
24 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MTL-Split: Multi-Task Learning for Edge Devices using Split Computing / Capogrosso, Luigi; Fraccaroli, Enrico;
Chakraborty, Samarjit; Fummi, Franco; Cristani, Marco. - ELETTRONICO. - (2024), pp. 1-6. (Intervento presentato al
convegno DAC '24: 61st ACM/IEEE Design Automation Conference tenutosi a San Francisco, CA (USA) nel June 23 -
27, 2024) [10.1145/3649329.3655686].

Original

MTL-Split: Multi-Task Learning for Edge Devices using Split Computing

Publisher:

Published
DOI:10.1145/3649329.3655686

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994382 since: 2024-11-14T09:00:17Z

Association for Computing Machinery (ACM)

MTL-Split: Multi-Task Learning for Edge Devices
using Split Computing

Luigi Capogrosso1, Enrico Fraccaroli1,2, Samarjit Chakraborty2, Franco Fummi1, Marco Cristani1
1name.surame@univr.it, 2enrifrac@cs.unc.edu, samarjit@cs.unc.edu

1Department of Engineering for Innovation Medicine, University of Verona, Italy
2Department of Computer Science, The University of North Carolina at Chapel Hill, USA

ABSTRACT
Split Computing (SC), where a Deep Neural Network (DNN) is
intelligently split with a part of it deployed on an edge device and
the rest on a remote server is emerging as a promising approach. It
allows the power of DNNs to be leveraged for latency-sensitive ap-
plications that do not allow the entire DNN to be deployed remotely,
while not having sufficient computation bandwidth available locally.
In many such embedded systems scenarios, such as those in the
automotive domain, computational resource constraints also neces-
sitate Multi-Task Learning (MTL), where the same DNN is used for
multiple inference tasks instead of having dedicated DNNs for each
task, which would need more computing bandwidth. However, how
to partition such a multi-tasking DNN to be deployed within a SC
framework has not been sufficiently studied. This paper studies this
problem, andMTL-Split, our novel proposed architecture, shows en-
couraging results on both synthetic and real-world data. The source
code is available at https://github.com/intelligolabs/MTL-Split.

KEYWORDS
Split Computing, Multi-Task Learning, Deep Neural Networks, Edge
Devices
ACM Reference Format:
Luigi Capogrosso1, Enrico Fraccaroli1,2, Samarjit Chakraborty2, Franco
Fummi1, Marco Cristani1 . 2024. MTL-Split: Multi-Task Learning for Edge
Devices using Split Computing. In 61st ACM/IEEE Design Automation Con-
ference (DAC ’24), June 23–27, 2024, San Francisco, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3649329.3655686

1 INTRODUCTION
In the last decade, Deep Neural Networks (DNNs) have achieved
state-of-the-art performance in various problems. However, DNN
models often present computational requirements that cannot be
met by most of the resource-constraint edge devices available to-
day [4]. This prohibits the full deployment of DNN-based appli-
cations on these systems, leading to what is commonly known as
the Local-only Computing (LoC) approach. However, using sim-
plified models negatively affects the overall accuracy. As such, the
most common deployment approach of DNN-based applications on
resource-constraint edge devices is the Remote-only Computing
(RoC). With this, the network runs on the server side, and the input
is directly transferred from the edge device to the server through

DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 61st ACM/IEEE
Design Automation Conference (DAC ’24), June 23–27, 2024, San Francisco, CA, USA,
https://doi.org/10.1145/3649329.3655686.

a network connection. Then, the server computes the inferences
and sends the output back to the device. However, such data trans-
fer could lead to excessive latency times, especially in degraded
channel conditions.

As a compromise between the LoC and the RoC approaches,
recently suggested Split Computing (SC) frameworks [21] propose
to split DNN models into a head and a tail, deployed on edge device
and server, respectively. In particular, early implementations of SC,
like [15], select a layer and divide the model to define the head and
tail sub-models. Instead, more recent SC frameworks introduce the
bottleneck concept to achieve in-model compression toward the
global task [20].

At the same time, current state-of-the-art approaches in differ-
ent Machine Learning (ML) applications rely on advanced learning
procedures, such as the Multi-Task Learning (MTL) [6]. In particu-
lar, MTL is a paradigm in which multiple related tasks are jointly
learned to improve the generalizability of a model by using shared
knowledge across different aspects of the input. This is achieved by
jointly optimizing the model’s parameters across all tasks, allowing
the model to learn both task-specific and shared representations
simultaneously.

Innovations. In this paper, we present a new combination of
SC and MTL to solve multiple inference tasks on edge devices. Solv-
ing multiple tasks with a common DNNs can lead to substantial
resource savings. For example, consider the automotive domain:
detecting a person with a camera requires solving both a classifica-
tion task (identifying pedestrians, vehicles, buildings, etc.) and a
regression task (determining bounding boxes corresponding to the
classifications). Our proposed approach aims to solve multiple tasks
simultaneously, i.e., 𝑇1 . . .𝑇𝑁 , where 𝑁 represents the number of
tasks, using only a single neural network, in contrast to current
methods, where the emphasis is on Single-Task Learning (STL),
which would need 𝑁 neural networks to solve the tasks.

As a result, by employing MTL, we enhance performance across
multiple tasks, elevating the design challenge beyond that of pre-
serving a single task’s performance, as in regular SC. Further, this
allows systems to operate effectively even in scenarios where data
is scarce for specific tasks but abundant for others, as explained and
theoretically demonstrated in [2]. Lastly, the shared feature space
output is remarkably lightweight, significantly reducing network
latency encountered in SC scenarios.

In summary, the main contributions of this paper are:

• A new SC design merged with MTL. Our design handles
multiple tasks concurrently, instead of the current focus on
STL in SC.

https://github.com/intelligolabs/MTL-Split
https://doi.org/10.1145/3649329.3655686
https://doi.org/10.1145/3649329.3655686
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3655686&domain=pdf&date_stamp=2024-11-07

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Capogrosso, et al.

• Through MTL, we increase task performance, overcoming
the challenge of preserving only the performance of the main
task.

• Finally, the output from the shared feature space is remark-
ably lightweight, significantly mitigating the impact of net-
work latency in a SC scenario.

2 RELATEDWORK
This section provides an overview of distributed deep learning
applications, specifically focusing on SC and MTL.

2.1 Distributed deep learning
We focus on architectures operating through a DNN model𝑀 (·),
whose task is to produce the inference output 𝑦 from an input 𝑥 .
Three types of paradigms used for distributed deep learning can be
identified in the literature, viz., LoC, RoC, and SC.

Local-only Computing (LoC). Under this policy, the entire com-
putation is performed on the sensing devices. Therefore, the edge
device entirely executes the function 𝑀 (𝑥). Its advantage lies in
offering low latency due to the proximity of the computing element
to the sensor. However, it may not be compatible with DNN-based
architectures that demand robust hardware capabilities. Usually,
simpler DNN models �̄� (𝑥) that use specific architectures (e.g.,
depth-wise separable convolutions) are used to build lightweight
networks, such as MobileNetV3 [14].

Besides designing lightweight neural models, in the last few
years, progress has been made in DNN compression. Techniques
such as network pruning and quantization [18], or knowledge distil-
lation [13], achieve an efficient representation of the neural network
but with some quality degradation.

Remote-only Computing (RoC). The input 𝑥 is transferred
through the communication network and processed at the remote
system through the function𝑀 (𝑥).

This paradigm preserves full accuracy considering the higher
computation bandwidth of the remote system but leads to high
latency and communication bandwidth due to the input transfer,
especially when the cloud is located far from the edge device.

Split Computing (SC). A typical SC scenario is discussed in [10],
where neither LoC nor RoC approaches are optimal, and a split
configuration is an ideal solution. The SC paradigm divides the
DNN model into a head, executed by the local sensing device, and
a tail, executed by the remote system. It combines the advantages
of both LoC and RoC, thanks to the lower latency and, more impor-
tantly, drastically reduces the required transmission bandwidth by
compressing the input 𝑥 to be sent through the use of an autoen-
coder [20]. We define the encoder and decoder models as 𝑧𝑙 = 𝐹 (𝑥)
and 𝑥 = 𝐺 (𝑧𝑙), which are executed at the edge and remotely, re-
spectively. The distance 𝑑 (𝑥, 𝑥) defines the performance of the
encoding-decoding process.

One of the earliest works on SC is the study by Kang et al. [15],
in which the initial layers of a DNN are the most suitable candidates
for partitioning, as they optimize both latency and energy consump-
tion. Additionally, latency reduction can be achieved through two
methods: quantization, as explored in [17], and the utilization of

lossy compression techniques prior to data transmission, as inves-
tigated in [7]. The concept of employing autoencoders to further
compress the data to be transferred is discussed in various studies,
such as [11].

Prevalent methods for identifying potential splitting points have
evolved from architecture-based, to more refined neuron-based
ones. Within the domain of architecture-based approaches, in [24],
candidate split locations are where the size of the DNN layers
decreases. The rationale is that compressing information by autoen-
coders, where compression would still occur due to the shrinking
of the architecture, seems reasonable. On the other hand, in [8]
and [5], it was shown that not only the type of the layers but also the
saliency of individual layers is a crucial factor. A neuron’s saliency
is determined by its gradient in relation to the accurate decision.
Thus, optimal splitting points should be positioned following layers
housing impactful neurons, to preserve the information flowing
until then.

Notably, while existing approaches target STL problems, we
propose the first SC solution for multi-task learning challenges.
Furthermore, while state-of-the-art methods strive to minimize the
drop in accuracy, our approach aims at enhancing the accuracy. To
the best of our knowledge, the only work that combines concepts
similar to ours is [31]. In this, the authors introduce task-oriented
edge computing to reduce bandwidth consumption, which is differ-
ent from our proposal.

2.2 Multi-Task Learning (MTL)
MTL to solve multiple learning problems at the same time [6],
can help us reduce inference time, improve accuracy, and increase
data efficiency [27]. In its basic formulation, MTL uses a common
representation to predict several outputs from a single input. An
important aspect of this procedure is the relationship between tasks
and how much a shared representation can be transferred across
tasks [30], or how to weight the losses of different tasks [16] to
create a better joint optimization objective.

In recent years, numerous methods have emerged to address
the simultaneous solving of multiple tasks, from approaches that
learn how to weigh automatically the different tasks [12], to more
sophisticated transformer-based architectures [29]. Parallel work
also has explored different theoretical aspects of MTL, such as
treating it as a multi-objective optimization [25] or using game-
theoretic optimizations [22]. In particular, MTL approaches have
remained theoretical without practical implementation at the edge.
Thus, our work addresses this gap.

The DNNs solving the different tasks in MTL are commonly
known as task-solving heads, which, we understand, might be con-
fused with the head/tail terminology of SC. For the remainder of the
paper, when we use the term head, we refer to the MTL terminology
(i.e., task-solving heads) and not the SC one (i.e., head/tail).

3 METHODOLOGY
This paper proposes to combine SC and MTL to execute complex
inference tasks on edge devices. After outlining our notation, this
section delineates the formal components of our proposal, shown
in Fig. 1. This architecture consists of two components: i) a shared
backbone deployed on the edge device, and ii) a series of task-solving

MTL-Split: Multi-Task Learning for Edge Devices using Split Computing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

𝑥𝑖
𝑀𝑏

𝜓

𝑍𝑏

𝐻1

𝜃1

𝑦1 L1

𝐻𝑁

𝜃𝑁

𝑦𝑁 L𝑁

L𝑡𝑜𝑡𝑎𝑙

...
...

Backbone
(Edge device)

Network Tasks
(Remote device)

Compute loss
and parameters

Splitting
point

Figure 1: The proposed architecture for handling complex
inference tasks on edge devices by integrating SC and MTL.

heads on a single or multiple remote devices. Orange trapezoids
are DNN models, while their parameters are enclosed in red boxes.
The green components on the right-hand are the loss functions
used to update the learnable parameters. A communication network
separates edge and remote devices.

Setting and notation. We assume the existence of a labeled
image dataset defined as follows:

𝐷 =

{
(𝑥𝑖 , 𝑦𝑖) | ∀𝑖 ∈ {1 . . . 𝐾}, 𝑥𝑖 ∈ R𝑤×ℎ×𝑐 , 𝑦𝑖 ∈ N𝑁

}
, (1)

where 𝐾 is the number of (image, labels) tuples, 𝑥𝑖 is the input
representing the image, and 𝑦𝑖 a set of 𝑁 labels associated with
the 𝑖-th image, namely ground truth. The input 𝑥𝑖 is a tensor with
dimensions𝑤 × ℎ × 𝑐 , where𝑤 is the width, ℎ is the height, and 𝑐
is the number of channels (e.g., red, green, blue). In this work, we
consider the classification task that tries to learn a mapping from
the image space {𝑥𝑖 |∀𝑖 ∈ {1 . . . 𝐾}} to the corresponding set of
labels {𝑦𝑖 |∀𝑖 ∈ {1 . . . 𝐾}}.

3.1 Proposed architecture
Unlike a classic SC scenario, here we focus on architectures operat-
ing through a DNN model, whose task is to produce the inference
outputs {𝑦 𝑗 |∀𝑗 ∈ {1 . . . 𝑁 }} from an input 𝑥𝑖 , where 𝑁 is the num-
ber of tasks to be solved. In this way, one can build a single model
that learns multiple tasks across the same input.

As shown in Fig. 1, the first module is the backbone, a DNNmodel
𝑀𝑏 (·) sharing hidden layers among all tasks. In this way, we greatly
reduce the risk of overfitting: the more tasks we learn concurrently,
the more our model has to find a representation that captures all
tasks, and the less likely we are to overfit the original task. We
describe the backbone operations on the 𝑖-th input as follows:

𝑍𝑏 = 𝑀𝑏 (𝑥𝑖 ;𝜓) , (2)

where𝜓 are the set of shared learnable parameters, and 𝑍𝑏 is the
backone’s output. The output 𝑍𝑏 is typically a tensor, which, in

our approach, is flattened before being sent through the network.
This output represents the point of the networks where the shared
feature representation 𝑍𝑏 is extracted from the backbone and trans-
ferred to the task-solving heads.

Each task is implemented by its own task-solving head, or head
hereafter, a DNN model 𝐻 𝑗 located outside the edge devices, e.g.,
on a remote server. We describe the operations of the 𝑗-th head 𝐻 𝑗 ,
as follows:

𝑦 𝑗 = 𝐻 𝑗 (𝑍𝑏 ;𝜃 𝑗) , (3)

where 𝜃 𝑗 is its set of learnable parameters, and 𝑦 𝑗 its output.
Putting it all together, the overall system output is a collection of

outputs from all heads, organized either as a list or a single tensor.

3.2 Training strategy
The proposed methodology is architecture-independent. Any neu-
ral network architecture can implement the backbone network and
heads, such as a Convolutional Neural Network (ConvNet) or a Re-
current Neural Network (RNN), designed to capture useful features
from the input data 𝑥𝑖 . Regardless of the desired architecture, the
objective of the MTL system is to encourage the model to perform
well on all tasks simultaneously. Let us denote the task-specific
loss function for the 𝑖-th input and 𝑗-th task as L 𝑗 (𝑦𝑖 , 𝑦 𝑗), which
measures the differences between corresponding label inside the
ground truth 𝑦𝑖 and the predicted output 𝑦 𝑗 . The overall loss func-
tion for the MTL system with the 𝑖-th input can be defined as the
sum of losses from each task, as follows:

L𝑡𝑜𝑡𝑎𝑙 =

𝑁∑︁
𝑗=1

L 𝑗 (𝑦𝑖 , 𝑦 𝑗) . (4)

The training process updates the shared backbone parameters
𝜓 and the heads’ parameters 𝜃 𝑗 by backpropagating the gradient
of the total loss with respect to these parameters and using an
optimization algorithm like Stochastic Gradient Descent (SGD). The
specific DNN architecture, activation functions, and optimization
methods can vary based on the problem and input data.

3.3 Fine-tuning the model
A key aspect of the proposed methodology, besides exploiting SC to
enable MTL on edge devices, is the fine-tuning process explained in
this section. There are several reasons for performing fine-tuning,
such as if we aim to enhance task-specific performance or if we
want to introduce new tasks to the system. During the fine-tuning
phase, we update the heads’ parameters 𝜃 𝑗 while keeping the shared
backbone parameters𝜓 relatively fixed.

During the fine-tuning process, heads’ parameters are updated
using gradients with respect to the task-specific loss:

𝜃 𝑗 := 𝜃 𝑗 − 𝛼 · ∇𝜃 𝑗
L 𝑗 (𝑦𝑖 , 𝑦 𝑗) , (5)

where 𝛼 is the learning rate for updating heads’ parameters. The
shared backbone’s parameters are often kept fixed or updated con-
servatively during fine-tuning. As such, we need to define a separate
update process as follows:

𝜓 := 𝜓 − 𝜂 · ∇𝜓L𝑡𝑜𝑡𝑎𝑙 , (6)

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Capogrosso, et al.

where 𝜂 is the learning rate for updating the shared parameters, a
small value compared to the one used to update the heads’ parame-
ters shown in Eq. (5).

Given the parameters update functions, we can now define the
fine-tuning process as an optimization problem, which involves
minimizing the sum of the total loss as follows:

minimize
𝜃,𝜓

L𝑡𝑜𝑡𝑎𝑙 . (7)

It is worth keeping inmind that fine-tuning should be approached
with care. It is important to find a balance between adapting the
model to task-specific characteristics and retaining the general
knowledge from the shared backbone. Too much fine-tuning can
lead to overfitting on limited task-specific data, while too little
fine-tuning might not fully harness the benefits of the MTL setup.

4 EXPERIMENTS
This section describes the experimental trials that have been per-
formed to validate our claims, along with their implementation
details and results.

Models details. In our experimental setup, we used three well-
known DNNs, i.e., VGG16 [26], MobileNetV3 [14], and Efficient-
Net [28], as a shared backbone. We chose the first one because it
is a well-established and widely used architecture in many image-
processing tasks. While the others represent cutting-edge DNNs
for embedded systems applications. The task-solving heads are cus-
tom MultiLayer Perceptron (MLP) composed of two linear layers
activated by the Rectified Linear Activation Unit (ReLU) function.
We want to point out that in this design, the task-solving heads are
smaller than the backbone. However, even though the task-solving
heads are smaller than the backbone individually, if we consider a
large number of tasks 𝑁 , their combined size becomes larger than
that of the backbone. Due to this rationale, our architecture provides
the deployment of task-solving heads on the remote server.

Datasets. To effectively showcase the capabilities of our pro-
posal, we begin our experiments with the 3D Shapes [3] dataset, a
widely used toy benchmark in the ML literature. We further demon-
strate the effectiveness of our proposed method by exploring its
performance on the MEDIC [1] and FACES [9] datasets, one of the
well-known, and the newest MTL benchmarks, respectively.

3D Shapes is a dataset of 3D shapes generated from 6 indepen-
dent factors. All possible combinations of these factors are present
exactly once, resulting in 480,000 total images. These are the floor
hue, wall hue, object hue, scale, shape, and orientation. Therefore,
it is possible to treat the classification of each factor as a different
task to solve, i.e.,𝑇 = [𝑇1 . . .𝑇6]. Due to the straightforward nature
of the synthetic images in 3D Shapes, solving the classification
tasks with a DNN can be easy, leaving a limited possibility for im-
provement through MTL. Thus, to render this setting more realistic,
we add salt-and-pepper noise of 15% of the image pixels, making
the classification more difficult. In particular, with the presence of
noise, the classification of object size (8 classes) and object type (4
classes) becomes challenging.

MEDIC is the largest social media image classification dataset
for humanitarian response, consisting of 71,198 samples to address
four different tasks. Specifically, we decided to address only the

Table 1: Classification accuracy on the test partition of the 3D
Shapes dataset considering the object size (𝑇1) and the object
type (𝑇2). Values are reported as a percentage.

Model Single-Task Learning Multi-Task Learning
(𝑇1 +𝑇2)

𝑇1 ↑ 𝑇2 ↑ 𝑇1 ↑ 𝑇2 ↑

VGG16 12.50 25.50 51.10 (+38.60) 81.74 (+56.24)

MobileNetV3 74.85 93.95 77.23 (+2.38) 94.00 (+0.05)

EfficientNet 95.49 99.07 96.66 (+1.17) 99.48 (+2.28)

damage severity (3 classes) and disaster type (4 classes) tasks since
informativeness and humanitarian are somewhat trivial.

FACES, is a set of 2,052 images of naturalistic faces. Here, the task
corresponds to the classification of the perceived ages (3 classes),
genders (2 classes), and facial expressions (3 classes).

Training and inference details. All the code is implemented in
PyTorch Lightning, and the used pre-trained network corresponds
to the implementations in PyTorch [23]. On the 3D Shapes dataset,
we train our models for 10 epochs, with a learning rate of 1 × 10−5,
using AdamW [19] as an optimizer, on a NVIDIA RTX 3090. On the
MEDIC and FACES dataset, we train our models for 50 epochs, with
a learning rate of 1 × 10−4, always using AdamW as an optimizer,
on an NVIDIA RTX 3090.

We run all the experiments on an NVIDIA Jetson Nano with
4 GB of memory.

4.1 Multi-Task Learning (MTL) results
In this section, we validate our claims within the MTL context,
which evidences the effectiveness of our proposal. Given the distinct
nature of our methodology (see Section 2), a direct comparison with
state-of-the-art MTL methods would be inadequate since these
approaches are based on advanced loss functions [16] rather than
models [29]. As a result, based on [6], our experimental protocol
involves benchmarking our models against their respective single-
task performance.

We begin our analysis on the 3D Shapes dataset. The results, in
terms of accuracy, are shown in Table 1 and demonstrate that MTL-
Split improves the performance on all the tasks with respect to the
STL design choice. This confirms the first two claims of our pro-
posal, i.e., our architecture handles multiple tasks simultaneously
and improves accuracy across the entire task set by collectively opti-
mizing the model’s parameters for all tasks. Hence, in the context of
SC (which encompasses multiple tasks to be solved), our approach
guarantees performance improvement rather than merely aiming to
minimize performance degradation, which is the SC trend observed
in all previous state-of-the-art methods. Furthermore, the ability
to address multiple tasks within the same network simultaneously
has resulted in space and computational savings during inference
because it only requires the evaluation of a single network instead
of 𝑁 neural networks to solve each task.

Table 2 further demonstrates the efficacy of our proposal ex-
ploring its performance on the MEDIC dataset. This experiment
serves as a compelling validation of our previous claims, showcas-
ing the robustness of our architecture evenwhen applied to complex

MTL-Split: Multi-Task Learning for Edge Devices using Split Computing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Table 2: Classification accuracy on the test set of the MEDIC
dataset considering the damage severity (𝑇1), and disaster
type (𝑇2). Values are reported as a percentage.

Model Single Task Learning Multi Task Learning
(𝑇1 +𝑇2)

𝑇1 ↑ 𝑇2 ↑ 𝑇1 ↑ 𝑇2 ↑

VGG16 61.78 59.14 62.65 (+0.87) 60.54 (+1.40)

MobileNetV3 61.73 52.66 61.90 (+0.17) 52.29 (-0.37)

EfficientNet 61.00 53.94 62.42 (+1.42) 55.74 (+1.80)

datasets. In this case, it is important to highlight the inductive trans-
fer between tasks, as even a small increase in decimal points in this
challenging context represents a significant achievement.

The minor decrease of 0.37% of 𝑇2’s performance in the MTL
setting does not represent a problem. Specifically, what is known
in the MTL literature as negative transfer comes up when there is a
significant deterioration in performance across all tasks, typically
resulting from conflicting or unrelated task objectives. Since the
performance improves in all the other cases, we can confidently
say that negative transfer doesn’t occur here. We attribute this
outcome to gradient fluctuations. These results demonstrate the
effectiveness of our approach, as it consistently yields significant
improvements even in difficult scenarios.

Finally, Table 3 shows the results achieved on the FACES dataset
employing the fine-tuning strategy starting from pre-trained net-
works on ImageNet. The overall accuracies obtained are quite high,
whichwas expected given the utilization of a pre-trained network as
a starting point. However, once again, our approach demonstrated
its efficacy in enhancing performance across all tasks. This is signif-
icant since it increases accuracies approaching near-maximum val-
ues. Usually, such improvements necessitate the network’s ability
to correctly classify the intricate corner cases within the datasets. In
all instances where we do not achieve performance improvements,
our results consistently align with the single-task performance (also
in this case, ruling out the possibility that the non-performance
improvements are due to negative transfer).

4.2 Split Computing (SC) analysis
In this section, we examine the advantages of our approach in com-
parison to the other types of distributed deep learning paradigms
while also presenting deployment considerations.

Local-only Computing (LoC). Under this paradigm, for the
3D Shapes and the MEDIC, two distinct DNNs are required since
we address two different tasks. Hence, the estimated memory size
utilizing MobileNetV3 as a backbone is ≈ 1.5 GB, while it is ≈
6.9 GB for the EfficientNet. Instread, for FACES, which involves
three different tasks (i.e., three distinct DNNs are required), the
estimated memory size using MobileNetV3 is ≈ 2.1 GB, and for the
EfficientNet is ≈ 10.3 GB.

As a result, due to memory constraints, the only feasible imple-
mentation on the Jetson Nano is restricted to MobileNetV3 on the
3D Shapes dataset. However, as indicated in Table 4, our approach,
utilizing a single shared backbone on the edge device, enables the
execution of all implementations on the same board. Specifically,

using EfficientNet, we achieve memory size improvements of ≈ 38%
for the 3D Shapes and MEDIC datasets, and ≈ 57% for the FACES
dataset. As aforementioned, VGG16 is not optimal for embedded
system applications, so we do not report data on that model.

Remote-only Computing (RoC). Under this policy, the goal is
to minimize the data sent from the backbone to task-solving heads.

In the FACES dataset, the images are RGB with 2835×3543 pixels.
Consequently, transmitting each input from the edge to the cloud
involves transefing a tensor of size 2835 × 3543 × 3, equivalent to
≈ 115 MB over the network channel.

Whereas, Table 4 also highlights the minimal burden placed on
the network channel when employing our methodology, thanks to
the shared backbone’s neural processing. For example, assuming
a gigabit channel: the time required to transfer 100 inputs of size
≈ 115 MB each is ≈ 98 s, whereas for our inputs of the size of
1.5 MB, it is ≈ 12 s, i.e., we obtain an improvement of ≈ 87% in the
overall latency time. This is important as Internet congestion will
increasingly be driven by machine learning workloads.

This claim holds significant importance in a world that increas-
ingly relies on efficient data transmission and reduced network
congestion.

Discussion. The above analyses showcase the advantages of
our proposal compared to LoC. Our approach also excels in terms
of data transmission, resulting in reduced total latency compared to
RoC. Furthermore, our design handles multiple tasks concurrently,
thereby enhancing overall accuracy across all tasks.

5 CONCLUDING REMARKS
In this paper, we propose a new combination of SC and MTL to ex-
ecute complex inference tasks on embedded devices. The proposed
architecture consists of a unified backbone that serves all tasks at
the edge, and multiple task-solving heads situated outside the edge
device. This design enables the architecture to tackle multiple tasks
simultaneously, in contrast to SC methodologies that focus solely
on a single task. Furthermore, by incorporating MTL, our approach
enhances the accuracy performance across all tasks. Additionally,
the output from the shared backbone is notably lightweight, sig-
nificantly mitigating network latency’s impact in the context of
SC. Extensive experimental validation confirms our claims. Our
approach succeeds at delivering superior performance across all
tasks, whether they are simple or complex. Further, comparison
with other types of distributed deep learning paradigms and the
deployment considerations confirm the efficacy of our design.

ACKNOWLEDGMENTS
This studywas carried outwithin the PNRR research activities of the
consortium iNEST (Interconnected North-Est Innovation Ecosys-
tem) funded by the European Union Next-GenerationEU (Piano
Nazionale di Ripresa e Resilienza (PNRR) – Missione 4 Componente
2, Investimento 1.5 – D.D. 1058 23/06/2022, ECS_00000043), and
by the European Union’s Horizon Europe research and innovation
programme under the Marie Sklodowska-Curie grant agreement
No. 101109243. This manuscript reflects only the Authors’ views

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Capogrosso, et al.

Table 3: Classification accuracy on the test set of the FACES dataset considering the the perceived ages (𝑇1), genders (𝑇2), and
facial expressions (𝑇3). Values are reported as a percentage.

Model Single Task Learning Multi Task Learning
(𝑇1 +𝑇3)

Multi Task Learning
(𝑇2 +𝑇3)

Multi Task Learning
(𝑇1 +𝑇2 +𝑇3)

𝑇1 ↑ 𝑇2 ↑ 𝑇3 ↑ 𝑇1 ↑ 𝑇3 ↑ 𝑇2 ↑ 𝑇3 ↑ 𝑇1 ↑ 𝑇2 ↑ 𝑇3 ↑

VGG16 96.83 95.61 19.02 97.80 (+0.87) 91.46 (+72.44) 99.02 (+3.41) 90.24 (+80.22) 98.54 (+1.71) 99.51 (+3.90) 89.27 (+70.25)

MobileNetV3 97.07 99.51 95.12 99.51 (+2.44) 95.12 (+0.00) 99.51 (+0.00) 95.61 (+0.49) 99.27 (+2.20) 99.51 (+0.00) 95.85 (+0.73)

EfficientNet 99.76 99.76 94.63 100 (+0.24) 95.61 (+0.98) 99.76 (+0.00) 97.32 (+2.96) 100 (+0.24) 100 (+0.24) 95.61 (+0.98)

Table 4: Computing the size of the backbone𝑀𝑏 , and of its output 𝑍𝑏 . The reader should pay particular attention to the green
columns in the table, as these are the columns displaying the results, which show that our proposal is really efficient for SC.

Model 𝑀𝑏 #params (M) 𝑀𝑏 #params size (MB) Forward/backward pass size (MB) 𝑀𝑏 estimated size (MB) 𝑍𝑏 #params (M) 𝑍𝑏 size (MB)

MobileNetV3 0.9 3.58 724.08 727.66 55.3 0.21
EfficientNet 4 15.45 3452.09 3467.54 406.06 1.56

and opinions. Neither the European Union nor the European Com-
mission can be considered responsible for them. This work was
also partially supported by the US NSF grant 2038960.

REFERENCES
[1] Firoj Alam, Tanvirul Alam, Md Arid Hasan, Abul Hasnat, Muhammad Imran,

and Ferda Ofli. 2023. MEDIC: a multi-task learning dataset for disaster image
classification. Neural Computing and Applications 35, 3 (2023), 2609–2632.

[2] Etienne Boursier, Mikhail Konobeev, and Nicolas Flammarion. 2022. Trace norm
regularization for multi-task learning with scarce data. In Conference on Learning
Theory. PMLR, 1303–1327.

[3] Chris Burgess and Hyunjik Kim. 2018. 3D Shapes Dataset.
https://github.com/deepmind/3dshapes-dataset/.

[4] Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi, and Marco
Cristani. 2024. A Machine Learning-oriented Survey on Tiny Machine Learning.
IEEE Access (2024).

[5] Luigi Capogrosso, Federico Cunico, Michele Lora, Marco Cristani, Franco Fummi,
and Davide Quaglia. 2023. Split-Et-Impera: A Framework for the Design of
Distributed Deep Learning Applications. In 2023 26th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS). IEEE, 39–44.

[6] Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997), 41–75.
[7] Hyomin Choi and Ivan V Bajić. 2018. Deep feature compression for collaborative

object detection. In 2018 25th IEEE International Conference on Image Processing
(ICIP). IEEE, 3743–3747.

[8] Federico Cunico, Luigi Capogrosso, Francesco Setti, Damiano Carra, Franco
Fummi, and Marco Cristani. 2022. I-split: Deep network interpretability for split
computing. In 2022 26th International Conference on Pattern Recognition (ICPR).
IEEE, 2575–2581.

[9] Natalie C Ebner, Michaela Riediger, and Ulman Lindenberger. 2010. FACES—A
database of facial expressions in young, middle-aged, and older women and men:
Development and validation. Behavior research methods 42 (2010), 351–362.

[10] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. 2019.
JointDNN: An efficient training and inference engine for intelligent mobile cloud
computing services. IEEE Transactions on Mobile Computing 20, 2 (2019), 565–576.

[11] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. 2019. Bot-
tlenet: A deep learning architecture for intelligent mobile cloud computing ser-
vices. In 2019 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 1–6.

[12] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. 2019. Nddr-cnn:
Layerwise feature fusing in multi-task cnns by neural discriminative dimension-
ality reduction. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 3205–3214.

[13] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129 (2021),
1789–1819.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314–1324.

[15] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[16] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 7482–7491.

[17] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaobing Feng.
2018. Auto-tuning neural network quantization framework for collaborative
inference between the cloud and edge. In Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27. Springer, 402–411.

[18] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. 2021.
Pruning and quantization for deep neural network acceleration: A survey. Neu-
rocomputing 461 (2021), 370–403.

[19] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[20] Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and
Sameer Singh. 2019. Distilled split deep neural networks for edge-assisted real-
time systems. In Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges. 21–26.

[21] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. 2022. Split
computing and early exiting for deep learning applications: Survey and research
challenges. Comput. Surveys 55, 5 (2022), 1–30.

[22] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi,
Gal Chechik, and Ethan Fetaya. 2022. Multi-Task Learning as a Bargaining Game.
In International Conference on Machine Learning. PMLR, 16428–16446.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[24] Marion Sbai, Muhamad Risqi U Saputra, Niki Trigoni, and Andrew Markham.
2021. Cut, distil and encode (cde): Split cloud-edge deep inference. In 2021 18th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON). IEEE, 1–9.

[25] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective
optimization. Advances in neural information processing systems 31 (2018).

[26] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[27] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and
Silvio Savarese. 2020. Which tasks should be learned together in multi-task
learning?. In International Conference on Machine Learning. PMLR, 9120–9132.

[28] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[29] Xiaogang Xu, Hengshuang Zhao, Vibhav Vineet, Ser-Nam Lim, and Antonio
Torralba. 2022. Mtformer: Multi-task learning via transformer and cross-task
reasoning. In European Conference on Computer Vision. Springer, 304–321.

[30] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik,
and Silvio Savarese. 2018. Taskonomy: Disentangling task transfer learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
3712–3722.

[31] Jianfeng Zhang, Wensheng Zhang, and Jingdong Xu. 2022. Bandwidth-efficient
multi-task AI inference with dynamic task importance for the Internet of Things
in edge computing. Computer Networks 216 (2022), 109262.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Distributed deep learning
	2.2 Multi-Task Learning (MTL)

	3 Methodology
	3.1 Proposed architecture
	3.2 Training strategy
	3.3 Fine-tuning the model

	4 Experiments
	4.1 Multi-Task Learning (MTL) results
	4.2 Split Computing (SC) analysis

	5 Concluding Remarks
	Acknowledgments
	References

