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A B S T R A C T   

The current work explores the meso-scale deformation behaviour of an additively manufactured CM247 LC at 
room and high temperatures. In particular, the study focuses on assessing grain boundary sliding (GBS), which 
can play a crucial role in the high-temperature deformation of superalloys. Specific samples were produced using 
the Laser Based Powder Bed Fusion technique (PBF-LB), heat treated and tested under monotonic compression in 
a Gleeble® system. Compression tests were carried out in a wide temperature range at two strain rates and the 
effect of testing parameters on GBS activity was studied. A thorough microstructural characterization of the PBF- 
LB material using EBSD and TEM revealed a γ/γ’ microstructure consisting of columnar grains decorated with Hf- 
rich MC carbides without any segregations of alloying elements. Qualitative and quantitative analysis of GBS was 
performed using FEG-SEM and AFM, and contribution of GBS into plastic deformation was estimated. It was 
demonstrated that GBS is activated at 760 ◦C. A direct correlation between the contribution of GBS into plastic 
deformation and testing temperature was found, while strain rate has the opposite effect. The highest GBS 
contribution (~32%) was recorded at 1093 ◦C/10− 3 s− 1. Finally, intergranular microcracking at triple junctions 
and along grain boundaries was observed when the material was tested at the highest temperatures (871 ◦C and 
1093 ◦C). The effect of the temperature and the strain rate on the GBS activity in the PBF-LB material is 
discussed.   

1. Introduction 

Ni-based superalloys are widely used in the aeronautical and energy 
production fields due to their ability to preserve high mechanical 
strength at high temperatures and resistance to oxidation [1]. The 
exceptional mechanical properties are provided by both solid-solution 
[2] and precipitation strengthening mechanisms [3]. The achievement 
of these high-end performance is tightly bonded to the material micro-
structure and chemistry, in particular the quantity of Al and Ti are 
extremely relevant. At the same time, the increase of these elements, 
makes the material stronger and more stable at higher temperature, but 
weakens its formability and weldability, and introduces the risk of de-
fects formation. Specifically, in the realm of aeronautics, stringent reg-
ulations govern the permissibility of material defects, and these 

guidelines are rigorously enforced on a daily basis in accordance with 
certification protocols outlined by manufacturers or governmental en-
tities like the FAA (Federal Aviation Administration). While these reg-
ulations seamlessly apply to conventionally sourced materials, they are 
currently in a developmental phase for materials produced through 
Additive Manufacturing (AM). When it comes to AM components, the 
norm involves either aligning with existing certification protocols or 
searching through novel protocols specifically tailored for AM structural 
parts. The intricacy and seriousness of these protocols hinge on the 
criticality and failure mode of a component. These evolving protocols 
are designed to devise practical certification strategies that leverage the 
advantages of emerging AM technologies without compromising the 
safety of aircraft or space vehicle operations. They encompass a blend of 
in-depth insights into material properties, manufacturing processes, and 
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design considerations related to critical failure modes, potential defects, 
and part classification. Typically, these protocols offer guidance on 
optimal post-processing standards. For instance, recommendations may 
include the application of processes such as Hot Isostatic Pressing (HIP) 
to mitigate the criticality of internal defects impacting component 
functionality. Additionally, these protocols aim to enhance material 
microstructure and address anisotropy concerns. Remarkably, these 
protocols adhere to safe-life design methodologies that factor in the 
presence of internal crack-like defects. Through meticulous calculations 
of minimum critical flaw sizes, an allowable service life is defined, 
ensuring a comprehensive approach to structural integrity and safety in 
the realm of aeronautical engineering. 

Among Ni-based superalloys, CM247 LC is characterised by a γ-FCC 
matrix reinforced by ordered L12 Ni3(Al,Ti) γ’ precipitates [4,5]. Many 
studies have been conducted to assess the processability of this alloy 
using the Laser Based Powder Bed Fusion (PBF-LB) and its microstruc-
tural evolution during heat treatments due to the capability of additive 
manufacturing techniques to produce near-net shape (NNS) complex 
parts [4–7]. Ni-based superalloys are typically used in high-temperature 
environment, and it is important to assess their deformation behaviour 
in such conditions. Particularly, loading these materials at high ho-
mologous temperatures (≥0.5Tm) may trigger grain boundary sliding 
(GBS), when two grains slide with respect to each other along their 
boundary [8,9]. The grains then become incompatible with each other 
leading to failures with low ductility, unless the incompatibilities 
created by sliding are accommodated. Two main accommodation 
mechanisms are considered in the current literature. First, grain 
boundary diffusion, where vacancies flow along the grain boundaries, 
and the individual grains become elongated. This process is known as 
Lifshitz GBS. It typically occurs in fine grained materials deformed at 
very high temperatures [8]. Second, accommodation by dislocation 
glide and climb, where grains retain their original shape. The latter is 
referred to as Rachinger sliding, and it occurs in materials with larger 
grains [8]. In general, crystalline slip accommodates most of the plastic 
deformation in metals. Nevertheless, there are numerous reports where 
GBS accommodates a significant proportion of the total strain depending 
on the testing parameters [8]. High temperatures promote GBS due to 
enhanced diffusion coefficient and accelerated dislocation glide and 
climb. As it is well known, the self-diffusivity of an atom is correlated to 
the temperature by the Arrhenius-like relation given in (1): 

D=D0e−
Q

RT (1)  

where D0 is a pre-exponential term, Q is the activation energy for self- 
diffusion, R is the gas constant and T is the temperature [10]. Simi-
larly, dislocation glide and climb processes are thermal-dependent [11], 
and dislocations’ velocity (v) is correlated to T as given in (2) [10]: 

v∝e−
Q

RT (2) 

At the same time, it is recognised that low strain rates also promote 
GBS activity [12]. Atom diffusion and dislocation movements are 
necessary to relax the high stress concentration levels arising at the grain 
boundaries during the sliding due to strain incompatibilities [13]. If the 
local stresses are too high to be accommodated and the alloy faces a drop 
in ductility, inter-granular cracking can take place leading to failure 
[14]. For this reason, it is very important to assess the activity of GBS 
and its contribution to the plastic deformation of polycrystalline alloys 
which can be subjected to creep condition [15–17]. Simple monotonic 
uniaxial tests in a wide temperature and strain rate ranges have been 
widely used in literature for this purpose. Special attention was paid to 
this phenomenon occurring in ultrafine-grained Al alloys during their 
plastic deformation at relatively low temperatures [18]. Also, its key 
role in superplastic deformation of fine-grained Mg alloys was demon-
strated [19]. There is a significant body of experimental research 
focusing on GBS and its quantification in light alloys [20–25]. On the 
contrary, very few experimental studies have been done to investigate 

the occurrence of GBS in Ni-based superalloys and its dependence on the 
microstructure and testing parameters. Torres et al. [26] focused on the 
GBS in-situ measurements on a Ni-based superalloy tested at high tem-
perature. Takizawa et al. [27] analytically assessed the GBS as the 
controlling deformation mechanism in superplastic high-pressure 
sliding formability of Inconel 718 at high temperature. Others focus 
on molecular dynamics simulations rather than experimental studies 
[28,29]. AM is becoming increasingly important for producing complex 
shape parts for aeroengines [30]. 

However, the microstructures inherited from the AM are somewhat 
different than those obtained with traditional technologies, such as in-
vestment casting [30]. Alloys processed by AM typically show finer 
grains elongated along the building direction and crystallographic 
texture, which often depend on the process parameters and the scanning 
strategy [31–33]. These microstructures can significantly impact the 
final properties of the material, leading to mechanical anisotropy [34, 
35]. 

While there are several studies reporting the mechanical properties 
of additively manufactured Ni-based superalloy [36], their mesoscale 
deformation behaviour has not been investigated up to date. Under-
standing the mechanisms operating at high temperatures is crucial for 
microstructural design in these materials to achieve high performance at 
service temperatures. Particularly, GBS is a very important deformation 
mechanism controlling their high-temperature creep resistance. No 
works exploring the GBS activity in additively manufactured Ni-based 
superalloys can be found in the current literature. The main objective 
of the present work was to explore the GBS activity at different tem-
peratures and strain rates in CM247 LC Ni-based superalloy processed by 
PBF-LB. Monotonic compression tests were performed to assess the in-
fluence of test temperature and strain rate on the deformation behaviour 
of the superalloy. The deformed samples were then analysed using 
Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) and 
Atomic Force Microscopy (AFM) and a scheme was developed to analyse 
the contribution of GBS as a function of the testing parameters. 

2. Materials and method 

2.1. Material and samples production 

The specimens were produced using a PrintSharp 250 PBF-LB system 
by Prima Additive equipped with a carbon steel building platform 
heated at 80 ◦C and a rubber recoater. Printing was performed under 
high purity Ar gas with an oxygen level lower than 0.1%. The parame-
ters’ ranges studied during the process optimization are reported in 
Table 1. Pre-alloyed gas atomized powder supplied by Praxair Inc. as NI- 
1230 was used as raw material. The chemical composition according to 
the manufacturer datasheet is reported in Table 2, while the volumetric 
powder size distribution measured through laser granulometry resulted 
in D10, D50 and D90 of 24.5 μm, 33.7 μm and 46.2 μm, respectively. 
Finally, apparent density and flowability were measured according to 
ASTM B212 and ASTM B213 and resulted in 4.63 ± 0.01 g cm− 3 and 
12.9 ± 0.2 g cm− 3, respectively. 

The powders were subjected to further chemical analysis to assess 
the average content of the main interstitial elements: C and S were 
determined via NIR oxygen combustion using a Leco CS 744. At the same 
time, O, N and H were evaluated via inert gas fusion in a Leco ONH 836 
machine. Results are shown in Table 3. 

Ten specimens for compression tests were produced in a single job as 
cylinders having a height of 17 mm (aligned along the building 

Table 1 
Parameters range.  

Laser power 
[W] 

Scan speed [mm 
s− 1] 

Hatching distance 
[mm] 

Stripes-head 
overlapping 

170–195 1000–1900 0.03–0.08 0.1–0.2  

P.A. Martelli et al.                                                                                                                                                                                                                              



Journal of Materials Research and Technology 28 (2024) 2466–2477

2468

direction) and a diameter of 10 mm (Fig. 1). A flat surface of 3.5 mm of 
width was also added to the model to measure the GBS after compression 
tests through SEM and AFM. From now on this surface will be referred to 
as “flat surface”. The wires of a K-type thermocouple were welded on the 
midsection of each tested sample to control the temperature with the 
accuracy of ±1 ◦C (Fig. 1). The welding was performed according to 
standard procedures applied in Gleeble testing. It should be noted that 
the heat-affected zone in the subsurface area is negligibly small 
compared to the sample size. It has been well established that it does not 
affect the mechanical properties of samples tested in Gleeble, and this 
welding procedure has been employed in laboratories worldwide [37, 
38]. 

2.2. Sample post processing and heat treatment 

The manufactured samples were cut from the building platform via 
Wire Electro-Discharge Machining (WEDM), manually sandblasted and 
stress relieved at 1080 ◦C for 2 h in an air furnace. Then, the samples 
underwent Hot Isostatic Pressing (HIP) in a Quintus QIH 15L machine 
equipped with a Molybdenum furnace to reduce the internal flaws 
population. This step was performed below the γ’ solvus temperature. 
Pressure and temperature were increased simultaneously, and the 
samples were cooled to room temperature at a rate of 15 ◦C min− 1 

(calculated from HIP temperature to 400 ◦C) after soaking for 3 h. 

Subsequent heat treatment was optimized elsewhere by the authors [4]. 
The recipe is reported briefly:  

● Solution annealing (SA): 1245 ◦C for 2 h + fast cooling at 100 ◦C 
min− 1;  

● I aging: 1080 ◦C for 4 h + fast cooling at 50 ◦C min− 1;  
● II aging: 870 ◦C for 6 h to stabilize the microstructure and promote a 

further precipitation of fine γ’. 

The whole cycle was applied in a low-pressure furnace TAV minijet. 
Even if other literature works use 1260 ◦C as a SA temperature, authors 
pursued the lower temperature to avoid the formation of thermally 
induced porosities (TIPs) [4]. Furthermore, performing the SA at a lower 
temperature could be of industrial interest since it reduces the related 
costs and increases the available number of certified equipment and 
subcontractors in the market. 

2.3. Machining and polishing 

All specimens were machined to a final length of 15 mm to ensure 
that the two circular faces were parallel. Furthermore, the flat surface 
was ground with SiC sandpapers up to 1200 grid and polished with 6-3- 
1 μm diamond suspensions. Finally, 0.04 μm colloidal silica suspension 
was used to obtain the mirror-like surface. Ethanol and ultrasonic baths 
were used to remove any debris resulting from the polishing steps. 

2.4. Compression test using the Gleeble® system 

Compression tests were performed using a Gleeble® 3800 system 
under constant strain rates of 10− 3 s− 1 and 10− 4 s− 1 at room temperature 
(RT), 649 ◦C, 760 ◦C and 871 ◦C, while only the strain rate of 10− 3 s− 1 

was used during the exposure at 1093 ◦C due to creep of anvils detected 
during testing at low strain rate of 10− 4 s− 1. Prior to the tests, the height 
of each sample was measured to calculate the final deformation. Based 
on the authors’ previous experience [18], a total plastic strain of ~8% 
was set as a target for the GBS to be easily detectable. This value ensured 
that GBS events could be observed leaving the surface flat enough for the 
following analysis using AFM. Samples were heated via Joule effect with 
a constant heating rate of 10 ◦C s− 1, and temperature was controlled 
using a K-type thermocouple as mentioned above (Fig. 1). 

2.5. Microstructural assessment 

The microstructure of the as-treated alloy was thoroughly studied 
before compression testing. The Electron Backscatter Diffraction (EBSD) 
analysis was performed using an Oxford Symmetry detector mounted on 
a focused ion beam-scanning electron microscope FIB-SEM TESCAN 
S9000G by Tescan. The specimens’ tilting was kept at 70◦, with a voltage 
of 20 kV and rolling direction parallel to the building axis of the sample. 
The microstructure at grain boundaries was evaluated using a Zeiss 
EVO15 SEM and a FEG S/TEM (Talos F200X, FEI) operated at an 
accelerating voltage of 200 kV. Elemental mapping was carried out 
using energy dispersive spectroscopy (EDS) SuperX detector from FEI & 
Bruker. The foils for TEM observations were cut from a heat-treated 
sample and prepared with a TenuPol 5 (Struers®) by twin-jet electro- 
polishing with a solution consisting of 10% perchloric acid (HClO4), 
30% butanol and 60% ethanol at − 25 ◦C under an operating voltage of 
20 V. 

2.6. Grain boundary sliding quantification 

After being tested, the specimens were subjected to further in-
spections to assess the deformation mechanisms and evaluate the ac-
tivity of GBS. For practical reasons, the authors chose the out-of-plane 
measurement among the possible quantification methods, which is 
shown in Fig. 2. 

Table 2 
Chemical composition (wt.%) of CM247LC alloy according to producer’s tech-
nical datasheet.  

Ni 
[%] 

Cr 
[%] 

Co 
[%] 

W 
[%] 

Ta 
[%] 

Mo 
[%] 

Al 
[%] 

Ti 
[%] 

Hf 
[%] 

Zr 
[%] 

Bal. 8.0 9.3 9.7 3.6 0.5 5.2 0.8 1.7 0.01  

Table 3 
Residual elements (wt.%) in the raw powder.  

C [%] S [ppm] O [%] N [%] H [ppm] 

0.083 
(±0.001) 

4.79 
(±0.08) 

0.014 
(±0.002) 

0.0036 
(±0.0002) 

7.89 
(±1.38)  

Fig. 1. Raw specimen produced for the compression tests (dimensions in mm).  
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The corresponding equation used for the evaluations was reported in 
the work of Langdon [9] for polished surfaces (3): 

εgbs = 1, 1 •
vr

lr
(3)  

where εgbs is the plastic deformation related to the grain boundary 
sliding, vr is the displacement between grains perpendicular to the 
polished surface and Ir the mean distance between sliding events 
randomly measured. Using Equation (4), it is possible to calculate the 
GBS relative contribution (ξ) to the total plastic deformation (εp,tot) as a 
value ranging from 0 to 1 [9]: 

ξ=
εgbs

εp,tot
(4) 

There are no standard measurement rules for the GBS quantification, 
so a scheme was defined by the authors. The surface relief of the 
deformed specimens was analysed using a FEG-SEM APREO 2S LoVac to 
assess the activity of GBS during plastic deformation. The distance be-
tween sliding events was recorded by drawing six lines (three parallels 
and three perpendiculars to the load direction) on five SEM images 
randomly taken at a magnification of 500x, as represented by the red 
lines in Fig. 3. For each line, the number of GBS events was counted and 
divided by the length of the line. The mean value of the six different 
counts was used to quantify lr. Once the SEM observation was 
completed, the specimens were analysed with a Park XE150 Atomic 
Force Microscope (AFM) to measure nine out-of-plane offsets; their 
mean value was used to quantify vr. The area subjected to both FEG-SEM 
and AFM analyses was in the midsection of the specimen’s flat surface 
(Fig. 3). 

3. Results and discussion 

3.1. Microstructural assessment 

Fig. 4a shows the microstructure of the as-treated material, while 
Fig. 4b presents an EBSD map of the same sample. Annealing the sam-
ples at 1245 ◦C led only to a partial dissolution of γ’ and grains structure 
recovery from PBF-LB process. Fig. 4 confirms that annealing the PBF-LB 

CM247 LC at 1245 ◦C may not be effective in achieving complete re-
covery of the PBF-LB structure and γ’ dissolution primarily due to un-
certainties associated with the industrial furnaces. Fig. 4a shows the 
coexistence of small and cubic γ’ precipitates (marked by the green 
arrow) as well as large and irregular ones (indicated by the red arrow), 
which were retained from the HIP process [4,39]. The larger γ’ pre-
cipitates are primarily found at the grain boundaries. Also, SEM images 
reveal that the grain boundaries appear to be decorated with Hf-rich MC 
carbides (indicated by the blue arrow) [4,40]. 

Fig. 4b displays relatively large grains (~60 μm) that are predomi-
nantly elongated along the building direction. The aspect ratio (AR) of 
the grains, determined as the ratio between the major and the minor 
axes of the fitting ellipse obtained from EBSD characterisation, is re-
ported as 3.5 ± 2.1. The grain morphology is noteworthy because some 
previous publications reported that elongated grains have a reduced 
propensity for sliding compared to the equiaxed ones [41]. 

The majority of grain boundaries observed in Fig. 4 are non-serrated. 
This can be attributed to the relatively rapid cooling rate (100◦C/min) 
employed after SA heat treatment (see Section 2.2) which results in non- 
serrated grain boundaries in Ni-based superalloys [39]. Furthermore, 
the SA treatment performed at 1245 ◦C left a significant fraction of 
Low-Angle Grain Boundaries (LAGB <10◦), estimated to be approxi-
mately 32%. 

Primary γ′ precipitates are usually intergranular and only form when 
the superalloy is heat treated below the γ-solvus temperature. Annealing 
above the γ’-solvus dissolves the primary γ′ and subsequent solution 
cooling, at rates of ≲10 

◦

C/min results in the formation of intragranular 
secondary γ′ precipitates during the early stage of cooling. Further 
cooling results in the growth of secondary γ′ precipitates until the low 
elemental diffusivities of the γ stabilizing elements make it difficult for 
these elements to reach the comparatively coarse secondary γ′. This 
leads to supersaturation of these elements within the γ matrix and 
consequently drives the nucleation of additional nanosized intra-
granular tertiary γ′ [42,43]. 

FEG S/TEM analysis was conducted to assess the potential presence 
of segregations at grain boundaries, which could influence the GBS 
process in polycrystalline alloys [44,45]. Fig. 5a shows an overall view 
of a grain boundary (indicated by the white arrow) separating two re-
gions rich in the γ matrix. It is noteworthy that no chemical segregations 
were observed, indicating that the SA treatment effectively eliminated 
any chemical inhomogeneity present in the matrix resulting from the 
PBF-LB process. Additionally, Fig. 5a displays the previously mentioned 

Fig. 2. GBS representation and out-of-plane offset component.  

Fig. 3. Investigated area after compression tests with detail on the lines drawn 
for lr quantification. 
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Fig. 4. Microstructure after heat treatment: a) general microstructure observed with SEM and b) EBSD IPF map.  

Fig. 5. EDS mapping performed at the grain boundary: a) general view and b) focus on γ-γ’ border. Al is represented by light green, Co by yellow, Cr by light purple, 
Ni by red, Ta by dark purple, Ti by dark blue, W by dark green and Hf by light blue. 
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Hf-rich MC carbides (indicated by light-blue arrow). 
However, they are not precisely located on the boundary itself but 

are several hundreds of nanometres away from it. Very thin (<100 nm) 
tertiary γ’ precipitates can be observed within the γ-channels (indicated 
by the black arrow). In Fig. 5b, an EDS map was performed at a very high 
magnification to highlight a grain boundary that separates two γ’ par-
ticles. Even in this case, the grain boundary exhibits a chemical 

composition similar to that of the γ phase. Consequently, even when two 
γ’ particles are divided by a grain boundary, dislocations can find a 
preferential path along which they can slide, partially bypassing the 
resistance imposed by the γ-γ’ interface. 

Fig. 6. Morphological characterization of samples’ surfaces. On the left, samples tested with a strain rate of 10− 3 s− 1 at a) RT, c) 649 ◦C, e) 760 ◦C, g) 871 ◦C and i) 
1093 ◦C. On the right, samples tested with a strain rate of 10− 4 s− 1 at b) RT, d) 649 ◦C, f) 760 ◦C and h) 871 ◦C. 
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3.2. SEM assessment of samples tested at different temperatures and 
strain rates 

In order to evaluate the influence of temperature and strain rate on 
GBS activity, the surface relief of the tested specimens was examined 
using FEG-SEM. To illustrate the qualitative evolution of surface 
morphology, a comprehensive synoptic table is presented in Fig. 6. It 
provides an overview of the observed changes in surface topography 
under different temperature and strain rate conditions, allowing for a 
qualitative assessment of the GBS behaviour. 

Fig. 6a and b illustrate the surface relief after compression testing at 
RT with different strain rates. No GBS is observed at RT for both applied 
strain rates, but intense slip activity is detected (marked by red lines). 
Twin boundaries are also clearly visible on the surface (marked by blue 
arrows). Fig. 6c and d present SEM images of the surface relief after 
testing at 649 ◦C with strain rates of 10− 3 and 10− 4 s− 1, respectively. The 
sample tested at 649 ◦C/10− 3 s− 1 exhibits well-pronounced slip lines 
(marked by red lines), while only sporadic sliding events are recorded, 
as marked by the white arrow in Fig. 6c. In the latter specimen, straight 
highly deformed boundaries can be observed, which are identified as 
twins (marked by blue arrows). No significant GBS is noticeable after 
testing at 649 ◦C/10− 4 s− 1 (Fig. 6d). These observations confirm that 
GBS is practically inactive up to 649 ◦C. 

Fig. 6e and f show the surface relief of specimens tested at 760 ◦C. 
GBS is now activated throughout the surface (indicated by white ar-
rows). Fig. 6g and h illustrate the surfaces after testing at 871 ◦C with 
strain rates of 10− 3 and 10− 4 s− 1, respectively. GBS events (marked by 
white arrows) are observed after the test performed at 871 ◦C/10− 3 s− 1 

(Fig. 6g), as expected. Slip lines (marked by dashed red lines) are still 
recognizable within some grains despite a slight surface oxidation. The 
sample subjected to the 871 ◦C/10− 4 s− 1 test exhibits more pronounced 
GBS activity (Fig. 6h). Additionally, some microcracks are formed along 
grain boundaries (marked by green circles) and at triple junctions. 
Finally, Fig. 6i shows the surface relief after the test conducted at 
1093 ◦C/10− 3 s− 1. Intense GBS (marked by white arrows) and inter-
granular microcracking (indicated by green circles) can be observed. 

3.3. Qualitative AFM analysis of surface relief 

The outcomes of AFM analysis are consistent with the observations 
made using SEM (Section 3.2). The AFM 3D map of the deformed surface 
clearly indicates that the primary mechanism of plastic deformation at 
RT is dislocation glide (Fig. 7). Dislocations were observed to traverse 
twin boundaries, as evidenced by the AFM scan. The mechanism of 
dislocation transmission through twin boundaries in Ni-base superalloys 
has been previously proposed by different authors [46,47]. The gliding 
dislocations slip through a twin boundary when the slip plane with the 
highest Taylor factor intersects the twin boundary. Furthermore, recent 
studies [48] have documented strain localization at twin boundaries, 
which is believed to result in the appearance of twins on surfaces of 

specimens deformed at RT. The absence of GBS events makes this 
mechanism particularly visible. 

Sporadic GBS events were observed on the surface of specimens 
tested at 649 ◦C. Fig. 8a presents an example of such an event, where two 
distinct grain boundaries underwent sliding during deformation with a 
strain rate of 10− 3 s− 1 (marked by red circle). However, these events 
were confined to a limited spatial extent, spanning only a few microns. 
Additionally, under AFM, only rare occurrences similar to the one re-
ported have been recorded for both the specimens tested at 649 ◦C. In 
the case of the specimen tested at 649 ◦C/10− 4 s− 1, the presence of γ’ 
particles being cut by dislocation glide was evident (Fig. 8b). This 
behaviour aligns with the observations made by Stinville et al. [46]. 

Fig. 9 illustrates a surface reconstruction obtained through AFM for 
the specimens tested at 760 ◦C. In both cases, the occurrence of GBS (red 
circle in Fig. 9a) involves a greater number of grains compared to the 
specimens tested at 649 ◦C. However, the intensity of these events re-
mains relatively low and comparable to what was observed at 649 ◦C. 
Fig. 9a and b indicate that the intensity of the GBS is consistent across 
different grains and is evenly distributed throughout the examined area. 
Nonetheless, it is important to note that GBS does not affect all grains, as 
some of them exhibit no evidence of sliding. 

Surface reconstructions for specimens tested at 871 ◦C with strain 
rates of 10− 3 s− 1 and 10− 4 s− 1 are presented in Fig. 10a and b, respec-
tively. In these cases, the occurrence of GBS is more pronounced, and its 
intensity is significantly enhanced by the lower strain rate. To emphasize 
the intensity of GBS activity, a line scan is shown in Fig. 10c. In this plot, 
the Y-axis represents the relative position of the AFM tip with its 0-posi-
tion set at the beginning of the analysis. The X-axis corresponds to the 
length of the line scan. 

Finally, Fig. 11 depicts the surface reconstruction obtained through 
AFM following the test conducted at 1093 ◦C with a strain rate of 10− 3 

s− 1. The figure reveals the formation of prominent large steps, which are 
a consequence of intense sliding events occurring at this high temper-
ature. The intergranular microcracking is considerably more pro-
nounced at this high temperature. Additionally, Fig. 11b provides an 
example of a line scan that highlights the activity of GBS. 

Based on the previous findings, it is indicated that once the GBS is 
activated, it triggers the reciprocal sliding of adjacent grains according 
to the scheme illustrated in Fig. 12. The displacement resulting from this 
sliding can be described by the sliding vector S→, which is made of the 
three components v, u and w. 

In the current literature it has been well established that the relative 
displacement of the grains results in strain incompatibilities at the grain 
boundaries, which lead to the stress concentration at the multiple 
junction points due to dislocations pile ups (as indicated by the white 
arrow in Fig. 13a) [13]. At very high testing temperatures, the stress 
concentration at these junctions accompanied by insufficient accom-
modation leads to the nucleation of voids (or cavities). These voids act as 
stress concentrators, promoting the formation and propagation of 
intergranular microcracks (as shown in Fig. 13b). The stress/strain 
ahead of the crack leads to further cavity nucleation and growth by 
interlinking with new cavities formed ahead of crack tip, as one can see 
on Fig. 6h [49]. The formation of cavities at the multiple junctions can 
be visually represented as illustrated in the schematic of Fig. 13c, where 
one of these cavities is formed due to the reciprocal displacement of the 
neighbouring grains. It should be noted that no particle free zones (PFZ) 
are observed in the vicinity of grain boundaries of all tested samples, 
thus pointing at dislocation glide as the main accommodation mecha-
nism of the GBS process independently on the testing parameters [8]. 
Therefore, it can be concluded that the Rachinger sliding takes place 
during plastic deformation of the studied material. 

3.4. Grain boundary sliding quantification 

After examining the morphological characteristics of the deformed 
Fig. 7. Transmission of slip lines through twin boundaries under AFM observed 
in the sample RT/10− 3 s− 1. 
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Fig. 8. a) Surface 3D reconstruction under AFM for the specimen tested at 649 ◦C with strain rate of 10− 3 s− 1 (red circle indicates GBS) and b) detail on the γ’ 
particles cut by dislocation activity 

Fig. 9. Surface 3D reconstruction under AFM for the specimens tested at 760 ◦C with strain rate of a) 10− 3 s− 1 and b) 10− 4 s− 1..  

Fig. 10. Surface 3D reconstruction under AFM for the specimens tested at 871 ◦C with strain rate of a) 10− 3 s− 1 and b) 10− 4 s− 1 and c) example of a line scan 
performed across a GBS event. 

P.A. Martelli et al.                                                                                                                                                                                                                              



Journal of Materials Research and Technology 28 (2024) 2466–2477

2474

specimens, the quantitative analysis of GBS contribution (ξ) to the 
overall plastic deformation of PBF-LB CM247 LC alloy was conducted. 
The measurement process involved determining the out-of-plane offsets 
(vr) and mean distances between GBS events (lr). The AFM 3D maps and 

images captured using FEG-SEM were utilized for this purpose. The 
measured values of these parameters for various test conditions are 
presented in Table 4. 

The out-of-plane offsets remain constant at 649 ◦C at both strain rates 
(10− 3 s− 1 and 10− 4 s− 1), indicating that the intensity of sliding events is 
not influenced by the strain rate at this temperature. Due to the rarity of 
GBS at 649 ◦C, an actual distance between sliding events could not be 
determined. To account for this, the authors chose to set a value of 1 
mm, which is a realistic approximation based on surface observations. 
At 760 ◦C/10− 3 s− 1, there is a slight increase in the out-of-plane offsets 
compared to the specimens tested at 649 ◦C. In this case, the mean 
distance of GBS events was measurable and found to be 70 μm. The main 
difference between the tests performed at 760 ◦C at 10− 3 s− 1 and at 10− 4 

s− 1 is the sliding intensity. The average out-of-plane offsets are 313 nm 
and 597 nm, respectively. However, the distance between these events 
does not show significant variation. Despite undergoing plastic 

Fig. 11. Surface 3D reconstruction under AFM for the specimens tested at 1093 ◦C with strain rate of 10− 3 s− 1 and b) example of a line scan performed across a 
GBS event. 

Fig. 12. Sliding mechanism of neighbouring grains.  

Fig. 13. Effect of the strain incompatibilities at the multiple junction points: a) concentration of GBS at the lower temperatures (760 ◦C/10− 3 s− 1), b) inter-granular 
microcracks formation at the higher temperatures (871 ◦C/10− 3 s− 1) and c) visual description of cavities formation. 
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deformation for a longer duration, there is no notable increase in the 
number of activated grain boundaries. The concept of “activated” 
boundaries was discussed in Ref. [50]. This observation in the studied 
materials could be attributed to the morphology of grain boundaries. 
Experimental evidence suggests that serrated grain boundaries in 
Ni-based superalloys are effectively locked for sliding during plastic 
deformation, while non-serrated grain boundaries undergo sliding [51]. 
From the SEM images taken at higher magnifications (Fig. 13a and b), it 
is evident that the grain boundaries showing sliding are non-serrated. As 
the test temperature increases to 871 ◦C at a strain rate of 10− 3 s− 1, both 
the intensity and the mean distance of the sliding events increase, 
indicating that more grain boundaries are able to slide. The GBS in-
tensity at 871 ◦C/10− 4 s− 1 shows a significant increase (vr > 1000 nm), 
while the spacing between events tends to be higher indicating a lower 
frequency. This behaviour may be attributed to inter-granular micro-
cracking, which could result in local stress relaxation. A similar trend 
can be observed at 1093 ◦C/10− 3 s− 1 in terms of intensity, although the 
mean distance of the sliding events is lower. 

Finally, the value of ξ representing the GBS contribution into plastic 
deformation, was calculated using Equations (3) and (4) and plotted in 
Fig. 14 as a function of temperature and strain rate. The calculated ξ 
values are normalized, ranging between 0 and 1, where 0 represents the 
absence of GBS and 1 represents the exclusive occurrence of GBS 
without any other plastic deformation, which is not realistic. At 649 ◦C, 
the estimated GBS contribution is less than 1% based on the given 
reference value of 1 mm for the mean distance between GBS events. This 
indicates that the plastic deformation is provided predominantly by 
dislocation gliding, whereas contribution of GBS is negligibly small, and 
the contribution of diffusion is also very low due to low homologue 
temperature. For the 1093 ◦C test, some steps were higher than the 
measurement range in AFM (±4 μm), suggesting that the actual GBS 
contribution would be higher. It can be concluded that the GBS 

contribution at 1093 ◦C is at least 32% of the total plastic deformation. 
In the specimen tested at 760 ◦C with a strain rate of 10− 3 s− 1, the GBS 
contribution was calculated to be 0.062 (6.2%), and at a strain rate of 
10− 4 s− 1 it was 0.089 (8.9%). The GBS contribution increases further to 
0.134 (13.4%) and 0.245 (24.5%) at 871 ◦C. It is evident that ξ increases 
with the rise in testing temperature and the decrease in strain rate. This 
behaviour is consistent with the influence that these test parameters 
have on both atomic diffusion and dislocation mobility, affecting the 
occurrence and intensity of GBS. 

4. Conclusions 

Monotonic compression tests in a wide temperature range and two 
different strain rates were performed on CM247 LC samples processed 
with PBF-LB. SEM and AFM analyses of the surface relief of tested 
samples were performed, and the GBS activity was analysed as a func-
tion of temperature and strain rate. Contribution of GBS into total plastic 
deformation was estimated. The following conclusions can be drawn:  

● The contribution of GBS (ξ) to the total plastic deformation was 
estimated by measuring the out-of-plane offsets using AFM. It was 
found that ξ value increases with increasing temperature (T) and 
decreasing strain rate (ε̇). This observation is consistent with the 
enhancing effects of T and ε̇ on grain boundary diffusional processes 
and dislocation mobility.  

● Despite the elongated and non-equiaxed grain structure (aspect ratio 
AR = 3.5 ± 2.1), GBS significantly contributes to the plastic defor-
mation at temperatures of 760 ◦C and above. 

● Microstructural observations revealed the absence of chemical seg-
regations at grain boundaries which could promote GBS activity. 
Additionally, large matrix γ channels between precipitated γ’ parti-
cles were observed, potentially facilitating diffusion processes and 
dislocation mobility involved in GBS. Absence of PFZ in the vicinity 
of grain boundaries of the tested samples indicates that the 
Rachinger sliding takes place and GBS process is accommodated 
mainly by dislocation glide at all studied temperatures and strain 
rates.  

● Intergranular microcracking starting at triple junctions was observed 
at 871 ◦C/10− 4 s− 1 and 1093 ◦C/10− 3 s− 1, indicating the intense 
stress concentration caused by GBS at triple junctions. 

Given the intense intergranular microcracking observed at 871 ◦C 
and 1093 ◦C, it is recommended to avoid or minimize the occurrence of 
GBS in CM247 LC alloy under in-service creep conditions in order to 
enhance its mechanical properties at high temperatures. To achieve this, 
future studies will focus on raising the SA temperature treatment. By 
increasing the SA temperature, complete γ’ solution and recovery of the 
PBF-LB structure can be achieved. This approach aims to modify the 
material’s microstructure and eliminate or reduce the presence of grain 
boundaries that are susceptible to GBS, thereby improving the alloy’s 
resistance to intergranular microcracking and enhancing its overall 
mechanical performance at elevated temperatures. 
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Table 4 
Out-of-plane offsets intensity (vr) and mean distance (lr) calculated for all the 
samples.  

Temperature [◦C] Strain rate [s− 1] vr [nm] lr [μm] 

649 10–3 251 ± 156 1000a 

760 10–3 313 ± 127 70 ± 22 
871 10–3 552 ± 225 46 ± 7 
1093 10–3 1459 ± 697 57 ± 10 
649 10–4 257 ± 56 1000a 

760 10–4 597 ± 93 77 ± 10 
871 10–4 1976 ± 942 106 ± 33  

a Values approximated due to the very rare appearance of sliding events. 

Fig. 14. GBS contribution (ξ) as a function of test temperature and strain rate.  
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