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A B S T R A C T

The use of tracking data in the field of sport analytics has increased in the last years as a starting point
for in-depth tactical analyses. This work investigates the use of Temporal Convolutional Networks (TCNs), a
powerful architecture for sequential data analysis, to extract ball possession information from tracking data.
This task is a crucial step for many tactical analyses and is nowadays carried out manually by a human operator
in the stadium, which is costly, difficult to implement, and prone to errors. In this work, several classification
approaches are explored to classify the game state as dead, ball owned by the home team, or by the away
team: as a single-branch, ternary prediction, or as two binary predictions, first detecting whether the game
is dead or alive and then which team owns the ball. TCNs are exploited to create independent trajectory
embeddings from tracking data of each object; since there is no semantic ordering among the tracked objects,
we investigate different permutation-invariant layers to combine the embeddings, namely, an element-wise
sum over the embeddings, a self-attention module, and the use of 2D convolutions. Performance evaluation
on tracking data from professional soccer games shows that the proposed method outperforms state-of-the-art
rule-based methods, achieving 86.2% accuracy in possession estimation (+7.3% compared to the state of the
art) and 89.2% accuracy in dead-alive classification (+33.2% compared to the state of the art). Extensive
ablation studies were conducted to investigate how different input data concur to the final prediction.
1. Introduction

In recent years, the field of sport analytics has received increasingly
attention, as it has been realized that the systematical analysis of the big
amount of data produced by sports daily can help to develop strategies
capable of increasing the chances of winning a match.

In this paper, we focus on the automatic extraction of ball possession
information from a soccer game from spatio-temporal tracking data.
In typical soccer analytics pipelines, estimating ball possession and
game state is the first step in understanding the events that occur in
a game and their relationship. Without this information, only physical
quantities, e.g., on covered distance and speeds, can be measured and
aggregated. In turn, the availability of a ball possession estimation
component opens to a wider range of analyses: besides computing
simple game state statistics, it becomes possible to analyze every single
pass, to split the game into actions, to classify them and to study players
and team behaviors in attack and defense phases, etc.

Raw tracking data about players and ball positions are today com-
monly extracted by specialized companies and made available for the
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world’s top leagues such as Premier League, Bundesliga, LaLiga and
Serie A, but these companies still rely on human interventions for the
provision of game state information. In particular, for ball possession
the soccer industry uses a definition which considers the amount of
time that a team spends controlling the ball and, to extract this in-
formation, has long relied on a human operator watching the game
armed with a three-button timer. The buttons are used to record the
beginning of a new game phase, which can be either the home team
having possession, the away team having possession, or a stoppage
(because the ball is outside the pitch, or the referee has interrupted
the game, e.g., after a foul).

The reliance on a human operator is motivated by the fact that
there are a number of situations where it can be extremely difficult
to define clearly which team owns the ball (Bialik, 2014). The need to
rely on human operators watching and annotating each game, however,
has clearly economic and logistic impacts which are detrimental to the
implementation of an automatic data analytics pipeline. Furthermore,
it has also been observed that these annotations are prone to errors,
vailable online 8 March 2023
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which negatively impact the subsequent data analysis steps (Richly
et al., 2017). Another important reason to develop automatic ball
possession extraction is that it would allow to add this information to
tracking datasets from past matches where it was originally missing,
making them accessible for further analyses that otherwise would be
extremely time consuming.

Scientific literature regarding the automatic estimation of game
state is not particularly rich (especially from tracking data), mainly due
to the scarcity of public datasets. The few approaches proposed so far
generally relied on a different definition of ball possession based on the
number of passes completed by a team (Glasser, 2014; Sarkar et al.,
2019) that is not the commonly adopted one, or leveraged handcrafted
rules (Khaustov & Mozgovoy, 2020; Link & Hoernig, 2017; Morra et al.,
2020) that can hardly capture the discrimination abilities of human
operators.

Hence, in the present paper, we propose to:

• use deep learning to make a computer learn how to automatically
estimate the state of a soccer game starting from spatio-temporal
data about players and ball positions, without resorting to rules
defined based on domain knowledge about soccer;

• output this information in the same format of the standard,
three-button timer mechanism.

In particular, we investigate the use of Temporal Convolutional Net-
works (TCNs), which in recent years proved to be particularly effective
for dealing with classification tasks on sequential data. In this work,
TCNs are used to create independent trajectory embeddings from track-
ing data. We then experimented with three architectures that combine
the embeddings in different ways and compared the obtained results
with those achieved by state-of-the-art methods leveraging predefined
rules.

The remaining of the paper is organized as follows. Section 2
reviews relevant literature pertaining sport analytics. Section 3 intro-
duces the proposed method, whereas Section 4 presents the protocol
that has been set up to evaluate it. Section 5 reports on experimental
results. Finally, Section 7 provides conclusions and suggests possible
directions for future research in this field.

2. Related work

Over the years, sport analytics and, particularly, event detection
in soccer games have been addressed in different ways. The existing
literature can be roughly classified on the basis of the type of input
used, which can be represented by either visual or tracking data (or a
combination of them).

2.1. Visual data

Videos indeed represent the most common source of input in the
context of sport analytics. Unsurprisingly, in the last several years,
most of the research explored the use of deep learning models. Deep
learning has been proved successful for many purposes, from players
tracking (Kukleva et al., 2019; Xu et al., 2018), to video summariza-
tion (Gao et al., 2020; Rockson et al., 2019) and the generation of
high-level game statistics (Fernández et al., 2019; Memmert & Rein,
2018; Theagarajan et al., 2018).

Among the possible applications, two tasks that are particularly
relevant for the goal of this paper are action recognition and event
recognition. For instance, Hong et al. (2018) focused on the possibil-
ity to use transfer learning with state-of-the-art Convolutional Neural
Network (CNN) models to detect events like corner, free-kick, penalty
and goal plus different types of camera shots from soccer videos. Other
authors, like Xu and Tasaka (2020), focused on improving the accuracy
and speeding up the identification of particular events in 4K multi-
2

view videos of soccer games extending well-known CNN-based object
detection and pose estimation methods (such as YOLO Redmon et al.,
2016 and OpenPose Cao et al., 2021).

The most common approach to address the above task on video
data is known as Convolutional Recurrent Neural Network (RNN): this
approach extends the architecture used in previously cited works since,
first, features are extracted from each frame in the video using a CNN,
then they are passed to a RNN which produces the output.

An example of this setting can be found in Sorano et al. (2021),
which aims at producing a graph of passes that occur in a soccer
game. In the proposed architecture, video frames are processed both
by a convolutional object detection network (YOLO, in this case) and
by a feature extraction network (ResNet18 He et al., 2016). For each
frame, the feature extraction module produces a vector describing the
whole scene; the object detector, in turn, is responsible for detecting
the players as well as the ball, and returns a vector describing the
position of the ball and the players closest to it. The two vectors are
then concatenated. By processing all the frames in the video, it is
possible to produce a sequence of feature vectors that are fed into the
sequence classification module, which consists of a bidirectional LSTM
(Long Short-Term Memory), a model commonly used in this context.
This module outputs a pass vector that indicates, for each frame of the
original sequence, whether it is part of a pass sequence or not. Another
work exploiting this methodology to detect a larger set of events is
represented by Jiang et al. (2016). Here, play-break segments are first
obtained. Then, semantic features are extracted from them using a
CNN. Finally, four event types are classified (namely, corner, goal, goal
attempt and card) using a RNN.

The above approach is also adopted in Roy Tora et al. (2017). In this
case, the focus is on ice hockey, but the task is closer to that addressed
in the present work, as the authors’ goal is to recognize puck possession
events. Like in the above works, the frames are processed in parallel
by two CNNs which extract frame-related features and, based on the
output of an object detector, individual player-related features. The
features are then concatenated and passed to an LSTM, which processes
them sequentially and produces the output.

The main drawback of the methods reviewed so far lays in the fact
that they rely on recurrent architectures, which have been proven to be
characterized by a performance bottleneck due to the use of sequential
computations. A way to cope with the above limitation when dealing
with sequential data is represented by TCNs. These networks rely on
convolutional layers, whose operations can be easily parallelized, thus
benefiting of continuous advancement in computing technology. Bai
et al. (2018) and Guirguis et al. (2021), who focused on comparing
recurrent architectures with their convolutional counterparts on a vari-
ety of tasks, showed the largely higher performance of the latter models
in terms of accuracy, as well as of training and inference time.

In the context of sport analytics, TCNs have been largely applied
to action recognition (the domain they actually stemmed from). An
example is provided by Martin et al. (2018), where a Siamese spatio-
temporal CNN is used to simultaneously process color images and
optical flow data associated with table tennis games to this purpose.

These models have also been widely used for event detection, which
can be considered as a particular case of action recognition. Some
examples in this field are represented, e.g., by Khan, Saleem et al.
(2018), Lee et al. (2018), Liu et al. (2017) and Yu et al. (2019).

The approach of Khan, Saleem et al. (2018) is particularly in-
teresting since it uses C3D (Tran et al., 2015), which is basically
the three-dimensional (spatio-temporal) counterpart of the well-known
two-dimensional VGG network (Simonyan & Zisserman, 2014) and
leverages many of the state-of-the-art characteristics for image classifi-
cation (such as a high number of layers and small kernels); moreover,
the authors showed for the first time how to use such an architecture
not only for classifying a video, but also for creating effective descrip-
tors of it, which could be used in a transfer learning pipeline for further

analyses.
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It is worth observing that the problems addressed by the above
works are different than that tackled by the present paper. In fact, as
stated in Section 1, the task of estimating the game state has not been
dealt with in depth by the research community yet.

Besides some research done in the field of game state description
(addressed in the context of summarization), one of the few works
that considered ball possession is represented by Khan, Lazzerini et al.
(2018). The authors do not use deep learning end-to-end, since they
propose a framework in which the frames of soccer videos are first
processed by a Single Shot MultiBox Detector (SSD)-based object de-
tection module (Liu et al., 2016). The output is then passed to a
rule-based system that uses temporal and logical operators, which
starts by detecting the so-called ‘‘simple’’ events and assembles them
to recognize the ‘‘complex’’ events.

2.2. Tracking data

As shown by the last work reviewed in the previous section, an
alternative way to deal with the problem of interest for this paper and,
in general, with sport analytics tasks consists of exploiting tracking
data. With the improvements in tracking technology, sport researchers
are using them for ever more complex tasks, from event detection, to
statistics generation, tactic effectiveness quantification, etc.

As for video data, the most recent works in this field rely on deep
learning, and leverage spatio-temporal convolutions directly on raw
data to create low-dimensional representations that summarize the mo-
tion of objects of interest in space over time periods. In the literature,
these representations are referred to as trajectory embeddings.

An important milestone in the use of trajectory embeddings in
sport analytics has been set by the work reported in Horton (2020).
The author’s goal is to learn an internal feature representation of the
movements of all players in an american football game. To this purpose,
a network is designed that takes as input raw trajectory data and learns
an internal representation of the individual and coordinated move-
ments of all players. The trajectory of a single player is represented as a
sequence of time-stamped frames, and each frame is a vector containing
the 𝑥 and 𝑦 coordinates for the player at that time, possibly with
additional information such as his or her orientation and speed. The
main contribution of this work stems from the consideration that most
machine learning methods require a predefined structure in the input
format that also comprehends an ordering within each input element,
such as in the case of an image. However, in the case of tracking data,
it is often impossible to define a predefined shape of the input due to
the naturally variable duration of a game play, and there is no intrinsic
ordering of players in a given interval of play that persists throughout
the game or from game to game (in some sports number of player
can even change, e.g., due to red cards). Previously, both the variable
duration problem and player-ordering problem had been circumvented
by introducing a preprocessing step in which raw tracking data are
transformed into structured feature representations designed ad hoc for
the task at hand. The method adopted by Horton (2020) avoids the
limitations typically associated with feature engineering, and addresses
the first problem by means of 1D convolutions and adaptive pooling
mechanisms; it then deals with the second problem by using a set-based
architecture (Zaheer et al., 2017) that treats the input as an unordered
set, devising a model that learns the feature representation directly
from raw data. The authors used the proposed method to create two
models for making predictions about passes (probability of completion,
length, and reception location) and tackles (probability for a player to
be the first to attempt it, distance covered, and location).

Other ways that have been explored to achieve set-based learning
in sport analytics consist in leveraging roles rather than identities for
players (e.g., when the task is to study the behavior of an entire
adversarial team, like in Lucey et al., 2013), or in identifying an object,
like a player or a ball, that can be used as ‘‘anchor’’ and define an
3

ordering relative to it. An example of this latter approach is given
in Mehrasa et al. (2018). Like in Horton (2020), trajectory embeddings
are created by 1D convolutions. Then, a permutation-invariant sorting
scheme is defined based on the distance of a candidate object (a player,
in this case) to the anchor, with the trajectory of the anchor being
placed always in the first position, the closest object next to it, and the
farthest object appended to the end. The authors applied this technique
to two different tasks, i.e., event recognition in ice hockey (with six
events considered, and the player carrying the puck acting as the
anchor), and team classification in basketball (with the ball selected
as the anchor). It is worth observing that the devised approach based
on trajectory data was found to outperform the C3D model that uses
video as input, and to be capable of achieving even better performance
when used in combination with video.

A work that is particularly interesting considering the focus of the
present paper is represented by Sanford et al. (2020). The authors
address the detection of atomic actions in a soccer game (pass, shot,
and reception), and focus on analyzing the performance of vision-based
and trajectory-based models. The authors considered four vision-based
models. All of them rely on an inflated 3D CNN (I3D) (Carreira &
Zisserman, 2017). In the first model, the 3D convolution is applied
to the whole image frame. In the other cases, it is applied to players’
‘‘tubelets’’, i.e., sequences of bounding boxes containing a single player;
the features extracted from the tubelets are then processed in three
different ways: via max-aggregation, a Graph Convolutional Network
(GCN), and a transformer. The best performance was achieved by the
model that processes the whole frame, without using the tubelets.
For trajectory-based detection, they considered three models, namely
a TCN (named Wavenet van den Oord et al., 2016), a transformer,
and a TCN followed by a transformer. In all three cases, these blocks
were followed by a fully connected layer to predict the actual player’s
activity. Experiments were run both using only the ball trajectory and
using the ball along with the K-nearest players: the model containing
both the TCN and the transformer and using the (five) K-nearest
players proved be the one providing the best performance on all three
atomic activities. When comparing the two approaches, vision- and
trajectory-based models were found to provide, on average, comparable
results. The findings of the latter work are particularly interesting
since they confirm the effectiveness of the trajectory-based method for
dealing with sports analytics tasks. They also pinpoint TCNs as the best
candidate to address the detection of game events.

Works reported above are all relevant to the present paper, since
they provide concrete architectures that can be used to perform classi-
fication and action detection tasks on tracking data. Notwithstanding,
their goal still differs from that considered here, since they cannot be
directly used for ball possession estimation (although this limitation
mainly concerns the last layers of the network, which are described
by the authors themselves as task-specific).

Like for visual data, the amount of works that focused on ball
possession by leveraging tracking data is still quite limited. An example
is represented by Link and Hoernig (2017). This work uses a rule-based
system to segment the game into possession phases, which are further
subdivided into actions and void phases (e.g., when the ball is in the
air). A possession phase begins when a new player starts to interact
with the ball. Interactions are detected looking at the spikes in the ball
acceleration; when a local maximum greater than 4 m s−2 is found,
the possession is assigned to the player closest to the ball. The idea
of looking at the derivatives of the ball position comes from the fact
that tracking data often do not include the 𝑧 coordinate; therefore, it is
necessary to prevent accidental changes in possession during phases in
which the ball crosses intermediate players.

A similar idea is exploited in Morra et al. (2020). Here, the temporal
and logical operators that were originally used in Khan, Lazzerini et al.
(2018) on the output of a visual data processing stage are extended
and applied to spatio-temporal data obtained through a soccer game
simulator for the detection of game events, including player’s ball

possession. In this case, the ball speed is considered, based on the
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consideration that while a player controls the ball, the latter should
move relatively slowly. Furthermore, for a possession to be valid, the
distance between the player and the ball should be low for a certain
amount of time, and the distance between the opponents and the ball
should be above a given threshold.

A more recent example of a rule-based system that predicts ball pos-
session from spatio-temporal data is given in Khaustov and Mozgovoy
(2020). As in the previous cases, when a possession change occurs, the
ball is assigned to the closest player. Possession changes are detected
in three ways: through changes in ball speed, changes in ball direction,
and prolonged proximity to the ball.

In the present work, we address the problem of estimating ball
possession from tracking data following a different approach. First, as
in the works focusing on action detection reported at the beginning
of this section, our aim is to remove the need to rely on handcrafted
rules. The objective is to devise models capable to learn directly from
data, without resorting to domain knowledge about soccer, which
humans use to explain the (possible ambiguous) concept of possession.
Second, our expected outcome also slightly deviates from that of the
latter works reviewed above. In fact, they actually addressed the ball
possession problem in a more fine-grained way, as they estimate the
possession on an individual level, telling which player, not only which
team, owns the ball. Indeed, this fact is directly connected with the
nature of rule-based systems, which follow a bottom-up approach that
allows to extract semantic knowledge from the intermediate results.
However, we intentionally faced the problem from the point of view of
the team rather than of the player, since, as said, the actual mechanism
to collect ball owner information is based on the three-button timer
used by a manual operator. Data collected through this mechanism
only describe the state of the game (home team controlling the ball,
away team controlling the ball, game stopped), without providing
information about the single player who is owning the ball. Thereby,
it is convenient to start with a less fine-grained approach, and only
afterwards add information about the single player on top of the data
obtained for the team.

3. Proposed method

This section illustrates the main principles that underlie our method-
ology. First, the general formulation of the problem statement is pre-
sented in Section 3.1. The three architectures evaluated in this study are
then introduced in Section 3.2. Finally, the loss function, TCN design,
and aggregation functions are discussed in detail in Sections 3.3, 3.4,
and 3.5, respectively.

3.1. Problem statement

As anticipated in Section 1, our goal is to propose a network
architecture able to classify the game state for a given time window
by leveraging tracking information.

Let us define the proposed network as a function

 ∶ 𝐱 ∈ R𝑛𝑓×𝑛𝑜×𝑛𝑐 ↦ 𝑦 ∈  (1)

here 𝐱 is the input tensor and  = {dead, home, away} is the three-class
utput. The classifier is trained in a supervised fashion from a labeled
ataset  = {𝐱𝑖, 𝑦𝑖}𝑁𝑖=1.

We assume the input tensor to be of size 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 , where 𝑛𝑓 is
he number of frames in the observed time window, 𝑛𝑜 is the number of
racked objects (e.g., players, ball, referee, etc.) and 𝑛𝑐 is the number of
eature channels associated to each object. For simplicity, and without
oss of generality, we assume that the feature channels include at least
he position of the tracked objects with respect to the pitch and the
eam; however, as exemplified later in Section 4.1, the feature vector
an be extended to include other features such as the player id, the
4

bject velocity, visual features, etc.
To simplify the explanation of the learning procedure, we decom-
ose the network  as a combination of three functions

(𝐱) = 𝑓𝑐
(

Λ
(

𝑓𝑡𝑐𝑛(𝐱)
))

(2)

ach implemented by one or more layers.
The embedding function 𝑓𝑡𝑐𝑛 ∶ R𝑛𝑓×𝑛𝑜×𝑛𝑐 → R𝑛𝑜×𝑙𝑡𝑟𝑎𝑗 maps the

trajectories of each individual object to an embedding vector of length
𝑙𝑡𝑟𝑎𝑗 . As detailed later, this component is based on TCNs, hence the
subscript.

The aggregation function Λ combines the embeddings associated
ith different objects into a single feature vector, which is then given as

nput to the actual classifier 𝑓𝑐 (last function). The order of the players
within the input data is based solely on the jersey number of each
player within the team; hence, this order does not carry any semantic
meaning and needs therefore to be abstracted. It is crucial that, given
the same position of the objects on the pitch, the network predicts the
same result if two players are swapped, i.e., that the output does not
vary in case of a permutation in the input data: hence the need to define
a permutation-invariant function. An alternative strategy, detailed in
Section 3.5.3, is to order the objects according to a predefined criterion,
which bypasses the need to use a permutation-invariant function.

Finally, the last classification function 𝑓𝑐 is a simple feed-forward
network (FFN) that computes the output class 𝑐. Alternatively, it is pos-
sible to redefine the output space as a combination of two binary labels
(𝑦𝐷𝐴, 𝑦𝑃𝑂𝑆𝑆 ), where 𝑦𝐷𝐴 ∈ {dead, alive} and 𝑦𝑃𝑂𝑆𝑆 ∈ {home, away}. The
peculiarity of this formulation, as discussed in Section 3.3, is that 𝑦𝑃𝑂𝑆𝑆
is not defined when 𝑦𝐷𝐴 = dead.

3.2. High-level architecture

This section explores in detail several variants for each of these
three components and their combinations, and introduces the three
high-level architectures that were experimentally compared in this
work.

All architectures exploit TCNs as the embedding function. As dis-
cussed in Section 2, according to the recent deep learning literature,
TCNs applied to tracking data have proven to work well in differ-
ent tasks, such as event detection, team classification, etc. They also
compared favorably with respect to recurrent architectures (reported,
e.g., in Bai et al., 2018 and Guirguis et al., 2021).

In particular, the proposed architectures are based on 𝑘 × 1 convo-
lutional filters in order to produce separate trajectory embeddings for
each object on the field (in our case, as said, the players, the ball, and
the referee).

The first proposed architecture, denoted in the following as the
single-branch model, frames the problem as a ternary classification. The
network, depicted in Fig. 1(a) consists of three blocks that implement
the functions introduced in Section 3.1. In this formulation, 𝑓𝑐 (⋅) is
a FFN with three output classes, which takes as input the trajectory
embeddings obtained through spatio-temporal convolution as detailed
in the problem statement. It is important to stress that the aggregation
function Λ must be invariant to permutation; different architectural
choices that satisfy this property are illustrated in Section 3.5.

The second class of architectures requires producing two binary
classifications: one telling if the game state is active, the other one
telling which team owns the ball in an active game phase. This leads
to an architecture with two parallel output layers, each responsible for
one classification. At the network level, it is possible to achieve these
goals in two ways, outlined respectively in Figs. 1(b) and 1(c).

The first variant, illustrated in Fig. 1(b) and denoted in the following
as the two-branch network, computes the trajectory embeddings once
and uses them to predict both output variables. The TCN output is
passed to two different Λ layers, which in turn pass their output to two
separate FFNs, the Dead-Alive (DA) branch, and the Possession (POSS)
branch. Each FFN produces a scalar output, representing respectively

𝑃 (𝑌𝐷𝐴 = dead ∣ 𝑋) and 𝑃 (𝑌𝑃𝑂𝑆𝑆 = home ∣ 𝑋, 𝑌𝐷𝐴 = alive). Alternatively,



Expert Systems With Applications 223 (2023) 119780M. Borghesi et al.
it is also possible to share both the TCN and the Λ layers, splitting only
the FFN network or part of it. The choice clearly represents a trade-
off between computational needs and flexibility; here, we preferred
to keep the 𝛬 layers separated, since we expect that having distinct
representations may be useful to optimize each classification. It is
important to note that both branches are trained in parallel, i.e., a
single backpropagation is performed, and hence the TCN is trained to
jointly optimize both tasks. Parallel training can be achieved using a
combined loss function (discussed in Section 3.3) that produces a single
scalar value resulting from both branches.

Alternatively, it is possible to perform the classifications by two
separate networks, a Dead-Alive (DA) network and a Possession (POSS)
network, as shown in Fig. 1(c). This variant will be denoted in the
following as the two-networks configuration. In this case, each network
computes its trajectory embeddings that are then passed to the Λ layers
and finally to the FFNs for the binary classification. Computing separate
embeddings allows the TCNs to capture those aspects of the tracking
data that may be more relevant for the specific task, rather than
producing a set of general-purpose feature vectors that are expected
to solve both tasks at the same time. The two networks are trained
separately end-to-end, with the possibility of adapting them to specific
task needs, which include using different sets of hyperparameters. The
drawback of this alternative is that training two networks requires
roughly twice as much computational resources; this choice is viable
only if it brings about a boost in performance that justifies such
investment. Furthermore, the use of separate trajectory embeddings
goes against the concept of embedding as a general descriptor that
effectively summarizes the data and can be used in a wide range of
applications, as described in Khan, Saleem et al. (2018).

3.3. Loss functions

The single-branch, multi-class model is trained using a standard
cross-entropy loss written as

𝐿(�̂�) = −
∑

𝑖
𝑦𝑖 ⋅ 𝑙𝑜𝑔(�̂�𝑖) (3)

Using a one-hot encoding, 𝑦𝑖 is zero for all classes but the correct one;
hence, the cross-entropy loss turns out to be −𝑙𝑜𝑔(�̂�𝐾 ), whereby 𝐾 is
the true class.

For the two-networks model, the DA network does not differ sub-
stantially from the previous one, except that it performs a binary
classification: however, this can be considered as a special case of
multiclass classification, which allows to use a slightly different cross-
entropy function that accounts for the fact that the network outputs
a scalar value instead of a vector. Since the network predicts the
conditional probability of 𝑌𝐷𝐴 = dead, the true label 𝑦(𝐷𝐴) should be
a scalar with value 1 if the game state is DEAD and 0 otherwise. With
these modifications, the binary loss function of the DA network can be
expressed as:

𝐿𝐷𝐴(�̂�(𝐷𝐴)) = −(𝑦(𝐷𝐴) ⋅ 𝑙𝑜𝑔(�̂�(𝐷𝐴)) + (1 − 𝑦(𝐷𝐴)) ⋅ 𝑙𝑜𝑔(1 − �̂�(𝐷𝐴))) (4)

The issue is more complex when considering the POSS network. The
classification here does not only depend on the input data 𝑋, but also
on the value of 𝑌𝐷𝐴: 𝑌𝑃𝑂𝑆𝑆 is meaningful only as long as the game is
active, otherwise it is useless to estimate which team owns the ball.
During training, this means that the network should not update its
parameters if it is faced with a sample where the true label is DEAD. To
obtain this result, it is possible to define the loss function as follows:

𝐿𝑃𝑂𝑆𝑆 (�̂�(𝑃𝑂𝑆𝑆)) =

{

𝐵𝐶𝐸(�̂�(𝑃𝑂𝑆𝑆)), 𝑦(𝐷𝐴) = 0
0, otherwise

(5)

where 𝐵𝐶𝐸 is the binary cross entropy:

𝐵𝐶𝐸(�̂�(𝑃𝑂𝑆𝑆)) = −(𝑦(𝑃𝑂𝑆𝑆) ⋅ 𝑙𝑜𝑔(�̂�(𝑃𝑂𝑆𝑆)) (6)
5

+(1 − 𝑦(𝑃𝑂𝑆𝑆)) ⋅ 𝑙𝑜𝑔(1 − �̂�(𝑃𝑂𝑆𝑆)))
Finally, the two-branch model is trained using a multi-tasking loss
function defined as

𝐿(�̂�(𝐷𝐴), �̂�(𝑃𝑂𝑆𝑆)) = 𝛼 ⋅ 𝐿𝐷𝐴(�̂�(𝐷𝐴)) + (1 − 𝛼) ⋅ 𝐿𝑃𝑂𝑆𝑆 (�̂�(𝑃𝑂𝑆𝑆)) (7)

i.e., as an average of the two loss functions described above with an
additional weight parameter 𝛼. During backpropagation, the derivative
of 𝐿 with respect to an arbitrary parameter 𝑥 is given by the formula

∇𝑥𝐿 = 𝛼 ⋅ ∇𝑥𝐿𝐷𝐴 + (1 − 𝛼) ⋅ ∇𝑥𝐿𝑃𝑂𝑆𝑆 (8)

For the parameters located in the branches, this means that the
update process is the same as in the two-networks model: parameters
lying in one branch do not impact the loss function of the other branch;
thus, one of the two members of the derivative above will be zero.
With respect to the parameters in the TCN, the update will depend on
both losses, according to the weight factor 𝛼. In particular, it can be
noticed that if a sample belongs to a segment of inactive game, the
function 𝐿𝑃𝑂𝑆𝑆 and its derivatives will be zero, which means that the
parameters in the TCN are updated based only on the output of the DA
branch.

3.4. TCN design

In the proposed architectures, the TCN is responsible for producing
trajectory embeddings, i.e., fixed-size representations of the movements
on the pitch of every relevant object. This is achieved by stacking
several layers of temporal convolutions, which gradually incorporate
information from different points in time into a single vector. The
structure of the layers defines a priori the size of the receptive field,
i.e., the number of elements in the sequence that concur to the final
prediction. As a result, the receptive field determines how many frames
are needed to form an input sample, a parameter that has already been
introduced as 𝑛𝑓 . In this choice, there should be a trade-off (which
has to be made at design time) between two factors: on the one hand,
larger sequences allow to consider a larger portion of the game when
producing an output; on the other hand, they require a deeper network,
which in turn needs more time and more data to be trained.

It is important to note that the target frame, i.e., the frame for
which we want to predict the game state, can be located anywhere
within the sample: in case the input sequence only includes past frames,
the convolution is said to be causal, otherwise it is called acausal.
The choice between these alternatives depends on how fast the ball
possession prediction has to be made; however, it is important to
consider that seeing how the action goes on after the target frame
can help to enhance the model performance. For example, using only
the tracking data, it is difficult to recognize immediately whether a
foul was called: in this case, it can be helpful to consider also some
frames afterwards, based on the consideration that if a foul is called,
the players will probably stop running or move towards the referee.
For this reason, unless the system has strict time constraints, it seems
appropriate to opt for acausal convolutions.

With respect to these two concepts, it can be useful to point out
two aspects pertaining TCNs. First, it is clear that the input slices in
two adjacent forward passes have almost the same elements; yet, since
they are in different positions, it is not possible to reuse the results
of the convolutions from one pass to the other. Second, as shown in
Fig. 2, the temporal convolutions are computed on all elements in the
sequence, applying dilations and padding when necessary. However,
only a small part of the computations (which are shown in the figure
with continuous lines) effectively contribute to the output results (the
orange circle in the top right). The other computations are needless,
since their results are gradually discarded by the following layers.

In order to design the internal structure of the TCN, it is important
to recall from the problem statement that it should apply a function
𝑓𝑡𝑐𝑛 to the input data, such that

𝑛𝑓×𝑛𝑜×𝑛𝑐 𝑛𝑜×𝑙𝑡𝑟𝑎𝑗
𝑓𝑡𝑐𝑛 ∶ R → R (9)
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Fig. 1. Comparison of the three proposed architectures. All take as input a multi-dimensional array of size 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 , where 𝑛𝑓 is the number of frames, 𝑛𝑜 is the number of
objects (including all players, the ball and the referees), and 𝑛𝑐 is the number of channels (i.e., features) associated with each object (including, e.g., the position, velocity, team,
etc.). All architectures output two scalars representing the probabilities 𝑃 (𝑌𝐷𝐴 = dead ∣ 𝑋) and 𝑃 (𝑌𝑃𝑂𝑆𝑆 = home ∣ 𝑋, 𝑌𝐷𝐴 = alive). Each architecture is composed by one or more
TCNs computing the embeddings (one of each object), a permutation-invariant aggregation function Λ that combines the trajectories of all objects, and finally one or more FFNs
𝑓𝑐 that computes the output probabilities. While the single-branch architecture computes both output probabilities using a single TCN and FFN (a), in the two-branch architecture
two separate FFN layers are defined on top of a single shared embedding TCN (b). In the two-networks architecture, DA state and ball possession are estimated using separate
embeddings and classification functions (c).
However, since the trajectory embeddings should be computed
separately for each object, 𝑓𝑡𝑐𝑛 is equivalent to applying on 𝑛𝑜 inputs a
function 𝑓 ′

𝑡𝑐𝑛, such that

𝑓 ′
𝑡𝑐𝑛 ∶ R𝑛𝑓×𝑛𝑐 → R𝑙𝑡𝑟𝑎𝑗 (10)

A function with these characteristics can be achieved using 1D convo-
lutions, i.e., convolutions with a filter of size 𝑘 and not 𝑘1 × 𝑘2, as in
the more common 2D convolutions. At implementation time, it should
be considered that filters always have one additional dimension, since
6

they are applied over many channels at the same time; however, this
aspect is usually disregarded in the definitions, which explains why
they are referred to as 1D convolutions even though the input is two-
dimensional. In order to apply 𝑓 ′

𝑡𝑐𝑛 in parallel on all objects, the most
straightforward way is to arrange the operation as a 2D convolution
with a 𝑘 × 1 filter on the whole input, which has size 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 . This
technique, proposed by Horton (2020), allows at each step the filter to
be convolved with a portion of the input tensor, containing 𝑘 frames
related to only one object. The result of the 2D convolutional layer is



Expert Systems With Applications 223 (2023) 119780M. Borghesi et al.
Fig. 2. Scheme of dilated convolution (van den Oord et al., 2016): black lines show the convolutions that actually contribute to the result.
Table 1
Architecture of the TCN module.

Layer type Output size Parameters

input 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 –
conv 𝑛𝑓 × 𝑛𝑜 × 𝑙𝑡𝑟𝑎𝑗 Filter 1 × 1
batch_norm '' –
conv
dropout
conv

⎫

⎪

⎬

⎪

⎭

× 𝑛_𝑏𝑙𝑜𝑐𝑘𝑠
'' Filter 𝑘 × 1

'' –
'' Filter 1 × 1

dropout '' –
batch_norm '' –
slice 𝑛𝑜 × 𝑙𝑡𝑟𝑎𝑗 –

a matrix of size 𝑛𝑜 × 𝑙𝑡𝑟𝑎𝑗 , whose columns correspond to the output of
the 1D convolution applied to the respective object. In other words, by
means of a 𝑘× 1 filter it is possible to compute the function 𝑓𝑡𝑐𝑛 on the
whole input tensor in a single pass.

The final structure of the TCN is given in Table 1. The first layer
is a 1 × 1 convolution, in order to adapt the third dimension of the
input to the size of the final embeddings, which is 𝑙𝑡𝑟𝑎𝑗 . Next, a batch
normalization layer is applied, as proposed in Ioffe and Szegedy (2015).
After that, the architecture features a block containing three layers: the
first one is a convolutional layer with a 𝑘×1 filter, which constitutes the
most relevant part of the function 𝑓𝑡𝑐𝑛. Then, there is a dropout layer
and another 1 × 1 convolution. The block is repeated multiple times
(the exact number 𝑛_𝑏𝑙𝑜𝑐𝑘𝑠 is a hyperparameter of the network) with
an exponentially growing dilation rate: as said at the beginning of this
section, the number of blocks in the network determines the receptive
field of the TCN and, hence, the length of the subsequence considered
at each forward pass. Finally, after having applied dropout and batch
normalization once again, the last sequence element is selected since,
as said, this element captures the whole receptive field, thus offering a
summarized representation of the whole temporal sequence.

3.5. Permutation invariance

In the architectures presented in Section 3.2, a major role is played
by the aggregation layer Λ, which transforms the individual trajectory
embeddings into a global representation of the game sequence, which
in turn can then be classified by an FFN. It has already been pointed
out that Λ should be permutation-invariant, i.e., the result should be
independent of the players’ order in the input tensor. In this section,
three possible ways to achieve this goal are analyzed, with different
characteristics and complexities.

3.5.1. Reduce by sum
Considering an input matrix 𝐴, a simple invariant operation with

respect to column permutation is the multiplication 𝐴 ⋅ 𝟏, where 𝟏 is a
vector of all ones. This operation is equivalent to computing a vector
whose 𝑖th value is the sum of all the values in the 𝑖-the row of 𝐴. It is
evident that if two columns in the input matrix are swapped, the sum of
7

the values across each row remains unchanged; therefore, the function

𝑓𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚 ∶ R𝑚×𝑛 → R𝑚, 𝐴 ↦ 𝐴 ⋅ 𝟏 (11)

is permutation-invariant. In the current case, the TCN outputs a tensor
𝐴𝑡𝑐𝑛 of size 𝑛𝑜 × 𝑙𝑡𝑟𝑎𝑗 . Since the position of the ball and the referee is
already fixed by the fact that their tracking data are placed in the first
two columns of the dataset, in order to make the Λ layer permutation
invariant, it is sufficient to consider the two submatrices 𝐴(ℎ𝑜𝑚𝑒)

𝑡𝑐𝑛 and
𝐴(𝑎𝑤𝑎𝑦)
𝑡𝑐𝑛 containing the embeddings of the home and away players. The

submatrices have size (11 + 6) × 𝑙𝑡𝑟𝑎𝑗 , since each soccer team has 11
starting players and up to six substitutions,1 and can be passed to
𝑓𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚 obtaining two vectors 𝑣ℎ𝑜𝑚𝑒 and 𝑣𝑎𝑤𝑎𝑦 of size 𝑙𝑡𝑟𝑎𝑗 that act
as trajectory embeddings of one team each.

It is therefore possible to construct a permutation-invariant Λ layer
through the linear transformation

𝑓Λ ∶ R𝑛𝑜×𝑙𝑡𝑟𝑎𝑗 → R4×𝑙𝑡𝑟𝑎𝑗 , 𝐴𝑡𝑐𝑛 ↦
⎛

⎜

⎜

⎝

∣ ∣ ∣ ∣
𝑣𝑏𝑎𝑙𝑙 𝑣𝑟𝑒𝑓 𝑣ℎ𝑜𝑚𝑒 𝑣𝑎𝑤𝑎𝑦
∣ ∣ ∣ ∣

⎞

⎟

⎟

⎠

(12)

where 𝑣𝑏𝑎𝑙𝑙 and 𝑣𝑟𝑒𝑓 are the trajectory embeddings of the ball and the
referee. It is possible to use this result as input to a FFN by flattening
the matrix into a one-dimensional vector of size 𝑛𝑜 ⋅𝑙𝑡𝑟𝑎𝑗 , as is commonly
done in CNNs designed for image classification.

3.5.2. Self-attention
A second possibility in the construction of Λ is to take advantage

of recent advances in the field of attention models. In particular, the
self-attention module introduced by Vaswani et al. (2017) allows to
create embeddings of the original elements that not only take into
consideration other elements in the tensor, but are linear combinations
of those elements (or more precisely, of their values). Notably, in the
original self-attention model, the tensor consists of different elements
of a sequence, but at this point there are no sequential data to work
with since the temporal information is flattened by the TCN into the
trajectory embeddings. Thus, in this case, the self-attention model is
not used to process different elements within a temporal sequence,
but rather elements that are part of an unordered set, such as the
submatrices 𝐴(ℎ𝑜𝑚𝑒)

𝑡𝑐𝑛 and 𝐴(𝑎𝑤𝑎𝑦)
𝑡𝑐𝑛 introduced above.

Since the biggest part of the possession estimation is related to one
single object, namely the ball, it seems reasonable to think that if the
self-attention module is able to grasp all the interactions where the ball
is involved, it is possible to make a reliable prediction without consid-
ering the interactions among the other objects. At the same time, since
self-attention is specifically designed to output a weighted representa-
tion of the interactions between the input columns, extracting such a
representation of the ball trajectory should provide enough information

1 One additional player is encoded as an extra substitution to account for
possible tracking errors.
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for a successful classification. Based on these considerations, if the ball
trajectory has to be enriched by all the other objects, it is evident
that the self-attention layer should receive the whole tensor produced
by the TCN: it will be then the self-attention task to recognize which
objects have a role in determining the possession and which objects are
irrelevant, such as bench players. In this sense, it is relevant to note that
the value of a given column in the output of a self-attention layer is
independent of the ordering of the other columns. This means that the
computation of the column related to the ball is permutation-invariant
with respect to the columns related to the players.

If we denote by 𝑆 ∈ R𝑛𝑜×𝑛𝑎𝑡𝑡 the matrix produced by the self-
attention layer and by 𝑠𝑖 its column vectors, the operation of the Λ
ayer can be described by the function

Λ ∶ R𝑛𝑜×𝑙𝑡𝑟𝑎𝑗 → R𝑛𝑎𝑡𝑡 , 𝐴𝑡𝑐𝑛 ↦ 𝑠1 (13)

here 𝑛𝑎𝑡𝑡 indicates the size of the query, key and value vectors as
efined in Vaswani et al. (2017).

.5.3. 2D convolutions
A way that is often used to achieve permutation invariance is

o impose an ordering based on an anchor object. In this case, the
ame state is estimated based predominantly on the ball: it is possible
herefore to order the players according to their distance to this object,
o that the network can operate on the data independently of how the
layers are arranged in the input tensor. Although this idea can also
e applied to the options presented above, e.g., by limiting the reduce
r the self-attention operations to the players close to the ball, its most
owerful consequence is that it allows one to structure the input tensor
n a way that avoids the need to create isolated embeddings for the
bjects.

The input data can be arranged across two dimensions, which
hould be flattened in order to obtain a single prediction of the game
tate. The two dimensions are the temporal axis and the different
bjects, and their sizes are 𝑛𝑓 and 𝑛𝑜, respectively. Structuring the
nput data allows to operate on them as commonly done for video
treams, where the temporal and the spatial dimensions are processed
n parallel. In other terms, the input data can be interpreted as two-
imensional, rather than one-dimensional.

Taking this fact into account, it is possible to apply a temporal
onvolution to the input by using a 2D convolutional layer. However,
hile in Section 3.4 2D convolution was performed by means of a 𝑘×1

ilter to separate each object, here 𝑘1 × 𝑘2 filters are used in order
o fuse together the information along both axes. This third proposal
o obtain a permutation-invariant representation of the global features
herefore does not foresee any Λ layer: instead, permutation invariance
s a by-product of the TCN design, after introducing the additional
onstraint that players in the input data are pre-ordered according to
heir distance from the ball.

. Experiments

.1. Dataset

The dataset at our disposal consists of tracking data taken from
5 games during the 2019–20 season of a top professional European
eague. The data are collected at an average rate of 16 frames per
econd (fps) and for each frame the following information is provided:

• a frame number, an incremental id of the frame starting from 1;
• a game state label, as described in the problem statement: this is

the target variable of the system;
• a timestamp, indicating at which moment the data was collected;
• a half flag, indicating whether the frame was collected in the first

or in the second half of the game;
• the 𝑥 and 𝑦 coordinates of the ball;
• the 𝑥 and 𝑦 coordinates of the referee;
8

• for each player, the 𝑥 and 𝑦 coordinates, and a flag to distinguish
goalkeepers.

Ball and players coordinates are provided from a third part company
pecialized in real time tracking technologies for the sport sector,
hrough a system of ad-hoc cameras installed directly in each venue.
he coordinates spaces is a rectangle corresponding to the football pitch
nd the coordinates system is centered in the center of the pitch (kickoff
oint) with x-positive axis pointing to the right and y-positive axis
ointing up. Considering the standard dimensions of a football pitch
105 × 68 m), the range is [−52.5, 52.5] for x-axis and [−34,34] for
-axis both for ball and players. If the tracking system could not locate
n object or if the object was not on the pitch (e.g., in the case of a
layer sitting on the bench or being expelled), the corresponding 𝑥 and

𝑦 fields are empty.
Target labels dead, home and away were manually assigned in real

ime by a human operator as part of a series of services provided by
third company to the league organization. The target labels in the

ataset are distributed as follows: about 40% of the samples belong
o the class dead, the rest of the samples are quite evenly distributed
etween the classes home (29.6%) and away (30.3%).

Since the model takes as input a tensor of size 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 , the
hole game is split in sequences of length 𝑛𝑓 . Clearly, it is also
ossible for samples to overlap with each other, as the game sequence
s transformed into samples following a sliding window approach with
stride of 1 (i.e., adjacent samples differ only by one frame).

Datasets acquired during real games often have highly variable
uality. A simple yet effective metric to assess data quality is the
ercentage of samples in which the ball coordinates are missing. A
lightly more informative version of this metric can be obtained by
onsidering only the samples in which the game is active, i.e., the
ame state is not dead. The eight games with the lowest percentage
f missing ball coordinates, measured according to the latter metric,
ere included in this study. These games were then split in three

ubsets of respectively four, two, and two games. From the first subset,
00K samples were randomly chosen to create the training set; from
he second subset, 5K samples were randomly chosen to create the
alidation set; from the third subset 5K samples were randomly chosen
o create the test set. By using different games in each subset, we aimed
o have statistically independent data across the phases. Furthermore,
he data in the three subsets were acquired in different stadiums and
ith different teams involved to ensure that the model generalizes well

n other contexts.

.2. Implementation

Each of the alternatives presented in Section 3 is defined by two
ndependent factors, namely, the high-level architecture (i.e., single-
ranch, two-branch or two-networks configuration) and the
ermutation-invariant layers (i.e., reduce by sum, self-attention or 2D
onvolution). Both factors can be varied as desired even within the
ame architecture, e.g., it is possible to define a two-networks model
n which one network uses self-attention and the other one uses 2D
onvolution. The only constraint in this sense is that in a two-branch
odel, it is not possible to combine a 2D convolution with another
ermutation-invariant function: in fact, when using 2D convolutions,
he TCN outputs a single vector that is passed to both branches.
herefore, while it is possible in a two-branch network to use a sum

ayer in one branch and a self-attention layer in the other one, in the
ase of 2D convolution the choice affects necessarily both branches
ince the TCN is shared by both.

As said, each data sample is structured in a three-dimensional tensor
f size 𝑛𝑓 × 𝑛𝑜 × 𝑛𝑐 . In this work, we set 𝑛𝑓 = 64, based on experimental
vidence and domain knowledge. The target frame is the 48th element
ithin the sequence, which means that the model is acausal.

The total number of objects 𝑛𝑜 is equal to 1 ball + 1 referee +
2 starting players + 12 substitutions = 36. Padding columns with
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empty values are added when the teams did not exploit all possible
substitutions. Finally, the 𝑛𝑐 = 11 channels are defined for each object

ith the following information:

• the 𝑥 and 𝑦 coordinates;
• the velocity in the 𝑥 and 𝑦 directions, computed by subtracting

the coordinate vector in two adjacent time points and dividing it
by the frame period;

• three channels encoding the role of the object, i.e., whether it is
a ball, a referee or a goalkeeper;

• two channels encoding whether the object belongs to the home
team or to the away team;

• a flag telling whether the object is located outside of the pitch;
• a flag telling whether the object is missing.

Before training, the data are preprocessed to ensure training con-
ergence and reduce the effect of noise. The ball coordinates are first
nterpolated using the Akima spline (Akima, 1970). Then, each 𝑥 and 𝑦
oordinates are separately rescaled using min–max scaling so that they
all into the interval [−1, 1]. Missing data are assigned the value −2,

and values far outside of the game field are truncated before scaling in
order to provide more stability to normalization.

The network architecture has been described in detail in Section 3.
The FFN consists of two fully connected layers, with 64 and 32 units,
respectively. The TCN and the self-attention module are initialized ac-
cording to the Xavier normalized algorithm, while the FFN initialization
follows the Xavier uniform algorithm (Glorot & Bengio, 2010). All lay-
ers have the ReLU activation function, except for the FFN layers which
use an ELU activation. All networks were implemented in Python based
on Keras v2.4.3 e Tensorflow v2.3.1. For training, the Adam (Kingma
& Ba, 2014) optimizer was used, with an initial learning rate of 10−5

and a decay rate of 0.7 after each epoch.

4.3. Performance assessment

The models were evaluated on the basis of three accuracy metrics.
First, global accuracy is considered, i.e., the percentage of correct
predictions among all predictions made within the ternary classification
setting presented in the problem statement. Global accuracy can be thus
expressed as

𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 =
#correct predictions
#all predictions (14)

Especially for multi-branch and multi-network models, it is also
nteresting to consider two additional metrics, namely dead-alive accu-
acy, 𝑎𝑐𝑐𝐷𝐴, and possession accuracy, 𝑎𝑐𝑐𝑃𝑂𝑆𝑆 . These measures represent

the ability of a model to solve one of the two sub-tasks into which
the problem can be decomposed. In particular, the dead-alive accuracy
represents the percentage of samples for which the model correctly
identifies whether the game is active or not and is computed as

𝑎𝑐𝑐𝐷𝐴 =
#𝑡𝑝𝐷𝐴 + #𝑡𝑛𝐷𝐴

#𝑡𝑝𝐷𝐴 + #𝑡𝑛𝐷𝐴 + #𝑓𝑝𝐷𝐴 + #𝑓𝑛𝐷𝐴
(15)

here 𝑡𝑝𝐷𝐴 are the samples for which both the true and predicted labels
re not dead, 𝑡𝑛𝐷𝐴 are the samples for which both the true and predicted
abels are dead, 𝑓𝑝𝐷𝐴 are the samples for which the true label is dead
hile their predicted label is not dead, and 𝑓𝑛𝐷𝐴 is the opposite case.
n the contrary, the possession accuracy represents the percentage of

amples for which the game is active, and the model correctly identifies
hich team owns the ball. It is computed as

𝑐𝑐𝑃𝑂𝑆𝑆 =
#𝑡𝑝𝑃𝑂𝑆𝑆 + #𝑡𝑛𝑃𝑂𝑆𝑆

#𝑡𝑝𝑃𝑂𝑆𝑆 + #𝑡𝑛𝑃𝑂𝑆𝑆 + #𝑓𝑝𝑃𝑂𝑆𝑆 + #𝑓𝑛𝑃𝑂𝑆𝑆
(16)

where 𝑡𝑝𝑃𝑂𝑆𝑆 are the samples for which both the true and the predicted
label are home, 𝑡𝑛𝑃𝑂𝑆𝑆 are the samples for which both the true and the
redicted label are away, 𝑓𝑝𝑃𝑂𝑆𝑆 are the samples for which the true
abel is away while their predicted label is home, and 𝑓𝑛𝑃𝑂𝑆𝑆 is the
9

opposite case. It is thus important to note that 𝑎𝑐𝑐𝑃𝑂𝑆𝑆 only considers
Table 2
Performance (global accuracy) of different design alternatives. The first column refers
to the high-level architectures, whereas the second column reports the permutation-
invariant aggregation function Λ. For multi-branch/multi-network architectures, the
first aggregation function refers to the DA branch/network, whereas the second one
refers to its POSS counterpart.

Architecture Aggregation function 𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙

Single-branch
sum 83.42%
self-att. 84.32%
2D-conv. 81.6%

Two-branch

sum + sum 82.74%
self-att. + sum 84.55%
sum + self-att. 83.78%
self-att. + self-att. 86.39%
2D-conv. 81.49%

Two-networks

sum + sum 82.78%
self-att. + sum 84.44%
2D-conv. + sum 82.38%
sum + self-att. 82.86%
self-att. + self-att. 84.32%
2D-conv + self-att. 79.42%
sum + 2D-conv. 79.62%
self-att. + 2D-conv. 82.16%
2D-conv + 2D-conv. 83.64%

those samples for which true label is not dead, i.e., those frames where
the game is active.

For the selected architectures, the inference time (mean and stan-
dard deviation) needed to process one batch was calculated. Execution
time was measured on a PC equipped with an NVIDIA 1080Ti GPU with
11 Gb VRAM, 32G RAM and Intel i7-7700 CPU @ 3.60 GHz.

5. Results

The goal of this section is to provide an evaluation of the pre-
sented methods. Thus, in Section 5.1, different design alternatives are
compared in order to identify the best model to solve the problem
statement. This model is then compared in Section 5.2 with other
methods taken from the existing literature on related topics. Finally,
in Section 5.3, some ablation studies are conducted in order to identify
which parts of the model contribute most to the final outcome.

5.1. Comparison of design alternatives

The results obtained by comparing different design alternatives are
shown in Table 2, where each row represents a different combination
of architecture and aggregation function. Overall, most of the results
are within a small range: the mean accuracy (± standard deviation) for
all models is 82.93% ± 1.71%. On average, the accuracy achieved with
single-branch (83.11% ± 1.39%) and two-branch architectures (83.79%
± 1.85%) is higher than the two-networks solution (82.40% ± 1.82%).

We also measured inference time for the best performing network,
i.e., the two-branch network with self-attention aggregation layers.
The average time (± standard deviation) needed to process one batch
is equal to 37.18 ms ± 4.66 ms for a batch size of 1, 57.47 ms ±
5.94 ms for a batch size of 16, and 52.39 ms ± 1.26 ms for a batch
size of 32. Given that the data is sampled at 16 frames/s, process-
ing times are comparable with real-time inference even on relatively
low-performance, consumer-grade GPU.

5.2. Comparison with the state of the art

In order to fully assess the contribution of this work, it is important
to provide a quantitative analysis with respect to the state of the art.
Since there are no works that address the overall problem of estimating
the game state, the comparison will be made separately with respect to
the two subtasks of estimating the densities 𝑃 (𝑌𝐷𝐴 ∣ 𝑋) and 𝑃 (𝑌𝑃𝑂𝑆𝑆 ∣

𝑋, 𝑌𝐷𝐴 = alive).
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Table 3
Comparison of our best model (two-branch network with self-attention aggregation
layers) with the state of the art on the task of dead-alive classification (𝑎𝑐𝑐𝐷𝐴) and
ossession classification (𝑎𝑐𝑐𝑃𝑂𝑆𝑆 ).
Solution 𝑎𝑐𝑐𝐷𝐴 𝑎𝑐𝑐𝑃𝑂𝑆𝑆

Ours 89.2% 86.2%
Wei et al. (2013) 56.0% –
Link and Hoernig (2017) – 64.5%
Morra et al. (2020) – 79.1%
Khaustov and Mozgovoy (2020) – 75.4%

First of all, the classification between active and inactive game
hases is considered, comparing the model presented in this work with
he one from Wei et al. (2013), which uses a decision tree trained
ith the ball coordinates only. Each model is tested on 20K samples

andomly selected from two games, chosen among those that were not
sed to train the neural network. As shown in Table 3 (upper part),
he network greatly outperforms the baseline model, which in turn
erforms only 6% better than a random classifier (since it is a binary
lassification and the classes are relatively balanced, a random classifier
as a 50% chance of guessing the correct label). In Section 5.3 it will
e also shown that, even if the network is provided only with the ball
oordinates (thus holding out the players and the referee), it is still
ble to achieve 83% accuracy in the dead-alive problem, which is 27%
etter than the decision tree.

Regarding possession, the current work is compared with three
ethods, taken respectively from Link and Hoernig (2017), Morra

t al. (2020) and Khaustov and Mozgovoy (2020). These works propose
ule-based systems, in which possession is estimated starting from
onsiderations drawn from domain knowledge, regarding, e.g., the
losest player to the ball, the speed and acceleration of the ball, etc.
gain, each model is tested on 20K samples randomly selected from

wo games; the test set is also pruned of those samples where the game
s inactive, since the baseline models are designed for estimating ball
ossession only.

All competing models were reimplemented based on the available
nformation from the original papers. Specifically, in Link and Ho-
rnig (2017), the ball acceleration was computed as a finite difference
tarting from the ball coordinates. The threshold on the ball acceler-
tion was set to 4 m s−2, as proposed by the authors. The minimum
istance 𝑇𝑃 between the player and the ball, used to discriminate if

the player is interacting with the ball, is not provided in the work
and was set through validation to 1.5 m. In Morra et al. (2020), ball
possession is estimated based on the distance from the closest player,
the movement of the player and the ball speed, each controlled by a
separate threshold. Hyperparameters were taken from the code released
by the authors and set to 1.09 m, 1.19 m, and 8.6 m s−1, respectively.

s concerns (Khaustov & Mozgovoy, 2020), the algorithm as well as
ts hyperparameters are thoroughly listed in the paper and were kept
nchanged.

The obtained results are listed in the lower part of Table 3, and show
hat the best performance is achieved by the neural network, with a
argin of 7% in accuracy with respect to the best rule-based model,
hich is the one from Morra et al. (2020).

.3. Ablation studies

The goal of this section is to analyze which parts of the input data
oncur to the final result, in order to understand what aspects are
eemed as more important by the network to produce the output, and
hat is ignored. In particular, ablation studies are performed on two
xes: on the one hand, we evaluate what happens when we remove
bjects, in particular players; on the other hand, we investigate the
ole of individual channels, i.e., of the information related to each
10

bject. The two directions are followed separately in an orthogonal d
way, i.e., when objects are removed, all the channels are considered,
and vice versa.

Ablation studies report all three different metrics introduced in Sec-
tion 4.3. In fact, some objects – or some channels – may be important
to determine only one of the two aspects, i.e., only if the game is
active or which team owns the ball. The ultimate goal of this analysis
is therefore to understand which parts of the input are important to
produce which parts of the output. This is particularly relevant since,
as it has been shown above, it is possible to build a model using
two separate branches or even two separate networks, each of which
performs a binary classification. Knowing which parts of the input
data are more important for each prediction enables us to finetune
separately the training of each branch/network.

Ablation studies are performed on an extended test set which in-
cludes 20 games, encompassing a larger variety, in terms of acquisition
settings and data quality, with respect to the games included in the
training set. The two-branch model with self-attention, which achieves
the highest global accuracy as reported in Table 2, is selected as
baseline.

5.3.1. Ablation of objects
The object ablation study progressively removes some of the objects

from the input data. The input data consist of a tensor of size 𝑛𝑓 ×𝑛𝑜×𝑛𝑐 ,
here 𝑛𝑜 amounts to 36, since it includes the ball, the referee and 17
layers from each team (11 starting players and 6 possible incoming
layers). Performing an ablation study on the objects thus means to
ut away a slice of the input on the second axis, passing to the network
tensor of size 𝑛𝑓 × 𝑛′𝑜 × 𝑛𝑐 , where 𝑛′𝑜 is the number of objects that are

ept.
The ablation is performed in two steps. First, the players far from

he ball are removed. The distance can be computed in different ways:
ere, the Euclidean distance is considered at the frame in which the
ame state should be estimated. This approach, based on the idea of
he K-nearest neighbors (KNN) algorithm, is rather common and can
e found in several works from the literature (Mehrasa et al., 2018;
anford et al., 2020). In the second step, a more aggressive ablation
s performed, and only the ball is retained: the intuition behind this
hoice is that the ball trajectory, by itself, carries a considerable part
f the information.

The results in terms of global accuracy are shown in Fig. 3. The
lue dots in the figure represent the baseline, which achieves a mean
ccuracy of 81.59% on the test set, as shown in Table 4. The yellow dots
efer to the model trained using the ball and its five nearest players
5NN) and performs about 2% worse than the baseline. Finally, the
ed dots show the performance when the model is trained using only
he tracking data of the ball: this leads to a considerable drop in the
ccuracy, since only 58% of the samples are classified correctly on
verage.

Table 4 compares models also with respect to the additional metrics
𝑐𝑐𝐷𝐴 and 𝑎𝑐𝑐𝑃𝑂𝑆𝑆 . The latter presents a similar trend as the global
ccuracy: the 5NN model performs on par with the baseline, while the
all-only model performs significantly worse. On the contrary, in order
o estimate if the game is active, it is useful to include all players, since
here is a 2.5% difference in 𝑎𝑐𝑐𝐷𝐴 between the 5NN model and the
aseline (which ultimately causes the difference in global accuracy).
ost interestingly, it can be noticed that the ball trajectory alone is

ble to achieve a good 83.62% mean 𝑎𝑐𝑐𝐷𝐴.

.3.2. Ablation of channels
Channel ablation studies aims to explain which part of the informa-

ion about each object are important to produce the output result. In
he original input data, 11 channels are passed to the network, including
ome hand-crafted features, such as velocity, pre-computed in the data
re-processing phase. The goal of this section is therefore to identify
hich information can be considered as redundant, and whether the

esigned architecture is capable of automatically encoding or compute
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Fig. 3. Results of the object ablation study. Each dot represents the global accuracy of the baseline (blue), ball + 5NN (yellow) and ball only (red) models, calculated separately
on each game in the extended test set.
Table 4
Mean accuracies of different ablation models.

Ablation 𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝐷𝐴 𝑎𝑐𝑐𝑃𝑂𝑆𝑆

Baseline 81.59% 88.25% 84.95%
5NN 79.41% 85.8% 84.98%
Ball only 58.35% 83.62% 50.54%
(𝑥, 𝑦) + roles 67.25% 74.89% 82.09%
(𝑥, 𝑦) only 56.16% 75.81% 51.89%

features from the raw spatial coordinates, if they are indeed relevant
for the classification. Since one of the most relevant characteristics of
neural networks is their ability to recognize hidden patterns, which
avoids the need to hand engineer the input features as it was typical
of the earlier machine learning techniques, we aim to measure up
to which point the network is able to fulfill this expectation, and
conversely when it is better to provide some explicit information in
order to improve the performance.

As in the previous section, the ablation is done in two steps: in
the first step, information about the coordinates, the roles and the
team is kept (in total seven channels), whereas in the second step only
the two coordinates are used. The detailed results in terms of global
accuracy are shown in Fig. 4, whereas the mean accuracy across the
20 games in the test set are reported in Table 4. The results show
a clear difference between the three models: the baselines achieves
81.59% mean accuracy, the model using only the roles has 67.25%,
whereas the model that uses only the spatial coordinates has 56.16%.
This means that, from a general point of view, all groups of channels
make a significant contribution to the output.

When considering separately the accuracy on the two binary clas-
sification settings, however, it is possible to note some differences. In
fact, in terms of the dead-alive accuracy, the role model (i.e., the first
ablation model) has nearly the same performance as the coordinate
model (the second ablation model), which indeed performs a slight 1%
better. On the contrary, with respect to the possession accuracy, the
role model has a performance less than 3% worse than the baseline,
whereas the coordinate model achieves as little as 51.9% accuracy.

6. Discussion

In this paper, we have investigated different TCN architectures to
estimate the state of a soccer game starting from spatio-temporal data
11
about players and ball positions. All proposed architectures are based
on common principles: first, TCNs are employed to map trajectories
into an embedding space, and second, the architecture is designed to
be permutation-invariant with respect to the orders of the players.
However, they differ with respect to other design choices, such as the
number of branches, the choice of the permutation-invariant aggrega-
tion function, and the loss, which were experimentally compared in this
paper.

With respect to the global architecture, the two-networks architec-
ture, in which dead-alive classification and possession estimation are
predicted by two separate networks, performs on average worse than
those based on a single network. A possible interpretation is that in
order to build effective trajectory embeddings, training simultaneously
on samples from both active and inactive game phases is more ben-
eficial than having a more flexible network with a higher number of
parameters. When training on related tasks, multi-task learning can
improve performance by promoting implicit regularization and more
robust feature representation (Ruder, 2017; Vandenhende et al., 2020).
In addition, models consisting of two separate networks may need
significantly more resources for both training and inference.

Taking into account the trade-off between training time and perfor-
mance, as well as between memory and performance, the single-branch
models achieve results that are often similar or even better than more
complex variants. For example, when using 2D convolution, a sin-
gle classification branch does not perform worse than its two-branch
counterpart. From a computational perspective, the processing time
of the dual-branch architecture with self-attention is low and even
compatible with real-time use. However, it must be stressed that the
processing time to extract players and ball tracking data from sensors
and/or videos was not considered in the present work. At the same
time, many sports analytics pipeline do not require real-time processing
capabilities, but rather high accuracy.

The choice of the aggregation function Λ has a moderate impact
on the overall performance. Most of the information can be captured
by simple functions, such as summing over all trajectory embeddings.
Yet, the best overall performance (86.39% global accuracy) is achieved
by the two-branch model using self-attention in both branches: self-
attention is the most elaborated of the three aggregation functions,
and allows to capture task-specific features that cannot be recognized
otherwise.

Another important aspect to consider is how different input features
affect the overall performance. In this case, the input is composed by
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Fig. 4. Results of the feature ablation study. Each dot represents the global accuracy of the baseline (blue), (𝑥, 𝑦) coordinates + roles (yellow) and (𝑥, 𝑦) coordinates only (red)
models, calculated separately on each game in the extended test set.
multiple objects (i.e., the players and the ball), each further character-
ized by several features (or channels), including the (𝑥, 𝑦) coordinates,
additional features related to the position (the velocity in the 𝑥 and
𝑦 directions, whether the object is located inside or outside the pitch,
and whether it is missing), the role played by each object, and the team.
Both aspects were studied through extensive ablation studies. In order
to globally classify the game state, it is not possible to consider only
the position of the ball, as the accuracy drops slightly above chance
level (𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 = 58.35%). However, our ablation studies show that,
on average, it is sufficient to consider the five players closest to the
ball at the beginning of the sequence (𝑎𝑐𝑐𝑔𝑙𝑜𝑏𝑎𝑙 = 79.41%). It should
be noticed that, because the distance is computed only at one point in
the sequence, samples in which the ball is kicked at the beginning of
the sequence could be misclassified (e.g., in the case of a long pass to
an empty area of the pitch, in which the possession does not change
even if the passing player is very far from the ball at the moment of
the evaluation).

When considering each specific task separately, the most relevant
input information is different. To determine whether the game state
is active or not, the trajectory of the ball alone achieves a strong
performance (𝑎𝑐𝑐𝐷𝐴 = 83.62%), quite close to the baseline (𝑎𝑐𝑐𝐷𝐴 =
88.25%): hence, ball tracking information accounts for 94% of the
information captured by the network that allows to determine whether
the game state is active or not. Removing information about all but the
closest players also reduces the performance by 2.5% (𝑎𝑐𝑐𝐷𝐴 = 85.8%).
On the contrary, in order to estimate ball possession, it is sufficient
to include the five nearest players (𝑎𝑐𝑐𝑃𝑂𝑆𝑆 = 84.98%) to achieve
comparable results to the baseline (𝑎𝑐𝑐𝑃𝑂𝑆𝑆 = 84.95%), whereas ball
tracking information alone cannot reach accuracy above chance level.

Similar considerations apply for the features (channels) associated
with each object. In terms of dead-alive classification, removing veloc-
ities and position with respect to the external line has a large impact
on accuracy. In fact, accuracy when using only (𝑥, 𝑦) coordinates
drops significantly (𝑎𝑐𝑐𝐷𝐴 = 75.81%), and adding role information even
slightly degrades performance (𝑎𝑐𝑐𝐷𝐴 = 74.89%). On the other hand,
with respect to possession accuracy, role information is crucial, whereas
velocities and other features play a minor role: in fact, a model that
takes as input only position and role of each object achieves accuracy
comparable to the baseline (𝑎𝑐𝑐𝑃𝑂𝑆𝑆 = 82.09% vs. 𝑎𝑐𝑐𝑃𝑂𝑆𝑆 = 84.89%).
Both these insights are in line with intuition: in order to tell if the game
is active, it is important to know the velocity of the objects (e.g., to
12
know if the ball is moving) and if they are inside the pitch, whereas to
assign the ball possession it is essential to correctly assign each object
to the proper team.

The results of the ablation studies are consistent with those of the
comparison of different architectures. In fact, a two-branch model that
uses self-attention in both branches would be able to automatically
select the most relevant features for each task. On the other hand,
if a two-networks architecture is selected, it would be advisable to
tailor the input data passed to each network in order to maximize
the performance of the system. Likewise, in a two-branch model, since
the trajectories are computed separately for each object, it is possible
to pass only a subset of the embeddings to each branch, based on
which objects are most important for the classification. For example,
if only the nearest players are needed to determine 𝑌𝑃𝑂𝑆𝑆 , it would be
reasonable to prune the input of the POSS branch in Fig. 1(b), selecting
only the trajectory embeddings related to the objects needed.

Finally, the proposed model outperforms previously published solutions
on both possession accuracy (+7%) (Khaustov & Mozgovoy, 2020; Link
& Hoernig, 2017; Morra et al., 2020) and game state classification
(+27%) (Wei et al., 2013). The most recent competing methods (Khaus-
tov & Mozgovoy, 2020; Morra et al., 2020) are based on rules or
temporal logic; these methods do not require training, but may include
provisions to tune rule-specific hyper-parameters (Morra et al., 2020).
It is worth noticing that all previous techniques were reimplemented
and tested on the same dataset to ensure a fair comparison; however,
hyper-parameters were kept to the original values proposed by the
authors, and were thus tuned on different datasets, at least in one
case leveraging synthetic datasets (Morra et al., 2020). The comparison
offers an interesting insight about the trade-offs present in rule-based
and deep learning models. On the one hand, handcrafted rules allow to
build hierarchical models, which can be expanded more easily (e.g., to
perform event detection) and often have nice by-products, such as the
fact that the possession estimation is already done at the individual
level. However, this may come at a price in terms of performance, since
neural networks present greater flexibility that allows them to learn
more difficult mappings. In this case, it is particularly reasonable to
opt for a deep learning system because the dataset is quite big, which
allows to train larger and more powerful networks with little impact
on generalization.
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7. Conclusions and future work

This study aimed to devise a deep learning system capable of esti-
mating the state of a soccer game on a frame-by-frame basis given a set
of spatio-temporal tracking data. The best performing architecture is a
two-branch architecture which exploits a TCN backbone to extract tra-
jectory embeddings for each object/player, and self-attention modules
to aggregate embeddings in a permutation-invariant way. Extensive ex-
perimental analysis on tracking data from a professional soccer league
show that the proposed method outperforms, by a large amount, state-
of-the-art rule-based systems in both dead-alive classification and ball
possession classification.

The present study can be considered as a stepping stone towards
automating a task that presently requires constant human input and
supervision. At the same time, it represents an important contribution
to the state of the art, which currently lacks methods to simultaneously
and reliably estimate ball possession and game state. From a technical
point of view, this study proved that techniques and network archi-
tectures that have been successfully developed in similar fields, such
as event detection, can be applied in the context of ball possession as
well. This work also systematically compares different techniques for
achieving permutation invariance on set-based data, which may be of
interest for other applications based on the analysis of tracking data.

Ample directions for future research emerge from the results of
the present study. For instance, the dataset used in this work is based
on cameras providing only 𝑥 and 𝑦 coordinates: improvements in the
ccuracy of the model could be achieved by leveraging more advanced
ystems that provides a very accurate tracking of the ball, including
he 𝑧 coordinate. Regarding the methodology, an interesting alternative
o the approach adopted here could be to estimate the game state
rom a set of events by subtraction, i.e., by detecting all the events

that determine a change in the game state, and segmenting the game
accordingly. In this way, it would be possible to exploit the large
body of existing literature in the field of event detection, as well as
to take one more leap in the direction of an end-to-end deep learning
system capable of analyzing spatio-temporal data. Clearly, this would
also require the availability of a more fine-grained annotated dataset,
including information on the individual players as well as the team in
the classification.
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