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Cost-efficient Slicing in Virtual Radio Access Networks

Somreeta Pramanika, Adlen Ksentinib, Carla Fabiana Chiasserinia

aPolitecnico di Torino, Torino, Italy
bCommunication Systems Department, EURECOM, Sophia Antipolis, France

Abstract

Network slicing is a promising technique that has vastly increased the man-
ifoldness of network services to be supported through isolated slices in a
shared radio access network (RAN). Due to resource isolation, effective re-
source allocation for coexisting multiple network slices is essential to maxi-
mize network resource efficiency. However, the increased network flexibility
and programmability offered by virtualized radio access networks (vRANs)
come at the expense of a higher consumption of computing resources at the
network edge. Additionally, the relationship between resource efficiency and
computing cost minimization is still fuzzy. In this paper, we first perform
extensive experiments using the vRAN testbed we developed and assess the
vRAN resource consumption under different settings and a varying number
of users. Then, leveraging our experimental findings, we formulate the prob-
lem of cost-efficient network slice dimensioning, named cost-efficient slicing
(CES), which maximizes the difference between total utility and CPU cost
of network slices. Numerical results confirm that our solution leads to a
cost-efficient resource slicing, while also accomplishing performance isolation
and guaranteeing the target data rate and delay specified in the service level
agreements.

Keywords: Virtual RAN, 5G, network slicing, resource allocation,
experimental measurements, optimization

1. Introduction

The future of next-generation cellular networks (5G/B5G) heavily relies
on virtualization of network functions and on the slicing of resources for the
support of a wide range of services. In-fact, the economic benefits of virtualiz-
ing the network infrastructure can be significant, with the RAN representing
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an important transformation opportunity. This has resulted in virtualized ra-
dio access networks (vRANs) turning into a de-facto sought-after technology
for the realization of the emerging open radio access network paradigm [1].
Indeed, the level of virtualization and flexibility that characterize a vRAN
make it a perfect fit for the openness and intelligence concepts that are at
the basis of the O-RAN architecture [2]. It is therefore expected that open
standard radio frequency interfaces, combined with vRAN technologies, will
further increase operational savings and increase the scalability of RANs.
However, the increased network flexibility and programmability allowed by
vRANs come at the cost of a higher consumption of computing resources at
the network edge by the vRAN itself [3]. This is a critical aspect that has
scarcely been addressed so far: most of the implementations do not account
for the demand for computational resources imposed by the radio allocation
and, hence, computing resources are typically pooled inefficiently [4, 5]. It
follows that the gains currently attainable by a vRAN are far from optimal,
preventing its deployment at scale.

Resource allocation at the vRAN is naturally and strictly linked with
the concept of network slicing – a key paradigm to guarantee differentiated
quality of service (QoS) and service level agreements (SLAs). Network slic-
ing indeed enables multiple logical networks corresponding to different net-
work services running on top of a common physical network infrastructure,
with the possibility to customize slices to satisfy various SLAs through iso-
lation techniques [6]. Although network slicing is well researched, slicing
the RAN resources is still challenging and requires further study [7]. On
one hand, inherent radio spectrum scarcity promotes that all slices share a
limited amount of radio resources on demand to ensure efficient utilization.
On the other hand, as computing resources in the edge are limited, a cost-
efficient resource allocation among the slices is crucial. Towards this latter
goal, a slicing strategy is required, by which the operational cost (in terms of,
e.g., CPU usage) can be minimized when availability of computing resources
is sufficient, and the SLAs are fulfilled when there is a deficit of computing
capacity.

In fact, if the service in a slice has elasticity [8], then the resource demand
of the slice can change depending upon the operational cost, in order to
maximize the slice profit. This inspires us to deeply explore the relationship
between computing resource cost and slice dimensioning. While the state-
of-the-art [9, 10] on network slicing mainly focuses on offering a satisfying
level of QoS or QoE, flow routing and VNF placement, as well as inter-slice
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radio resource allocation, none of the existing works designs a cost-efficient
slicing strategy accounting for the real-world dependency between the cost
of computing resources at the network edge and the ability of the vRAN to
support different network slices.

To effectively tackle the above issues, it is essential to dynamically adapt
the resource allocation to the various service slices, and the temporal varia-
tions of their traffic demand, across virtual Radio Points of Access (RPAs)
[11]. Towards this goal, a first, fundamental step is to gain a better hands-on
understanding of the behavior of vRPAs and the relation between radio and
computing resource dynamics, as well as their dependency upon such factors
as radio channel conditions and user’s traffic demand. The second required
step is to develop a radio slicing strategy that efficiently supports different
slices, fulfilling their performance requirements while accounting for the use
of computing resources at the network edge. In this work, we address the
above challenges, aiming at answering the following research questions:

1. What are the computing requirements of a vRAN, as different settings
in terms of number of occupied resource blocks (RBs) and type of modulation
and coding scheme (MCS) are adopted?

2. How do the computing requirements of a vRAN change as the number
of connected users varies?

3. How can radio resources be sliced to support traffic flows with different
characteristics and QoS/SLA requirements?

We address the first two questions by investigating the behavior of a
vRPA using a test-bed implementation and conducting a thorough measure-
ment campaign. In particular, we leverage a srsRAN [12] implementation of
an eNB and investigate its CPU consumption under different experimental
settings. It is worth noting that CPU utilization is a key metric used to track
the system performance behavior, however modern processor technology is
much more complex, as a single processor package may encompass multiple
cores with dynamically changing frequencies. These technological advances
can thus change the behavior of CPU utilization reporting mechanisms. Nev-
ertheless, our analysis is carried out in the same environment, which will not
only provide qualitative insights but quantitative predictions as well.

We then address the third question by developing a model that captures
the main aspects of a 5G vRAN, and incorporates the relation that we were
able to derive from our experiments between CPU utilization and number of
users and of radio resources allocated to the deployed slices. By leveraging
such model, we formulate and solve an optimization problem for resource
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usage reduction, while providing each slice with the requested QoS (namely,
data rate and delay) in an isolated fashion. Specifically, our problem dynam-
ically allocates resources to slices so as to maximize the profit of each slice,
i.e., the difference between a slice utility (depending on its turn on the slice
QoS requirements) and the CPU consumption due to the deployment of the
slice itself on the vRAN. To formulate CES, we leverage our experimental
findings and use our CPU cost function which is dependent upon the number
of occupied RBs and number of connected user equipments (UEs).

To summarize our contributions are as follows.

• We develop an srsRAN-based experimental test-bed and perform ex-
tensive experiments, in order to profile the performance limits of the
eNB in terms of processing and throughput. We show that the CPU
utilization of the eNB increases with the MCS index, number of occu-
pied RBs, and importantly, with the number of connected users.

• Using empirical data, we define regression models to predict the per-
centage of CPU utilization of the virtual eNB, as the number of con-
nected users and of allocated RBs varies. In so doing, we obtain a
prediction accuracy of 99% for CPU utilization.

• Leveraging our experimental findings and the aforementioned approx-
imated models, we formulate the CES problem, which aims at maxi-
mizing the slice profit. Importantly, the CES solution turns out to be
able to guarantee a high level of isolation among the deployed slices.

The rest of the paper is organized as follows. Section 2 provides an overview
of the existing literature, while highlighting the novelty of our work. Sec-
tion 3 introduces the design and implementation of the vRAN test-bed that
we used to derive our results and the experimental findings presented in Sec-
tion 4. Section 5 describes the vRAN slicing model and optimization, while
Section 6 compares the performance of CES to that of static resource slicing
(SRS) under different scenarios. Finally, Section 7 draws our conclusions and
presents directions for future research.

2. Related Work

Our work relates to two main research directions: modeling and assess-
ment of vRAN performance, and network slicing.
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vRAN performance. Owing to the intricate relationship between ra-
dio and computing resource dynamics, and the advantages offered by vRANs,
several works have aimed at investigating and optimizing such a virtual sys-
tem. While the studies in [11, 13, 14, 15, 16, 17] focus on evaluating the per-
formance of a vRAN through experiments, the works in [4, 18, 19, 20, 3, 21]
provide an insight onto the theoretical framework.

More specifically, [11] is one of the first experimental studies that charac-
terize the potential savings in compute resources when exploiting the varia-
tions in the processing load across base stations. Interestingly, [13] presents
a linear model to calculate the uplink processing time for a single user in
terms of the sub-carrier load, MCS index, and number of antennas. The lin-
ear model is then used to develop RT-OPEX, a C-RAN scheduling algorithm.
The impact of MCS and SNR on real-time C-RAN processing (i.e., CPU) is
studied in [14], along with a mathematical model for predicting the decod-
ing time. The work in [15] profiles instead the performance of a C-RAN
in terms of CPU and memory usage, as the iperf transmission bandwidth
increases. In [16], the authors investigated the CPU consumption of the
baseband unit (BBU) under various conditions for the C-RANs, and charac-
terized the computational demand in terms of throughput. Instead, the work
in [17] introduces a processing time model considering the MCS, the number
of RBs, and the CPU frequency. However, no such work has investigated
and characterized the performance of a vRAN in terms of CPU and memory
usage as the number of connected users increases and under diverse settings.

As far as analytical models and algorithmic solutions for the optimization
of a vRAN are concerned, [4, 22] set a theoretical basis for CPU-aware radio
resource control. In particular, [4] aims at reducing the level of variability of
the computational load, by jointly optimizing the selection of the MCS index
and the allocation of the physical resource blocks (PRBs). [18, 23] investigate
instead the trade-off between the consumption of data processing resources
and achievable data rates, taking into account specifically the processing re-
quirements of forward error correction (FEC) on the uplink. A computation-
ally aware MCS selection policy is proposed that reduces the computational
complexity requirements, at the cost of slightly decreased spectral efficiency
in [18]. The above works rely on the same model relating computational re-
quirements and SNR, and they neglect variations on the arrival bit-rate load.
This issue is addressed instead in [24], which combines real-time traffic clas-
sification and CPU scheduling in a mobile edge computing setup. However,
[24] relies on a simplistic base-band processing model and does not include an
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experimental validation. An analytical framework, FuidRAN, is presented in
[19], which jointly selects the function split and routing policy, tailored to the
available network and computing resources. However, the model is provided
for one user only. In [20], a novel reinforcement learning framework is pre-
sented, which efficiently allocates radio resources to multiple users in terms
of link, MCS index, RBs and airtime for packet transmissions in heteroge-
neous vRANs. A related relevant contribution is also given in [3] where the
vrAIn solution that dynamically learns the optimal allocation of computing
and radio resources in order to meet the target level of QoS. A novel pipeline
architecture for 5G distributed units (DUs) is presented in [21] to guarantee a
minimum set of signals that preserve synchronization between the DU and its
users, during computing capacity shortages. This study relies on techniques
that require predictable computing to provide carrier-grade reliability.

In conclusion, no previous work characterizes the computing requirements
of vRANs with respect to complete contextual dynamics (namely, traffic load
and number of users). Importantly, designing resource allocation schemes
ignoring such requirements may severely hamper the system performance in
terms of throughput.

Network slicing. Owing to its perennial relevance in the future of mo-
bile communication standards, network slicing has received a great deal of
attention. Several studies have tackled core networks slicing, and many have
focused on placement and management of virtual network functions (VNFs)
[25, 26]. Significant challenges instead still exist in the design and manage-
ment of RAN slicing. Such challenges include how to avoid potential radio
resource sharing conflicts, and how to efficiently use radio resources while ac-
counting for the dynamics of service traffic flows as well as the performance
isolation among slices.

A survey of solutions for radio resource slicing can be found in [27, 28].
Various resource allocation schemes have been designed to achieve resource
isolation among slices, so that the QoS of a slice is not affected by others.
Radio resource sharing among multiple tenants is addressed in [29], with the
aim to achieve fairness and maximize network utility. Rost et al. [30] deal
with the architectural principle of allocating dedicated and shared network
functions to slices in both core and access networks. The deployment of
service function chains for services, and the related resource allocation, are
instead intensively discussed in [9], [10], [31], [32]. To jointly optimize re-
source allocation in terms of flow routing and VNF placement for multiple
co-existing slices, [31] proposes a slice dimensioning scheme, and solves the
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dimensioning problem with resource pricing mechanism where the pricing
functions are the node and link cost. The study in [33] considers the net-
work slicing problem by maximizing the minimum expected rate (spectral
efficiency) of eMBB users over time, while guaranteeing the provisions of
uRLLC traffic.

A network slicing framework, named New Radio flexibility (NRflex), is
presented in [34], which enables users to benefit from multi-service applica-
tions and leverages 5G new radio (NR) numerology to achieve uRLLC ser-
vices latency while meeting the throughput requirements of eMBB services.
A joint eMBB/URLLC scheduling problem is considered in [33] for various
eMBB rate loss models, while the uRLLC and the eMBB traffic are dynam-
ically multiplexed through punctured scheduling. The work in [35] proposes
a dynamic joint functional split and RAN slicing algorithm with the aim
to maximize the throughput by jointly selecting the optimal functional split
and routing path from an end user to the central unit. A new slicing scheme
aimed at slice performance isolation, as well as efficient capacity utilization
and fair resource allocation among users, can instead be found in [36].

We remark that in the majority of the existing works on RAN slicing,
radio resources are shared based on a fixed assignment scheme. Arguably,
this static resource slicing paradigm can avoid the potential radio resource
sharing conflicts among the co-existing RAN slices and thus achieve perfect
performance isolation among different slices. However, it is critical to design
a cost-efficient RAN slicing control strategy in which the radio resources can
be dynamically shared among network slices.

Finally, we mention that a preliminary version of our study has appeared
in our conference paper [37] where we have investigated the CPU and memory
requirements of vRANs through our srsRAN-based test-bed. In this work,
instead, by drawing on our experimental results we characterize the CPU
consumption of vRANs, and we develop a cost-efficient radio slicing strategy.

3. vRAN Test-bed

We now introduce our vRAN test-bed using srsRAN, detailing the test-
bed architecture and configuration, and the adopted experimental methods.

3.1. Test-bed architecture

Figure 1(a) provides a snapshot of the test-bed we developed, while Fig-
ure 1(b) represents its architecture. We leverage software defined radio (SDR)
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srsENB+srsEPC
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(Edge node)
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Figure 1: vRAN test-bed implementation using srsRAN: (a) snapshot of our test-bed
highlighting the edge node hosting the virtual eNB and EPC, and four UEs; (b) test-bed
architecture including UEs, virtual eNB and virtual EPC

interfaces enabling point-to-point communications between vRPA and UE.
An vRPA implements the necessary processing stack to transfer data to/from
UEs. In our case, the vRPA acts as a virtual eNB implemented at the edge
of the network. The connectivity between the vRPA and UEs are supported
by means of an LTE radio link implemented using the srsRAN [12], an open-
source SDR LTE stack implementation offering Evolved Packet Core (EPC),
eNB, and UE applications. It is compliant with LTE Release 9 and sup-
ports up to 20-MHz bandwidth channels as well as transmission modes from
1 to 4, all using the frequency division duplexing (FDD) configuration. As
RF front-end, Ettus Universal Software Radio Peripheral (USRP) B210 de-
vices are used to perform up/down-conversion, filtering, amplification and
AD/DA conversion of the UE and eNB LTE signals. All the RF front-ends
are connected to the vRPA and the UEs via USB 3.0. Then, physical layer is
implemented through a set of OFDMA-modulated channels, using RB filling
across ten 1-ms subframes forming a frame.

The edge host and the mobile terminals are each installed in Ubuntu
18.04 systems. The edge host is equipped with an Intel i7-7700HQ 4-cores
CPU and 8GB of DDR4 RAM, while the UEs feature an Intel i7-8550U 4-
cores CPU and 16GB of DDR4 RAM. Each Ubuntu system is connected to
USRP B210 boards using USRP Hardware Driver v3.15. In order to faciltate
the experiments, all performance management features in the BIOS (e.g., In-
tel@TurboBoost, Hyper-thread control, Intel SpeedStep) are enabled and C-
states have been turned off. The CPU governor of the edge host and the UEs
are set to performance mode to allow for maximum computing power and
throughput. Moreover, real-time thread priorities are enabled in the srsRAN
as the applications (srsENB and srsUE) are executed with root privileges. A

8



set of threads are created in srsRAN for performance and priority manage-
ment reasons. Also, we monitor the level of CPU consumption and ensure
that, during our experiments, the allocated CPU is sufficient to keep up with
the required data rate so as to avoid severe system failures during the radio
data transfer. Finally, in order to establish a stable connection, we set the
transmit gain (tx gain) at the eNB to its maximum value.

3.2. Monitoring the srsRAN eNB and UEs

To monitor the behavior and track the performance of the vRAN entities,
we leverage some of the useful features of srsRAN (e.g., detailed log system
with per-layer log levels, MAC layer Wireshark packet capture, command-
line trace metrics, detailed input configuration file). The eNB is configured
in band 7 (FDD) and the transmission bandwidth has been set to 10MHz,
corresponding to 50 RBs. In order to determine the successful connection
between eNB and UE, the RRC states are observed. Specifically, when the
UEs are successfully paired to the eNB, the RRC connection setup message
is seen. As experimental set-up, we connected 30 dB attenuators to the an-
tennas of each network node; furthermore, the UEs were placed close enough
to the eNB so as to ensure high values of SINR (≥ 25 dB). Finally, we focus
on downlink (DL) data transfer and used iperf for data packet generation.

4. Experimental Evaluation and Analysis

In this section, first we present the performance of the vRPA, i.e., the
srsRAN eNB, in terms of CPU utilization as the number of occupied RBs
and the MCS index vary, when a single UE or multiple UEs are connected. A
similar evaluation for the memory utilization can be found in our conference
paper [37]. The results have been obtained by averaging over 10 experiments;
in every plot, both the average value of the presented performance metric and
the corresponding 95% confidence interval are shown.

4.1. CPU utilization

The CPU usage is analysed using an Intel Core i7-7700HQ 2.80GHz CPU.
It is calculated using the top process in Linux, which provides a dynamic
real-time view of a running system managed by the kernel. Specifically, the
percentage of consumed CPU is collected by sampling the top reports every
second, over a period of 200 seconds.
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Figure 2: CPU utilization and UDP downlink throughput of the virtual eNB, for different
values of the MCS index (a) and occupied RBs (b), and a single connected UE

Figure 2(a) shows the average CPU utilization (left-hand side y-axis) and
the throughput (right-hand side y-axis) obtained over 10 iterations of the
virtual eNB, as the MCS varies and for a single connected UE. For this ex-
periment, UDP DL traffic is generated at the eNB at 30 Mbps, setting the
number of allocated RBs to 50. Also, we set the transmission gain to its
maximum value, thus ensuring that the SNR does not drop below 32 dB.
From the plot, we can observe that, as also shown in [3], the CPU utilization
of the virtual eNB increases as the MCS index grows from 0 to 27. Further,
the consumption of computing resources, which is mainly due to the modu-
lation, demodulation, coding and decoding operations, is quite significant in
absolute terms: as an example, for MCS= 27, a single user consumes around
51% of a single CPU of the edge node. Using empirical data, we found that
the CPU utilization of the virtual eNB can be well approximated as a linear
increasing function of the MCS, i.e., CPU[%] = 0.429 ·MCS + 39.58.

Figure 2(b) shows the CPU utilization (left-hand side y-axis) of the virtual
eNB as the number of allocated RBs varies from 12 to 50, for a single UE
and MCS= 27. The DL traffic load is set to 9 (for 12 RBs), 15 (for 24 RBs),
21 (for 36 RBs), and 30 (for 50 RBs) Mbps, respectively. We notice that the
CPU utilization increases as the number of occupied RBs increases, with a
maximum of 51% for a single UE. A higher number of occupied RBs leads to
the user transmitting at a higher rate, which results in a higher computational
resource consumption. From the experimental data, we found that the CPU
utilization of the eNB can be well approximated as a linear increasing function
of the number of allocated RBs, a, i.e., CPU[%] = 0.2892 · a + 37.02. We
remark that the provided approximation functions can help interpolate the
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average CPU utilization with different radio configurations.
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Figure 3: CPU utilization of the virtual eNB for a varying number of connected UEs, versus
the MCS index and number of occupied RBs equal to 36 (a), and versus the number of
occupied RBs and for MCS= 27 (b)

We are now interested in how the computing resource consumption varies
as the number of users connected to the eNB changes. It is indeed a fact that
the number of served UEs is rapidly increasing, and that cellular networks
will have to support a massive number of users. Figure 3(a) presents the CPU
utilization of the virtual eNB as the MCS index varies, for different numbers
of users. For this experiment, the overall maximum number of RBs that
can be used is set to 36, downlink traffic is generated at 21Mbps, and the
tx gain is set to its maximum value, so that the SNR is always above 28 dB
for all the UEs. In this scenario, an interesting behavior emerges: for a fixed
value of the MCS index, the average CPU consumption of the eNB increases
significantly as the number of users increases, although the traffic load is kept
constant. As an example, for MCS= 27, the average CPU consumption with
four UEs is 62% of a single CPU, i.e., about 30% more than with one UE.

In addition, Figure 3(b) shows the CPU consumption of the virtual eNB
as the number of allocated RBs varies from 24 to 36, for a different number
of connected UEs, MCS= 27, and maximum tx gain. The DL traffic load
for 24RBs is set to 15Mbps, while it is 21Mbps for 36RBs, so that all the
allocated RBs are always occupied. Interestingly, as the number of connected
users grows, the CPU consumption of the virtual eNB increases linearly.

Since the MCS index and number of occupied RBs are always finite values
that vary over a very specific range, we are mainly interested in understanding
the CPU requirements of the virtual eNB as the number of UEs increases.
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Figure 4: (a) Regression plot as the number of UEs varies, for 36 occupied RBs and
MCS= 27, (b) Residual plot for the regression model in (1), with 36 occupied RBs and
MCS= 27

Then, using the empirical data, we build a regression model that predicts
the CPU utilization of the eNB as the number, n, of connected UEs varies.
For 36 occupied RBs and MCS = 27, we obtain:

CPU [%] = 4.099 · n+ 44.935 . (1)

We remark that similar models can be built for different values of MCS index
and number of occupied RBs.

Figure 4(a) shows the CPU utilization under the above settings, along
with the curve obtained using the regression model in (1). The Significance F
for our model is 0.004, which, being well below 0.05, shows that the model can
predict correctly the behavior under study. Further, the regression output
(R-squared) indicates that 99% of the variation in CPU consumption is due
to the number of UEs. Specifically, every additional UE is expected to entail
about 4.1% of increase in CPU usage at the eNB; it follows that 15 users will
easily consume up to 100% of a CPU.

Again for 36 occupied RBs and MCS = 27, Figure 4(b) plots the residuals,
i.e., the difference in percentage between the actual value of CPU utilization
and the one predicted by the regression model, obtained when the number
of UEs varies between 0 and 4. We observe that such residuals are always
within -0.5% to 1% of CPU usage, which confirms the very good accuracy of
the model.

Next, it is important to show that a linear regression model (as in (1)),
obtained from experimental data, correctly characterizes the computing re-
quirements of a vRAN as the number of users increases. To this end, we use
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all the experimental data obtained for a number of UEs up to 3 (i.e., for a
varying number of occupied RBs and MCS indices), and we predict the CPU
consumption when four UEs are connected. The corresponding regression
model is given by:

CPU [%] = 3.9 · n+ 0.369 ·MCS + 35.658 (2)

where n is the number of connected UEs and MCS is the adopted MCS index.
Similarly, the CPU consumption as a function of the number of connected
UEs (n) and number of allocated RBs (a) can be written as:

CPU [%] = 3.9 · n+ 0.44 · a+ 30 . (3)

Table 1: Actual vs. predicted CPU usage with 4 UEs, a varying number of occupied RBs,
and MCS = 27

No. allocated RBs Actual CPU [%] Predicted CPU [%]

24 56.36 55.51
36 61 60.759

Table 2: Actual vs. predicted CPU usage with 4 UEs, different MCS indices, and 36
occupied RBs

MCS index Actual CPU [%] Predicted CPU [%]

12 54.31 55.55
18 58.76 57.71
27 61 61.19

Table 1 and Table 2 report the actual CPU utilization when 4 UEs are
connected, and the corresponding value predicted through (2) and (3). Fur-
thermore, Figure 5(a) plots the residuals obtained for the model in (2) and
Figure 5(b) those obtained for the model in (3): again, all residual values are
within -1% and 1%. These results, along with an F-statistic value of 0.0023,
indicates that the linear regression model well describes the behavior of CPU
utilization.

The experiments are performed with at least one connected UE. For
MCS= 27 and RBs= 36, the predicted CPU utilization from (2) is 45.62%,
which is very similar to the value of 45.84% obtained from (3) with no con-
nected UE. Further, in Fig. 2(a) and Fig. 2(b) we validate our models in (2)
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Figure 5: (a) Residuals plot for the regression model in (2), for different values of the
MCS index and 36 allocated RBs; (b) Residuals plot for the regression model in (3), for a
different number of allocated RBs and MCS = 27

and in (3) with the linear functions provided for one UE, as functions of the
MCS (varied from 0 to 27) and the number of allocated RBs (varied from 12
to 50), and considering as minimum values of the MCS and the number of
allocated RBs 0 and 12, respectively. We can observe that the CPU usage
is almost identical with the same parameter settings for both models, which
confirms the accuracy of the prediction models in (2) and (3).

In order to utilize the linear model with diverse parameter settings (differ-
ent MCS and RB configurations), all our experimental data can be exploited
to derive a model as the number of UEs (n), MCS, and RBs vary. The
corresponding regression model is given by,

CPU [%] = 3.46 · n+ 0.325 · RBs + 0.28 ·MCS + 26.55 (4)

For MCS= 27 and number of occupied RBs = 36, the predicted CPU usage
from the model in (4) is 59.65% for 4 connected UEs, while the actual CPU
usage from the experiments is 61% for the same parameter settings. Figure 6
plots the residuals obtained for the model in (4) showing that all residual
values are within −1.5% and +1.5%. These results, along with an F-statistic
value lower than 0.05, indicate that the linear regression model well describes
the behavior of CPU utilization. It is worth mentioning that the CPU uti-
lization at the eNB can be accurately predicted also when different values of
MCS are used for different UEs. Indeed, since the MCS index takes discrete
values over a very specific range, using in (4) the average value of the MCS
indices allocated over the different users still provides an accurate estimate
of the CPU consumption at the eNB.

Finally, it is important to underline that the relationship between CPU
consumption and factors such as the MCS, the number of allocated RBs, and
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Figure 6: Residual plot for the regression model in (4), for different values of the MCS
index and occupied RBs

the number of connected UEs may become non-linear for a certain number of
UEs. Although, due to hardware constraints, we had to restrict our analysis
to 4 UEs, we have profiled the downlink scheduler when UEs are varied from
1 to 4 and it was found that the processing time increases with the number
of users: as an example, the downlink scheduler processing time for 1UE
is 10µs, while for 4UEs it is 20µs. Additionally, some recent work [21]
confirms that the processing time of downlink transmission tasks does vary
with the number of users (e.g., scheduling becomes more complex). Based
on our experiments, we observed that under low values of MCS (as shown in
Fig. 3(a)), the primary CPU consumption is not due to the MCS, but rather
to the increment in the number of users. For instance, for MCS= 9, the CPU
consumption is 43.63% for 1UE, while it is 52% for 4 UEs. For MCS= 27,
the CPU consumption is 48.58% for 1UE, while it is 61.209% for 4UEs.

To conclude, our proposed linear relationship models hold for the down-
link1 traffic transfer with any value of MCS between 0 and 27, occupied RBs
from 0 to 50 (i.e., for a 10MHz channel), and a number of UEs from 1 to 4.
From our experiments, we found that, for higher values of MCS index (i.e.,
more sophisticated modulation and coding schemes are used), number of al-
located RBs (i.e., higher-rate transmissions take place), and number of users,
the CPU consumption increases linearly. Moreover, the dominant impact on
CPU consumption is due to the number of connected UEs.

1It is worth observing that uplink data transfer will unarguably influence the analysis
of the CPU utilization: e.g., the processing time for decoding is longer than for encoding,
and it increases with the MCS index, as shown in [3, 11, 21].
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5. vRAN Slices: Modeling and Optimization

We now leverage the characterization of the vRAN computational re-
quirements given in Section 4, to develop a solution framework for designing
and optimizing vRANs slicing. In particular, after modeling the vRAN and
the slices supported therein (Section 5.1), we formulate the problem of cost-
efficient slice (CES) dimensioning, which maximizes the slice profit while
accounting for the CPU cost (Section 5.2).

5.1. System model

We focus on a gNB supporting a group of users (E) requiring eMBB
service, and a set of users (U) demanding uRLLC service. For simplicity of
notation, we consider a set of slices M including only a single eMBB and
a single uRLLC slice, although the extension to the case of multiple eMBB
and uRLLC slices is straightforward. Time is divided into Transmission Time
Intervals (TTIs), denoted by t ∈ T = {1, 2, . . . , T}. Radio resource is divided
both in the frequency domain and in the time domain, yielding F RBs, each
of bandwidth B. Considering an equal power allocation, the SINR of the
generic UE i at time t is given by γi,j,t =

P ·Hi,j,t

B·N0
, where P is the transmit

power of the gNB, Hi,j,t is the channel gain of user i on RB j at time t, and
N0 is the power of additive white Gaussian noise (AWGN).

For the conventional services, such as eMBB with large transmitted packet
size, the achievable data rate of UE i for RB j ∈ F at the t-th TTI can be
directly estimated according to Shannon’s capacity as written below in (5):

ri,j,t =


∆t ·B log2(1 + γi,j,t) (5)

∆t ·B
[
log2(1 + γi,j,t)−

√
Ci,j,t

li,j,t
Q−1(ϵ) log2 e)

]
. (6)

However, for the short-sized packet transmission (ranging from 32 bytes to
200 bytes), such as uRLLC [38], the data rate falls in the finite block-length
channel coding regime [39]. Therefore, the data rate are modeled as (6),
where

• ∆t is the time duration of one TTI, which set to 1ms,

• ϵ is the transmission error probability,

• Q−1(·) is the inverse of the Gaussian Q-function,
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• li,t represents the length of the codeword block in symbols and can be
obtained based on the selected numerology for the uRLLC slice,

• Ci,j,t is the channel dispersion, which depicts the stochastic variabil-
ity of the channel relative to a deterministic channel with the same
capacity, given by Ci,j,t = 1− 1

(1+γi,j,t)
2 .

Notice that, to guarantee (1 − ϵ) reliability for the transmission of ri,j,t bits
per TTI towards a user, it is required to assign sufficient RBs with a large
SNR. Thus, we consider that the SNR for every user on each RB never drops
below 5 dB [40].

The achievable rate of an eMBB UE, e ∈ E , in TTI t is thus given by:

re,t =
F∑

j=1

αe,j,t · re,j,t (7)

where binary variable αe,j,t = 1 indicates that the j-th RB is allocated to UE
e, and αe,j,t = 0 otherwise. The achievable rate of an uRLLC UE, u ∈ U , in
time slot t is instead given by:

ru,t =
F∑

j=1

βu,j,t · ru,j,t (8)

where binary variable βu,j,t = 1 indicates that the j-th RB is allocated to UE
u and βu,j,t = 0, otherwise.

Next, we introduce the SLA model, which includes data rate and packet
latency as performance metrics. While the former can be derived by ag-
gregating the amount of data that is successfully transmitted over time, a
queuing model of UEs’ packets is needed to derive the latter.

To this end, we assume that each slice has its DL queue at the gNB, and
all packets belonging to a slice share the same queue. We then model the
uRLLC slice queue at the gNB as an M/M/1/K queue with service rate µ
and traffic arrival rate λ [41]. As µ depends upon the scheduling process at
the MAC layer, while λ corresponds to the traffic rate of the users running
on top of the slice, we write:

µu,t =

∑F
j=1 βu,j,t · ru,j,t

L
(9)

λ =
|U| · du

L
(10)
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where L is the packet size of the uRLLC application, |U| is the number of
UEs belonging to the uRLLC slice, du is the traffic arrival rate of uRLLC
service per user, and u ∈ U . The queue length at the t-th TTI can be derived
as [42]

qu,t =
1− ρu,t

1− ρK+1
u,t

K∑
k=0

kρku,t (11)

where ρu,t =
λ

µu,t
. Little’s law can then be applied to estimate the latency

experienced by uRLLC packets in the corresponding queue:

δu,t = qu,t/λ . (12)

At the t-th TTI, the delay of a packet arriving at the i-th UE is given by the
sum of transmission delay and queuing delay,

Du,t = Wu,t + δu,t (13)

where the transmission delay, Wi,t, is the queue service time, which depends
upon the datarate used to transmit towards the UE (see (8)). We then write
the average packet delay of the |U| uRLLC UEs at the t-th TTI as,

Dt =
1

|U|
∑
u∈U

Du,t . (14)

5.2. Cost-effective slicing (CES)

In this section, we formulate the problem of ensuring a Cost-Efficient
Slicing (CES) of the vRAN, and provide some details of the problem solution.

Our goal is to obtain an optimal vRAN slicing control strategy that max-
imises the expected long-term profit of all slices. Such profit is defined as
the difference between the sum of utility of all eMBB UEs across T TTIs
and the normalized cost of computing resource consumption due to the slices
supported on the vRAN. Specifically, the objective is twofold: (i) when the
CPU capacity is sufficient, the goal is to minimize the operational cost (in
terms of CPU usage) as long as the deployed slices meet the desired per-
formance; (ii) when there is a deficit of computing capacity to meet such
performance target, the aim is resource efficiency, i.e., to maximize the data
rate of eMBB services and minimize the delay experienced by uRLLC users.
By taking αe,j,t and βu,j,t, indicating the RBs allocation for the eMBB and
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uRLLC slices, as decision variables, the CES problem formulation is given
by:

max
{α},{β}

Et∈T

[∑
e∈E

Ue,t −
∑
m∈M

ϕt
m

]
(15)

s.t.
∑
e∈E

αe,j,t +
∑
u∈U

βu,j,t ≤ 1, ∀j ∈ F ,∀t ∈ T (15a)

Dt ≤ Dmax ∀t ∈ T (15b)

αe,j,t ∈ {0, 1} , βu,j,t ∈ {0, 1} ∀u ∈ U ,∀e ∈ E , j ∈ F . (15c)

The utility (Ue,t) of the generic eMBB user e at TTI t is given by the eMBB
user data rate on that TTI, i.e.,

Ue,t =

{
1− erf(xth − xo

e,t) if xo
e,t ≥ xth

erf(xth − xo
e,t) otherwise

(16)

where

• xth is the target data rate of an eMBB UE and xo
e,t is the observed data

rate of user e on TTI t. Our choice of erf function for estimating indi-
vidual UEs utility is motivated by its shape, which takes 0 value at the
origin, and gradually increases (decreases) and saturates to the maxi-
mum (minimum) value in the positive (negative) direction [20]. When
the target is met, the utility value is positive and it further increases
to its maximum value at +1, as the observed data rate approaches
its target value. Likewise, when the target is not met, the value of the
utility is negative, which further reduces and saturates to the minimum
value 1 as the observed data rate moves away from the target. More-
over, it is essential to keep the observed data rate as close as possible
to the respective target for optimum utilization of network resources:
substantially better values than the target ones would indeed translate
into a waste of resources. Thus, our choice of utility function equally
accounts for the aforementioned properties;

• ϕm is the cost of computing resource consumption for deploying slice
m ∈ M, which, based on our experimental findings and model in Sec-
tion 3, is given by

ϕm = 3.9 · nm + 0.44 · am + 30 ∀m ∈ M (17)
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where nm is the number of users served by slicem and am is the number
of RBs allocated to the slice.

Constraint (15a) limits the RB resources, while (15b) guarantees that the
average uRLLC users’ packet delay will not exceed the target value Dmax at
any TTI. Constraint (15c) ensures binary-valued αe,j,t and βu,j,t.

5G NR, adhering to the principles of OFDMA technology, supports mul-
tiple waveform configurations, which results in scalable numerology. A nu-
merology represents a set of parameters such as subcarrier spacing (SCS),
PRB bandwidth, time-slot duration, and OFDM symbol duration. While
LTE supports carrier bandwidths of up to 20MHz with a mainly fixed OFDM
numerology (15 kHz SCS), 5G NR offers scalable OFDM numerologies by
scaling the basic LTE SCS by 2µ, where µ is an integer between 0 and 4.
The numerology is selected independently from the frequency band, with
possible SCS of 15 kHz to 240 kHz. Regardless of the numerology, the length
of a radio frame and a subframe are always 10ms and 1ms, respectively, while
the difference is represented by the number of time slots within a subframe.
The coefficients in our model in (3), which represents the rate of change in
CPU utilization as the number of RBs and users increase, are independent of
numerology. Moreover, as already discussed in Sec. 5.2, we use the normal-
ized cost of CPU resource consumption while designing our slicing solution.
As a result, using the flexible frame structure of 5G NR, our models can
significantly help design a slicing solution for 5G vRAN.

The problem formulation, along with the above constraints, results in
a mixed integer quadratically constrained programming (MIQCP) problem.
Moreover, the problem includes non-positive semi-definite quadratic equality
constraints. To find the CES solution, we used Gurobi [43] where the non-
linear functions are approximated as as piece-wise linear functions. When
solving the model, the objective bounds section provides information on the
best known objective value for a feasible solution (i.e., the objective value
of the current incumbent), and the current objective bound provided by leaf
nodes of the search tree. A new feasible solution is found, either by a MIP
heuristic or by branching. When the gap between the best feasible solution
and the best bound is smaller than the default MIPGap parameter (set to
10−4), Gurobi produces an optimal termination status. Although a MIP
problem is in general known to be an NP-complete problem, we were able to
solve the model with an optimality gap that is at maximum just 0.01%.
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6. CES Performance Evaluation

In this section, we demonstrate the effectiveness of our proposed network
slice dimensioning method, CES, while also considering isolation guarantees.

We set the system parameters as presented in Table 3, and we compare
the slice profit of CES to static resource slicing (SRS), where slice requests
are processed without considering the CPU cost of the gNB due to slicing.
Clearly, the fewer the RBs assigned to a slice, the higher the profit of the slice.
Recall that two different slices are considered in our analysis, namely, eMBB
and uRLLC; also, the results are obtained considering two UEs (Figure 7)
and four UEs (Figure 8) connected to a gNB for each of the slices.

Table 3: Parameter settings

Parameter Value

Number of RBs (F )/RB Bandwidth 50/180 kHz
gNB transmit gain 80 dB

Dmax 5ms
Service type eMBB and uRLLC
Packet size 800 bytes (eMBB); 200 bytes (uRLLC)

Comparison of slice profit. The plots in Figure 7 and Figure 8 for the
two considered scenarios present the number of RBs allocated to the slices,
respectively, under our proposed scheme (CES) and under the considered
benchmark (SRS).

For the first scenario, in the first pair of plots (Figures 7(a) and 7(b)) and
in the second pair of plots (Figures 7(c) and 7(d)), the target eMBB data rate
for every UE is set to 2Mbps and 3Mbps, respectively, while two different
values of uRLLC traffic demand are considered, namely, 0.4 packets/TTI in
Figures 7(a) and 7(c), and 0.8 packets/TTI in Figures 7(b) and 7(d). The
results highlight how the number of RBs allocated to the eMBB and uRLLC
slices is lower under CES compared to SRS. Also, notice that the require-
ments in terms of delay for uRLLC traffic and data rate for eMBB traffic are
always fulfilled, under both CES and SRS, as reported in Table 4

For the second scenario, in the first pair of plots (Figures 8(a) and 8(b))
and in the second pair of plots (Figures 8(c) and 8(d)), the target eMBB data
rate for every UE is set to 2Mbps and 3Mbps, respectively, while two differ-
ent values of uRLLC traffic demand are considered, namely, 0.1 packets/TTI
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in Figures 8(a) and 8(c), and 0.4 packets/TTI in Figures 8(b) and 8(d). The
results highlight how the number of RBs allocated to the eMBB and uRLLC
slices is less under CES compared to SRS, and it equals that of SRS only
for high traffic demand of the eMBB slice. Additionally, we remark that the
target delay for uRLLC traffic is always fulfilled, under both CES and SRS.

(a) eMBB=2Mbps
uRLLC=0.40pkts/TTI

(b) eMBB=2Mbps
uRLLC=0.8 pkts/TTI

(c) eMBB=3Mbps
uRLLC=0.4 pkts/TTI

(d) eMBB=3Mbps
uRLLC=0.8 pkts/TTI

Figure 7: Comparison of the number of RBs allocated to the slices at each TTI, under
CES and SRS. The traffic demand of each eMBB UE is set to 2Mbps in (a) and (b), and
to 3Mbps in (c) and (d)

The plots confirm that CES is more efficient than SRS in the support of both
the uRLLC and eMBB slice: CES is able to reduce the radio resource con-
sumption even in the presence of high eMBB traffic demand. Additionally,
by looking at both Figure 8(d) and Table 5, we notice that CES can reduce
the cost due to slices support also when both the slices exhibit high traffic
demand, by compromising at maximum 20% of the target eMBB data rate.

In conclusion, in all of the considered scenarios, the radio resource con-
sumption is lower under CES than under SRS, which confirms the validity of
our approach. In summary, CES performs a dual role of reducing the CPU
cost and at the same time fulfilling the SLA requirements (i.e., increasing
the utility of eMBB users to meet the target rate and maintaining uRLLC
target delay). This strategy drives CES to efficiently allocate radio resources
at the edge devices where computing resources are constrained.

Slice isolation. Isolation performance in network slicing can be evalu-
ated by measuring the impact that changes (e.g., in traffic demand) occurring
in certain slices have on another slice. To correctly measure and evaluate the
isolation performance of the CES scheme, we consider two scenarios:
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(a) eMBB=2Mbps
uRLLC=0.10pkts/TTI

(b) eMBB=2Mbps
uRLLC=0.4 pkts/TTI

(c) eMBB=3Mbps
uRLLC=0.1 pkts/TTI

(d) eMBB=3Mbps
uRLLC=0.4 pkts/TTI

Figure 8: Comparison of the number of RBs allocated to the slices at each TTI, under
CES and SRS. The traffic demand of each eMBB UE is set to 2Mbps in (a) and (b), and
to 3Mbps in (c) and (d)

(i) Given the eMBB traffic demand, the traffic demand of the uRLLC slice
is varied and the subsequent effect on the data rate of eMBB users is
evaluated;

(ii) The delay experienced by uRLLC traffic is assessed, as the traffic de-
mand of the eMBB slice varies while keeping that of the uRLLC slice
fixed.

Table 4 and Table 5 illustrate the observed data rate of eMBB UEs (xo
e,t)

and experienced delay of uRLLC UEs (Dt), for different values of uRLLC
and eMBB traffic demand. Looking at the difference between the target
and achieved data rate, it can be noted that the performance of the eMBB
slice under CES is not affected much by the variation of uRLLC traffic and
this holds also for different values of eMBB demand. Table 4 and Table 5
also present the observed uRLLC delay for different values of eMBB traffic.
Importantly, the variation of the eMBB demand does not affect the delay of
the uRLLC slice, which remains always below the max tolerable delay value
(set to 5ms) regardless of the value of uRLLC traffic, thus highlighting again
a very good level of isolation between the two slices.

We evaluated the performance of CES only in terms of the number of
allocated radio resources, since, as it can be noted by comparing (2) and
(3), the dominant impact on the CPU consumption is represented by the
number of connected UEs, rather than by the number of allocated RBs. In
addition, we would like to highlight that further considerations about the
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Table 4: Achieved data rate of eMBB UEs [Mbps] and average delay for uRLLC UEs [ms]
for CES and SRS, as uRLLC traffic demand [Mpbs] and target eMBB data rate [Mbps]
vary for 4 connected UEs.

uRLLC traffic xth CES xo
e,t SRS xo

e,t CES Dt SRS Dt

0.4 2 2 2 0.22 0.14
0.8 2 2 2 0.20 0.16
0.4 3 2.96 2.96 0.22 0.10
0.8 3 2.96 2.96 0.43 0.17

Table 5: Achieved data rate of eMBB UEs [Mbps] and average delay for uRLLC UEs [ms]
for CES and SRS, as uRLLC traffic demand [Mpbs] and target eMBB data rate [Mbps]
vary for 8 UE case.

uRLLC traffic xth CES xo
e,t SRS xo

e,t CES Dt SRS Dt

0.1 1 0.96 0.96 0.25 0.13
0.4 1 0.96 0.96 0.2 0.11
0.1 2 2.0 2.0 0.25 0.19
0.4 2 2.0 2.0 0.20 0.13
0.1 3 2.8 2.96 0.36 0.25
0.4 3 2.4 2.96 0.2 0.2

CPU consumption can be made starting from the plots in Figure 7 and
Figure 8, which show how CES allocates a lower number of RBs to the
eMBB and uRLLC slices, with respect to SRS. The smaller the number of
radio resources allocated, the lower the CPU utilization of the virtual gNB
according to (3).

7. Conclusions and Future Work

Virtualized radio access networks (vRANs) are the basis of next-generation
base stations design. To provide real-world insights and key inputs to design
optimized resource management in vRANs, we investigated and characterized
the computational requirements of vRANs by developing an srsRAN-based
test-bed. Through extensive experiments, we profiled the CPU utilization of
the vRAN. Our results shed light on the vRAN behavior across different sce-
narios, showing that, remarkably, the CPU utilization of the eNB increases
substantially with the number of users. It is worth underlining that the re-
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sults have been obtained under a constant value of traffic load and number
of occupied resource blocks. Based on these empirical results, we also built
linear regression models for the prediction of CPU utilization as the number
of users varies.

Then, leveraging our experimental findings, we formulated the problem
of cost-efficient network slicing (CES). The numerical results confirmed that
our solution leads to a cost-efficient resource slicing with 10-15% reduction in
radio resource consumption, while also accomplishing performance isolation
and meeting the data rate and delay specified in the service level agreements
of, respectively, eMBB and uRLLC slices.

Future work will consider a wider range of services and applications, and
it will investigate how radio resources allocation can be further improved by
exploiting 5G numerology.
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