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Abstract

The integrity of concrete bridges, essential for public safety and infrastructure longevity, can be risked by the breakage of pre-
stressed wires, potentially leading to catastrophic failures. In response to this challenge, this study introduces a novel approach to
detect prestressed wire breakage by employing dynamic signal representations: the Short-Time Fourier Transform (STFT, a tech-
nique for time-frequency analysis) and Mel-frequency cepstrum coefficients (MFCCs, capturing the timbral aspects of sounds).
Acoustic emission signals from two Italian bridges were collected and processed to extract relevant features using STFT and
MFCCs. The study employs a multilayer perceptron (MLP) classifier enhanced with the MixUp data augmentation technique—a
method that blends samples to enhance training data diversity and volume—addressing the challenge of limited data and improv-
ing model robustness. The promising results achieved by the MLP classifier in detecting prestressed wire breakages underscore its
efficacy. These results highlight the method’s potential, specifically using MFCC, for integration into real-time bridge monitoring
systems, offering an efficient solution for enhancing infrastructure safety.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of SMAR 2024 Organizers

Keywords: acoustic emission; real-time monitoring; dynamic signal representations; multilayer perceptron; data augmentation

Nomenclature

AEC Acoustic Event Classification

AE Acoustic Emission

ANN Artificial Neural Network

STFT Short-time Fourier Transform
MFCC Mel-frequency cepstrum coefficients
DFT Discrete Fourier Transform
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DCT Discrete Cosine Transform
MLP Multi Layer Perceptron
MCC Matthews Correlation Coefficient

1. Introduction

Bridges have a crucial role in transportation networks, impacting economic and social development. The bridges’
integrity became a critical problem as they aged. The recent dramatic incidents on the Polcevera bridge in Gen-
ova, Italy, underscore the need for better monitoring and maintenance, specifically in detecting prestressing cable
degradation. The corrosion of prestressing cables, driven by several factors, poses a significant challenge due to their
inaccessibility and the potential for catastrophic failure. Moreover, conventional inspection methods, such as visual
inspections and radiography, are often costly, time-consuming, and need more detailed investigation.

To address this challenge, a novel approach is proposed using ~Acoustic Event Classification” (AEC) for detect-
ing wire breakage in prestressed concrete bridges. AEC, powered by artificial neural network (ANN) and employing
dynamic signal representations has demonstrated success in various fields (Mesaros et al., 2021; Sigtia et al., 2016)
but has yet to be applied to this specific context. The proposed method accounts for the unique characteristics of
wire breakage signals. This study contributes a tailored solution, mainly adopted and optimized for wire breakage
detection, considering the advantages of AEC, employing Short-time Fourier Transform (STFT) and Mel-frequency
cepstrum coefficients (MFCC). A Data augmentation technique, MixUp, is applied to enhance model generalization
ability, making it more robust to real-world case scenarios (Farhadi et al., 2024). This method offers continuous,
automated, and non-invasive monitoring, capable of detecting even single wire breakages, which is critical for iden-
tifying localized corrosion. Compared to traditional inspection methods such as radiography (Khedmatgozar Dolati
et al., 2023), or fiber optics (Hampshire and Adeli, 2000), it provides a cost-effective and sensitive bridge safety and
longevity solution, addressing a significant infrastructure challenge. The main goal of this research is to develop an
automated monitoring system capable of detecting wire breakages in bridges, enabling timely maintenance actions to
ensure their ongoing safety.

2. Acoustic Emission and Experimental Context

This research focuses on harnessing the acoustic emission (AE) technique to acquire signals ranging from 20 kHz
to 500 kHz. The importance of studying signals in this range is its ability to isolate the event from the structural oper-
ational and ambient background noise. These ultrasonic signals, detected by piezoelectric sensors, originate from the
rapid release of energy within the structure, providing valuable insights into the integrity of bridge components. The
lifecycle of an AE signal involves initiation at a structural weak point, rapid propagation through the material, and
eventual equilibrium. This process generates elastic waves characterized by an initial amplitude increase followed by
an exponential decay. Ultimately, these waves travel through the material and reach the surface of the structural com-
ponent, where piezoelectric sensors detect them. It is important to note that AE events often consist of multiple wave
types, including longitudinal and transverse waves and surface waves resulting from reflections and superposition
(RILEM Technical Committee (Masayasu Ohtsu)**, 2010).

This study focuses on two bridges in Italy: the Alveo Vecchio and Ansa del Tevere. These sites were chosen
as they are representative of typical Italian highway bridges, providing a robust setting for AE signal collection. The
Alveo Vecchio bridge, located on the Napoli-Canosa highway in Italy, was selected to collect real-world data. Another
experimental test was conducted on the Ansa del Tevere bridge in Roma, Italy, enhancing the diversity and robustness
of the collected AE signal dataset. This strategic selection ensured the acquisition of a comprehensive dataset of AE
signals triggered by wire breakages in prestressed concrete beams, forming the foundation for developing and testing
the proposed model for wire breakage detection.
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3. Methodology
3.1. Feature Extraction Using STFT

The STFT is a widely used signal processing technique for analyzing the time-frequency characteristics of signals.
Mathematically, the STFT involves applying the Discrete Fourier Transform (DFT) to short segments of the signal
after applying a window function to each segment. This process yields a spectrogram, which represents the signal’s
frequency content over time. This is essential to avoid discontinuities at frame boundaries and having a smoother
representation.

3.2. Feature Extraction Using MFCC

This section MFCCs play a key role in AEC analysis due to their efficiency in representing signal spectra. The
extraction of MFCCs involves several steps, outlines in key studies (Logan, 2000; Beigi, 2011). Initially, AE signals,
which vary over time, are divided into short segments, or frames, using windowing functions, such as the Hamming
function. This step ensures frame stability and enhances signal harmonics. Then, the Discrete Fourier Transform
(DFT) is applied to each frame, leading to the amplitude spectrum log, capturing perceived loudness. The computed
frequency content transforms the Mel spectrum via a Mel-filter bank. This transformation is crucial for capturing
spectral characteristics relevant to wire breakage detection. Lastly, the inverse Discrete Cosine Transform (DCT-III)
is employed on the Mel frequency coefficients, generating cepstral coefficients (Fig. 1). These coefficients represent
the signal’s energy content and exhibit robustness against noise and spectral estimation errors (Balsamo et al., 2014).
This MFCC extraction process forms the foundation for subsequent wire breakage detection methodologies (section
3.3).

3.3. Data Augmentation and Network Architecture

In the context of training an Artificial Neural Network (ANN), the challenge arises from the large number of pa-
rameters, such as weights and biases. A substantial volume of training data for each class is necessary to build a
generalized model capable of adapting to various scenarios (Zhang et al., 2021). This data must be comprehensive
enough to encompass the diverse acoustic characteristics of the model’s complexity. Furthermore, the challenge of
AEC lies in the limitation of available sound combinations, some of which may be absent or inadequately represented
in the recorded data. This scarcity of diverse data poses a significant hurdle to achieving model generalization. While
several methods exist to enhance model performance on test datasets, data augmentation (DA) has a key role in artifi-
cially expanding the training dataset for machine learning algorithms. In principle, effective DA holds the potential to
bridge the performance gap between train and test datasets, a crucial objective as demonstrated by Chun et al. (2022).
In AEC domain, a spectrum of DA techniques exists, ranging from fundamental approaches like time stretching and
dynamic range compression to more intricate methods like MixUp (Zhang et al., 2017) and block mixing, as explained
in Mesaros et al. (2021). In this research, the MixUp strategies is employed to address the limited dataset and improve
the model performance.

In this approach, DA plays an essential role in enhancing the employed multilayer perceptron (MLP) architecture
which is designed for binary classification. In the proposed model, the input layer receives STFT and MFCCs as
widely recognized and effective representation methods in AEC. Moreover, the output layer categorizes the signals
into two distinct groups: wire breakage and environmental noise. The core purpose of the proposed model is to provide
binary predictions, where ‘1’ denotes wire breakage, and ‘0’ indicates environmental noise. At this stage, the MLP
model reveals its effectiveness. The “cross-entropy” error function for the binary classification task was employed
to minimize an error function. This choice is well-established in the machine learning field, known for speeding up
training and improving the model’s ability to generalize (MacKay, 2019). The introduced data augmentation and the
MLP model come together to form an efficient system in the domain of wire breakage detection in the context of
structural health monitoring. This combination provides the capability to accurately identify and classify the wire
breakage events in the prestressed concrete beams.
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Fig. 1: Process to extract MFCC features
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Fig. 2: Activations functions and their derivatives

Moreover, it is worth noting that activation functions play a crucial role in neural networks by determining the
output of neural processing units 2. These functions and their derivatives are crucial for the backpropagation process,
allowing the model to adjust its parameters correctly during training.
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4. Results and Analysis
4.1. Dataset and Implementation

This is the first study to classify wire breakage events for structural health monitoring using acoustic emission
signals; therefore, the development of a dataset that is both representative and comprehensive is vital. The primary
dataset, carefully collected from the Alveo Vecchio bridge, comprises 244 acoustic signals, including 128 wire cut
signals and 116 environmental noise signals. Precise measurement leads to the recording of strong label signals,
which eases the augmentation process and minimizes real-time detection errors. Multiple recording channels were
used to capture sound events from different positions, further enhancing model performance. To prepare the dataset
for analysis, a preprocessing phase was involved. Signals were time-stretched to modulate their frequency range from
ultrasonic to audible frequencies, allowing for the consistent application of the Mel-spectrum representation. This
transformation resulted in a final sampling rate of 100 kHz, spanning frequencies from O to 50 kHz. Distinguishing
wire breakage signals from environmental noise based on characteristic parameters like amplitude and energy can be
challenging. However, these signals exhibit unique patterns and frequency components that can be harnessed through
advanced signal processing techniques, such as STFT and MFCC analysis.

To facilitate further analysis, signals were transformed into STFT and MFCCs using Python. The FFT length was
chosen, aligning with the window length for high-resolution and informative representation. This study employed 32
filter banks with 256-FFT points, resulting in 384 compact frames. The FFT length selection was guided by the signal’s
sampling rate and desired frequency resolution, ensuring a suitable representation of the signal’s characteristics. These
representations were valuable inputs for subsequent analysis, distinguishing wire breakage from environmental noise
signals. The proposed approach initially trained the model on data from the Alveo Vecchio bridge, consisting of 244
signals (128 wire breakage events and 116 environmental noise events), with an 80-20% train-test split. To boost
sample size and model performance, data augmentation (DA) was applied to training sets, maintaining the same
ratio. This led to a total of 2706 events (1374 wire breakage and 1332 environmental noise events). Table 1 shows the
distribution of original and augmented datasets used for training and testing on the Alveo Vecchio bridge. Additionally,
the models’ performance on the Ansa del Tevere bridge dataset was assessed, an unseen test dataset representing a
different structure.

Table 1: Distribution of original and augmented dataset for training and testing - Alveo Vecchio bridge

Data type Number of Samples Percentage
Original (total) 244 -
Original (wire breakage) 128 52.50%
Original (environmental noise) 116 47.50%
Original (training set) 195 80.00%
Original (test set) 49 20.00%
Augmented (total) 2706 -
Augmented (wire breakage) 1374 55.00%
Augmented (environmental noise) 1332 45.00%

4.2. Model Training and Configuration

Extracted STFT and MFCCs were standardized with a constant size to optimize the training process of MLP models
(Gao et al., 2019). The model configuration involved the RandomizedSearch CV method to select specific hyperpa-
rameters for this particular task shown in Table 2. Given the computational demand for training ANN models, various
strategies were applied to enhance the model performance. These included using MFCCs for feature extraction re-
ducing the data dimensionality while preserving essential information. DA techniques were applied to strengthen the
training dataset further, ensuring that our model had diverse examples to learn from. Glorot initialization was lever-
aged for weight initialization, a method known for mitigating gradient-related problems. Regularization techniques,
including batch normalization and dropout, were incorporated to prevent overfitting, thereby improving the model’s
generalization ability. The optimization process was expedited through the use of the Nadam optimizer, known for
its efficiency in terms of convergence. Cross-validation with a stratified shuffle technique (n=10, validation size=0.1,
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Fig. 3: Learning curves depicting model performance on the MFCC dataset using batch normalization (a) and dropout (b)

metric=loss) was employed to ensure unbiased model evaluation and minimize the risk of information leaking. This
approach resulted in a robust model training and configuration process.

Table 2: Optimized hyperparameters

Hyperparameter Selected Parameters
Number of hidden layers 5

Number of epochs 250
Activation Function leaky-relu
Learning Rate 9.5E-7
Optimizers Nadam
Initializer Glorot
Number of neurons (1st layer) 900
Number of neurons (Hidden layers) 90

4.3. Performance Evaluation Criteria

A range of measurement metrics were employed to evaluate the deep learning models. Common binary classifica-
tion metrics, including accuracy, precision, recall, and F1-score were performed. Additionally, the Matthews Corre-
lation Coefficient (MCC) introduced by Matthews (1975) was used. The MCC is a valuable metric that ranges from
-1 to +1.A coefficient of +1 represents a perfect prediction, O is an average random prediction, and -1 is an inverse
prediction. It considers all aspects of the confusion matrix and excels when the model effectively predicts positive and
negative classes. If there is no positive or negative measurements, MCC value will be undefined. The mathematical
formulations for this metric is as follows:

MCC = TP-TN-FP-FN o
(TP +FP)-(IP+ FN) - (IN+ FP)-(IN + FN)
Where, TP, TN, FP, and FN stands as True Positive, True Negative, False Positive and False Negative.

4.4. Classification Results

The trained models were evaluated using two distinct datasets, Alveo Vecchio and Ansa del Tevere, to asses their
robustness and generalization capabilities. All models experienced training for 250 epochs. This extensive training
period was chosen to ensure a detailed evaluation of each model’s performance and its pattern of convergence over
time, as illustrated in Figure 3. An early stopping mechanism was implemented to prevent overfitting. This approach
halts training if the model’s improvement stops, using a patience parameter set to 5 epochs. Initially, the models were
tested on the dataset derived from the Alveo Vecchio bridge. This set served as a benchmark, allowing for an initial
evaluation of model performance under controlled, known conditions. The models demonstrated strong performance
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with the Alveo Vecchio dataset, achieving high accuracies—97.50% with STFT and 95.50% with MFCC—indicating
their effectiveness in identifying wire breakage. Subsequently, the evaluation extended to a more challenging, pre-
viously unseen dataset from the Ansa del Tevere bridge. This step was crucial to examine the models’ ability to
generalize across new scenarios and real-world applications. The performance on the Ansa del Tevere dataset was
notably different, with the highest accuracy observed being 82.50% for the MFCC-MLP model employing Dropout
regularization and 73.00% using STFT (Table 3). These results underscore the importance of selecting optimal signal
representation, normalization and regularization techniques. Confusion matrice on the top-performer model, which is
MFCC-MLP, is provided (Fig. 4) to bring a deeper insight into model effectiveness. The considerable difference in
model performance can be attributed to several factors:

o Structural Differences: The Alveo Vecchio and Ansa del Tevere bridges differ in their construction materials,
age, and maintenance history. These variations can influence the acoustic properties of the structures, thus
affecting the AE signal characteristics captured during the monitoring.

e Sensor Setup: Differences in the placement and sensitivity of the piezoelectric sensors used to collect the AE
data may also contribute to the variance in results. Sensor placement impacts the quality and type of data
captured, especially in complex structural environments where access may be restricted.

o Data Diversity: The Ansa del Tevere dataset may have included a broader range of AE not present in the Alveo
Vecchio dataset, challenging the model’s ability to correctly classify these new signal types. The diversity in
data can significantly impact the model’s learning and generalization capacity.

These factors highlight the complexity of applying machine learning models across different structural monitoring
scenarios and indicate the need for tailored approaches that consider specific characteristics and conditions of each
structure.

Dropout

Dropout

noise
noise

True label

True label

Breakage
Breakage

noise Breakage noise Breakage

Predicted label Predicted label
(a) (b)

Fig. 4: Confusion matrices for MFCC-MLP models with dropout regularization on Alveo Vecchio (a) and Ansa del Tevere (b) datasets.

5. Conclusion

This study introduces a novel approach employing MLP models to classify wire breakage and environmental noise
within the context of prestressed concrete bridges. Central to this approach is the application of dynamic signal rep-
resentations, specifically STFT and MFCC, for the extraction of appropriate features. This study underscores the
importance of signal representation in enhancing the efficacy of feature extraction processes. Notably, the success-
ful application of MFCC efficiently captures spectral features, reducing data dimensionality and facilitating model
training. To face the prevalent challenge of limited data availability, the MixUp technique was implemented as an
augmentation strategy. Among the various models assessed, the implementation of Dropout regularization emerged as
particularly effective, showcasing notable proficiency in detecting wire breakages under real-world conditions. These
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Table 3: Perfromance metrics of MLP models across STFT and MFCC

Representations ~ Dataset Models Accuracy  Precision  Recall Fl-score @ MCC
Baseline 97.50 97.00 100.00 98.50 85.00

Alveo Vecchio Batch 96.50 97.00 95.50 96.50 93.00

STFT Dropout 92.00 91.50 100.00 95.50 48.00
Baseline 26.50 54.00 24.00 33.00 3.00

Ansa del Tevere ~ Batch 68.00 54.00 84.00 47.00 22.00

Dropout 73.00 80.00 78.00 74.00 56.00

Baseline 95.50 100.00 91.20 95.50 91.00

Alveo Vecchio Batch 98.00 100.00 96.50 98.50 96.00

MFCC Dropout 98.00 100.00 96.50 98.50 96.00
Baseline 67.00 33.30 30.80 32.00 9.00

Ansa del Tevere  Batch 78.50 75.00 23.00 35.30 35.00

Dropout 82.50 70.00 54.00 61.00 58.00

findings indicate the significant potential of deep learning algorithms in the domain of structural health monitoring,
while highlighting the necessity for continued refinement and enhancement of these models to enhance their perfor-
mance and generalization capabilities across diverse real-world applications. Exploration of advanced machine lean-
ring techiques, including but not limited to Neural Dynamic Classification, Ensemble Learning, and Self-supervised
learning can be used with the aim of further advancing the model’s performance. Tailoring these models to the unique
characteristics of different bridge structures is identified as a crucial next step.

The contribution of this research to the field is multifaceted, offering a methodology that is not only accurate
but also cost-effective and non-invasive. This represents an improvement in ongoing efforts to ensure the structural
integrity and longevity of bridges and similar infrastructures. Moreover, the utility of the proposed approach extends
beyond the detection of wire breakages, containing a wider spectrum of structural damage mechanisms, becoming an
effective tool for continuous safety monitoring.
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