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Abstract—Nowadays, Deep Neural Networks (DNNs) are one
of the most computationally-intensive algorithms because of the
(i) huge amount of data to be transferred from/to the memory,
and (ii) the huge amount of matrix multiplications to compute.
These issues motivate the design of custom DNN hardware
accelerators. These accelerators are widely used for low-latency
safety-critical applications such as object detection in autonomous
cars. Safety-critical applications have to be resilient with respect
to hardware faults and Deep Learning (DL) accelerators are
subjected to hardware faults that can cause functional failures,
potentially leading to catastrophic consequences. Although DNNs
possess a certain level of intrinsic resilience, it varies depending
on the hardware on which they are run. The intent of the
paper is to assess the resilience of a systolic-array-based DNN
accelerator in the presence of hardware faults, in order to identify
the architectural parameters that may mainly impact the DNN
resilience.

Index Terms—DNN Hardware accelerators, Fault Injection,
Reliability

I. INTRODUCTION

Many different applications such as image segmentation,
natural language processing and object detection and recog-
nition are implemented with Deep Neural Networks (DNNs).
These models require a huge quantity of computationally ex-
pensive matrix multiplication operations that, associated with
nonlinear activation functions and the huge amount of data to
be transferred from/to the memory, represent a performance
bottleneck [1]. In order to satisfy performance and power
budget constraints of real-time safety-critical systems, dedi-
cated Deep Neural Network (DNN) hardware accelerators are
widely used [2]. These architectures are usually implemented
as systolic arrays: a grid of synchronous Processing Elements
(PEs) that can perform iterative algorithms with regular data
dependencies [3]. Even though systolic architectures were
invented in the 80s, they have been broadly used in recent
years [2], [4]. For example, in 2016 Google announced their
Tensor Processing Unit (TPU) [5], an application specific
integrated circuit used for accelerating DNNs inferences.

Nevertheless, hardware is prone to failure due to man-
ufacturing process (latent defects, variation in parameters),
silicon aging, environmental stress (vibrations, heat, humidity)
or even Single Event Upsets caused by ionization. These faults
can cause operational error, potentially leading to functional
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failures and therefore fatal consequences, especially for safety-
critical systems [6]. Estimating the resilience of such hardware
is mandatory for designing fault-tolerant hardware.

The research community is moving toward understanding
the resilience of hardware accelerators exploited in DL appli-
cations. In the literature, many DL accelerators, such as [7]-
[9], have been proposed and many efforts have been done to
assess their fault resilience (e.g., [1], [10]). As an example, the
authors of [10] used the Eyeriss accelerator to assess the fault
tolerance of different CNNs. The objective of these studies was
to find the most critical parameters (e.g. the layer) of the CNN
model. In [11], the authors investigated the fault tolerance
of Google’s TPUs and used the results to design a custom
fault-tolerant TPU. The idea consisted in the static mapping
between weights and Multiply and Accumulate (MAC) units to
determine which weights to prune. Another popular accelerator
is the Nvidia’s opensource NVDLA [8]. Reference [12] shows
how to exploit Automatic Test Pattern Generation (ATPG)
for in-field testing the occurrence of permanent faults in the
architecture, promising to improve the fault tolerance of DNNs
running on it.

The goal of this paper is to assess the resilience of a
custom DNN accelerator (based on systolic arrays) by varying
architectural parameters. The resilience analysis is done by
injecting stuck-at faults and comparing faulty outputs with
respect to fault-free outputs. During the injection campaign,
we varied the size of the systolic array and its bit-width.
Interestingly, we found out that the resilience depends not only
on the deployed DNNs and the dataset, but notably on the
hardware architecture.

The rest of the paper is organized as follows. Section II
presents previous works in the literature. Section III presents
the custom hardware and its ecosystem. Section IV describes
the setup of the different performed experiments and section
V shows the obtained results. Finally, section VI concludes
the paper.

II. BACKGROUND

Fault injection is a widely used testing technique to under-
stand the behavior of the system under test in faulty scenarios.
It is based on the realization of controlled experiments to
evaluate the system behavior in the presence of artificial faults.
Many surveys and books discuss fault injection in detail [6],



[13]. Different techniques exist for performing fault injections
and are usually classified depending on the abstraction level.

Some papers propose the injection at software level [14]-
[16]. The most investigated aspects include the fault location
and the execution platform. These techniques provide results
with useful insights and are generally used because they
are extremely cheap to conduct, both in terms of time and
resources. The main drawback is that there is no information
about the hardware that executes the computations.

To this end, the research community recently took interest
into another well known direction: hardware-level fault injec-
tions. It usually consists of simulating the faulty hardware and
comparing the faulty output with the fault-free one. Although
these techniques require more resources and time, they are also
more flexible and accurate than their software counterpart. For
example, when injecting at software level, it is not possible to
take into account underlying hardware — a systolic array in
our case — let alone how its size affects the fault propagation.
Recently, many authors have exploited these techniques [1],
[17], [18]. Their results carry more information about actual
real-world faults, even though it implies targeting a specific
hardware. Therefore, a comprehensive resilience assessment of
the systems can be obtained only when explicitly considering
the hardware platform running the neural network.

Another method consists in injecting faults in manufactured
hardware using ions or laser beam, and then analyze its
behavior. An example of this technique is given in [19].
This method was disregarded for this paper since it is costly,
requires manufactured hardware, and there is no control over
the injection.

III. RESILIENCE FRAMEWORK

In this section, we briefly describe the designed hardware
architecture with its ecosystem and the fault injection frame-
work developed to perform the injection campaigns.

A. Architecture

As [20] points out, there are three main types of systolic
arrays: (i) Weight stationary, in which the weights are
“fixed” at each Processing Element (PE) and the accumulation
operation is performed through the columns; (ii) Output
stationary, in which both weights and activations flow in the
array in perpendicular directions, while the PEs perform the
MAC operation using an accumulation register; (iii) No local
reuse, similarly to the first type, the partial sum flows through
the columns, but in this case the weights have a dedicated bus.

We developed a custom systolic array of the output station-
ary type. Figure 1a shows the general architecture. The weights
flow “vertically” (i.e. from the NORTH to the SOUTH of
each PE) while the activations flow “horizontally”. Figure 1b
shows a single PE with its inputs (NORTH and WEST) and its
outputs (EAST, SOUTH and RESULT). Our implementation
is written in VDHL and is effortlessly configurable in order
to easily perform experiments.
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Fig. 1: Systolic array architecture

B. HW-to-DNN mapping

Even though the same architecture can be used for fully
connected layers, in this work, only convolutional layers are
considered. A DNN convolutional layer can be defined by the
following triplet:

Conv=CQN x N (D

where C' is the number of channels (and thus different
convolutions) composing the layer and N is the size of the
convolution. The proposed systolic array is mapped to a single
channel, and it is able to compute a single convolution at a time
with an O(N) complexity (i.e., linear w.r.t. to one dimension
of the convolution). Please note that the goal of our systolic
array is not to accelerate the execution of the DNN, but to
simulate the execution of a single channel at the RTL level. In
other words, we intend to have the smallest RTL description
able to run the channel and perform a fault injection.

The developed systolic array can perform a single convolu-
tion at a time, therefore, the same array has to be reused for
different channels, otherwise multiple arrays are needed. For a
single convolution, each pass is performed by a single PE, so
that each PE contains the value of a single pixel of the output.

There are two scenarios: (i) the array is larger or equal than
the convolution output, in which case some PEs may stay idle
and do nothing; (ii) the array is smaller than the input. This
second scenario is more interesting, since it requires hardware
re-usage. Indeed, in this case the image is processed in chunks,
which have the same size as the array. This also means that the
same faulty PEs computes different parts of the input image,
effectively injecting multiple faults in the output.

Obviously, the larger the array, the higher the throughput of
the architecture.

C. Fault injection framework

In order to perform the injections, a custom cross-layer
framework was used. Figure 2 shows a high level represen-
tation of the framework. The basic idea is to simulate the
first layer in hardware, injecting the fault, and then passing
the simulation output as the input of the second layer using
traditional DNN techniques (such as Tensorflow or PyTorch).
We used QuestaSim for hardware simulations and injections
and then a C-compiled version of the network, written using



the n2d2 library [21]. This approach allowed quick inferences
without sacrificing the flexibility of hardware-level injections.
Furthermore, the framework supports parallel injections, re-
ducing even more the required fault injection campaign time.

IV. EXPERIMENTS

A. DNN model

The neural network model used for the experiments is
the LeNet-5 [22] architecture. The model is composed by 7
layers: the first four are convolutional, while the last three are
fully connected. The convolutional layers’ sizes are 6 @28x28,
6@14x14, 16@10x10 and the last is 16@5x5. The network
was trained on the MNIST dataset [22], obtaining 99% ac-
curacy when testing 10’000 images from the validation set.
Note that we define as “accuracy” of the neural network the
capability to correctly classify the input picture; the accuracy
is computed by using the top-1 score [22].

We implemented only the first layer of this network, since
it was shown to be the most critical [14]. It is composed by
6 2D-convolutions (or channels). It accepts 32x32 images in
input and produces 6 28x28 activations. The last layer outputs
10 values corresponding to the probability of the input to be
classified with one of the corresponding label.

Since the first layer is composed by 6 channels, our ar-
chitecture is composed by 6 systolic arrays that concurrently
compute the 6 different convolutions.

B. Setup

In this section, we will describe the setup used for our
experiments.

We carried out three sets of experiments, varying three
parameters:

1) Precision of the network - it describes whether the
network is implemented with 16 or 8-bit values;

2) Injection point - we injected both the activations and the
weights, we will refer to weight-injection experiments
with the letter ‘w’ and to activations-injection (or input-
injection images, since it is the first layer) with the letter
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Fig. 2: Fault Injector framework

3) Array size - as explained before, it corresponds to the
physical size of the array. We varied this parameter
among three values: 28, 14 and 7.

Given these three parameters we could refer, for example,
to the experiment 8w7 referring to the experiment with an 8-
bit network implemented on a 7x7 systolic array and injecting
in the weights inputs. Note that when using the symbol X, we
refer to the entire set of experiments varying that parameter. As
an example, experiments 8wX are all the experiments with 8bit
network and injecting the weights, while experiments XwX
are all the experiments where the injections are made in the
weights.

The complete list of the performed experiments is then
8w28, 8wl4, 8w7, 16w28, 16wl4, 16w7, 8i28, 8il4 and 8i7.

C. Fault model

The targeted fault model is stuck-at faults injected during
the simuation. This fault can be interpreted in two ways: either
(1) the fault is transient and only affects the array during the
computation of the first layer, or (ii) the fault is permanent but
the array is only used for computing the first layer (because
of some constraint) while the rest of the network is processed
by different hardware.

In a given simulation, only one fault is injected. It is defined
in function of three parameters:

e PE: this parameter describes which PE is injected,

among all the possible PEs in the architecture;

e Bit: it is the bit that will be modified by the fault. It

depends on the PE data precision (i.e., bit-width),

o Polarity: whether the fault is a stuck-at-0 or a stuck-at-1.

The space of possible faults is then 3-dimensional, and its
size depends on both the array size and the bit-width:

FaultSpace = 2 x K xX6x M 2)
Polarity Bit PE

where K is the bit-width and M is the number of PEs per
systolic array. Note that all of our experiments are performed
injecting “internal” PEs. This means that in the computation
of M, the first row (when injecting in the weights, first column
otherwise) has to be excluded. For example, for experiments
XXT7T M is 7 x 6 =42,

The size of the faults space varies depending on the specific
experiment. In order to obtain statistically relevant results, we
used the method described in [23]. The number of injections
per experiment is determined by equation 3:

N

n= 3
2 N-—1
1+e+ t2—p(1-p)

where N is the size of the fault space (as computed with
equation 2; e corresponds to the margin error (i.e. the error
on the estimation of the experiments) and we assumed a value
of 1%; p is the estimated probability of a fault resulting in a
failure (we assumed 50%); ¢ is the cut-off point and depends
on a confidence level, we set ¢ = 2.58 corresponding to a
99% confidence level; finally n is the minimum number of



injections to perform to have the desired characteristics (in
our case, 1% error margin with 99% confidence level).

Table I shows the number of injected faults per each
experiment. Due to the relatively small size of the space for
experiment 8w7 and 8i7, we performed an exhaustive injection
in every PE.

TABLE I: Fault injected per experiment

Experiment [[ fault space size _injected faults

8w28, 8i28 72,576 14,000
8wl4, 8il4 17,472 8,600
8w, 8i7 4,032 4,032
16w28 145,152 15°000
16wl4 34,944 12,000
16w7 8,064 5,500

The faults were generated randomly. Each fault was applied
to 100 different simulations, because each simulation was done
with a different randomly selected input (from the validation
set). The total number of simulations for each experiment is
100 times what indicated in Table I.

D. Fault Injection for Deep Neural Networks

Even though DNNs can be seen as a software executed on
a given hardware, there are some peculiarities that have to be
considered to set up an effective fault injection campaign.

The fault impact has to be measured differently compared
to classical fault injection. It is especially important for us to
evaluate the functional impact of each fault. For this reason,
we follow a categorization similar to [14].

The output of the faulty DNN is compared with a fault-free
execution of the network with the same input. We defined two
main categories:

o Benign faults: the output of the faulty DNN is either
exactly the same (masked sub-category), or it is different,
but the classification is correct and the confidence of
the top-1 item is higher than the fault free (good sub-
category).

o Malignant faults: there are three cases: the classification
is correct but the top-1 probability is smaller (i) within
5% of the fault free (accept sub-category) or (ii) more
(warning sub-category); worst case scenario, (iii) the
input is misclassified (critical sub-category).

V. RESULTS

In this section, we will overview the most significant results
of our experiments.

A. General Resilience

In this subsection, we will show how the different faults
affected the architecture in general. Table II shows the per-
centage of each fault category for experiments §wX.

The data show a tiny amount of critical faults (consistently
less than 1%), which is desirable, as it is the worst category of
faults. Another important point is related to the percentage of
masked faults. Indeed, it is the most frequent class of faults.
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Fig. 3: General resilience performance per experiment. Each
graph shows the percentage of each category of fault.

Obviously, when injecting a single fault the effect can be
small, but we need to consider that it can be amplified as
it is propagated.

TABLE II: Fault classification in experiments 8wX

Experiment [[ 8w28 3wl4 w7
Masked 64.65%  54.99%  48.04%
Good 19.53%  2431% 27.78%
Accept 3.48% 4.78% 6.67%
Warning 12.19%  15.773%  17.07%
Critical 0.15% 0.19% 0.43%

Figure 3 summarizes the experimental results. It is possible
to see that experiments 8iX show the highest resilience. This
behaviour underlines a good disturbance rejection when cor-
rupting values of the input image. Furthermore, the resilience
of the 8bit hardware is higher than that of the 16-bit one. As
the figure shows, in the former case, the masked faults are
always at least 50% of the total, while in the latter the portion
of masked faults drops to around 20% in 16w7. This result
shows that faults in a 16-bit architecture are more critical than
those in §8-bit architectures.

Another common trend is the reduction of masked faults
with the reduction of the array size from 28 down to 7. A
higher percentage of critical faults identifies a less resilient
architecture, since it implies that a greater number of faults
are likely to produce a mis-prediction. On the other hand,
the higher the number of benign faults, the more resilient the
architecture. Figure 4 shows the relationship between the array
size and the resilience of the network. The curves are cubic
interpolations of the points. It is possible to see that, while the
percentage of benign faults grows linearly, the critical faults
decrease in an exponential fashion, even though they always
stay under 1%.
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Fig. 4: Size-reliability tradeoff in the different experiments
sets. The triangles designate benign faults, the rhombi desig-
nate masked faults, while the squares designate critical faults.

B. Position-based resilience

As explained before, a single injection produces multiple
faults, since faulty values are propagated forward. Figure 5
shows the number of malignant faults with respect to the
injected columns and rows. They all show a decreasing trend,
even though experiments 8w7 and 16w28 show the number
of malignant faults per each injected row. While experiment
8114 shows the number of malignant faults with respect to
each injected column. It can be seen that the “higher” the
row (or the column) the more critical the fault is, since the
faulty value affects more PEs.

It should be noted that this behavior is peculiar to this array
type. In facts, it results from the “output-stationarity” of the
array, since the weights are propagated perpendicularly to the
activations. This is also why XwX experiments show this trend
in the rows, while XiX experiments show the same trend in
the columns.

C. Bit-wise resilience

We counted the number of malignant faults per each bit.
Figure 6 shows the representative data for experiments 8XX,
where bit 1 is the MSB. Figure 6b shows a clear descendent
trend. It is important to underline that the values are 8-bit
unsigned integers. It is easy to perceive that the less important
a bit is, the less critical it is. Furthermore, more than 70%
of the malignant faults are produced by a stuck-at-1 fault. A
similar trend is shown in Figure 6a. The real difference is that
the values in this case are two’s complement signed integers,
with bit 1 being the sign bit. In this case, the most critical bit
is actually bit 2, but we noticed another trend: bit 1 is most
critical with stuck-at-O faults. Indeed, 67% of the faults in bit
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Fig. 5: Figures 5a and 5¢ show the number of malignant faults
with respect to the injected row. The other figure shows the
number of malignant faults with respect to the injected column.

1 comes from stuck-at-O injections. In this case, this means
that 1s are more common than Os in bit 1 of the weights.
Remember that when injecting a 0 in a bit whose value is
always 0, there is no fault. Furthermore, we have to consider
that this data is relative to the 7x7 array, thus the array is
reused 16 times for each processed image.

Figure 7 shows the data for all the three experiments with
16bit representation. Data do not follow the same trend as the
other experiments, and the criticality is especially correlated
with the size of the array. Indeed, even if Figure 7a is basically
the same as 6a, the percentage of stuck-at-1 faults in bit 1 is
46%, which is considerably higher than the 33% of the other
experiment. Furthermore, Figures 7b and 7c show that bits 2 to
8 are equally critical. Additionally, there is not much difference
between stuck-at-1 and stuck-at-0 injections for these bits. The
figure shows that about half of the faults are caused by stuck-
at-1 injections.

The main reason for this behavior has to be searched in the
reuse of the array, as said before. This means that not only
the resilience depends on the used dataset, but also in the way
the data flows, which depends on the architecture. With this
observation in mind, it would be interesting to investigate how
different data-sets affect the behavior of the architecture, and
that might be a direction for a future work.

VI. CONCLUSIONS

In this paper we showed how array size, precision and
disturbances affect the resilience of the system. We concluded
that, in general, neural networks seem to be highly resilient
to disturbances in the input image, but not in weights. We
also showed a negative correlation between array size and
resilience, since the latter drops when the former increases.
Furthermore, we underlined how higher precision can be
actually worse for network resilience. Our experiments showed
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that the 8-bit network is more resilient, masking a higher
percentage of injected faults. This result might be further
investigated in future works.

Finally, we showed that the resilience heavily depends on
both the dataset and the architecture, since varying even just
the array size, the resilience was greatly affected. Indeed,
injecting a smaller systolic array (especially in experiments
performed with a 16-bit architecture) resulted in more malig-
nant faults than injecting a bigger one.
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