyperenergetic regime is defined by graph energy greater than or equal to that of a fully
connected graph, i.e. EAM ≥ 2ðN − 1Þ, and the hypoenergetic regime is defined as EAM < N.
Hence, in terms of topological complexity metric, the regimes are defined as hyperenergetic when
C3 ≥ 2ð1− 1=NÞ and hypoenergeticwhen C3 < 1. Note that for hyperenergetic regimes, C3 can be
approximated to 2 when N is sufficiently large. In terms of system architectural pattern,
hyperenergetic regimes are associated with distributed architectures, hypoenergetic regimes with
centralised architectures, and intermediate regimes with hierarchical, or layered, architecture.
Accordingly, C3 increases as the system topology shifts from centralised to more distributed
architectures (Sinha, 2014). Examples of real systems characterised by distributed architectures
are printing systems and aircraft-geared turbofan engines (Sinha, 2014), as shown in Figure 1,
while laptops havemore centralised architectures asmost components are connected to their base
panel (see Figure 2).

It has to be noted that the proposed model aims to assess the complexity of a product and
does not include aspects that may affect the complexity of assembly operations, such as
assembly attributes and their influence on assembly planning (Gulivindala et al., 2020; Raju
Bahubalendruni et al., 2015) and geometric feasibility (Kumar et al., 2022; Prasad et al., 2022).

The methodology of structural complexity quantification has been applied to various real
engineering systems from the electronics, electromechanical and aerospace industries. In this
section, the assembly of a laptop is taken as an example (see Figure 2).

In Figure 2, the exploded view, the liaison diagram and the related binary adjacencymatrix
AM of a laptop are represented. The assembly consists of 13 components (from A to M) and
17 connections. The analysis of component and connection complexities, estimated by the
normalised handling and completion connection times, results in C1 ¼ 8:77 and C2 ¼ 8:60.
The graph energy of matrixAM is 14.34 and accordingly, complexity of product topology is
C3 ¼ 1:10, indicating a hierarchical architecture. According to the results, the overall
complexity of product assembly C is estimated as 18.47.

3.2 Learning effect model
Industrial learning and the learning curve phenomenon were first reported byWright (1936).
The learning effect denotes that the longer the staff works on a particular task, the more
efficient the staff will be on that task in terms of cost, productivity and quality performance

Figure 1.
Examples of industrial
products with
distributed
architectures:
(a) printing systems
and (b) aircraft-geared
turbofan engines
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(Li and Boucher, 2017; Otto and Otto, 2014; Wu and Sun, 2006). The learning curve has been
widely applied to various areas, and a comprehensive review of empirical models for the
learning curve was proposed by Yelle (1979). The effect of learning is typically ignored in
assembly and production lines. Indeed, for short cycle times and large batch sizes, typical of
most traditional assembly lines, process times level off quickly and the learning effect is only
significant during the start-up phase (Dar-El and Rubinovitz, 1991).

In the present paper, the learning effect denotes that the longer an operator works
repetitively on a particular task, he will always need less time to complete it and the fewer
defects he will introduce. The learningmodel adopted in this study uses a power-law learning
curve that follows the mathematical function (Yelle, 1979):

Y ¼ k∙X−b; (5)
where:

(1) X is the cumulative unit number;

(2) Y is the per-unit process time (or, alternatively, the number of defects) related to the
assembly/disassembly of the Xth unit;

(3) k is the process time (or, alternatively, the number of defects) related to the first unit,
i.e. the initial productivity (or, alternatively, the initial quality performance);

(4) b ¼ −ln r=ln 2; (0 < r ≤ 1), b is the learning factor, r is the learning percentage,
according to which S ¼ 1− r is defined as the progress ratio.The smaller the value of
r, the larger the value of b and the higher the learning effect (Wu and Sun, 2006).

4. Research approach
4.1 Products
The effects of product complexity on operator productivity and quality performance have
been investigated through a set of different tests involving the assembly and disassembly of

Figure 2.
Example of a laptop

assembly: (a) exploded
view (adapted from

Dell® Website),
(b) liaison diagram and

(c) binary adjacency
matrix
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six different productswith varying levels of complexity. Products adopted in the experiments
are molecular structures assembled and disassembled using balls and sticks. The use of
molecular structures to represent real cyber-physical products is a well-established approach
in the scientific literature. By using atoms to represent product components and bonds to
represent connections, molecular models can effectively emulate real assembly and
disassembly processes (Alkan et al., 2017a,b; Alkan and Harrison, 2019; Sinha, 2014; Verna
et al., 2022a,b). The assembly of ball-and-stick structures is primarily a constructive activity,
involving the processing of visual and/or geometric information and the ability to assemble
and disassemble a certain structure. Thus, the reason behind the choice of such structures is
the concern of (1) isolating and controlling the effects of structural complexity alone on
learning, while (2) minimising confounding effects that would occur in real production
settings, such as dynamic and organisational aspects of engineering systems. Accordingly,
studying the effects of complexity on learning using molecular structures allows the
identification of generalisable patterns and mechanisms that inform the understanding of
learning in real-world manufacturing processes, as the underlying principles of learning,
such as information processing and cognitive abilities, are expected to apply across different
domains.

In the proposed case study, organic molecular structures were built using a molecular
modelling kit (Orbit™ by 3B Scientific®) based on clear 2D and 3D work instructions. Six
different ball-and-stick structures with varying levels of complexity were selected to simulate
the assembly and disassembly of real products (see Figure 3 and Table 1).

ID
Molecular
formula

Total
parts

Total
connections

Single
connections

Double
connections EAM C1 C2 C3 C

1 C2H4 6 5 4 1 6.00 1.72 4.67 1.00 6.40
2 C20H17NO6 44 49 42 7 52.41 12.65 45.55 1.19 66.90
3 C33H46O5 84 85 76 9 89.79 24.14 78.75 1.07 108.32
4 C46H70O 117 117 106 11 123.29 33.63 108.28 1.05 147.73
5 C50H64N2O12 128 133 119 14 145.73 36.79 123.21 1.14 177.07
6 C43H66N12O12S2 135 137 123 14 151.33 38.80 126.88 1.12 181.04

Source(s): Authors work

Figure 3.
3D representation of
the six molecular
structures (ID 1 – ID 6),
detailed in Table 1

Table 1.
Technical
specifications and
complexity results of
six ball-and-sticks
molecular models
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Themolecular structures referred to in the case study are organic molecules that are made up
of different atoms (i.e. balls) and bonds (i.e. sticks), in the quantities specified in Table 1.
Regarding the atoms, 5 different typologies were involved: carbon (grey), hydrogen (white),
nitrogen (blue), oxygen (red) and sulphur (yellow). On the other hand, two kinds of chemical
bonds were included, i.e. rigid connectors for single covalent bonds and flexible connectors
for double covalent bonds. These molecules can vary in size, shape and complexity
depending on the number and types of atoms they contain and the way they are connected.
The six molecular structures used as a case study are identified using their chemical
formulae, which provide information about the types and numbers of atoms present in each
molecule (see Table 1). For example, ID 1 (C2H4) is a molecule made up of two carbon atoms
and four hydrogen atoms, while structure ID 6 (C43H66N12O12S2) is a more complex molecule
made up of 43 carbon atoms, 66 hydrogen atoms, 12 nitrogen atoms, 12 oxygen atoms and 2
sulphur atoms. In addition to the different number of atoms and bonds, each molecule has a
different architecture, which influences the final complexity of the product. For example, as
seen in Figure 3, structures ID 1 and ID 4 are linear, while structures ID 3 and ID 5 are more
distributed.

The level of complexity of each structure, which depends on the number of atoms and
bonds and the architecture of the structure, is derived according to the structural complexity
model (see Section 3.1). Part complexity γp, see Eq. (2), is estimated as a function of the average
handling time, i.e. the time to locate the box, move arm to pick position, pick the relevant atom
and return the arm to the work position. Connection complexitywpr, see Eq. (3), was estimated
by the average completion time of a connection between a pair of atoms in isolated conditions,
involving (1) connector handling and (2) joining process. This latter requires locating the
connection holes, orienting and positioning the atoms and bond, connecting the bond to both
atoms, arranging the connection and a final check. To estimate the average times of the above
activities, preliminary experiments were performed by the 84 operators by randomising the
tasks to minimise learning effects. According to the results, the average handling time of
individual atoms is 2.80 s, the average connection time using a rigid connector is 8.95 s and
using a flexible connector is 9.75 s. Part and connection complexities are derived by
normalising the average times based on the longest time, resulting in γp ¼ 0:29,wpr5 0.92 for
rigid connections and wpr ¼ 1:00 for flexible connections. Accordingly, part, connection and
topological complexities of each molecular structure are calculated by Eqs. (2)–(4),
respectively, and the overall structural complexity by Eq. (1) (see Table 1).

4.2 Experimental setup
This study was structured to resemble real manufacturing scenarios while controlling
confounding factors to focus on product complexity’s impact on operator learning,
productivity and quality performance.

Experimental trials were organised in 7 days. On each day, 12 operators were involved, for
a total of 84 operators. This large and diverse sample size ensured robust data for analysis
and accommodated variability amongst individuals for broader generalisation. Operators
were divided into pairs: while the first operator was responsible for the assembly of a
molecule randomly assigned, the second operator performed quality inspections and was
responsible for the subsequent structure disassembly. Then, the operator who previously
disassembledmoved on to the assembly of a secondmolecule, always randomly assigned and
the other operator performed the quality control and the subsequent disassembly. This
division simulated real-world assembly line scenarios where tasks are typically shared
amongst teams. After seven assembly-disassembly cycles per molecule, roles rotated. This
rotation avoidedmonotony and allowed a comprehensive understanding of operator learning
across both assembly and disassembly operations. Daily, each molecule was assembled and
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disassembled by two distinct operators, yielding 14 replicates per molecule. Repetition of
assembly and disassembly operations seven times per operator mirrored assembly line
work’s repeated nature and aided the construction of learning curves, providing insights into
how operator performance evolves with practice. Assembly and disassembly operations
lacked a particular sequence, minimising sequence complexity effects, relevant in both
assembly operations (Bahubalendruni et al., 2019; Kumar et al., 2022) and disassembly
operations (Anil Kumar et al., 2021; Gulivindala et al., 2021).

For assembly, each type of atom and connector was located in a specific box (see Figure 4),
where the operator selected the corresponding part following the given assembly instruction.
For disassembly, specific empty boxes were prepared, one for each type of atom and
connector, where operators could put the corresponding part (see Figure 4). It is worth noting
that all the participants had no previous industrial assembly experience.

During assembly, the operator responsible for quality control was assigned tomeasure the
total assembly time of each structure and count the number of process and product defects.
Process defects are those errors occurring during assembly operations, which involve
disassembling one or more parts/connections and repeating the operations to correctly
complete the structure. On the other hand, product defects are those found by the quality
inspector on the finished product after assembly (i.e. missing and/or incorrect atoms and
bonds). During disassembly, the total disassembly time was measured by the quality
controller, as well as the number of disassembly defects, i.e. the number of atoms and/or
bonds put in the wrong box.

Figure 5 provides a detailed schematic representation of the adopted experimental setup,
illustrating each operation’s procedures, stages and responsibilities.

4.3 Analysis methodology
The outcomes of the experiments, i.e. (1) total assembly time, (2) total number of defects
occurring during assembly (considering both process defects and defects remaining in the
final product), (3) total disassembly time and (4) total number of disassembly defects, were
recorded for each of the six molecular structures. Outcomes (1) and (3) can be considered a
measure of the productivity of operators, while outcomes (2) and (4) provide an insight into
quality performance. As outcomes (2) and (4) are closely linked to human errors, they can also
be interpreted as indicators of worker reliability (Givi et al., 2015). As mentioned above, 14

Figure 4.
Workstation and
equipment used for
assembly and
disassembly tasks
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replicates of each structure’s outcomes were obtained. For the analyses, the average values
obtained from the 14 outcome measures were considered because of the high variability of
individual data. The software MINITAB® is used for statistical analysis (Minitab, 2022). It
has to be noted that nonlinear regression models are used to analyse data since logarithmic
transformation–and subsequent linear regression–proved inaccurate in modelling near-zero
data affected by variability, as in the case of defects, leading to a prediction bias. To ensure
accuracy, the obtained models were evaluated via goodness-of-fit tests and residuals
analysis. Statistical significancewas assessed at the 95% confidence level, contributing to the
results’ validity and reliability (Bates and Watts, 1988; Seber and Wild, 1989).

5. Results
Four learning curves, one for each outcome mentioned in Section 4.3, were derived for all the
products, according to Eq. (5), by nonlinear regression models. Figure 6 illustrates, as an
example, the four learning curves for ID 4. On each plot of Figure 6, the experimental mean
values, the regression line, the 95% confidence and the prediction intervals are represented.

Table 2 summarises themean values of the regression parameters (k and b, see Eq. 5) of the
learning curves related to productivity and quality performance of assembly and
disassembly.

Below, the results of the regressions are analysed in detail. The 95% confidence and
prediction intervals on the plot are represented, showing that the regression lines follow the
curvature in the points closely and no systematic deviations from the fitted line appear (see
Figure 6). Then, the statistical significance of parameter estimate is assessed by analysing the
95% confidence intervals for the parameters, calculated from the corresponding Standard
Errors (SE) reported in Table 3. The parameter estimates are verified to be statistically
significant in all learning curves since their 95% confidence intervals do not contain zero
(Bates andWatts, 1988; Seber andWild, 1989). Moreover, a lack-of-fit test is performed (Bates
andWatts, 1988; Seber andWild, 1989) when considering all the 14 replicates in the model. In
Table 3, the p-values of the lack-of-fit tests are reported showing that, being larger than the
significance level of 0.05% (the minimum p-value is 0.511 for the assembly quality learning
curve for ID 3), no lack-of-fit is detected. Finally, regression residuals are analysed, revealing
that the power-law models are adequate and meet the assumptions of the analysis.

Figure 5.
Schematic of the

experimental setup
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Learning curve coefficients, i.e. k, the initial productivity in terms of times and defects, and b,
the learning factor, see Table 2 in Section 5, are related to product structural complexity.
Experimental results showed a statistically significant effect of structural complexity C on k,
and it was found that their relationship follows a power law, both in assembly and
disassembly (Finding 1). This outcome aligns with previous studies (Alkan, 2019; Galetto
et al., 2020b), wherein assembly times and defects increase more than linearly with increasing
complexity. These findings reinforce and extend the scope of the existing knowledge base by

Productivity Quality performance
Assembly Disassembly Assembly Disassembly

ID kpa bpa kpd bpd kqa bqa kqd bqd

1 0.71 0.31 0.29 0.12 0.71 2.09 0.21 1.62
2 13.46 0.43 3.43 0.20 3.40 0.60 0.43 0.03
3 22.25 0.34 5.19 0.15 8.72 1.00 0.66 0.76
4 24.22 0.35 7.06 0.13 15.55 1.35 1.11 0.55
5 40.66 0.37 9.21 0.18 13.32 0.77 1.39 0.21
6 51.74 0.40 9.90 0.17 16.71 0.64 1.47 0.18

Source(s): Authors work

Figure 6.
Learning curve of
structure ID 4 for (a)
average assembly time,
(b) average number of
assembly defects, (c)
average disassembly
time and (d) average
number of disassembly
defects

Table 2.
Mean values of
parameters of
productivity and
quality learning curves
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providing empirical evidence for a similar power-law relationship in disassembly processes,
as shown in Figures 7 and 8.

In each plot of Figures 7 and 8, the regression line, the 95% confidence and prediction
intervals are represented. Nonlinear regressions are expressed in the form: k ¼ vk∙Cwk. Since
times and defects cannot assume negative values, plots have zero as lower limit of the
ordinate axis and, consequently, negative values of confidence and prediction intervals are
set equal to zero.

The adequacy of regressions is assessed by verifying the statistical significance of
regression parameters through the 95% confidence intervals, calculated from the parameters
standard errors reported in Table 4, and by analysing the residual plots. In this case, the lack-
of-fit p-value cannot be calculated because the models do not contain replicates. As can be
seen from Table 4, the estimates of the exponents (wk) of the regression curves are all
significant. However, this is not the case for all estimates of parameters vk, being affected by
high uncertainty probably due to the low number of data used for the regression. To obtain
more robust parameter estimates, additional products with different levels of complexity will
be considered in the future.

Comparing the curves (cf. Figures 7 and 8), and the mean values and standard errors of
regression parameters (cf. Table 4), the variability of disassembly curves is lower than that of

Productivity Quality performance
Assembly Disassembly Assembly Disassembly

ID kpa bpa

Lack-of-fit
p-value kpd bpd

Lack-of-fit
p-value kqa bqa

Lack-of-fit
p-value kqd bqd

Lack-of-fit
p-value

1 0.034 0.041 0.562 0.008 0.020 0.975 0.081 0.530 0.880 0.043 0.595 0.797
2 0.535 0.037 0.814 0.095 0.022 0.679 0.449 0.139 0.704 0.432 0.049 0.999
3 0.469 0.018 0.993 0.213 0.032 0.993 0.931 0.1633 0.511 0.081 0.148 0.884
4 0.442 0.016 0.969 0.045 0.005 0.999 0.362 0.051 1.000 0.039 0.035 1.000
5 0.390 0.009 0.994 0.071 0.006 0.998 1.053 0.097 0.912 0.063 0.036 0.999
6 1.227 0.021 0.923 0.219 0.017 0.913 2.354 0.154 0.570 0.087 0.047 0.995

Source(s): Authors work

Table 3.
Standard Error (SE) of

parameters of
productivity and

quality learning curves
and p-values of lack-of-

fit tests

Figure 7.
Initial productivity of

assembly (kpa) and
disassembly (kpd) as a
function of structural

complexity
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assembly curves (Finding 2). The underlying reason can be that assembly operations are
intrinsically characterised by greater variability and uncertainty due to the greater difficulty
of the operations to be performed and the greater cognitive and physical effort required of the
operator compared to disassembly operations.

Then, since initial productivity and quality performance in assembly and disassembly, i.e.
kpa, kpd, kqa, kqd, are affected by variability (see Table 3 in Section 5), the final uncertainty can
be derived by applying the law of variance composition (JCGM 100:2008, 2008; Montgomery
et al., 2009). The variability derived from the regression (see Table 4) is combined with the
variability obtained from learning curves (see Table 3 in Section 5). As a result, an uncertainty
interval at 95% confidence level can be associated with the predicted value of initial
productivity/quality performance for each complexity value. Negative limits of uncertainty
intervals are set equal to zero and are written in italic in Table 5.

In detail, predicted values reported in Table 5 are obtained by using mean values of
regression parameters given in Table 4. Such predicted values thus represent the values
assumed by the regression curves (shown in Figures 7 and 8) at the considered complexities.
The uncertainty intervals at 95% confidence level are obtained from the uncertainty stot
reported in Eq. (6):

Assembly Disassembly
Mean
value vk SE vk

Mean
value wk SE β

Mean
value vk SE vk

Mean
value wk

SE
wk

Initial productivity 0.014 0.032 1.55 0.44 0.027 0.013 1.129 0.097
Initial quality
performance

0.030 0.051 1.208 0.333 0.002 0.002 1.299 0.207

Source(s): Authors work

Figure 8.
Initial quality
performance of
assembly (kqa) and
disassembly (kqd) as a
function of structural
complexity

Table 4.
Mean values and
standard errors of
regression parameters
relating initial
productivity and initial
quality performance to
structural complexity
(see Figures 7 and 8,
respectively).
Nonlinear regressions
are expressed in the
form: k ¼ vk∙Cwk
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stot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2pred þ SE2

q
; (6)

where:

(1) s2pred is the variability of the prediction associated with the 95% prediction interval

represented in Figures 7 and 8. It is calculated as s2pred ¼ SE2ðFitÞ þ Sregr
2, where

SEðFitÞ is the standard error of the fitted value, and S is the standard error of the
regression (Seber and Wild, 1989). Both values SEðFitÞ and Sregr are outputs of the
nonlinear regression implemented in Minitab®.

(2) SE is the standard error of parameter k (i.e. SE(k)) derived from the learning curves
(see Table 3).

On the other hand, the learning factor b was found to be statistically affected by the sole
topological complexity (C3). In particular, as topological complexity C3 increases, thus moving
from centralised to distributed architectures, the learning factor related to productivity (i.e.
process times) increases more than linearly, following a power law, in both assembly and
disassembly (Finding 3). This result can be explained as the more distributed the structure
becomes, i.e. the more atoms are connected to each other, the easier the operator can identify
assembly/disassembly strategies that lead to significant time improvements. On the
contrary, for the quality learning factor, an inverse proportionality relationship with
topological complexity is observed (Finding 4). In fact, the more distributed the structure
becomes, the fewer reference points there are and consequently, on average, the same defects
are repeated. Instead, in centralised or layered structures (with low values of C3), defect
learning is greater because the structure, being more repetitive and easily visible, facilitates
quality improvement.

For predictive purposes, instead of representing the learning factor b, the progress ratio
(i.e. S 5 1-r, where r is obtained as e−b$lnð2Þ, see Section 3.2) was related to the topological
complexity, as it is more readily useable from an operational standpoint, see Figures 9 and 10.
In detail, the 95% confidence and prediction intervals and the regression lines of progress
ratio of productivity and quality performance are shown in Figures 9 and 10, respectively.

Figure 9.
Progress ratio of
productivity of
assembly (Spa) and
disassembly (Spd) as a
function of topological
complexity
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Nonlinear regressions are expressed in the form: S ¼ vs∙C3
ws. Mean values and standard

errors of regression parameters are provided in Table 6. In analogy to the regressions
presented above, the adequacy was checked using the appropriate techniques for nonlinear
regressions (Bates and Watts, 1988). In such a case, according to Table 6, all parameter
estimates are statistically significant.

Similar to initial productivity and quality performance, predicted values of progress ratio
are obtained for each value of topological complexity, with the corresponding uncertainty
interval at 95% confidence level, derived by combining the variability of regression
parameters (see Table 6) and variability of progress ratio values. Predicted values reported in
Table 7 are obtained by using mean values of regression parameters given in Table 6. The
uncertainty intervals (95% confidence level) are derived by implementing Eq. (6), considering
that progress ratio standard error, i.e. SE(S), has to be derived from learning factor standard
error, i.e. SE(b) - listed in Table 3 in Section 5 - as follows:

SEðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlnð2Þ$e−b$lnð2ÞÞ2$SE2ðbÞ

q
: (7)

The resulting values are given in Table 7. Note that negative limits of uncertainty intervals
are set equal to zero and are written in italic.

It has to be highlighted that progress ratio is very marked for quality performance, where
it goes on average from about 35% for high values of C3 to 80% for low values of C3 in

Assembly Disassembly
Mean
value vs SE vs

Mean
value ws

SE
ws

Mean
value vs SE vs

Mean
value ws

SE
ws

Progress ratio of
productivity

0.195 0.006 1.498 0.273 0.082 0.003 2.528 0.267

Progress ratio of
quality performance

0.758 0.039 5.207 0.658 0.688 0.067 12.683 2.134

Source(s): Authors work

Figure 10.
Progress ratio of

quality performance of
assembly (Sqa) and

disassembly (Sqd) as a
function of topological

complexity

Table 6.
Mean values and
standard errors of

regression parameters
relating progress ratio

of productivity and
quality performance to
topological complexity
(see Figures 9 and 10,

respectively).
Nonlinear regressions
are expressed in the
form: S ¼ vs∙C3

ws
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assembly (and from 2% to 70% in disassembly). On the other hand, progress ratio of
productivity ranges, on average, from about 20% to 26% for assembly tasks and from about
8% to 13% for disassembly operations (Finding 5).

Below are some considerations on the validation and generalisation of the proposed
approach. The six products used were chosen to cover a wide range of complexity (i.e. from
6.40 to 181.04) to quantify the effects that complexity has on operator learning in terms of
productivity and quality. To validate the proposed approach, some of the molecular
structures used or different ones (still within the adopted range of complexity) should be
chosen and checked that the productivity and quality obtained fall within the 95%
uncertainty intervals reported in Tables 5 and 7. Furthermore, to generalise the proposed
method, it will be necessary to apply it to real products and verify that the learning curve
trends obtained align with those obtained using the molecular structures. This will be the
subject of future research.

6. Conclusions
In the modern industrial context, operators are required to be increasingly flexible to deal
with sudden reallocations due to unexpected events, e.g. the introduction of different product
variants or extra orders. This study addresses the urgent need to examine and evaluate the
operator learning effect in relation to different product variants and their levels of complexity.
Additionally, the subsequent disassembly process is also considered to align with
sustainable production and waste minimisation objectives.

This study investigates for the first time the effects that product complexity has on
operator learning in terms of productivity, i.e. process times, and quality performance, i.e.
total number of defects, in both assembly and disassembly processes. An extensive
experimental campaign–with respect to previous studies in the field–involving 84 operators
was conducted, using six different products with varying levels of complexity. In detail, six
ball-and-stick structures were repeatedly assembled and disassembled since molecular
structures are typically considered in the scientific literature to effectively emulate real
production processes.

This study contributes to the theoretical development in the field by modelling the
relationships between product complexity and initial productivity and quality performance,
as well as the relationships between topological complexity and the progress ratio of
productivity and quality performance in both assembly and disassembly tasks. The findings
of the study are as follows:

(1) The analysis of learning curves revealed that as the product complexity increases,
both initial productivity and quality performance exhibit a power-law growth pattern.

Assembly Disassembly

ID C3

Predicted
Spa

95%
uncertainty
interval

Predicted
Sqa

95%
uncertainty
interval

Predicted
Spd

95%
uncertainty
interval

Predicted
Sqd

95%
uncertainty
interval

1 1.00 0.20 (0.13, 0.27) 0.76 (0.47, 1.05) 0.08 (0.04, 0.12) 0.69 (0.23, 1.15)
2 1.19 0.25 (0.19, 0.31) 0.30 (0.08, 0.53) 0.13 (0.09, 0.17) 0.07 (0.00, 0.30)
3 1.07 0.22 (0.18, 0.25) 0.54 (0.33, 0.74) 0.10 (0.04, 0.15) 0.30 (0.02, 0.57)
4 1.05 0.21 (0.18, 0.25) 0.58 (0.44, 0.72) 0.09 (0.08, 0.11) 0.35 (0.13, 0.58)
5 1.14 0.24 (0.21, 0.27) 0.39 (0.21, 0.56) 0.11 (0.10, 0.13) 0.13 (0.00, 0.35)
6 1.12 0.23 (0.19, 0.27) 0.42 (0.18, 0.65) 0.11 (0.08, 0.14) 0.16 (0.00, 0.39)

Source(s): Authors work

Table 7.
Predicted values and
relevant uncertainty
intervals (95%
confidence level) of
progress ratio of
productivity and
quality performance of
assembly and
disassembly

JMTM
34,9
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This finding (Finding 1) aligns with previous research (Alkan, 2019; Galetto et al.,
2020a; Verna et al., 2023b) and contributes to understanding how complexity impacts
learning outcomes. Moreover, this power-law relationship applies to both assembly
and disassembly tasks, expanding the scope of previous investigations.

(2) The study also showed that disassembly curves demonstrate lower variability
compared to assembly curves, signifying that disassembly processes could be
inherently less prone to variation and uncertainty (Finding 2).

(3-4) The study highlights significant differences in learning outcomes between structures
with different levels of topological complexity, which have not been previously explored.
The results pointed out a superlinear relationship between the learning factor, and thus the
progress ratio, of productivity and the sole topological complexity (Finding 3).

An opposite trend was found for the progress ratio of quality performance (Finding 4).
Increasing topological complexity means moving from centralised to distributed
architectures. Thus, the more distributed the structure becomes, the easier the operator
can identify assembly/disassembly strategies that lead to significant productivity
improvements. However, few reference points exist and, as a result, the same defects are
repeated on average. Instead, in centralised or layered structures, which are more
repetitive and easily visible, few strategies for assembling/disassembling the structure
exist and, accordingly, productivity learning is low. Conversely, this facilitates quality
improvement as the previous assembly operations and errors are easily memorised.

(5) Experimentally, topological complexity resulted in amore pronounced variation in the
progress ratio of quality performance than in productivity (Finding 5).

These novel insights expand our understanding of the impact of complexity on learning and
performance in manufacturing processes.

It should be emphasised that althoughmolecular structures used in this study are not real
industrial products, this does not limit the validity of the findings. In fact, although these
objects may appear simple, in the scientific literature, they have fully considered reference
structures whose results can have general validity, regardless of the type of product being
assembled/disassembled. Therefore, the insights gained from studying molecular structures
can be extended to real products, as the underlying principles of learning, such as information
processing and cognitive abilities, are expected to apply across different domains. This
investigation of complexity’s effects on learning using molecular structures uncovers
generalisable patterns and mechanisms contributing to understanding learning in real
manufacturing processes.

Overall, this studyhighlights the importance of considering the effects of product complexity
on operator learning in both assembly and disassembly processes. By understanding these
effects, companies can make informed decisions to optimise their manufacturing operations,
improve productivity and quality, and develop more effective training protocols in response to
the challenges arising from the increasing product variety and customisation. Future research
should focus on exploring the transferability of findings from molecular structures to real
products. Comparative studies incorporating both molecular structures and real production
settings will be essential to validate the observed relationships and generalise the findings.
These research endeavours will bridge the gap between controlled laboratory settings and the
complexities of real-world manufacturing systems, providing a comprehensive understanding
of how product complexity influences operator learning and performance in practical industrial
contexts. Given the potential influence of various external factors on learning, the effects
observed in ball-and-stick models are expected to magnify in real engineering systems.
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