
04 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Stateless Job Offloading for Mobile Robots in Kubernetes / Cacciabue, Daniele; Aglieco, Francesco; Perroni, Domenico;
Risso, Fulvio. - (2024), pp. 35-41. (Intervento presentato al convegno EuroSys '24: Nineteenth European Conference on
Computer Systems tenutosi a Athens (GRC) nel April 22, 2024) [10.1145/3642975.3678966].

Original

Stateless Job Offloading for Mobile Robots in Kubernetes

Publisher:

Published
DOI:10.1145/3642975.3678966

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990643 since: 2024-07-11T08:01:31Z

ACM

Stateless Job Offloading for Mobile Robots in Kubernetes
Daniele Cacciabue

daniele.cacciabue@polito.it
Politecnico di Torino

Torino, Italy

Francesco Aglieco
francesco.aglieco@linksfoundation.com

Links Foundation
Torino, Italy

Domenico Perroni
domenico.perroni@italdesign.it

Italdesign
Torino, Italy

Fulvio Risso
fulvio.risso@polito.it
Politecnico di Torino

Torino, Italy

ABSTRACT
Edge devices are increasingly requiring more and more intelligence,
hence asking for an amount of computing power that is not always
sustainable on the individual device itself. In particular, this ap-
plies to IoT devices where battery consumption and low processing
power are constraints that limit the amount and complexity of tasks
that can be performed on the edge, hence demanding for a tighter
edge-to-anything interaction for job offloading. This paper focuses
on mobile robots running the ROS operating system, presenting
an offloading approach for long-lived stateless services based on a
switching approach, an algorithm that optimizes for a faster switch-
ing between local and remote execution, minimizing downtime of
the service.

CCS CONCEPTS
• Computer systems organization → Robotics; Reliability;
Availability; Redundancy; • Networks → Cloud computing.

KEYWORDS
ROS2, Task Offloading, Cloud Offloading, Zenoh
ACM Reference Format:
Daniele Cacciabue, Francesco Aglieco, Domenico Perroni, and Fulvio Risso.
2024. Stateless Job Offloading for Mobile Robots in Kubernetes. In Pro-
ceedings of 1st International Workshop on MetaOS for the Cloud-Edge-IoT
Continuum (MECC 2024). ACM, New York, NY, USA, 7 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Task offloading is getting more and more relevant. In today’s com-

puting paradigm, more and more devices are getting connected
to the internet and require access to services exposed by remote
servers. Especially in IoT devices where battery consumption and
low-powered processors are constraints that limit the amount and
complexity of tasks that can be performed on the edge. This paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MECC 2024, April 22nd, 2024, Athens
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

presents an offloading approach based on a switching approach, an
algorithm that optimizes for a faster switching between local and
remote execution, minimizing downtime of the service.

The main value of this paper stands in documenting the algo-
rithm used tominimize the time between stopping the local instance
of the task and its activation on the remote server. Moreover, this
paper also introduces two possible software architectures that can
be used to connect the robot to the cloud.

Among the many possible offloading use cases to work on, this
study will focus on the simplest of the scheduling cases, in which
there are only two actors, one is a robot that offloads a task and the
other is a server that can execute the task. On the other hand, such
scenario represents also the most difficult of the task migration
cases, a low-latency live migration. In this scenario, the task can
either be executed locally on the robot or remotely on the server and
should seamlessly switch to the system that a scheduling algorithm
has deemed as optimal.

2 SERVICE MIGRATION CHALLENGES
The following challenges are considered to be out-of scope, and
will be left to future works.

• Peer discovery: A robot needs to be able to discover what
servers or robots and other devices providing a task offload-
ing service that are around it. This study will start from the
assumption that the remote cluster has a fixed IP address.

• Locating the service: One service can be run on multiple
machines, the selection of the correct machine where to
execute it can be done using either heuristics or Machine-
learning-based strategies. This study will analyze a very
simple configuration consisting of a only a remote and a
local cluster.

• Scheduling of tasks: When deciding where to migrate the
execution of a task, one must also decide the priority to be
given to every migrated task. For example, if on the local
cluster we have task A and B running and at a certain point
during execution, the location algorithm decides that both
tasks need to be migrated to a remote cluster, we need to
specify if the first task to be switched will be task A or task
B. It is a matter of deciding which of the running tasks is the
most critical for the system. This paper will be focusing on
the switching of a single task and not on multiple ones.

• State synchronization: When synchronizing the state of ex-
ecution, as soon as more than two machines are considered,

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MECC 2024, April 22nd, 2024, Athens Daniele Cacciabue, Francesco Aglieco, Domenico Perroni, and Fulvio Risso

Figure 1: Task is running on both machine A and machine B,
but the active instance is by default the one on A.

Figure 2: The task on machine A can be deactivated and the
one on machine b is activated instead.

one must start worrying about data reliability and consen-
sus which can exponentially increase the complexity of the
problem. For this reason, this study will involve the case in
which there are only two machines the tasks can be run on.
In this configuration, every data has a single clearly-defined
source of truth which avoids problems of consensus.

Challenges in scope. The goal of this paper is to study a possible
way to switch the execution of a task from one cluster to another
one, minimizing the downtime. This is different from a service
migration because:

• Service migration: the task T starts running on machine
A. At one point during execution, machine B is elected as
the most suitable one for the task. The task code and current
data is moved to the machine B. Execution is stopped on
machine A and started on machine B.

• Switching: the task T has two running instances. 𝑇𝑎 runs
on machine A and𝑇𝑏 runs on machine B. The state of𝑇𝑎 and
𝑇𝑏 is kept synchronized so that one instance of the task can
work as a backup of the other. In this case,𝑇𝑎 is the one that
is currently active and 𝑇𝑏 is used as a backup service (figure
1). At one point during execution, machine B is selected as
a better candidate to run the task, so 𝑇𝑏 becomes the active
task and 𝑇𝑎 becomes the backup task (figure 2).

Switching and migration differences. One could view switching as
a subset of the migration problem. In fact, low downtime migration
algorithms already use a switching step. They work by preemp-
tively moving the service code and data to the remote machine and
proceed to switch the execution by shutting down the old instance
and starting the new one only when the state of the two instances
is synchronized [7]. Switching may at first appear just as a less
efficient version of migration because it requires running two in-
stances (or more) of the task, doubling the required resource usage,
this paper has been written in order to prove that such resource
consumption is justified for specific, critical use cases that require

a service to have very low downtime backup in order to guarantee
business continuity.

The main difficulties when it comes to deciding how to imple-
ment the switching are mainly related to the switching delay, as
a good switching algorithm requires that the time spent to switch
execution from a machine to another one to be minimized, reducing
the impact of the switching operation on the overall system.

3 STATE OF THE ART
The problem space involved in performing the kind of offloading
explained in this paper requires three main components:

• Switching: the procedure of disconnecting the output of a
task and turning on the output of another one, mantaining
the switched-off task ready to resume as a fallback mecha-
nism.

• State synchronization: the process by which two tasks
running simultaneously on two different systems are able to
maintain a common knowledge of the data they are working
on.

• Locating the best peer: consists of selecting when and
where to switch computation to, depending on given param-
eters to be determined by each use case.

Previous works on switching. Many studies [4][10][8] have an-
alyzed the problem of optimal location and scheduling of tasks
among available peers, generally involving the usage of either
heuristic approaches or deep neural networks to maximize the
throughput (the number of tasks executed in a given time). The
majority of task offloading studies focuses on the scheduling prob-
lem and not on the migration problem usually with the purpose
of minimizing the resource usage of a possible migration [9] or
minimizing the delay that it introduces[2].

In the context of live-migration there are techniques to minimize
the time required for migrating a workload, usually consisting of
preemptively moving the container image on the other server [7].
The solution proposed by this paper differentiates itself from these
kind of studies because it does not focus on migrating the service,
but on switching its execution from a local cluster to a remote one,
keeping both the copies running, one actively, the other passively,
as a fallback. This kind of approach does not involve any downtime
related to stopping and restarting the execution.

As of time of writing, no paper was found focusing on the switch-
ing problem. Previous similar works have mainly been performed
in the context of live-migration, which, as previously stated, can be
viewed as a superset of switching.

Low-downtime switching has been achieved in previous work
after synchronizing local and remote state using a distributed key-
value store [3] or using container check pointing and file system
layering [7]. Since this paper will not tackle the state synchro-
nization challenge and will instead focus more on the business
continuity aspect, the previously stated papers have not been used
as a basis for the work but rather as a reference.

4 BACKGROUND
The scenario under study will involve switching the execution of a
task from a machine A to a machine B analyzing its performance

Stateless Job Offloading for Mobile Robots in Kubernetes MECC 2024, April 22nd, 2024, Athens

and behaviour in case of a switch determined by a dummy location
algorithm.

In our experiment instead of using two machines we will use
two Kubernetes clusters, one representing the robot and one rep-
resenting the cloud. In this first iteration, state synchronization
between the two clusters will not be taken into consideration as
only stateless services will be used.

In order to implement such scenarios, many technologies can be
used, this section contains the technologies that have been used
and the reason why they have been chosen.

ROS2. ROS2[6] has been chosen because it is de-facto standard
as far as programming robots is concerned. The field of robotics
is growing, and it is a field where novel applications such as the
envisioned switching algorithm can be the most useful, since it can
provide both reliability and a fast handover.

Moreover, ROS2 uses DDS as the communication protocol, which
has a publish-subscribe paradigm. This aspect makes an easier to
be migrated because, given a topic, there can be more than one
publisher that uses it and published values can be received by
more than one listener at a time. This aspect allows publishers
and listeners to be replaced while the system is running, without
requiring to change the communication details.

Kubernetes. When looking for solutions on how to orchestrate
workloads across different machines, Kubernetes has been selected
as the most suitable candidate. ROS2 processes are usually long-
running and ROS2 allows configuring them to start automatically,
but it does not include by default ways to orchestrate its processes
dynamically, such as starting and stopping a service and managing
replicas. Such functionality can be added also without using K8s,
but K8s brings a cloud-native development model and additional
tools to simplify the implementation of the task switching.

In our proposed solution, K3s is used on the robot and K8s is
used on the remote server. The decision to use K3s on the robot is
due to it being lightweight and integrating Flannel as the container
networking interface (CNI). The reason why Flannel is preferred
over solutions such as Cilium or Calico is that it does not stop
multi-cast traffic when run on a single node, allowing for a simpler
architecture.

Liqo. When deciding how to handle the task offloading and make
it as seamless as possible, Liqo[5] was selected as the most suitable
candidate for the following reasons:

• Simplified management: Two clusters can be managed as
if they were a single cluster, transparently, in particular, in
our configuration, the k3s cluster will be the main cluster
which borrows resources from the cloud.

It enables the use of Kubernetes-native features to handle
the offloading, for instance the network policies, and allows
us to have a unified control of the offloaded task state (e.g
the two tasks can be selectively managed using their Fully
Qualified Domain Name).

• Security: Liqo uses tunneling to connect robot and the re-
mote cluster, securing the connection end-to-end.

Figure 3: ROS2-based applications run on the high-level ar-
chitecture shown in this picture.

5 ARCHITECTURE
The high level architecture of the system can be divided in four
functional layers (see figure 3) that will be described in the following
section.

Infrastructure layer. It is responsible for managing the system
state, handling ROS2 nodes state and life cycle (K8s). In case of
Multiple clusters it also manages the life cycle of the nodes on the
cloud using Liqo.

Orchestration Layer. The main component of the orchestrating
logic is also a process that from now on will be referred to as Switch-
ing and DeploymentManager (SDM). The SDM can be implemented
in various ways, from a ROS2 node to a Kubernetes process, and
for the purposes of this paper, it will only need to implement its
main function, consisting of enacting the switching procedure. Its
current implementation consists of a process that simply triggers
the switch every 5 seconds.

ROS2 processes. They are the main logic of the robot. They com-
municate with each other using DDS mainly through a publish-
subscribe paradigm. Some of them, by design, cannot be offloaded to
the cloud. For instance the nodes interfacing directly with hardware,
such as sensors and actuators on the robot can and will only be able
to function if running on the robot itself. Other nodes, which main
function does not involve direct communication with hardware but
instead revolves around data processing will be able to be moved
to the cloud, benefiting from a larger resource pool.

5.1 Multicast network layer
By default, ROS2 nodes talk to each other using DDS, which al-
lows them to discover each other by using UDP multi-cast. Sadly,
most K8s CNIs filter out multicast traffic, making communication
between ROS2 nodes impractical. If all nodes run inside the same
K8s pod in a single-node cluster, the communication is still able
to function without additional steps. Instead, enabling the commu-
nication between different pods in the same or different clusters
requires additional solutions.

MECC 2024, April 22nd, 2024, Athens Daniele Cacciabue, Francesco Aglieco, Domenico Perroni, and Fulvio Risso

Figure 4: CNI-based Architecture used during our experi-
ments. The Zenoh router is present only in the remote ma-
chine and the multicast network is expanded from the robot
to the cloud via a single Zenoh bridge in the robot.

One downside of using K8s with ROS2 is that the CNI blocks
multi-cast traffic, making the built-in DDS discovery protocol fail
and ROS2 nodes are unable to talk to each other, even on the same
cluster. The Flannel CNI has been found not to filter DDS traffic
when run in a single-node K3s cluster, so it was chosen in order to
extend the DDS multicast from the intra-pod to the K3s node level.

CNI-based solution. In order to allow seamless DDS discovery
also in the switched mode, a Zenoh-based solution was devised,
as depicted in figure 4. The choice of CNI on the robot side is
something which makes sense to do as the developers usually have
access to their development platform and can freely decide which
CNI to include in it. Different is the case for the cloud, where
managed solutions exist and there is no guarantee that tenants will
be allowed to change CNI at their will.

The solution involves the usage of a single Zenoh bridge in a
robot k3s pod, which connects to the Zenoh router located on the
remote cluster. A Zenoh bridge has been used in each K8s pod in
the remote cluster so as to connect any switched ROS2 process to
the multicast network, independently on the choice of cloud CNI.
The main advantages of this solution are:

• Transparency: Using Zenoh, ROS2 nodes need not to be
changed, the solution is transparent as it does not involve
additional modifications.

• Connection loss handling: In case the connection between
local and remote cluster, the Zenoh bridge on the robot will
automatically try to reestablish a connection with the remote
cluster without additional configuration.

On the contrary, the disadvantage of this solution stands on the
fact that the pod definition must be different in the robot and in the
cloud as the ones in the cloud must include the zenoh-dds-bridge
sidecar. This kind of asymmetry brings management complexity
that will need to be addressed in future implementations.

CNI-independent solution. Another possible solution (figure 5
consists in handling the robot the same way the cloud has been
handled in the previous solution. This has these advantages:

• It is a symmetric solution, which eases the management of
the containers across the two clusters. A pod that works on
the robot can be taken as-is and moved to the cloud.

• It does not rely on using a specific CNI that allows multi-
cast, which makes it more portable and suitable not only for
scenarios of the type "robot-cloud" but also to "cloud-cloud"
where arbitrarily changing CNI may be problematic.

Figure 5: CNI-independent architecture. The architecture is
completely symmetric, which makes it easier to manage but
less efficient in terms of resources.

The two problems with this kind of solution are:
• Higher resource consumption on the robot because we need
an additional pod and a sidecar for each of the ROS2 nodes.

• The peering between Zenoh routers requires that both routers
know where to find the other and when connection is lost,
both will try to reestablish it. This paradigm is not suited to
the robot-cloud use case as it does not scale with the number
of robots. In fact, in case of disconnection, we would like
only the robot to try reestablishing the connection and not
the cloud. Logically, the robot should behave as a client and
not as a server.

5.2 System Modes
The designed system can be in two possible modes which will
be explained in this subsection. One in which the computation is
performed locally on the robot and one in which it is performed
remotely on the cloud.

Default mode. In this default mode, all the logic runs locally
on the single-node robot cluster (K3s) using flannel as the CNI of
choice. This allows the ROS2 nodes to discover each other without
additional efforts. This kind of mode can be used as a backup mode,
in case the link quality robot-cloud becomes a limiting factor.

Switched/Offloaded/Remote mode. In the switched mode, the situ-
ation on the robot cluster remains similar to the one of the default
mode. The main differences are: A subset of the ROS2 nodes have
been moved to the cloud cluster, and communication between the
nodes is transparently handed over by extending the multicast net-
work layer. The multicast network layer has been extended using
a solution based on the Flannel CNI, a set of Zenoh routers and
Zenoh bridges, which will be explained more in detail later. The
multi-cluster orchestration is enabled using Liqo, allowing the han-
dover to be seamless. The cloud cluster is multi-node and uses K8s
instead of K3s, since the cloud is less constrained resource-wise.

6 IMPLEMENTATION
This section will describe how the architecture previously described
has actually been implemented, layer by layer, leveraging selected
components delivered from the FLUIDOS1 EU-funded project.

ROS2 processes. The experiments were performed using ROS2
nodes based on the turtlesim ROS2 package. In particular, the
turtlesim simulation was run on the robot cluster to simulate the
1https://www.fluidos.eu/

https://www.fluidos.eu/

Stateless Job Offloading for Mobile Robots in Kubernetes MECC 2024, April 22nd, 2024, Athens

Figure 6: The local system runs three tasks by default. One
of them is switched to run in the remote machine.

Figure 7: When the ROS publisher on the robot is active the
turtle goes to the right.

robot actuators and a publisher on the topic cmd_vel was used as
the ROS2 process to be offloaded. The processes involved in the
switching differ in the value of the velocity being published, one
of them moves the turtle to the right (figure 7), one of them moves
the turtle to the left (figure 8).

Infrastructure. K8s and K3s were used to start the ROS2 nodes on
the cloud and robot side respectively and handle their respective life
cycles. Liqo was used as an higher-layer orchestrator to handle both
clusters, in particular the K3s cluster (robot) has been configured
as the main cluster and has been peered with the K8s one (cloud).

6.1 The switching process
Two SDMs were implemented, while referring to the ROS2 node/s
to be switched I will refer to it as 𝑃𝑟 in case it is the process on

Figure 8: When the ROS publisher on the cloud cluster is
active the turtle goes to the left.

Figure 9: How the switched mode is enforced using network
policies.

Figure 10: How the default mode is enforced using network
policies.

the robot or 𝑃𝑐 in in case it is the process on the cloud. The two
implementations were developed in order to test which one of the
two was actually better in performance.

Based onNetwork-policies. The change between default and switched
mode is handled by using network policies. This solution has the
advantage of not being tied to the ROS2 ecosystem and potentially
work with a broader range of tasks. Network policies are an ab-
straction that can be used in Kubernetes in order to block traffic,
which can be done either intra-pod, inter-pod or intra-namespace.
In particular we need to handle two cases:

• Default mode: A network policy is enforced on the Liqo
name space level, preventing communication from the cloud

MECC 2024, April 22nd, 2024, Athens Daniele Cacciabue, Francesco Aglieco, Domenico Perroni, and Fulvio Risso

Figure 11: The image shows our system running in switched
mode transitioning to local mode by using ROS2 lifecycle
nodes.

Figure 12: The image shows our system running in local
mode transitioning to switchedmode by using ROS2 lifecycle
nodes.

Zenoh router service to the robot. This network policy pre-
vents 𝑃𝑐 from reaching the local cluster. No network policy
is applied to the 𝑃𝑟 (figure 10).

• Switched mode: A network policy is enforced on the pod
as to prevent the 𝑃𝑟 traffic to reach the multicast layer, ef-
fectively disabling 𝑃𝑟 . No network policy is enforced on 𝑃𝑐 ,
which allows it to reach the multicast network layer (figure
9).

One problem which arose during the implementation of such
scenarios is that Flannel does not support network policies by
default. It was possible to circumvent the problem by using kube-
router [1], which already comes bundled with K3s and employs a
network policy controller.

Based on ROS2 life cycle nodes. The change between default and
switched mode can also be handled using a ROS2 feature called life
cycle nodes. Life cycle nodes is implemented via a ROS2 service
(DDS-based) on each ROS2 process that allows it to be deactivated
and reactivated. By using such interface, the SDM is able to activate
and deactivate the respective tasks. This solution is less general than
the one based on network policies, but it is simpler to implement
and it already takes care of deactivating the ROS2 process by putting
it in a light-sleep state, which reduces resource consumption.

• Default mode: the SDM deactivates the remote task and
enables the local one.

• Switched mode: the SDM deactivates the local task and
activates the remote one.

7 CONCLUSIONS
The study was able to achieve three main results, which can be used
as preliminary work toward a computing continuum that spans

not only from a single robot to a datacenter, but from a robot to
anything.

Two types of architectures. The results of this paper, that have
been achieved in a virtualized, small-scale experiment, can poten-
tially be extended to work on a much larger scale, not only in
robot-to-cloud interactions but also in case of robot-to-robot com-
munication. The study has shown and verified two architectures
that enable ROS2 DDS communication generating on a local ro-
bot cluster to reach services located in a pod located in a different
cluster located in the cloud or, potentially, another robot. Such
architectures enable more robots to cooperate with each other be-
cause it can be used as a communication channel where to share
information. Such a communication may be key to enable use cases
like fleet management and the fusion of the perception data from
different robots resulting in a common, shared understanding of a
given scenario. Of course, many steps still need to be addressed in
order to achieve such a result. Probably the biggest among them
is security, as such architecture allows any robot to listen to what
the others are communicating, making the problem of trust and
confidentiality a major concern.

Two types of switching. The implementation of the switching
algorithm explained in this paper demonstrated that it is actually
possible to move long-lived ROS2 processes from one cluster to an-
other one. Two possible implementations were tested and found to
be working. As of the time of writing, no benchmarks are available
to prove which of the two techniques provides the best performance
and in which context.

Extending the architecture to support stateful tasks. The kind of
approach explained in this paper can be used to handle stateless
tasks that are CPU-bound or GPU-bound such as object recognition
and other stateless AI applications. One key feature that is missing
is the ability to switch the execution of tasks that require state
information. This is a very important feature to be added to this
solution in the future because there are many use cases involving
stateful tasks (e.g. path-planning) that, in order to work correctly,
need up-to-date contextual information. When one not only needs
to replicate the task but also its execution state, many challenges
arise, especially in case of multiple data replication sites, and in
the presence of byzantine actors. To support such tasks the current
architecture will need to be expanded.

Improving on the SDM. In order to accomplish the results of this
paper, it was necessary for the SDM to have the ability of triggering
and enacting the switching. New features will be added to this
component in order to tackle the main service migration challenges
such as the management of multiple Liqo peers and selecting the
best peer where to locate the task based on the monitoring of
parameters like link quality estimation or the resources available
on the peer.

Stateless Job Offloading for Mobile Robots in Kubernetes MECC 2024, April 22nd, 2024, Athens

ACKNOWLEDGMENTS
A big thank you to Giuseppe Galluzzo, which master thesis laid the
ground work for achieving the results outlined in this paper.

This work was partially supported by European Union’s Horizon
Europe research and innovation programme under Grant 101070473,
project FLUIDOS (Flexible, scaLable, secUre, and decentralIseD
Operating System).

This publication is part of the project PNRR-NGEU which has
received funding from the MUR – DM 117/2023.

REFERENCES
[1] 2024. cloudnativelabs/kube-router. https://github.com/cloudnativelabs/kube-

router original-date: 2017-04-17T04:58:06Z.
[2] Cristopher Chiaro. 2023. Latency-aware task scheduling in the cloud continuum.

laurea. Politecnico di Torino. https://webthesis.biblio.polito.it/29414/
[3] Tung V. Doan, Zhongyi Fan, Giang T. Nguyen, Hani Salah, Dongho You, and

Frank H. P. Fitzek. 2020. Follow Me, If You Can: A Framework for Seamless
Migration in Mobile Edge Cloud. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 1178–1183. https:
//doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162992

[4] Hao Hao, Wei Ding, and Wei Zhang. 2024. Time-continuous computing offload-
ing algorithm with user fairness guarantee. Journal of Network and Computer
Applications 223 (March 2024), 103826. https://doi.org/10.1016/j.jnca.2024.103826

[5] Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti, and Anto-
nio Manzalini. 2022. Computing Without Borders: The Way Towards Liq-
uid Computing. IEEE Transactions on Cloud Computing (2022), 1–18. https:
//doi.org/10.1109/TCC.2022.3229163 arXiv:2204.05710 [cs].

[6] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. 2022. Robot Operating System 2: Design, architecture, and uses in the
wild. Science Robotics 7, 66 (2022), eabm6074. https://doi.org/10.1126/scirobotics.
abm6074

[7] Andrew Machen, Shiqiang Wang, Kin K. Leung, Bong Jun Ko, and Theodoros
Salonidis. 2018. Live Service Migration in Mobile Edge Clouds. IEEE Wireless
Communications 25, 1 (Feb. 2018), 140–147. https://doi.org/10.1109/MWC.2017.
1700011 Conference Name: IEEE Wireless Communications.

[8] Yushen Wang, Tianwen Sun, Guang Yang, Kai Yang, Xuefei Song, and Changling
Zheng. 2023. Safety-Critical Task Offloading Heuristics for Workflow Applica-
tions in Mobile Edge Computing. Journal of Circuits, Systems and Computers 32,
11 (July 2023), 2350186. https://doi.org/10.1142/S0218126623501864 Publisher:
World Scientific Publishing Co..

[9] Huaming Wu, Yi Sun, and Katinka Wolter. 2020. Energy-Efficient Decision
Making for Mobile Cloud Offloading. IEEE Transactions on Cloud Computing 8, 2
(April 2020), 570–584. https://doi.org/10.1109/TCC.2018.2789446 Conference
Name: IEEE Transactions on Cloud Computing.

[10] Huaming Wu, Qiushi Wang, and Katinka Wolter. 2013. Tradeoff between perfor-
mance improvement and energy saving in mobile cloud offloading systems. In
2013 IEEE International Conference on Communications Workshops (ICC). 728–732.
https://doi.org/10.1109/ICCW.2013.6649329 ISSN: 2164-7038.

Received 29 February 2024; revised 14 March 2024

https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://webthesis.biblio.polito.it/29414/
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162992
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162992
https://doi.org/10.1016/j.jnca.2024.103826
https://doi.org/10.1109/TCC.2022.3229163
https://doi.org/10.1109/TCC.2022.3229163
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1109/MWC.2017.1700011
https://doi.org/10.1142/S0218126623501864
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1109/ICCW.2013.6649329

	Abstract
	1 Introduction
	2 Service migration challenges
	3 State of the art
	4 Background
	5 Architecture
	5.1 Multicast network layer
	5.2 System Modes

	6 Implementation
	6.1 The switching process

	7 Conclusions
	Acknowledgments
	References

