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Abstract
Navigation choices play an important role in modeling and forecasting traffic flows
on road networks. We introduce a macroscopic differential model coupling a con-
servation law with a Hamilton–Jacobi equation to, respectively, model the nonlinear
transportation process and the strategic choices of users. Furthermore, the model is
adapted to the multi-population case, where every population differs in the level of
traffic information about the system.

Keywords Traffic flows · Controlled systems · Macroscopic models · Road networks

Mathematics Subject Classification 90B20 · 93C95 · 94C60

1 Introduction

The use of on-line routing systems in vehicular motion has constantly grown in popu-
larity in the last years. At the same time, its effectiveness in solving mobility problems
in big cities is controversial [6, 17, 28]. In this work, we describe a model for traffic
flows on networks of roads where a nonlinear equation representing the macroscopic
density of vehicles is coupled to a Hamilton–Jacobi equation, modeling the strategic
choices of agents. The model is a further development of what have been introduced
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in [16], including the possibility of real-time forecast of the future traffic states of the
system.

Vehicle traffic models which, like ours, describe a flow of “intelligent” cars on
a road network are not largely treated in literature: in the survey [5], most of the
models describe a hierarchical control framework with the objective of maximizing
the overall network efficiency. Our approach is different: similarly to [12], we account
for “selfish” agents, which are interested in minimizing their travel cost to destination
accordingly to their knowledge of the environment. This kind of interaction creates
some non-trivial effects as a consequence of a competitive equilibrium between the
individuals.

In this article, after a detailed description of the model, we show some tests illus-
trating its main features. In particular, we are able to correctly reproduce the so-called
“Braess’ paradox” [7, 11], and to mitigate it with an efficient routing through the net-
work. The model is also used to show the interaction between various populations of
drivers, with a different level of information about the traffic system. In this case, the
proposed model, in addition to replicate some more realistic scenarios, is able to sim-
ulate some non-trivial effects, as the beneficial impact of traffic information even on
non-informed users and the equilibrium between routing strategies among the users.

1.1 Coupling Fluxes with Strategies: Hughes’Model for Pedestrians

The framework that we are going to present takes inspiration from a model for
pedestrian flows [20]. It consists in the following quasi-stationary system of partial
differential equations (PDEs)

∂tρ − divx

(
ρv(ρ)

∇u

|∇u|
)

= 0, x ∈ �, (1a)

|∇u| = 1

v(ρ)
, (1b)

where � is a bounded domain of R
n and ρ = ρ(x, t) is a density field representing

the concentration of the pedestrian at (x, t). The flux term ρv(ρ) is generally used
to display the fundamental diagram of traffic flow (see [19], Section 3.1.2), and it
establishes a relation between the density of the crowd and its local flux. A common
choice for the speed function is v(ρ) = vmax (1 − ρ) where the term vmax is the
maximal speed at which an agent would travel in ideal environmental conditions. We
recall that to avoid meaningless behaviors, ρ ∈ [0, 1[.

We give a brief modeling interpretation of (1): the density ρ moves in direction
−∇u (1a) which is the optimal control of the associated eikonal equation (1b). If
the cost 1/v(ρ) is bounded, i.e. if ρ[t] := ρ(·, t) < 1, the solution of the eikonal
equation at time t is the value function of a minimal time problem and it is given by
u[t](x) = inf{d[t](x, y) : y ∈ ∂�}, where the distance function d[t] : �×� → R

+
is defined as follows:

d[t](x, y) = inf

{∫ S

0

1

v(ρ[t](ξ(s)))
ds : S > 0, ξ ∈ �S

x,y

}
,
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with �S
x,y the set of the absolute continuous curves in � such that ξ(0) = y, ξ(S) = x

and |ξ̇ (s)| = 1 a.e. in [0, S].
The term 1/v(ρ) can be interpreted as the running cost associated to the curve

ξ(s) while the solution u of (1) selects the curves which minimize the integral above.
Hence, people are directed towards the boundary trying to avoid crowded regions. It is
important to remark as for system (1), the existence of an equilibrium has been proven
only in dimension one [1, 3] or in presence of a non-zero diffusion term [24].

The adaptation of the principles above to traffic flows must take into consideration
the differences between pedestrian and vehicle flows. First of all, vehicles are con-
strained on road networks with an orientation and any possible strategic choice may
happen only at intersections. Secondly, the interactions at such junction points lead us
to several modeling choices that we are going to discuss in the following.

2 Multi-class Traffic FlowModels on Networks

We recall the general framework describing the flow of different classes of users on a
road network. Each class densityρc, c = 1, . . . , Nc, is characterized by specific, possi-
bly time-dependent, route choices at junctions, depending on its degree of information
about the network, which will be detailed in Sect. 3.

Definition 2.1 An oriented network N = (I,J ) is a finite collection of points J :=
{Jk}k∈K in R

2 connected by continuous, non-self-intersecting edges I := {I�}�∈L,
where L := {1, . . . , N } andK := {1, . . . , M}. Each edge I� ∈ I is parametrized by a
smooth functionπ� : [0, L�] → R

2, L� > 0, which implicitly provides the orientation
of the edge.

Given Jk ∈ J , I nc(Jk) := {i ∈ L : Jk ∈ Ii , πi (Li ) = Jk} denotes the set of edges
arriving at Jk . Similarly, Out(Jk) := { j ∈ L : Jk ∈ I j , π j (0) = Jk} denotes the set
of edges leaving Jk . We define a subset T ⊂ J of destination vertexes. We require
that T �= ∅, i.e. the set T contains at least one element.

For any function f : I → R, f� : [0, L�] → R is the restriction of f to I�, i.e.
f (x) = f�(y) for x ∈ I�, y = π−1

� (x).

Each class, density ρc : ]0, L�[×[0, T ] → [0, 1] evolves on each road I� according
to the mass conservation equation

∂tρ
c
� + ∂x

(
ρc

�v�(ρ�)
) = 0, t ≥ 0, x ∈ ]0, L�[, (2)

where ρ�(x, t) := ∑Nc
c=1 ρc

�(x, t) is the total traffic density on the road I�. We notice
that, summing up the equations (2) for c = 1, . . . , Nc, we obtain the classical LWR
model

∂tρ� + ∂x (ρ�v�(ρ�)) = 0, t ≥ 0, x ∈ ]0, L�[, (3)

ensuring that the total number of vehicles is also conserved.
In (2) and (3), the speed function v� : [0, 1] → [0, V�] is a non-increasing function

such that v�(0) = V� and v�(1) = 0, where, without loss of generality, we have
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normalized to 1 the maximal traffic density on each road. Moreover, we assume that
there exists a unique point ρ̂� ∈ ]0, 1[ such that the flux function ρ 	→ ρv�(ρ) is
increasing for ρ ∈ [0, ρ̂�[ and decreasing for ρ ∈ ]ρ̂�, 1]. We set γmax

� := ρ̂�v�(ρ̂�) =
maxρ∈I� ρv�(ρ) the maximal flux allowed on the road I�.

Solutions of (2) are intended in the following weak sense:

Definition 2.2 Afunctionρ� = (ρ1
� , . . . , ρ

Nc
� ) ∈ C

([0,+∞[;L1
loc

(]0, L�[; [0, 1]Nc
))

is an entropy-admissible solution to (2) if for every ϕ ∈ C1
c

(]0,+∞[× ]0, L�[; R
Nc
)

it holds

∫ +∞

0

∫ L�

0

(
ρ�∂tϕ + ρ�v�(ρ�)∂xϕ

)
dxdt = 0,

and for every κ ∈ R end every ψ ∈ C1
c (]0,+∞[× ]0, L�[; R+) it holds

∫ +∞

0

∫ L�

0
(|ρ� − κ|∂tψ + sgn(ρ� − κ) (ρ�v�(ρ�) − κv�(κ)) ∂xψ) dxdt ≥ 0.

Moreover, given any junction Jk ∈ J , we have the following

Definition 2.3 A collection of functions ρ� ∈ C
([0,+∞[;L1

loc

(]0, L�[; [0, 1]Nc
))
,

� ∈ I nc(Jk) ∪ Out(Jk), is a weak solution at Jk if

1. for every � ∈ I nc(Jk) ∪ Out(Jk), ρ� is an entropy admissible solution to (2);
2. for every � ∈ I nc(Jk)∪ Out(Jk) and a.e. t > 0, the function ρ�(t, ·) has bounded

total variation;
3. for a.e. t > 0 it holds

∑
�∈I nc(Jk)

ρc
�(t, 0

−)v�(ρ�(t, 0
−)) =

∑
�∈Out(Jk)

ρc
�(t, 0

+)v�(ρ�(t, 0
+)),

for c = 1, . . . , Nc, where the existence of the traces at Jk is guaranteed by 2.

2.1 Junction Conditions

Let us now focus on the dynamics at junctions. In this section, we describe what
happens at a generic junction Jk : let us denote by Ii , i = 1, . . . , n, the incoming
roads and by I j , j = n + 1, . . . , n + m, the outgoing ones. The Riemann problem at
the junction J is a Cauchy problem with constant initial data on each incoming and
outgoing road:

{
∂tρ� + ∂x (ρ�v�(ρ�)) = 0,

ρ�(0, ·) = ρ0,� ∈ [0, 1], � ∈ {1, . . . , n + m} .
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Given any distribution matrix belonging to the set

A :=
⎧⎨
⎩A = {a ji } i=1,...,n

j=n+1,...,n+m
: 0 ≤ a ji ≤ 1 ∀i, j,

n+m∑
j=n+1

a ji = 1 ∀i
⎫⎬
⎭ , (4)

we define a generic Riemann solver at J as follows.

Definition 2.4 A Riemann solver RS A is a function

RS A : [0, 1]n+m −→
n+m∏
�=1

[0, γmax
� ],

(ρ1, . . . , ρn+m) 	−→ (γ̄1, . . . , γ̄n+m)

where (γ̄1, . . . , γ̄n+m) := (ρ̄1v1(ρ̄1), . . . , ρ̄n+mvn+m(ρ̄n+m)) and such that

1. (γ̄n+1, . . . , γ̄n+m)T = A · (γ̄1, . . . , γ̄n)T ;
2. for every i = 1, . . . , n, the classical Riemann problem

∂tρ + ∂x (ρvi (ρ)) = 0, t > 0, x ∈ R,

ρ(0, ·) =
{

ρ0,i x < 0,

ρ̄i x > 0,

is solved with waves with negative speed;
3. for every j = n + 1, . . . , n + m, the classical Riemann problem

∂tρ + ∂x
(
ρv j (ρ)

) = 0, t > 0, x ∈ R,

ρ(0, ·) =
{

ρ̄ j x < 0,

ρ0, j x > 0,

is solved with waves with positive speed.

Moreover, we require that RS A satisfy the consistency condition

RS A(ρ̄1, . . . , ρ̄n+m) = (γ̄1, . . . , γ̄n+m).

Remark 2.1 Condition 1 together with the properties (4) of the distribution matrix A
ensure the mass conservation through the junction

n∑
i=1

γ̄i =
n+m∑
j=n+1

γ̄ j .

We refer to the monograph [18] for further details on Riemann solvers at junctions.
In the present work, we will use the Priority Riemann Solver introduced in [13],
which can handle an arbitrary number of incoming and outgoing roads, accounting for
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priorities among the incoming roads and maximizing the flux through the junction (a
brief but detailed description of this solver is included in the Appendix A). Anyhow,
the framework presented here can be applied to any generic Riemann solver with
different aims like e.g., minimizing the waiting time of the vehicles queuing, modeling
intersection devices as traffic lights or roundabout, etc.
Junction conditions in the multi-class cases. To extend the above approach to a multi-
class framework, we generalize the multi-commodity junction solver discussed in [26]
to any underlying Riemann solver RS A satisfying Definition 2.4. In particular, this
allows to consider junctions with any number of incoming and outgoing roads.

We follow the procedure below:

1. Compose the total distribution matrix. Let the distribution matrices Ac ={
acji

}
i, j

∈ A at J be given for each class ρc, c = 1, . . . , Nc (these coefficients

will be derived in Sect. 3). We set

A := {a ji }, where a ji :=
Nc∑
c=1

acji
ρc
i

ρi
(5)

defines a weighted distribution coefficients for the total density of the populations
at the junction.

2. Compute the fluxes. Using the selected Riemann solverRS A corresponding to (5),
we obtain the total outgoing fluxes (γ̄1, . . . , γ̄n+m).

3. Distribute the fluxes among the various classes. The incoming and outgoing fluxes
for each class c = 1, . . . , Nc are given by

γ̄ c
i = ρc

i

ρi
γ̄i , i = 1, . . . , n, γ̄ c

j =
n∑

i=1

acji γ̄
c
i , j = n + 1, . . . , n + m.

In the rest of the article, the operators A, A and a j,i , will be noted as Ak , Ak and
akj,i since referred to the junction Jk .

3 StrategyModeling on the Network

To model the route choice strategy of the vehicles belonging to a specific class, we use
a potential (given by the solution of a Hamilton–Jacobi (HJ) equation), which is the
value function of an optimal control problem defined on the network. We distinguish
between the static case (only the current configuration of the system concurs to the
choice) and dynamic (the future evolution of the system shapes the strategic choice).
The theory of viscosity solutions for HJ equations on networks have been introduced
in recent years, imposing appropriate transition conditions at the vertices (we refer to
[8, 10, 27] for details). The case of the directed graph—where the arcs can be traveled
only in one direction—can be considered a sub-case of the general one.
Static case. In the static case, at any t̃ ∈ [0, T ] we compute the potential function u
knowing the current traffic state ρ(·, t̃), that is, for each c = 1, . . . , Nc, the viscosity
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solution uc�[t̃](x) of the problem

∂xuc�(x) + 1
gc(ρ�(x,t̃))

= 0 x ∈ I�, � ∈ L,

min
�∈Out(Jk)

uc�(0) = ucl (Ll) Jk ∈ J \ T , l ∈ I nc(Jk),

uc�(x) = 0, π�(L�) = x ∈ T ,

(6)

which represents the weighted distance from the position x to the target set T , min-
imizing the running cost gc : [0, 1] → R

+, which we assume to be a Lipschitz
continuous function. The function gc models the influence of the traffic density (at a
fixed time t̃) for the class of vehicles c in the choice of the “shortest” path.

To compute the solutions of (6), we denote by �x,z the set of absolute continuous
curves connecting x to z identified by a finite sequence �n ∈ L, n = 0, ..., N� , such
that there exists a ξ ∈ [0, L�0 ] such that π�0(ξ) = x, π�i (0) = π�i−1(L�i−1), i =
1, ..., N�, π�N�

(L�N�
) = z. Then the solution of (6) is given by

uc�(x) = inf{dc(π�(ξ), z) : z ∈ T },

where the (scaled) distance function dc : I × I → R
+ is

dc(x, z) := inf
(�0,...,�N�

)∈�x,z

{∫ L�0

ξ

1

gc(ρ�(π�(s), t̃))
ds

+
N�∑
i=1

∫ L�i

0

1

gc(ρ�i (π�i (s), t̃))
ds

}
.

We observe that, in general, Eq. (6) could be not defined on some arcs, since a
minimal path (i.e., an itinerary to reach a destination vertex in an optimal way) could
be not defined in some areas of the network. To overcome this problem, we make the
following hypothesis:

H1) For every x ∈ I there exists at least one z ∈ T such that the set �z,x �= ∅, i.e. there
exists a sequence of indexes �0, ..., �N� such that x ∈ I�0 , and π�i−1(L�i−1) =
π�i (0) for i = 1, ..., N� with π�N�

(L�N�
) = z ∈ T .

Dynamic case. In the dynamic case we assume to know the traffic configuration at any
(t, x) ∈ [0, T ] × J . The potential function is computed backward in time starting
from the solution of (6) at time t = T as viscosity solution of

−∂t uc�(t, x) + ∂xuc�(t, x) + 1
gc(ρ�(t,x))

= 0, x ∈ I�, � ∈ L,

min
�∈Out(Jk)

uc�(t, 0) = ucl (t, Ll), Jk ∈ J \ T , l ∈ I nc(Jk),

uc�(T , x) = uc�(x), x ∈ I�, � ∈ L,

(7)

for each c = 1, . . . , Nc.
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We can characterise the solution of the equation above as minimum path in a time
dependent framework as value function of a backward-in-time finite horizon optimal
control problem [22]. The solution of (7) is given by

uc�(t, x) = inf{dc(π�(ξ), z, t) : z ∈ T },

where to define the distance function dc : I × I × [t, T ] → R
+, we consider all

the paths �x,z connecting z to x in the time interval [t, T ]. We can parameterise such
curves as (�(s), ζ(s), s) with s ∈ [t, T ] getting that

dc(x, z, t) = inf
�∈�x,z

{∫ T

t

1

gc(ρ�(s)(π�(s), s))
ds + uc�(T )(ζ(T ))

}
.

We underline that at time T , if the agent does not reach a destination point belonging
to T , he pays the scaled distance from T as computed in the static case.

Remark 3.1 There are two natural choices for the function g: in the case we fix
g(x, ρ) ≡ 1, the drivers will look for the shortest path to destination regardless of
the traffic conditions. This is equivalent to follow a fixed path (highlighted by road
sign indications or off-line navigation systems), without any information about the
traffic state. If g(x, ρ) = v(ρ), agents aim to minimize the travel time to destination
over its current speed selecting the fastest path to destination (e.g. using an on-line
navigation system). The difference between the static and the dynamic model is that
while in the static case drivers use only the information on the current traffic condi-
tions, in the dynamic one they can forecast the traffic evolution and select the real
fastest path to destination.

3.1 Strategy Coupling at Junctions and Equilibria

The solution of (6), respectively (7), contains information about the optimal strategy to
reach the target set T , depending on the perceived cost gc. Since the arcs are oriented,
route choices are possible only at junctions. In particular, this allows to define the
matrix distribution coefficients in (5), coupling the density to the potential equation.

The choice of how to assign the route choices is, by any meaning, non-trivial.
The most basic choice is, in a Wardrop equilibrium fashion, to equally distribute
the population on the roads with equal minimal potential functions. More precisely,
for each junction Jk , calling ū(t) = min j∈Out(Jk) u

c
j (t, 0), we define the distribution

matrix Ak of the population c at Jk as

acji = ψ(ucj (t, 0) − ū(t))∑
z∈Out(Jk)

ψ(ucz(t, 0) − ū(t))
.

A natural choice for the activation function ψ is ψ̄(x) := 1 for x ≤ 0 and ψ̄(x) := 0
otherwise. In other words, we dynamically distribute the density along the optimal
options at any junction. In particular, this was the choice made in [16].
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Unfortunately, this choice is numerically non-convenient: in particular, it produces
some unrealistic chattering phenomena between two (or more) equivalent paths which
may make difficult finding the equilibrium states of the system. This effect may be
reduced using a smooth activation function, at the price of not computing the real
equilibrium states, but an approximation of them. In particular, one option is taking
ψ̂(x) = 1/(1 + e−ε(S−2x)), where S =∑ j∈Out(Jk) u

c
j (t, 0) and ε > 0, i.e. the logis-

tic or soft step function centered in S/2. This option has the advantage of computing∑
j∈Out(Jk) a

c
ji = 1 (which is mandatory to have conservation of mass through the

junction) but also ψ(S/2) = 1/2, i.e. if two roads are equally favourable the distri-
bution matrix splits between the two. The logistic function has been used in many
different application, in particular as standard activation function in computer science
[2].

Finally, we can describe the whole model for one population, here reported in the
dynamic case:

∂tρ�(t, x) + ∂x (ρ�(t, x)v�(ρ�(t, x))) = 0, t > 0, x ∈ I�, � ∈ L,

−∂t u�(t, x) + ∂xu�(x, t) + 1

g(ρ�(t, x))
= 0, x ∈ I�, � ∈ L,

min
�∈Out(Jk )

u�(0) = ul(Ll), Jk ∈ J \ T , l ∈ I nc(Jk),

Ak = {a ji
}
, ū(t) = min j∈Out(Jk) u j (t, 0),

a ji = ψ(u j (0) − ū)∑
z∈Out(Jk )

ψ(uz(0) − ū)
, x ∈ Jk,

(γ̄1, ..., γ̄n+m) = RS Ak (ρ1, ..., ρn+m), x ∈ Jk,
ρ�(x, 0) = ρ0,�(x), x ∈ I�, � ∈ L,

ρ�(x, t) = 0, x ∈ T ∩ I�, � ∈ L,

u�(T , x) = u�(x), x ∈ I�, � ∈ L,

ρ�(π�(0), t) = φ�(t), � ∈ L ∩ S,

(8)

where ρ0,� and u�(x) are the initial/final conditions and the functions φ�(t) are the
inflow conditions at the ‘source’ vertexes S of the network.

3.2 Evaluating the Efficiency

For a deeper understanding of the model, we need to recall some basic concepts about
the general efficiency evaluation of a macroscopic traffic system. To this end, we
establish a link between the macroscopic model and its microscopic counterpart. The
main concepts of this section have been borrowed from [11] and adapted to our case.

Definition 3.1 (Travel time) We define the travel time between two points y1, y2 ∈ I�

where y1 ∈ J (i.e. y1, y2 are on a same edge,with y1 which is the node at the beginning
of the edge) as the function τy1,y2(a�) defined implicitly by ξ(τ (a�)) = y2, where

ξ solves

{
ξ̇ = v�(ρ(t, ξ(t))),
ξ(0) = y1,

and ρ solves

{
ρt + ∂x (ρv�(ρ)) = 0,
ρ(t, y1)v�(ρ(t, y1)) = a� γ,
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where γ is the total flux on the junction Jk ∈ J and a� ∈ [0, 1] is the percentage (i.e.
the coefficient of the distribution matrix a� ∈ Ak) entering in I�.
If y1 is an internal point of I�, the definition still holds with the trivial value a� = 1
(all the flux remains on the same road), while in the case of two points belonging to
different edges connected by a route �y1,y2 composed by a finite sequence of edges
�n , with n = 0, . . . , N� , we proceed setting â = (a1, . . . , aN� ) corresponding to
the distribution matrices coefficients related to this specific path. We underline that a
sequence â identify a unique path. Therefore, the travel time in this case is

τy1,y2(â) := τy1,π�n (L�0 )(1) +
N�−1∑
n=1

τπ�n (0),π�n (L�n )(an) + τπ�N�
(0),y2(aN� ).

Finally, we call relevant travel time the function τy1,y2(â) for â such that ai �= 0
for i = 1, ..., N� , i.e., excluding the paths which are not taken by any of the agents.

Definition 3.2 (Equilibrium State) We call state of the system a choice of all the
distribution matrices Ā = { Āk}k∈K ∈ Am at the network junctions.

A state Ā is an equilibrium state for a destinationT iff for every x ∈ I and y ∈ T , all
the relevant travel times for every path choice �x,y coincide, i.e. for two paths �̄x,y ,
�̂x,y , the relative sequences of non-null coefficients (ā1, ..., āN�̄

) �= (â1, ..., âN�̂
)

sampled from the same state Ā give

τx,y((ā1, ..., āN�̄
)) = τx,y((â1, ..., âN�̂

)).

4 Amulti-Class, Multi-Informed Traffic FlowModel and Numerical
Tests

In this section, we present the full model and we perform some tests to show the
main features of it. The details about the numerical implementation are deferred to
the Appendix B.

One aim of our study is the capability of accounting for different levels of infor-
mation in an heterogeneous population of agents. Indeed, the previous setting can be
generalized to several classes of agents moving on the network following the same
LWR-based dynamics. Moreover, with a straightforward generalization, each class
may also have a different target set T c. Since for simplicity and to avoid computa-
tional burden we do not explore this possibility, we assume that the classes have the
same target T , but different strategic approaches.
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Let c = 1, ..., Nc, and t ∈ [0, T ]. The multi-class version of (8) reads:

∂tρ
c
�(t, x) + ∂x

(
ρc

�(t, x)v
c
�(
∑

c ρc
�(t, x))

) = 0, t > 0, x ∈ I�, � ∈ L,

−∂t uc�(t, x) + ∂xuc�(x, t) + 1

gc(
∑

c ρc
�(t, x))

= 0, x ∈ I�, � ∈ L,

min
�∈Out(Jk)

uc�(0) = ucl (Ll), Jk ∈ J \ T , l ∈ I nc(Jk),

Ak = {a ji
}
, ūc(t) = min j∈Out(Jk) u

c
j (t, 0),

a ji = ψ(ucj (0) − ūc)∑
z∈Out(Jk)

ψ(ucz(0) − ūc)
, x ∈ Jk,

(γ̄ c
1 , ..., γ̄ c

n+m) = RS Ak (ρ
c
1, ..., ρ

c
n+m), x ∈ Jk,

ρc
�(x, 0) = ρc

0,�(x), x ∈ I�, � ∈ L,

ρc
�(x, t) = 0, x ∈ T ∩ I�, � ∈ L,

uc�(T , x) = uc�(x), x ∈ I�, � ∈ L,

ρc
�(π�(0), t) = φc

�(t), � ∈ L ∩ S,

(9)

where ρc
0,� and u

c
�(x) are the initial/final conditions, the functions φc

�(t) are the inflow
conditions at the ‘source’ vertexes S of the network and the destination vertexes act
as absorbing conditions imposed at the boundary (cf. [15]), motivating the choice of
setting ρc and uc� to zero at these points.

Remark 4.1 (A 2−population case)We describe in detail the special case of two popu-
lationsρ1 andρ2 with the samedestination set (T ), but different level of information, as
considered in the simulation Sect. 4. We fix v1� (ρ) = v2� (ρ) = 1−ρ and g1(x, ρ) = 1
and g2(x, ρ) = 1 − ρ = v2� (ρ). In this way, the two populations’ route choices –
despite the two groups have the same destination – may be different at network junc-
tions. In particular, the above choices of g1 and g2 model the case where the first
population does not use any on-line routing device. The knowledge of the network –
or the use of maps or off-line routing devices – brings the density ρ1 to follow the
shortest path to the destination. On the contrary, ρ2 uses information on the state of
the system to avoid congested regions, thus minimizing the time to destination. It is
important to keep in mind that, depending on if we compute the function uc in the
static or the dynamic case, we, respectively, do not include or include forecasting of
the future states of the system.

4.1 Test 1: A Simplified Network with One Population

The first test we propose is a toy model involving a simple network consisting of 5
roads and allowing two possible paths connecting the source (node 1) to destination
(node 5), see Fig. 1. The two paths are the one passing by the nodes 1-2-4-5 (which
has length 3) and the longer one 1-2-3-4-5 (whose length is 3.4).

We assume that the network is empty at t = 0, we consider a single population with
constant inflow φ(t) = 0.5 at node 1 for t ∈ [0, 6] and we set φ(x) = 0 for t ∈ ]6, 12].
The space and time meshes are set to Δx = 0.05 and Δt = 0.01, respectively.
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Fig. 1 Simple network with 5
roads and two possible paths to
reach destination; origin (green)
and destination (red) junctions
are differently colored; id
(above) and the length (below)
of the roads are reported
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If the agents are simply-informed, i.e. g(x, ρ) ≡ 1, the whole population follows
the path 1-2-4-5, since it is the shortest path to destination.

Despite its simplicity, this test is useful to identify the chattering phenomena
between two options to destination mentioned in the previous section. We can com-
pare, in Fig. 2, the effect of a step activation function ψ = ψ̄ (Fig. 2a, b) with respect
to the smooth activation function ψ = ψ̂ with ε = 1 (Fig. 2c, d). As predictable,
a smooth activation function prevents any chattering effect and the agents distribute
smoothly on the two paths. In the following, where not stately differently, we assume
ψ = ψ̂ with ε = 1.

In Fig. 3, we observe the difference between the simply-informed and the informed
case (g(x, ρ) = 1 − ρ).

In Fig. 3a (simply informed), the agents choose the shortest path 1-2-4-5 regardless
its current occupation. The path 1-2-3-4-5 is taken by a minimal part of the population
since we used a smoothed activation function ψ = ψ̂ with ε = 1.

In Fig. 3b (informed), the agents know the current state of the system. Therefore,
they initially take the more favourable path 1-2-4-5, but later they start using also
1-2-3-4-5.

In particular, as highlighted before in Fig. 2, in absence of a smooth activation
function ψ , the population starts to fluctuate between the two options when the value
functions u2(t, 0), u4(t, 0) relative to the two different paths at junction 2 coincide.
Using a smoothing activation function, this phenomenon disappears. The distance
|u2(t, 0) − u4(t, 0)| decreases till an optimal value corresponding to a certain part of
the flux opting for the longer path which balances such a difference, see Fig. 5.
In Fig. 3c (highly informed), we solve the potential equation in the dynamic case (7).
In this scenario, the agents can forecast the future states of the system to fully optimize
their choices. In practice, in this test, the population splits between the two possible
paths in a proportion which is globally optimal. The time to reach destination is equal
and minimal for each agent starting from the same point regardless to its routing
choices.

Further comparisons between the three situations are reported in Figs. 4and 5. In
particular, in Fig. 5, it is possible to see how in the simply informed case the potential
functions u2(t, 0) u4(t, 0) relative to the two possible paths to destination are constant
in time, while in the informed one, their difference decreases till an optimal value
(equal to zero in the case of no smoothing activation function, see Fig. 2b) which is
then constant until the incoming flux starts decreasing. In the highly informed case,
the relationship is more complex as we highlight in the next test.
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Fig. 2 Different choices of the activation function ψ on a simple informed population for a network with 5
roads (Fig. 1): time evolution of the density ρ2(t, 0) and ρ4(t, 0) at the beginning of streets 2 and 4 in the
case of the step function ψ̄ (a) and (b) the agents choosing road 2 (whose incoming density is ρ2) and road
4 (represented by ρ4) switch continuously between the two option of identical value function u2, u4, with
some oscillatory effects on the densities. c and d The use of the smooth activation function ψ̂ with ε = 1

4.2 Test 2: Dealing with Braess’Paradox

We reproduce here the well-known Braess’ paradox, described for the first time in [7]
and later reprised and studied by several authors, see e.g. in [11, 25]. The paradox
highlights how a selfish (and uninformed) behaviour may worsen the overall traffic
flow, so that the openingof a new,more favourable path increases the time to destination
for all users. Such phenomenon has indeed been observed in real life situations [4,
21].
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Fig. 3 Simple network with 5 roads; ρ at t = 6 sec is depicted; maxx∈I� ρ�(x, 6) is reported below the
streets
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Fig. 4 Simple network with 5 roads (Fig. 1): time evolution of the density ρ2(t, 0) and ρ4(t, 0) at the
beginning of streets 2 and 4
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Fig. 5 Simple networkwith 5 roads (Fig. 1): time evolution of the costs u2(t, 0) and u4(t, 0) at the beginning
of streets 2 and 4

To reproduce such situation, we consider a 4-street network (composed by 6 nodes
and 6 edges) and a 5-street one, where an additional road (edge 7) is open (see Fig. 6).
We underline that in these networks, some edges can be travelled with constant speed
v(ρ) := 1 (edges 1,3,4 and 6), while the others follow the usual density dependent
speed law v(ρ) := 1−ρ. From the modelling point of view, the former can be seen as
high capacity highways (where the speed is only limited by the current law regulations),
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Fig. 6 Braess’ paradox network: origin (green) and destination (red) junctions are differently colored; id
(above) and the length (below) of the streets are reported; constant speed streets (dashed) are marked

and the latter are some low capacity roads, where the traffic density strongly impacts
the speed of vehicles. Comparing the two networks, we can observe as, in Fig. 6a, the
two paths to destination passing through nodes 1-2-3-5-6 and 1-2-4-5-6 have the same
length. In Fig. 6b a new road (edge 7) is available, providing a new, more favourable
path to destination 1-2-3-4-5-6, which is very sensitive to traffic congestion, since
involving all the edges with non-constant speed function.

To evaluate the performances of a single agent on the network, we use the notion
of travel time (TT) given in Definition 3.1, adapted to the discrete case, i.e. called
γ (xi , x j , t) = (x1 = xi , ..., xm = x j ) ∈ �xi ,x j (t) a non-trivial path chosen by a
population to navigate from xi to x j , starting from xi at time t , where xk , k = 1, . . . ,m,
are the discretization mesh points along the path related to a sequence of non-null
coefficients (a1, ..., am) corresponding to the agent’s choices at every junction (if
there is no junction at xi trivially ai = 1) we have

T T (xi , x j , t) =
∑

γ (xi ,x j ,t)∈�xi ,x j (t)

m∑
k=1

(
�k

z=1az
) Δx

v(ρ(xk, tk))
. (10)

We stress on the fact that here, every point along a specific path γ (xi , x j , t) connecting
xi to x j starting at time t is weighted by �k

z=1az which estimates the percentage of
agents that are using that specific segment of the path.

As before, we take a constant inflow φ(t) = 0.5 at the junction 1 for t ∈ [0, 6], we
set φ(t) = 0 for t ∈ ]6, 15] and the space and time meshes are set to Δx = 0.05 and
Δt = 0.01. In Fig. 7, we compare the performances of the two networks in the terms of
travel time T T (1, 6, t) for t ∈ [0, 12], i.e. the time needed by a single vehicle starting
node 1 at time t to reach the destination node 6. For all strategic choices, we observe
the appearance of the typical Braess’ paradox (Fig. 7a). The time to destination of
an agent starting from node 1 is always higher in the 5 street case (continuous red
line) compared to the 4 street case (blue dotted line). Even in all the discharge phase
(t > 6), the 4 street situation remains more favourable.

The ‘paradox’ is anyway mitigated if information on the state of the network is
available. In the case of an informed population (knowing only the current traffic
situation), Fig. 7b shows that the travel times in the two scenarios are closer. Anyway,
since the agents are not able to forecast the future congestion on the most favourable
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Fig. 7 Braess’ network (Fig. 6): travel time T T (1, 6, t), t ∈ [0, 15] for different level of information. Here,
the parameterε of the smooth activation function ψ̂ is set with ε = {1, 2, 3} and called, respectively, ψ1,
ψ2, ψ3

path chosen in the 5 street network, they still create a consistent congestion in the
charging phase, which deteriorates the network performances.

We highlight that the travel time on the 5 road network for the informed users is
always lower than the simply informed case, i.e. having some traffic data improves
the traffic fluidity. The Braess’ paradox is still present in the highly-informed case
depicted in Fig. 7c, even if in a moderate measure with respect to the previous cases.
This is due to the presence of the smooth activation function ψ̂ : as we can observe
again in Fig. 7c, the ’paradox’ tends to disappear with a reduced smoothing (ε ≥ 3).
We cannot analyze the limit case of a discontinuous ψ = ψ̄ , since our algorithm to
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compute equilibria (based on fixed point iterations) does not reach convergence (due
to the oscillations reported also in Fig. 2). Further research on the most favourable
choice of the activation function could be interesting in this case.

4.3 Test 2: Two Populations

In real life situations, the presence on the same network of various populations with a
different level of information about the route and the traffic state is very common.

Model (9) may efficiently simulate the complex interactions between the different
populations to help understanding which is the optimal level of information for better
performances on a specific network and how the distribution rate of the different
populations affects such performances.

We consider once again the simple 4-roads and 5-roads networks used to illustrate
the Braess’ paradox, see Fig 6. We compare the behaviour of two populations with a
different information level. To get rid of the time dependency for the travel time (10),
we compare their mean travel times (MTT) on the interval [0, T ] defined as

MTT (xi , x j ) = 1

T

[T /Δt]∑
k=1

T T (xi , x j , kΔt).

Tomake easier understanding the outcomeof the tests, we restrict ourselves to the com-
parison of simply-informed/informed mixed population and simply-informed/highly-
informed. Once again, we simulate the incoming of a constant flux of vehicles
φ(t) = 0.5 for t = [0, 6] and φ(t) = 0 for t =]6, 15]. This incoming flux is split
between the two populations following the parameter P ∈ [0, 1], where for P = 0 all
the population is simply informed and for P = 1 all the population is informed. We
highlight that, in these tests, in the case of P = 0 or P = 1 one of the two populations
is not present on the network. This does not prevent us to compute the MTT since it
depends on the sum of the two populations.

In Fig. 8 , we show the comparison on the two networks. Looking at the 4-road
network (Fig. 8a, b) we observe that, in this case, both populations have almost the
same mean travel times (the difference is less than 0.2%). In the simulations, we
may observe the insurgence of some oscillations between the two paths in the case of
informed agents, which are not present in the highly-informed case.

In the 5-road network case, the behaviour is different: in this case, the mean
travel time of informed and highly-informed agents is always lower, and the situa-
tion improves for both populations as the percentage of informed or highly informed
agents increases, showing that they act as ‘regulators’ of the system. Moreover, mean
travel times are lower when an highly informed population is present, with respect to
the merely informed case. We remark also that the 5-road network performances are
always worse than corresponding the 4-road network case. This tendency has been
already observed in the previous test and it can been mitigated, in the highly-informed
case, by the use of a less smooth activation function ψ .
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Fig. 8 Mean Travel Time comparison in the Braess’ network (as in Fig. 6): MTT (1,6) depending on the
populations ratio P

4.4 Test 3: A Real Network

In this last test, we present, with only an illustrative purpose, a more realistic scenario,
which shows the potential of the model proposed. We consider the road network of the
Royal Docks area around the London City Airport, including the Borough of Newham
and the east part of the Canary Wharf business area. The network, due to the intensity
of the displacements, and the presence of various bottlenecks created by the Thames
river meander, is particularly exposed to traffic congestion. The road data has been
provided by OpenStreetMap, licensed under the Open Data Commons Open Database
License (Fig. 9a). In this scenario, we compare the network performances in presence
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(a) The whole domain with initial conditions

(b) Junctions detail positions

Fig. 9 The road Network around the London City Airport, London, UK. (left) Three areas of interest (right)

of a different level of information of the drivers. For better clarity, we focus on three
particular spots (cf. Figure 9b): in Area 1 the road network crosses the Lea River
concentrating the traffic flow on two main bridges; in Area 2 the Gallions Roundabout
(right/bottom) has even more intense congestion effects; Area 3 is an average sample
of the network.

We perform a simulation of the traffic during a peak hour for reaching the Airport
(marked with a red dot on Fig. 9), starting from a low traffic initial condition (the
density is set to 0.2 on the whole network) and giving a constant null inflow of vehicles
γ (t) = 0 at several nodes (marked in light blue). All the vehicles have as unique target
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(a) Area 1, Simply-informed (b) Area 1, Informed (c) Area 1, Highly-informed

(d) Area 2, Simply-informed (e) Area 2, Informed (f) Area 2, Highly-informed

(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 10 London Network, details at t = 100 sec

point the parking area of the Airport. The space and time meshes are set to Δx = 2.0
and Δt = 0.06, respectively. In Figs. 10, 11and 12, we show the traffic distribution
on the three areas of interest at t = 100, 200, 300.

The results of the simulation highlight some known and less-known features of the
influence of real-time information in the routing process. Surprisingly, we can observe
that the traffic congestion, in the more informed models, spread on a larger area, with
the effect of a faster release of the jam (cf. Figure 10 and 12 on the access roads to
the bridges (Area 1) and on the Gallions Roundabout (Area 2)). We also notice that
traffic information brings traffic congestion also in some roads that are not normally
affected by traffic jams in the simply-informed case (see e.g. the traffic evolution in
Area 3). This has been observed in real life situations and it has been at the center of
discussions after the complaints of local residents in several urban areas [6, 17].

Concerning the overall efficiency effects on the network, as already speculated by
others authors [25], selfish information does not globally reduce traffic jams on a
complex network. At the same time, information reduces the time to reach destination
for a single informed driver and even (in presence of a mixed population) for non-
informed ones. The price paid for this reduction is a higher occupation of the network
on peak hours.
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(a) Area 1, Simply-informed (b) Area 1, Informed (c) Area 1, Highly-informed

(d) Area 2, Simply-informed (e) Area 2, Informed (f) Area 2, Highly-informed

(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 11 London Network, details at time 200 sec

(a) Area 1, Simply-informed (b) Area 1, Informed (c) Area 1, Highly-informed

(d) Area 2, Simply-informed (e) Area 2, Informed (f) Area 2, Highly-informed

(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 12 London Network, details at time 300 sec
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5 Conclusions

We proposed a macroscopic model accounting for different routing strategies in traf-
fic flows, aiming to reproduce some emerging behaviour in a population of drivers
with different levels of knowledge about the current (and possibly future) state of the
network system. We performed various tests with the purpose of showing the main
features of the model and its possible use as an instrument of identification and predic-
tion of the weaker areas of a road network. As future research, we identify one main
point that is not addressed in the present work: we approximated the equilibrium points
of the system using a smoothed activation function, but the existence, the nature and
the convergence to the limit problem is an interesting question that deserves a deeper
study.
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A The Priority Riemann Solver

In this section we recall the definition of Priority Riemann Solver given in [13, Section
3]. Given a matrix A belonging to the set of matrices (4) and a priority vector P =
(p1, . . . , pn) ∈ R

n , with pi > 0,
∑

i pi = 1, indicating priorities among incoming
roads, we consider the closed, convex and non-empty set

� =
⎧⎨
⎩(γ1, · · · , γn) ∈

n∏
i=1

[0, γmax
i ] : A · (γ1, · · · , γn)

T ∈
n+m∏
j=n+1

[0, γmax
j ]

⎫⎬
⎭ ,

and define:

h̄ = sup{h ∈ R
+ : hP ∈ �}.

Given Riemann data (ρ1, . . . , ρm+n), we define a vector Q = (γ̄1, . . . , γ̄n) of
incoming fluxes by the following recursive procedure (see Algorithm 1 below).
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• STEP 1. For every i ∈ {1, . . . , n} define

hi = max{h : h pi ≤ γmax
i } = γmax

i

pi
,

and for every j ∈ {n + 1 . . . , n + m} define

h j = max

{
h : (A · (hP)) j = h

(∑
i

a ji pi

)
≤ γmax

j

}
= γmax

j∑
i a ji pi

.

In other words, hi is the maximal t so that hP verifies the flux constraint for the
i-th road, similarly for h j .
Set � = mini j {hi , h j }. We distinguish two cases:

– CASE 1. If there exists j such that h j = �, then we set Q = � P and we are
done.

– CASE 2. Otherwise, let I1 = {i ∈ {1, . . . , n} : hi = �} (by assumption
I1 �= ∅). We set Qi = � pi for i ∈ I1 and we go to next step.

• STEP S. In step S − 1 we defined a set IS−1 and, by induction, all components of
Q are fixed for i ∈ JS = I1 ∪ · · · ∪ IS−1. We let |JS| < n denote the cardinality
of JS and denote by J cS the complement of JS in {1, . . . , n}. We now define hi for
i ∈ J cS by:

hi = max{h : h pi ≤ γmax
i } = γmax

i

pi
,

and for every j ∈ {n + 1 . . . , n + m} define

h j = max

⎧⎨
⎩h :

∑
i∈JS

a ji Qi + h

⎛
⎝∑

i∈J cS

a ji pi

⎞
⎠ ≤ γmax

j

⎫⎬
⎭ .

We then proceed similarly to STEP 1, setting � = mini j {hi , h j } and distinguishing
two cases:

– CASE 1. If there exists j such that h j = �, then we set Qi = � Pi for i ∈ J cS
and we are done.

– CASE 2. Otherwise, let IS = {i ∈ J cS : hi = �} (by assumption IS �= ∅). We
set Qi = � pi for i ∈ IS . If JS ∪ IS = {1, . . . , n} then we stop, otherwise we
go to next step.
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Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do

∀i ∈ Jc → hi = max{h : h pi ≤ γmax
i } = γmax

i
pi

,

∀ j ∈ {n + 1 . . . , n + m} → h j = sup{h :∑i∈J a ji Qi + h(
∑

i∈Jc a ji pi ) ≤ γmax
j }.

Set � = mini j {hi , h j }.
if ∃ j s.t. h j = � then

Set Q = � P and J = {1, . . . , n}.
else

Set I = {i ∈ Jc : hi = �} and Qi = � pi for i ∈ I .
Set J = J ∪ I .

end if
end while

B Numerical techniques

We present the discrete version of the model, introduced in Sects. 2 and 3, which uses
Godunov discretization for the conservation laws [23] and an upwind method for the
eikonal equation [14].

Let us consider a standard discretization of the network N , where a generic edge
I� is approximated by N� points. Setting δ� = L�/(N� − 1), we define the space grid
points x�,h = π j ((h − 1)δ�) for h = 1, . . . , N�, and Δx�,h := |x�,h+1 − x�,h |.

For each junction point Jk ∈ J , we denote by I nc(Jk) = {�1, . . . , �nk } and
Out(Jk) = {�nk+1, . . . , �nk+mk } the indexes of incoming and outgoing roads,
respectively.

For any given initial distribution ρ̄c : I → [0, 1], the multi-class traffic flow
dynamics on the network N is then described by following discrete system for a
ν ∈ {1, ..., �N/Δt�}, Δt > 0, � ∈ L, h = 2, . . . , N� − 1 and c = 1, ..., Nc.

ρ
c,ν+1
�,1 = ρ

c,ν
�,1 − Δt

Δx�,1

(
ρ
c,ν
�,1

ρν
�,1

F(ρν
�,1, ρ

ν
�,2) − γ̄

c,ν
�,1

)
,

ρ
c,ν+1
�,h = ρ

c,ν
�,h − Δt

Δx�,h

(
ρ
c,ν
�,h

ρν
�,h

F(ρν
�,h, ρ

ν
�,h+1) − ρ

c,ν
�,h−1

ρν
�,h−1

F(ρν
�,h−1, ρ

ν
�,h)

)
,

ρ
c,ν+1
�,N�

= ρ
c,ν
�,N�

− Δt

Δx�,N�

(
γ̄
c,ν
�,N�

− ρ
c,ν
�,N�−1

ρν
�,N�−1

F(ρν
�,N�−1, ρ

ν
�,N�

)

)
,

uc,ν�,h+1 − uc,ν�,h

Δx�,h
+ 1

gc(ρν
�,h)

= 0,

uc,ν�,N�
= min

i∈Out(Jk )
uc,νi,1 , x�,N�

/∈ T ,

Ak = {a ji
}
, ūc,ν� = min

j∈Out(Jk)
uc,νj,1,
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a ji = ψ(uc,νj,1 − ūc,ν� )∑
z∈Out(Jk )

ψ(uc,νz,1 − ūc,ν� )
,

(γ̄ ν
�1

, ..., γ̄ ν
�nk+mk

) = RS Aν
k
(ρν

�1
, ..., ρν

�nk+mk
),

γ̄
c,ν
i,Ni

= ρ
c,ν
i

ρν
i

γ̄ ν
i , i ∈ I nc(Jk), γ̄

c,ν
j,1 =

�nk∑
i=�1

ac,νj i γ̄
c,ν
i , j ∈ Out(Jk),

ρ
c,0
�,h = 1

Δx�,h

x�,h+1∫
x�,h

ρ̄c
�(x)dx,

uc,ν�,N�
= ρ

c,ν
�,N�

= 0, x�,N�
∈ T c,

ρ
c,ν
�,1 = φ(x�,1,Δtν). (11)

where ρ̄c
� is the initial traffic distribution on the network.

In (11), the numerical flux F(ρ1, ρ2) is the standard Godunov flux corresponding
to (3), which can be expressed as

F(ρ1, ρ2) := min {D1(ρ1), S2(ρ2)} ,

where D�(ρ) and S�(ρ) are the demand and supply functions defined by

D�(ρ) =
{

ρv�(ρ) if ρ ∈ [0, ρ̂�],
γmax
� if ρ ∈ [ρ̂�, 1],

S�(ρ) =
{

γmax
� if ρ ∈ [0, ρ̂�],

ρv�(ρ) if ρ ∈ [ρ̂�, 1],

see for example [19], Section 5.2.3.
In order to guarantee the stability of the scheme (11) we impose that

Δt ≤ min
�∈L

δ�

V�

.

We assume that the vehicles exit the network once they have reached their destination.
In this way, they do not contribute further to the possible congestion effects of the
latter. Alternative choices are represented by some Neumann condition bounding the
flux to a specific exit rate, or directly imposing some non-flux condition. In such cases,
congestion could arise upstream the destination points (see [9]).
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Finally, we discuss how to deal with the dynamic case. The discretization of Eq. (7)
gives us the following backward explicit scheme

uc,nu−1
�,h = uc,ν�,h − Δt

Δx�,h
(uc,ν�,h+1 − uc,ν�,h) − 1

gc(ρν
�,h)

,

uc,N�,h = ūc,ν�,h,

where ū, is the solution of the static case (11). When we couple this equation with the
other terms of (11) that remain invariate, we observe that the equation for the traffic
flow is forward in time and the equation for the potential is backward. The coupling
is then solved with a fixed point approach, iterating the resolution between the two
equations. Despite not having any theoretical result assuring the convergence to the
fixed point procedure, we observe that, in most cases, it is reached after few iterations
(∼ 6–8 iterations). The only case where the algorithm does not converge is when the
smoothing parameter of the activation function ψ̂ is ε > 3. As explained before, this
issue limits the application of the model and it deserves further investigation.

Remark 5.1 (Computational complexity) The computational complexity of the pro-
posed procedure depends, both in the static and the dynamic case, by the number
of the classes, the size and the connectivity of the network considered and the dis-
cretization mesh used for numerical scheme. The resolution of the Eikonal equation is
comparable to the complexity of a Breadth-first search (often called BFS) algorithm
applied on the city network. The Riemann problem complexity is localized on each
internal junction and it just requires small matrix multiplication of the size of the
incoming and outcoming junction’s roads. Finally, the resolution of the density PDEs
is performed with an explicit logic, thus no linear system resolution is required. We
remark that the implementation performance is not in the focus of the paper, thus no
particular optimization for a better quality of the code is explored. However, despite
the naive MATLAB implementation we perform, we obtain very good results in the
executions times. Indeed, we obtain the static solution in the small-size problems in
the order of the minute, and for the London network in the order of the hour. For the
dynamic cases, as an iterative convergence is required, the computational complexity
is comparable to the static case multiplied by the number of iterations required. As this
number is generally low, the execution time is still under control. Finally, we want to
remark that a parallel implementation can be exploited with low efforts for each class
on the Riemann problems and on the density PDE resolutions thanks to the localized
logic nature.
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