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Abstract

This paper outlines the winning solutions employed in
addressing the MUAD uncertainty quantification challenge
held at ICCV 2023. The challenge was centered around
semantic segmentation in urban environments, with a par-
ticular focus on natural adversarial scenarios. The report
presents the results of 19 submitted entries, with numer-
ous techniques drawing inspiration from cutting-edge uncer-
tainty quantification methodologies presented at prominent
conferences in the fields of computer vision and machine
learning and journals over the past few years. Within this
document, the challenge is introduced, shedding light on its
purpose and objectives, which primarily revolved around
enhancing the robustness of semantic segmentation in urban
scenes under varying natural adversarial conditions. The re-
port then delves into the top-performing solutions. Moreover,
the document aims to provide a comprehensive overview
of the diverse solutions deployed by all participants. By
doing so, it seeks to offer readers a deeper insight into the
array of strategies that can be leveraged to effectively han-
dle the inherent uncertainties associated with autonomous
driving and semantic segmentation, especially within urban
environments.

1. Introduction

As computer vision applications based on Deep Neural

Networks (DNN) penetrate various aspects of our lives, en-

suring reliable and robust performance becomes paramount.

This is particularly evident in domains like autonomous driv-

ing, where DNNs play a pivotal role in comprehending the

surrounding environment. However, the potential for inac-

curacies due to various sources of uncertainty looms large.

The quantification of uncertainty inherent in DNN predic-

tions holds significant importance. Inaccurate assessments

of uncertainty could lead to erroneous decisions, a scenario

that could be catastrophic, as witnessed in cases like au-

tonomous driving [25,28]. An increasing number of datasets

are emerging that could model a broader spectrum of poten-

tial uncertain scenarios [43, 46]. Nonetheless, the datasets

served for the DNNs may not adequately encapsulate the

vast array of conditions and objects prevalent in real-world

scenarios. Autonomous driving, for instance, contends with

adversities weather conditions like inclement snow, rain, and

fog, and may contend the presence of Out-of-Distribution

(OOD) instances. By delving into the study and quantifica-

tion of uncertainty, we attain invaluable insights into areas

where the model may be less confident, guiding us to adopt

precautionary measures or invoke human intervention as

necessary.

Thanks to the release of relative datasets [4, 14, 40, 53],

significant progress has been achieved in recent years

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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on the OOD example detection in semantic segmenta-

tion [2, 10, 13, 16, 23, 29, 31, 47]. To advance the field of

semantic segmentation robustness and uncertainty quantifi-

cation, the first ACDC Challenge [43], which was held at

Vision for All Seasons workshop in IEEE / CVF Computer

Vision and Pattern Recognition Conference (CVPR 2022),

aims to deal with semantic segmentation under complex

weather conditions and changes in the visual description of

objects caused by weather. Yet OOD detection task is not

covered in the challenge. Meanwhile, compared with the

previous anomaly segmentation benchmarks such as Seg-

mentMeIfYouCan [4], MUAD [14], a larger-scale dataset

for autonomous driving with multiple uncertainty types, is

proposed to evaluate the robustness of the algorithms in both

segmentation accuracy and uncertainty quantification quality,

especially OOD detection.

Inspired by the previous works, in this paper, we will

introduce the MUAD challenge, which is held at the ICCV

2023 UNCV workshop. The challenge is launched on the

CodaLab [39] platform. The researchers were encouraged

to submit both the semantic segmentation class prediction

maps and the corresponding prediction confidence maps of a

subset selected from MUAD test sets. According to the final

ranking with respect to the semantic segmentation and OOD

detection performance, we select the best solutions and will

go into the details in the later sections. We believe that this

challenge is meaningful for the progress of safety AI.

2. The MUAD challenge

2.1. The dataset

MUAD [14], a synthetic dataset pioneering autonomous

driving research, introduces various uncertainties in the real

world. It offers 10413 instances encompassing day and night

scenes: 3420 in the training set, 492 in the validation set,

and 6501 in the test set. There are seven subsets in the test

set, including normal set, OOD set, low adversity and high

adversity sets, etc. Only test sets contain the OOD objects

or special weather conditions such as rain, fog, or snow with

different severities. We randomly select the images from the

test to conduct the challenge test set.

The participants download the training and validation sets

(containing the RGB images and the corresponding ground

truth maps) as well as the test set (only the RGB images are

provided), then design and train the models. Class prediction

maps and confidence maps are required to be submitted

during evaluation, which aims to provide enough information

to help the decision-maker identify the patterns and find out

the uncertain prediction like OOD objects. Different levels of

weather conditions will also be challenging to the robustness

of the models and the OOD example detectors.

2.2. The evaluation protocols

We evaluate the overall semantic segmentation perfor-

mance of the algorithms using the mean Intersection over

Union (mIoU). For the confidence maps, we choose the

mean Expected Calibration Error (mECE) [37] for the cal-

ibration of uncertainties and measure the OOD detection

performance using mean Areas Under the operating Curve

(mAUROC) and mean Areas Under the Precision/Recall

curve (mAUPR), as well as mean False Positive Rate at 95%
recall (mFPR), similarly to [20]. All the mean is calculated

across all pixels. For mIoU, mAUROC and mAUPR, the

higher is better. For mECE and mFPR, the lower is better.

3. The MUAD challenge results

3.1. Notations

For the training of segmentation algorithms, all the pro-

cess commences with a dataset of training examples denoted

as D = {xi,yi}|D|
i=1, where |D| is the total number of image-

label pairs. These pairs consist of images xi ∈ R
C×H×W

and corresponding label maps yi ∈ �0, NC�H×W , treated as

realizations of a joint distribution P(X,Y ). In this context,

C, H , and W denote the number of channel, height, and

width of the image, respectively, while NC represents the

number of classes within the dataset.

The neural network Fθ(·) is then employed to process

the input data xi. This network functions as a parametric

probabilistic model, denoted by ŷi = Fθ(xi) = P (Y =
yi|X = xi;θ). In essence, it estimates the conditional

probability of the label yi given the input image xi based on

a set of parameters θ.

3.2. Overview of the results

Baseline The baseline model is established using

DeepLabV3+ [5], which employs a ResNet101 [19] as its

underlying architecture. The training protocol adheres to

the official MUAD configuration [14]. Let ŷ[pred]
i symbolize

the class prediction map generated by selecting the class

with the highest value along the classes of ŷi. This can be

formally expressed as: ŷ[pred]
i (h,w) = argmaxc ŷi(c, h, w).

Subsequently, the confidence map ŷ[conf]
i is based on the as-

sociated maximum probability values [20]: ŷ[conf]
i (h,w) =

maxc ŷi(c, h, w).

Overview of the results By the end of the challenge, a

total of 73 teams registered to participate. Throughout the

course of the challenge, more than 700 results were submit-

ted to the CodaLab server, with 19 teams opting to disclose

their rankings publicly. The conclusive outcomes are pre-

sented in Table 1, where the most successful two methods

are distinctly highlighted. The “NA” designation indicates

instances where mECE metrics were impacted by unnormal-

ized confidence scores. For the ultimate ranking, we utilize
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# User Name mAUROC ↑ mAUPR ↑ mFPR ↓ mECE ↓ mIoU ↑
1 zuoyi 0.9516 0.6053 0.1722 NA 0.4887

2 arui 0.9515 0.6379 0.1499 0.0726 0.5123

3 bee 0.9149 0.6072 0.2230 0.0698 0.5340

4 MahouShoujo 0.9094 0.3520 0.2391 NA 0.3837

5 rac 0.8510 0.4435 0.3983 0.0603 0.6454
6 zachtian 0.8393 0.2196 0.3850 0.1075 0.3274

7 Tonnia 0.8393 0.2745 0.4196 NA 0.4599

8 drop08 0.8356 0.2502 0.3898 0.0942 0.4558

9 Shyam671 0.8341 0.3038 0.3091 0.0531 0.3817

10 xtz 0.8280 0.4767 0.3536 0.1540 0.5049

11 Team Rocket 0.7673 0.1821 0.4720 0.1855 0.3796

12 h.m 0.7644 0.2031 0.4512 0.1657 0.4134

13 HPeter 0.7429 0.1712 0.5204 0.3116 0.3656

14 Janes migadel 0.7418 0.1806 0.5880 0.1799 0.2848

15 Yuehua.DING 0.7411 0.1641 0.5020 0.2165 0.3668

16 dens03 0.7399 0.1884 0.4787 0.2521 0.3764

17 Baseline 0.7337 0.1790 0.5253 0.2880 0.3690

18 NathLaMenace 0.7337 0.1790 0.5253 0.2880 0.3690

19 Sp4n 0.7091 0.1907 0.7499 0.0970 0.5309

Table 1. Results for valid submissions.

the mAUROC results, recognizing that the solutions might

involve trade-offs across various metrics. It is apparent that

the majority of teams have outperformed the baseline, par-

ticularly the top 9 teams, which have demonstrated notable

advancements across nearly all metrics. Figure 2 shows the

visualizations on the confidence maps given by the baseline,

the 2nd place solution, and the 1st place solution. When dif-

ferent weather conditions occur in the input images, the 1st

place solution can much better highlight the OOD examples

than the baseline confidence map.

Overview on the submitted solutions In their pursuit

of innovative solutions, a significant majority of partici-

pants opted for the Deeplab V3+ architecture coupled with

Resnet101. However, several participants proposed to mod-

ify the architecture or utilized multiple DNNs, as visual-

ized in Figure 1. Furthermore, competitors employed a

diverse array of strategies, such as Energy Score, Biased

Class disagreement, and temperature scaling approaches.

Most prominently, ensembling strategies were extensively

employed, accompanied by appropriate data augmentation

methodologies aimed at enhancing DNN robustness. For

a comprehensive view of the participants’ statistical break-

down, refer to Figure 1. Furthermore, detailed insights into

the distinct solutions adopted can be found in Section 3.3.

3.3. Top solutions

3.3.1 Solution 1:

Yi Zuo, Zitao Wang, Xiaowen Zhang, Jiaxuan Zhao, Yuting
Yang, Licheng Jiao
yzuo 1@stu.xidian.edu.cn

We used Swin-L [33]+Mask2Former [6], InternImage

H [48]+Mask2Former, and Segformer+MIT-B5 [52] as base

models to complete the corresponding tasks.

Due to the significant category overlap between the

MUAD and Cityscapes datasets, we introduced Cityscapes

as a pre-trained dataset. Firstly, we trained 200000 iters on

three networks on Cityscapes data to obtain corresponding

pre-training weights. Subsequently, we will use the pre-

trained weights obtained as initial weights and train them

on the MUAD dataset. During this process, due to the lack

of severe weather conditions in the MUAD test set, we de-

signed a data augmentation method for harsh environments

(AE) to simulate this situation.

In AE, we have designed new data augmentation methods

for several scenarios, including rain, snow, and darkness.

For example, for train data augmentation methods, we first

create a random noise image to simulate raindrops. Then

rotate and blur the noisy image to simulate the effect of rain-

drops falling. Simulate the angle and length of raindrops by

rotating a diagonal matrix while applying Gaussian blur to

the rotated matrix to simulate the blurred edges of raindrops.

Finally, combine the raindrop effect with the original image

to generate the final image with the raindrop effect. For data

augmentation methods of night, we adjust the brightness,

contrast, saturation, and hue of the image to simulate the

effect of night. In addition, some conventional data augmen-

tations have also been added to AE, such as Random Flip,

Random Rotate, Random Crop, Random CutOut [9], etc.

In the experiment, we found that as training increases, al-

though mIoU gradually increases, mAUROC shows a down-

ward trend. We believe this situation is because the model,

although fitted on known categories, did not adapt to OOD

categories. In order to achieve good results in mIoU and

mAUROC, we use two strategies (categories that have not

appeared in the train and validation sets) to address them

separately. For mIoU, it relies on high accuracy in predicting

category results, corresponding to ”pred” in the competition.

In order to improve mIoU, we need to obtain a model that

can predict accurately. Therefore, we will train the three base

models on MUAD with 200000 items each. Afterward, the

results of the three models were ensembled. The ensemble

method is as follows: (1) Use three models to predict on the

test set and obtain three prediction results; (2) Vote for each

pixel in the three predicted results and select the category

with the highest number of votes as the final category. If it is

equal, use the result of Segformer+MIT-B5; (3) Gradually

iterate until the resulting voting for all test sets is completed.

For mAUROC, we use another strategy. We only fine-tune

the three base networks based on Cityscapes pre-training

and set a higher learning rate to prevent them from being

insensitive to OOD categories. During this process, we

found that the Segformer network does not clearly distin-

guish the boundaries of instance objects. The confidence

image obtained from it presents a result similar to a noise

map, but its corresponding mAUROC score is very high. For

mask2Former, it corresponds to each region with a clear ten-

dency and often clearly separates the boundary lines of the
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Figure 1. The statistics of the different solutions. The pie chart on the left displays a visualization of the diverse architectures employed

throughout the challenge, while the chart on the right showcases the array of solution types embraced by the participants.

Image Groundtruth Baseline 2nd place solution 1st place solution

Figure 2. Illustration of confidence maps on one image of MUAD. The latter three columns are the confidence maps given by the baseline,

the 2nd place solution, and the 1st place solution, respectively. The brighter, the more uncertain the corresponding class prediction is. Note

that the class train, bicycle/motorcycle, stone, stand food, and the animals are OOD examples, which are visualized as

black areas on the groundtruth maps.

instance object. In our experiment, its score was lower than

Segformer. In order to integrate high-scoring results, we

selected the confidence map of Segformer as the background

and fused the Mask2former results on top of the Segformer

results. Simply put, we first take the reciprocal of the con-

fidence results for Swin-L+Mask2Former and InternImage

H+Mask2Former, then add them together, and then take the

reciprocal as the fusion result for Mask2Former. Then, select

the Mask2Former fusion result with a confidence level lower

than 0.6 to directly cover the Segform confidence level result

at the corresponding position.

Although this method dramatically improves the score

of mAUROC, in order to pursue higher scores, we have

designed a region normalization strategy. Specifically, we

first use mean filtering for areas with confidence levels below

0.6, then use connected domain algorithms to segment the

entire image into multiple mask regions. If more than half of

the pixels have a confidence level below 0.4 in a region, we

define it as an OOD region. For all pixels in the region, we

cover it with the minimum confidence level of the region.
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Figure 3. Overall workflow for Solution2.

3.3.2 Solution 2:

Rui Peng, Xinyi Wang, Junpei Zhang, Kexin Zhang, Fang Liu
22171214876@stu.xidian.edu.cn

The overall workflow of our proposed solution is shown

in Figure 3. First, we train using the original dataset on three

models, Mask2former [6], Segformer [52] and UperNet [51],

respectively. Basic data enhancement operations, including

image flipping, cropping, rotation, scaling, brightness adjust-

ment, scale transformation, etc., were also performed on the

training set. In addition, after analyzing the training, valida-

tion, and test sets, we identified data enhancement methods

that can effectively improve the performance of the mod-

els. We added different degrees of effects of special weather

conditions such as rain, snow and fog to the given training

set as a way to enhance the robustness and generalization of

the models. In the testing phase, we test the results of the

three models at different stages of training to produce results.

After fusing the results from multiple models, we found that

the results were not optimal. Therefore, arithmetic averag-

ing was finally used to fuse different results from the same

model to obtain the final class prediction and confidence

results to improve the segmentation effect of the model. In

the training phase, we use an image size of 512*1024 for

training. For each GPU, there are 2 images per batch. In

order to reduce overfitting [22], for Mask2former, we set

the maximum number of iterations of training to 90000 and

the initial learning rate to 6e-5 . For UperNet, we set the

maximum number of iterations for training to 26800 with

an initial learning rate of 6e-5 . For Segformer, we set the

maximum number of iterations for training to 80000 and the

initial learning rate to 1.2e-4 . We trained our model on a

single NVIDIA RTX 3090 GPU.

3.3.3 Solution 5: Biased Class disagreement

Roberto Alcover-Couso, Juan C. SanMiguel, Marcos
Escudero-Viñolo
roberto.alcover@uam.es

Our proposal leverages multiple models with diverse bi-

ases, aiming to assign high-confidence predictions to OOD

instances by mapping them to the selected prior semantic

category. These biases are introduced through the sampling

strategy. Additionally, we employ soft cross-entropy loss

and confidence filtering to enforce the classification of under-

represented classes. We employ an HRDA [21] architecture

with the ”min pixels” parameter set to 30. Our proposal is

described in detail in the following reference [1].

Teacher-student training In order to train each model,

we follow a teacher-student protocol, where two DNNs are

trained: the teacher network and the student network. The

teacher network is updated every time step following an

exponential moving average (EMA) of the student network.

The student network is trained by minimizing a soft cross-

entropy loss on the labeled images and the pseudo-labels

generated by the teacher network of the unlabeled images.

Image Sampling Our main contribution is the employ-

ment of sampling strategies that over-sample less frequent

classes based on the class frequency (f ) in the training set. In

order to oversample towards a selected class c′, we sample

from a Bernoulli distribution, B(1, .5), whether to select if

a sample labeled as class c′ is incorporated into the train-

ing. In the case of failure, samples are incorporated with a

probability defined by the softmax of the 1− f frequencies.

Confidence Filtering In order to enhance the classifi-

cation of low-represented classes, we propose a method

that involves switching the pseudo-labels of classes exhibit-

ing significant variation in their classification probabilities.

We follow the hypothesis that pseudo-labels with a wide

confidence distribution often exhibit a bimodal distribution

pattern. This means that the confidence scores for false pos-

itives are generally lower and more spread out, indicating

uncertainty and potential misclassifications.

Specifically, we select the 3 classes which have assigned

the highest confidence standard deviation throughout the

image. Then for those pixels, we filter out of the training as

an unknown class the ones with the lowest confidence. We

employ the mean of the confidences assigned to that class as

the threshold for filtering out pixels.

Bias class disagreement ensemble In order to enhance

the robustness of our approach, we propose to utilize an

output-level ensemble of two models. Each of the models is

biased towards a different prior class through the proposed

sampling. Then, we detect pixels of OOD instances by

analyzing label mismatch situations under the assumption

that each biased model classifies an OOD pixel as one of their

respective biased class. Formally, we condition the output

level ensemble by studying the pixels for which the top

predicted class is the bias class of each model and consider

them as pixels of OOD instances.
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3.3.4 Solution 6:

Hanlin Tian, Kenta Matsui, Tianhao Wang, Fahmy Adan
h.tian22@imperial.ac.uk

Figure 4. Data augmentation in Solution6. (Left) Original im-

age from the training dataset. (Right) Corresponding image post-

application of our weather data augmentation process.

Data Augmentation We introduced a data augmentation

technique by employing a combination of white noise, Gaus-

sian blur, and color alterations to simulate snowfall and

its associated environmental changes. Our focus remained

primarily on snowy scenarios due to time constraints. Ad-

dressing the challenges posed by rain and fog conditions

remains a potential avenue for future work.

We introduced white particle-like noise to depict falling

snowflakes in the data augmentation process. By varying the

size of these particles, we simulated snowflakes appearing at

different distances. We also introduced a slight vertical blur

to mimic the motion of falling snow. We modified the color

palette to colder tones in the following process, replicating

the subdued and darker colors often associated with snowy

scenes. We randomly selected and augmented 10% of the

entire dataset to simulate snowy conditions. Figure 4 shows

the example of the output.

Xception Backbone In our approach, we integrated the

Xception backbone [8] into our segmentation model, where

it serves as a feature extractor. This choice involved re-

placing our prior ResNet backbone [19] while retaining the

DeeplabV3+ head [5] in our model configuration. The high-

level features extracted by the Xception backbone are seam-

lessly fed into the subsequent segmentation layers of our

model. The incorporation of the Xception backbone led to a

significant improvement in our model’s overall performance.

Notably, we observed that the mAUROC score, which is a

pivotal metric for gauging our model’s quality, surged from

0.7861 to 0.8281. This remarkable enhancement underscores

the efficacy of the Xception backbone and attests to the sub-

stantial advantages of integrating advanced architectures in

confronting the challenges of intricate segmentation tasks.

OHEM Cross-Entropy Loss Our custom loss function,

named OhemCELoss, is an implementation of Online Hard

Example Mining (OHEM) with Cross-Entropy loss. This

loss function is designed to focus on the hardest samples

to classify, identified by a threshold on the computed loss

values, and is particularly beneficial in segmentation tasks

where extreme weather conditions lead to challenging pixels.

Initially, the standard Cross-Entropy loss between the

logits and ground truth labels is computed without reduction:

Li = − log

(
exp(xi,yi

)∑
j exp(xi,j)

)
(1)

where Li is the loss for the i-th sample, xi,j represents the

logits, and yi is the true label for the i-th sample.

Hard examples are identified as those samples where the

loss exceeds a dynamically computed threshold (thr):

thr = max
(
thr,min

(
L(sorted)[min kept], L(sorted)[end]

))
(2)

where L(sorted) is the sorted vector of losses.

The final OHEM loss is the mean loss value over these

selected hard examples:

OHEM Loss =
1

N

N∑
i=1

Li · I(Li > thr) (3)

where N is the total number of examples, and I(·) is the

indicator function, which is 1 if the condition inside is true,

and 0 otherwise.

In practice, this results in the model focusing more in-

tently on the most challenging parts of the images—often,

these are regions with intricate textures, object boundaries,

or extreme weather effects. By setting an ignore label pa-

rameter (e.g., to 255), we explicitly instruct the model to

disregard certain regions, which is useful for handling out-

of-distribution (OOD) areas in the segmentation task.

3.3.5 Solution 7: Energy Score with BN adaptation

Zhitong Gao, Xuming He
gaozht@shanghaitech.edu.cn

The method adopts the energy score as the base strategy

for OOD object detection, which aligns theoretically with

the probability density of the inputs and offers better perfor-

mance than softmax scores [32]. However, applying energy

scores directly as a post-hoc approach often suffers from the

presence of special weather conditions in the test set.

To overcome this challenge, the method introduces a

novel instance-wise test-time domain adaptation technique,

which enables the backbone network adapts the batch nor-

malization (BN) layers according to image statistics at test

time. Specifically, the overall framework operates in two

sequential phases: first, it detects and mitigates the effects

of unknown weather conditions through the adaptive BN;

next, it performs OOD detection by computing a pixel-wise

energy score map of the model’s outputs. The entire process

unfolds through the following specific steps:

Model Training The method does not modify the training

process and can use any standard closed-world segmentation

training procedures. In this work, a pretrained Deeplab v3+
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with Resnet 101 model, provided by the official benchmark

GitHub repository 1, is used.

BN Adaptation When exposed to online test data, the

model employs a test-time adaptation module to identify and

adapt to special weather conditions that might be present in

the data. Inspired by the technique of transductive batch nor-

malization [36], we implement the adaptation by updating

the BN statistics of the network. Specifically, the running

mean and standard deviation μr, σr, are mixed with the

mean and standard deviation μ(x), σ(x) for each test input

x. The updated mean and standard deviation are computed as

μ̂ = α∗μ(x)+(1−α)∗μr, σ̂2
l = α∗σ2(x)+(1−α)∗(σr)2.

Here, α is the mixing coefficient, representing the probabil-

ity that the input image originates from an unknown weather

condition. This coefficient is estimated by considering the

Kullback–Leibler (KL) divergence between the feature dis-

tributions of the test image and the training images within

the Normalization layers: KL(N(μ(x), σ(x))||N(μr, σr)).
The mixing coefficient α is calculated by averaging the KL

divergence values over all BN layers and normalizing the

result to a 0-1 range using the sigmoid function.

Prediction and OOD detection After the BN Adaptation,

the method proceeds to compute the segmentation network’s

predictions along with an energy score as the basis for OOD

detection. Specifically, the logits of the model output are

denoted as ηi, where i identifies the pixel. The inlier predic-

tion is obtained through: argmaxc exp(η
c
i )/
∑Nc

n exp(ηni ),
and the energy score is calculated using the energy function:

log
∑Nc

n exp(ηni ). This score represents a quantitative mea-

sure of the model’s certainty regarding its predictions and

is employed to detect out-of-distribution (OOD) instances

within the test data.

Overall, the method synergizes the energy scores with

a BN adaptation strategy to address the unique challenges

posed by special weather conditions, which provides a robust

and effective solution for OOD detection in the wild.

3.3.6 Solution 8: Polynomial Calibration

Quentin Bouniot, Hossein Moghaddam
quentin.bouniot@telecom-paris.fr

We apply our technique on the baseline model, i.e.

DeepLabV3+ [5] with ResNet101 backbone [19]. Among

the techniques employed to quantify uncertainty, one that

consistently demonstrates commendable performance in-

volves the estimation of the posterior distribution P (θ|D) of

the network [3, 12, 34]. Subsequently, N DNNs are sampled

according to this posterior, denoted as Fθj
(·)N

j=1
, and their

performance is averaged as follows:

1https://github.com/ENSTA-U2IS/
DeepLabV3Plus-MUAD-Pytorch

ŷi = P (Y = yi|X = xi) = 1/N
∑
j

Fθj (xi) (4)

The Deep Ensembles [26] (DEns) technique simplistically

estimates this posterior, often yielding impressive results due

to its capability, highlighted in [50], to estimate diverse

modes of the posterior. However, the training of multiple

DNNs makes DEns challenging. Various strategies have

been proposed to streamline DEns training [11, 18, 27, 49],

but due to the time-intensive nature of training, the number

of samples for ensemble training remains limited. Alterna-

tively, the Monte Carlo (MC) dropout [15] method estimates

a singular mode of the posterior, offering a more accessible

solution as it requires only one training. Consequently, this

approach can furnish a larger sample set. However, both

these techniques introduce increased complexity to the infer-

ence process.

Smith and Gal [45] interestingly amalgamated these

two Bayesian Neural Network approximations to develop

Dropout Ensembles (DropEns), reaping the benefits of both

preceding techniques. Nonetheless, DropEns may encounter

calibration prediction issues. Several calibration techniques

for trained DNN predictions have been explored [24, 41, 44]

to address this issue, commonly referred to as post-hoc

calibration. Among these, we evaluated temperature scal-

ing [17] (TS), a method involving a temperature parame-

ter τ ≥ 0 to the DNN logits. Specifically, if we denote

Fθj (xi) = soft
(
Gθj (xi)

)
, where soft(·) represents the soft-

max function and Gθj (·) signifies the logit of Fθj (·), tem-

perature scaling entails tuning τ to achieve the optimal ECE

for F τ
θj
(xi) = soft

(
Gθj

(xi)/τ
)
.

Typically, any monotonically increasing function can be

employed for this purpose. In our approach, we use a poly-

nomial function, considering that we normalize the logits

by subtracting the minimum value for each data point to

ensure their positivity. Thus, the normalized logit becomes

Gnorm
θj

(·). We then apply the polynomial temperature scal-

ing (PTS) function incorporating parameters τ1, τ2, and τ3,

leading to the following DNNs:

F τ1,τ2,τ3
θj

(xi) = soft
(
Gnorm

θj
(xi)/τ1

+(Gnorm
θj

(xi)/τ2)
2 + (Gnorm

θj
(xi)/τ3)

3
)

(5)

An overview of our findings is presented in Tab 2. It’s

evident that DEns and standalone MC Dropout exhibit com-

mendable performances. However, they fall short of effec-

tively capturing the underlying uncertainty inherent in the

DNNs. Notably, the DropEns outperforms its counterparts

in terms of performance, and its calibrated version further

enhances its effectiveness.
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Technique mAUROC ↑ mAUPR ↑ mFPR ↓ mECE ↓ mIoU↑
Baseline 0.7337 0.1790 0.5253 0.2880 0.3690

MC Dropout 0.7794 0.1778 0.4791 0.1380 0.4358

Ens 0.7399 0.1884 0.4787 0.2521 0.3764

DropEns 0.8195 0.2243 0.4015 0.1093 0.4547

DropEns+TS 0.8219 0.2261 0.3988 0.1005 0.4544

DropEns+PTS 0.8356 0.2502 0.3898 0.0942 0.4558

Table 2. Ablation study for Solution8.

3.3.7 Solution 9: Uncertainty Calibrated Mask2Former

Shyam Nandan Rai, Fabio cermelli and Carlo Masone
shyam.rai@polito.it

Mask architectures [6, 7] have proven to be an effective

method for universal segmentation and anomaly segmenta-

tion [38, 42]. However, these networks are not well cali-

brated, resulting in poor uncertainty estimates. Hence, we

calibrate the Mask2Former architecture [6] to give better

uncertainty estimates and identify OOD objects. For this pur-

pose, we introduce the following modifications to the archi-

tecture: a) during training, we change the loss function from

cross-entropy to focal loss [30] as it allows us to learn well-

calibrated models, and b) at inference, we propose a way

to perform temperature scaling in mask-architecture. After

integrating modification into mask architecture, we call the

solution Uncertainty Calibrated Mask2Former (UC-M2F). It

is also important to note that our method uses no additional

OOD training data. In the subsequent sub-sections, we will

delve into each of these modifications.

Preliminary Mask2Former consists of three major parts:

a) a backbone acting as a feature extractor, b) a pixel-decoder
that upsamples the low-resolution features from the back-

bone to produce high-resolution per-pixel embeddings, and

c) a transformer decoder, that takes the image features to

output a fixed number of object queries consisting of mask
embeddings and their associated class scores C ∈ R

N×NC .

The final class masks M ∈ R
N×(H×W ) are obtained by

multiplying the mask embeddings with the per-pixel embed-

dings obtained from the pixel-decoder. N represents the

number of output masks.

Training Loss Mask2Former is trained with a cross-

entropy loss to predict C and both a binary cross-entropy

and a dice loss to predict M . However, [35] points out that

training deep networks on standard cross-entropy loss results

in miscalibrated network and suggests using focal loss [30]

can lead to a very well-calibrated network. So, we change

the training loss for the class scores to focal loss

Lfl(xi) = −α(1− ŷi)γ log(ŷi) (6)

where α and γ are the scaling and focusing factors, respec-

tively.

Temperature scaling Temperature scaling is another way

to improve the calibration of a network without affecting

accuracy. However, temperature calibration in Mask2Former

is not trivial due to the nature of its output calculation given:

g(xi) =
NC
max

(
softmax(C)T · sigmoid(M)

)
(7)

We now have three options to calibrate the network: dividing

C by temperature, dividing M by temperature, or both. We

found that dividing C by the temperature gives the best

results. Formally, eq. 7 becomes:

g(xi) =
NC
max

(
softmax(C/t)T · sigmoid(M)

)
(8)

Training Details Our UC-M2F architecture uses Swin-B

as the feature backbone, and the decoder is kept the same as

Mask2Former. The network is trained with an initial learning

rate of 1e-4 and batch size of 8 for 90 thousand iterations on

AdamW with a weight decay of 0.05. Then, fine-tuned for 5

thousand iterations having a learning rate of 1e-5. We use

an image crop of 400 × 800 with large-scale jittering along

with a random scale ranging from 0.1 to 2.0. In the focal

loss, γ is kept at 2, and α is 10. The best temperature value

is found to be 0.5.

4. Conclusion
Results of UNCV2023 challenge were presented. The

main theme of the challenge is to evaluate the uncertainty

quantification performance of the semantic segmentation

models based on the MUAD dataset. The goal is to dis-

cover uncertainty quantification solutions in autonomous

driving scenarios and assess the impact of different sources

of uncertainty on model performance.

As per the solutions submitted by participants, a variety

of model architectures, backbones, data augmentation tech-

niques, and model ensembles emerged as prevalent choices

among most teams. Additionally, approaches involving re-

gion normalization, novel loss functions, test time batch

norm adaptation, and model calibration were also brought

into the spotlight. These diverse strategies collectively of-

fer valuable insights into the practical deployment of robust

semantic segmentation algorithms and the concurrent quan-

tification of uncertainty within intricate urban environments.

We view these approaches as a repository of strategies

akin to a “bag of tricks”. The prospect of optimizing the syn-

ergy among these methods and exploring potential conflicts

between them holds significant promise for future research

endeavors.
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