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Abstract: The tightening of the diesel pollutants emissions regulations has made the performances obtainable from
steady-state map controls, commonly employed in Internal Combustion Engine (ICE) management, unsatisfactory. To
overcome these performance limitations, control systems have to cope with the engine transient operation conditions,
coupling between its subsystem dynamics, and the trade-off between different requirements to efficiently manage the
engine. The work demonstrates the deployment of a reference generator that coordinates the air path and combustion
control systems of a turbocharged diesel engine for heavy-duty applications. The control system coordinator is based on
neural networks and allows to exploit the best performance of the two control systems. The key idea is to generate air
path targets, intake O2 concentration and Intake MAnifold Pressure (IMAP), coherent with the ones of the combustion
control system, engine load and engine-out Nitrogen Oxides (NOx). In this way, the air path control system provides the
global conditions for the correct functioning of the engine, while, in cooperation, the combustion control will react to fast
changes in the engine operating state and compensate for the remaining deviations with respect to load and NOx targets.
Reference generator networks are suitable for further real-time implementation on rapid-prototyping hardware and their
performance was overall good.
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1. INTRODUCTION

As global concern for the environment grows, legisla-
tors tightens the ICE pollutants emission regulations. In
response to this action, automotive manufactures have in-
troduced, particularly for diesel engines, a broad range
of technologies: Exhaust Gas Recirculation (EGR) with
Variable Geometry Turbochargers (VGTs) [1], high pres-
sure common rail injection systems [2], advanced com-
bustion control and innovative combustion concepts [3,
4], for example. Recently diesel engine research focus
has shifted towards the development of modern control
strategies [4, 5]. This was supported by the overall com-
putational performance improvement of Engine Control
Units (ECUs).

The importance of a coordinator between air path and
combustion controllers is paramount. Targets for the two
control systems have to be generated considering the dif-
ferent time dynamics and actual working conditions of
the two systems. The main reason for the sometime poor
performance of the two control systems is the mismatch
between the actual and reference values of key variables
used for the target generation. The two control systems
are independent, but the air path and combustion subsys-
tems are strongly coupled and, with this bias, the refer-
ence generator will work in conditions that differ from
the expected ones.

Models make it possible to determine and exploit on-
line the relations between key variables. Instead of using
fixed open-loop reference signals, a good value for the
reference can be generated based on available informa-
tion. This can be exploited to manage the different con-
trol systems avoiding conflict. In this work, a coordinator

constituted by neural networks has been used to manage
the air path and combustion control systems through their
respective target signals. Air path and fuel path control
system dynamics are different, with the first one being
slower than the latter one. The coordinator generates a
target for the air path control system based on the desired
setpoint, the state of the engine and injection control sys-
tem. The design choice was to use the air path control
system to provide the global conditions needed to retrieve
the desired performance and the injection control system
to locally adjust the residual part and react to perturba-
tions while guaranteeing the load. Furthermore, during
the optimization of the control point, also the preferred
actuator for the required control action can be evaluated.

In the literature only few examples of air path and
combustion control systems coordinators emerged. In [6]
controllers were coordinated by a high-level structure that
considered combustion half way point, maximum pres-
sure, rate of combustion, combustion instability and Indi-
cated Mean Effective Pressure (IMEP) obtained from in-
cylinder pressure measurement as states to generate the
correct references. A dedicated PI control loop was ap-
plied to each cylinder. All the loops managed fuel quan-
tity and Start Of Injection (SOI). Instead, the air path con-
troller targeted Air Mass Flow rate (MAF) and IMAP.

In [7] a supervisory Model Predictive Control (MPC)
approach that manages nonlinear controllers is developed
for an air path system for multi-mode operation in a diesel
engine. The whole controller includes three parts: super-
visory MPC as target setpoint coordinator, actuator level
nonlinear control, state detection either by virtual sensor
or by ECU sensor. The actuators nonlinear control com-
pensate the error dynamic. In this study, the coordina-



tion dynamics are modeled by a set of first order transfer
functions. Only the MAF variable of air path, intake O2

concentration and the O2 concentration at the compressor
inlet are considered.

Paper [8], through an MPC, regulates both air path and
combustion in a diesel engine running partially premixed
combustion. In the air path MAF and IMAP are man-
aged by EGR and VGT actuators. While the combus-
tion is managed through the main injection duration. The
control structure featured an MPC with a Kalman filter
to compensate for the model mismatches. Still, the ref-
erences for the target variables were coming from maps
and models obtained from a sensitivity analysis.

Dealing with single control systems employed on
ICEs, they are usually based on the feed-forward archi-
tecture, relying on steady state maps, or on the closed-
loop architecture through the use of PIDs [9]. These con-
trol systems lack of effectiveness particularly during tran-
sient operations. Nonetheless, their strong points of sim-
ple design and implementation made them to be widely
adopted by the industry. But the pollutants emission re-
duction demanded by current regulations have pushed the
development of modern model-based controllers. Several
examples of model-based controllers have been reported
in the literature, such as Multiple Input Multiple Output
(MIMO) eigenvalue placement [10], predictive control
[11] and H∞ [12], but control strategies as neural net-
work and fuzzy control [13] are also of interest regardless
their complexity and counter-intuitive parameter tuning.

As well as the control layout, the targeted variables
play a crucial role. IMAP and MAF have been exten-
sively exploited due to the dedicated sensors installed
on production engines. In this work intake O2 concen-
tration has been selected as controlled variable instead
of the fresh MAF. This because the MAF is not strictly
connected to pollutants, consequently emission control
through its use is not easy and effective. Alternative vari-
ables with a closer connection with pollutants are EGR
flow and fraction or λ (i.e., relative air-to-fuel ratio) [14].

Still, the benefits deriving from the employment of
these control methodologies could be jeopardized by the
lack of coherent references that are provided to them.

In this paper, section 2, the target engine together with
the air path and combustion control systems are briefly
described and referenced for more details. Section 3
firstly describes the coordinator layout and functioning,
then its training and validation performance in steady-
state and concludes by presenting simulation results over
two transient tests. Section 4 provides the conclusion of
the work.

2. PROBLEM DEFINITION

The engine considered in this work is a diesel FPT F1C
3-litre EURO VI and its main specifications are reported
in Table 1. It is endowed with High-Pressure EGR (HP-
EGR), EGR cooler, VGT, Exhaust flap and Inter cooler
(Figure 1).

Table 1. FPT F1C Engine Main Specifications

Engine type FPT F1C Euro VI diesel engine
Number of cylinders 4
Displacement 2998 cm3

Bore x stroke 95.8 x 104 mm
Rod length 160 mm
Compression ratio 17.5 : 1
Valves per cylinder 4
Turbocharger VGT type
Fuel injection system High Pressure Common Rail
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Fig. 1. FPT F1C Engine scheme.

The engine has been endowed with an O2 concentra-
tion sensor in the intake manifold. Even though the en-
gine complexity increases, the direct measurement allows
a precise monitoring of the intake oxygen concentration.
Furthermore the acquired data can be exploited by dy-
namic models to obtain more precise output predictions.

2.1 Air path control

A NonLinear Quadratic Regulator (NLQR) system for
the HP-EGR loop regulates the intake O2 concentration
and the IMAP. The designed control system embeds in
it two Multiple Input Single Output (MISO) Nonlinear
AutoRegressive with eXogenous input (NARX) models.
One network forecasts the intake O2 concentration and
the other the IMAP. They are both characterized by 2
hyperbolic tangent hidden neurons and one-neuron lin-
ear output layer. Five inputs are exploited by the net-
works: the actual values of the intake O2 concentration
or IMAP, engine speed, engine Brake Mean Effective
Pressure (BMEP), the position of the HP-EGR and VGT
valves.

Recurrent Neural Networks (RNNs) allowed to use
only a single model to identify the different I/O pairs non-
linear correlations over the whole engine operating range.
Furthermore, their low computational time suits for ECU
implementation. The details of the air path control sys-
tem can be found in [15]. As a comparison, in the lin-
ear case multiple models are required to cover the whole
engine functioning range: examples of linear black-box
models can be found in [10] and in [16]. Instead in [17]
an example of physical model is reported.



2.2 Combustion control
A cycle-to-cycle closed-loop combustion controller

manages the engine BMEP and NOx emissions of the
F1C diesel engine. The two target variables are regulated
by manipulating the injected main pulse fuel quantity
qmain and its SOI. The closed-loop controller exploits the
feedback from a predictive combustion model used as a
virtual sensor and calibrated on actual test bench mea-
surements. This model can run with or without physical
sensor feedback. The latter case allows not to use direct
in-cylinder pressure measurement.

The control system comprises two separate loops im-
plementing PI and lag regulators, one to control the en-
gine load and the other one the NOx. Then, the feedfor-
ward term contribution allows considering steady-state
nominal values for the two command actions. The struc-
ture allows independent control of all the four cylinders
so that eight regulators are used, two per cylinder. Details
of the feedback model can be found in [4] while a deeper
description of the control system is in [18].

3. COORDINATOR

This section introduces the neural networks control
systems coordinator. First, the coordinator structure and
its functioning are presented in section 3.1. Then training
and validation performance are shown in sections 3.2 and
3.3. A detailed GT-Power model of the engine was used
to generate the separate datasets on which the nets were
trained and validated. Model training and validation have
been performed by the MATLAB Deep Learning Tool-
box. At last, in section 3.4, the coordinator feasibility is
further tested by simulations in transient conditions.

3.1 Structure
High-level coordination of air and fuel control sys-

tems is essential in meeting the conflicting needs between
emissions, fuel economy and driveability. Figure 2 de-
picts an overview of the developed coordination strategy.

The coordinator is the fulcrum of the combined engine
air path and combustion management: it adapts control
targets harmoniously in order to meet the various conflict-Reference generator
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Fig. 2. Coordinator structure

ing performance requirements. The coordinator under-
went several development stages. First, preliminary stud-
ies were carried out in MATLAB/Simulink using avail-
able steady-state and transient experimental tests to en-
sure the viability of the method. The second stage in-
volved software in the loop testing in co-simulation be-
tween Simulink and GT-Power.

In the structure shown in Fig. 2, a clear separation be-
tween the two control systems is visible. The coordinator
sets the target (O2 concentration and IMAP) for the air
path controller but does not do the same for the combus-
tion controller. The combustion control system receives
as target the same NOx setpoint that the coordinator uses
to generate the O2 reference while the BMEP is imposed
by the driver or time varying profiles in simulation. It
is important to remark that the red arrows in Fig. 2 are
bidirectional. As a consequence, the coordinator not only
sends the targets to the control systems but at the same
time receives feedback from them. The coordinator is in-
tended to make the air path control system, the slowest,
work as desired while the combustion controller compen-
sates for the remaining mismatches. In other words, the
air path controller has to provide the global condition for
the engine to run and to allow the combustion control
system to fulfill the requested torque. In addition, the
combustion control compensates for fast variations and
offsets in both load and NOx emitted pollutants.

Another distinction inside the air path target genera-
tion has also been made to have complete control over
the air path. The primary target is the intake O2 con-
centration that is strictly correlated to the NOx pollutant
emissions. The second target, the IMAP, was chosen to
be subjected to the λ. In this manner, complete and sep-
arate management of the engine air path can be guaran-
teed. The target signals are generated in accord with each
other, i.e., using as inputs the signals exploited or manip-
ulated by the control systems. In this way, the control
systems work coherently toward the same primary goal:
NOx emission reduction. To this aim, two separate net-
works were used, one for the O2 and one for the IMAP.
The first net inputs are the engine speed, engine BMEP,
SOImain, rail pressure, desired NOx and λ to produce an
oxygen target. The second one uses injected fuel quantity,
O2 and desired λ to generate an IMAP target. The net-
work structure for the O2 reference generator is made of
one input layer, eight hidden layers and one output layer
(a typical shallow neural network), while for the IMAP
it has one input layer, three hidden layers and one output
layer.

3.2 Training
The F1C GT-Power model was employed to build the

dataset used to train the two networks constituting the
reference generator. The dataset contained in total more
than 9000 points. These points were obtained simulat-
ing through the GT-Power model a DoE over the entire
engine map in which engine speed, injected fuel quan-
tity and timing of the main pulse, rail pressure, EGR and
VGT positions were varied. The totality of points have
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Fig. 3. Reference generator training correlation. O2 (a)

and IMAP (b).

been divided into three datasets, respectively for training,
validation and testing aims. In order to find the networks
that offered the best compromise between accuracy vs.
complexity, the range from 1 to 30 hidden layers has been
covered in training.

Furthermore, each hidden layer training was repeated
ten times changing the initial value of the weights, after
which the best training was selected. The selected net-
work for the O2 has eight hidden layers and performance
indexes of RMSE = 0.245 % and R2 of 0.985. While for
the IMAP a network with three hidden layers was suffi-
cient to achieve metrics of RMSE = 0.042 bar and R2 of
0.995. In Fig. 3 the correlation plots between GT-Power
simulated and network predicted values are shown.

3.3 Steady state validation
A dataset made of 413 tests simulated in GT-Power

that included a full engine map, an intake O2 concentra-
tion tradeoff obtained through sweeps of EGR and VGT
valve positions and a local DoE of SOI and pressure was
used to analyze the steady-state behavior of the networks.
Starting from the O2 network, Fig. 4, it predicted the
GT-Power values with a coefficient of determination of
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Fig. 5. IMAP reference generator steady state validation

0.958 and RMSE of 0.195%. Over the engine map the
network returns a maximum relative error of -2.5% and
+2% mainly from 2500 rpm to 3750 rpm. The IMAP
network performance indexes of RMSE = 0.025 bar and
R2 = 0.994, Fig. 5, confirm the training results. Over the
engine map the network suffers a maximum relative er-
ror of -5.5% and +2%. Particularly in the range between
1250 and 2000 rpm above ten bar of BMEP, the network
expresses the highest error always in underestimation.

3.4 Transient simulation
Multiple tests have been conducted to verify network

responses in transient conditions:
1. Slow varying load hat ramps at different speeds have
been performed to verify the steady state results.
2. Hat ramps where speed and load vary together over
the whole engine map.
3. A WHTC test to thoroughly assess networks behavior,
including cutoff and idling.

In all those tests, the trained networks were fed with
GT-Power values to compare their prediction of O2 and
IMAP over GT-Power simulated values. For the sake of
briefness and clarity only a speed and load ramp and a
portion of the WHTC cycle are presented in this paper.

In Fig. 6 the validation over a mixed speed and load hat
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ramp is shown. Looking at the intake O2, Fig. 6 b), the
reference generator network, red line, does not deviate
much from the GT-Power trace shown in blue. However,
due to the GT-Power NOx model prediction variations,
spikes appear during transients. By looking at the IMAP
network, Fig. 6 c) red line, its correct behavior over the
whole ramps is visible. Spikes appear only at the ramp
tails corresponding to minimum speed and load.

The results of the WHTC test are reported in Fig. 7
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for the O2 and in Fig. 8 for the IMAP. Both figures show
the same section of the WHTC from time t = 990 s
to time t = 1045 s. Intake manifold O2 network, red
line in Fig. 7, correctly reproduces the GT-Power trace
shown in blue. The behavior is regular, even though un-
dershoot tends to appear due to the GT-Power predicted
NOx value. Errors are marginal and contained in a very
small range. Fig. 8 shows the IMAP network perfor-
mance (red line) over the GT-Power signal (blue line):
overall, the network reproduces the GT-Power trace cor-
rectly. However, the vertical lines present in the figure
immediately come to the eye. Those correspond to the
engine entering fuel cutoff. Due to the very low, or null,
value of injected fuel quantity and consequently very high
lambda value, the network asks for high boost pressure
values. This is a pure mathematical product, unfeasible
and without meaning in the real engine.

Comparing the results of the two control systems
working independently, papers [15] and [18], with the
ones presented here, the presence of the coordinator re-
moved oscillations that were present in O2 control, thus
improving stability of the system. Moreover, both the
errors on the intake O2 concentration and on the NOx
emissions during the transients are reduced.



4. CONCLUSIONS

In this work an air path and combustion control sys-
tems coordinator based on neural networks has been pre-
sented. The coordinator sets the target for the two control
systems, namely intake O2 concentration and IMAP for
the air path and BMEP and NOx for the combustion. The
air path O2 target is generated considering a desired NOx
setpoint and the engine and combustion control states
through engine speed and load, rail pressure and SOI. In-
stead, the IMAP target is generated given desired λ, in-
take O2 and injected fuel. The same load and NOx targets
used for the air path targets generation are also sent to the
combustion control systems. To summarize, the networks
performance are overall acceptable. During the analysis
of the reference generator validation results emerged that
some inputs have to be filtered out to avoid micro oscilla-
tions or in case of speed/load transients to avoid spikes
due to their sharp derivatives. Furthermore, when the
engine enters idling and cutoff, the coordinator and the
control systems have to be switched off. From previous
work, the lower limit of injected fuel < 5 mg/stk is a
suitable threshold for this scope. In these conditions, it is
better to rely on steady-state maps to avoid control system
instability that could lead to permanent engine damage or,
worse, endanger the driver’s safety.

Future work will assess the feasibility of the approach
with a reduced dataset and a mixed dataset containing
both simulation and experimental data. This latter ap-
proach will allow exploiting the full potential of data-
driven techniques by having a large dataset that came at
low cost compared with one of the same size obtained
through an experimental campaign.
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