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Abstract

A systematic review on machine-learning strategies for improving general-
ization in electroencephalography-based emotion classification was realized.
In particular, cross-subject and cross-session generalization was focused. In
this context, the non-stationarity of electroencephalographic (EEG) signals
is a critical issue and can lead to the Dataset Shift problem. Several archi-
tectures and methods have been proposed to address this issue, mainly based
on transfer learning methods. In this review, 418 papers were retrieved from
the Scopus, IEEE Xplore, and PubMed databases through a search query
focusing on modern machine learning techniques for generalization in EEG-
based emotion assessment. Among these papers, 75 were found eligible based
on their relevance to the problem. Studies lacking a specific cross-subject or
cross-session validation strategy, or making use of other biosignals as support
were excluded. On the basis of the selected papers’ analysis, a taxonomy of
the studies employing Machine Learning (ML) methods was proposed, to-
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gether with a brief discussion of the different ML approaches involved. The
studies with the best results in terms of average classification accuracy were
identified, supporting that transfer learning methods seem to perform better
than other approaches. A discussion is proposed on the impact of (i) the emo-
tion theoretical models and (ii) psychological screening of the experimental
sample on the classifier performances.

Keywords: BCI, EEG, Emotion Recognition, Machine Learning, Transfer
Learning, Domain Adaptation, Systematic Review, Generalization

1. Introduction

Emotions are our internal compass and play a primary role in learning,
reasoning, decision-making processes, and communication between individ-
uals. In recent years, the interest towards emotions of the Information and
Communication Technology (ICT) sector has grown tremendously, giving
birth to the new field of affective computing aimed at monitoring and pre-
dicting emotions in order to improve human-computer interaction [1]. For
instance, the introduction of affective loops makes it possible to implement
increasingly adaptive human-machine interfaces and virtual assistants tai-
lored to users [2]. Furthermore, the outputs of emotion monitoring systems,
in the healthcare context, can be useful in the treatment of psychological
disorders based on emotional deficits, in autism [3], in the improvement of
wellbeing [4], and in stress containment [5].

In particular, in this context, there is a growing interest in the literature
for Brain-Computer Interface (BCI) systems based on EEG signals [6]. In
fact, the number of annual scientific publications indexed on Scopus database
on the topic of EEG-based emotion recognition shows an exponential growth
trend (see Fig. 1).

Over the years, EEG-based assessment of emotion has been widely em-
ployed both in non-clinical and clinical applications. Car driving [7, 8|, work-
ing environment [9], neuromarketing [10, 11, 12|, and entertainment [13] are
the main non-clinical application fields. Regarding clinical applications, the
main studies about EEG-based emotion assessment concern the measure-
ment of sleep parameters [14], the detection of epileptic seizures [15], and
the screening, intervention, and monitoring of autism spectrum disorders
116, 17].
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Figure 1: Scopus trend for EEG-based Emotion Recognition studies.

A critical issue underlying the processing and classification of EEG signals
is their inherent variability among different subjects or different acquisition
times (i.e. sessions) of the same subject, since the EEG signal is usually
stochastic and stationary only for short intervals (generally ranging from a
few seconds to minutes) [18,; 19, 20]. More in detail, the EEG signal is not
a Wide Sense Stationary signal [21]. This characteristic of non-stationarity
implies a variation in the temporal and spectral characteristics of the EEG
signal over time. This is an open issue in the literature leading to a loss of
generalizability for classification systems across subjects (inter-subject task)
and, for the same subject, across different sessions (intra-subject task) [22].

Data-driven approaches using Machine Learning (ML) are often employed
at multiple levels in the EEG signal processing pipeline to pursue the clas-
sification of emotional states and their generalization across subjects and
sessions.

Currently, the literature shows increasing use of modern machine learn-
ing strategies, adopting deep neural networks and transfer learning-based
approaches, such as domain adaptation, domain generalization and/or hy-
brid methods [23]. This paper proposed a systematic review on the use of
machine learning to improve generalizability capabilities in EEG-based emo-
tion recognition systems across different subjects and sessions.

As will be discussed in detail in the next section, several surveys have been
proposed in recent years, gathering and discussing the main directions of the



literature on this research topic. However, to the best of our knowledge, a
focus on the application of ML methods to improve the inter /intra-subjective
generalization performance of EEG-based emotion recognition is missing in
the literature.

The rest of the paper is organized as follows: Section 2 reviews related
works, with reference to recent surveys carried out on this specific topic.
Section 3 presents a theoretical background on EEG, with a first part fo-
cused on BCls for emotion recognition and a second part on ML for emotion
recognition. Section 4 presents the used search queries and the paper selec-
tion process according to the PRISMA method [24]. Section 5 presents the
results of the review, proposing a taxonomy of the ML methods currently
proposed in the selected papers, discussing the ML methods with respect
the proposed taxonomy. A statistical analyses of the results was reported.
Section 6 aims to discuss the results obtained, reporting the most promising
lines of research and approaches that have emerged and highlighting possible
future directions in this area. Finally, Section 7 draws conclusions.

2. Related Works

In recent years, several reviews have been conducted on generalization
in EEG-based Emotion Recognition. Alarcao and Fonseca [25] focus on the
generic topic of EEG-based Emotion Recognition, presenting a review of
papers published in the period from 2009 to 2016. The survey appears in-
teresting in that it focuses on the different stages of the emotion recognition
process from EEG signals. Moreover, the survey proposed a criterion for
assessing the quality of the papers by applying a set of well-known guidelines
(Brouwer’s recommendations [26]). However, there is no in-depth analysis on
the issue of inter /intra-subject generalization, nor is the EEG-nonstationarity
problem addressed. Other reviews [27, 28] analyse studies on the EEG-based
classification methods, but without focusing on the emotion domain. Wu et
al. [28], offer a non-systematic review focusing on affective BCIs (aBCls),
but without an in-depth analysis of the emotion recognition problem. The
study proposed in [29] defers further investigation of the problem of EEG-
inter /intra-subject variability to future works. Recently, Li and colleagues
130] published a review focusing on the topic of EEG-based emotion recog-
nition and discussing the importance of transfer learning. While offering
some interesting results, it is not a systematic review (only 18 studies were
reported without PRISMA methodology to collect them).



This paper proposed a systematic literature review focused on the inter /intra-
subject generalization on EEG-based emotion recognition systems and the
use of modern ML-based methods as a possible solution.

3. Theoretical Background

3.1. Emotional theories

Over the years, different theories on emotions have been proposed but

none of these has been universally accepted. Currently, many theories coexist
in multiple application fields. Anyway, the discrete theory and dimensional
theory are the most recurrent in literature . The discrete theory identifies
universal and innate emotions [31]. Drawing on the Darwinian tradition,
Ekman’s theory identifies six basic emotions: anger, disgust, fear, happiness,
sadness, and surprise [32]. Plutchik, identifies eight basic emotions (anger,
anticipation, joy, trust, fear, surprise, sadness, and disgust) and arranges
them on a wheel model [29]. In contrast, the dimensional theory repre-
sents emotions in a continuous two-dimensional (valence-arousal) or three-
dimensional (valence-arousal-dominance) space. Valence measures levels of
pleasantness (happy vs. sad) of an emotion. Arousal identifies degrees of
excitement or motivational activation. In the three-dimensional model, the
dominance dimension is added to valence and arousal to evaluate emotions
on a scale between submission and empowerment [6].
Two brain networks underlying the valence and arousal dimensions are identi-
fied by the dimensional approach [33]. Conversely, the assumption of discrete
approach is that few fundamental emotions are mediated by dedicated neural
circuits. Therefore, the two theoretical approaches focus different neurophys-
iological phenomena with specific spatial signal features. In the framework of
the emotion assessment, the specific task (i.e., discrete emotions or emotional
dimensions classification) relies on the choice of the reference theory.

3.2. BCI for Emotion Recognition

Emotional states can be recognized through several biosignals. In par-
ticular, brain signals have received increasing attention from the scientific
community. Indeed, the EEG signal is particularly effective for emotion
recognition due to its high temporal resolution and non-invasiveness. The
EEG signal has a frequency range between [0.01, 100.00] Hz and an am-
plitude varying typically within the range [-100, 100] xV. Five background
rhythms are present in the EEG and can be classified into different frequency



bands: delta [0.5, 4.0] Hz, theta [4, 7] Hz, alpha [8, 13] Hz, beta [14, 30|
Hz, and gamma [30, 100] Hz.

The International 10-20 Positioning System is an internationally recog-
nized method to place the electrodes on the scalp [34] for recording the
EEG signal. The method allows to maintain a standardized EEG electrodes
placement proportional to the scalp size and shape in order to preserve the
relationship between each location and the underlying brain area. A basic
requirement for obtaining a high-quality EEG and for ensuring good contact
between the electrode and the skin is to use high-performance electrodes [35].
The electrode-skin contact can either be ensured by adding a conductive gel
between the electrode and the skin or by increasing the contact surface that
ensures electrical contact. Recently, besides wet electrodes, dry electrodes
are employed for the EEG signal recording. A good signal quality and com-
parable performances with respect to wet electrodes are achieved using dry
electrodes [36].

Besides the quality of the EEG signal, the emotion induction methods
and the eliciting stimuli have a great impact on the EEG-based emotion
assessment. Specifically, the emotion induction methods and the eliciting
stimuli represent a crucial point for the effectiveness of the emotional elicita-
tion. Facial and body movements, recall of past events, odors, images, film
clips, and music are techniques currently used in laboratories for inducing
emotions. Current literature reports that film clips, images, and music are
particularly effective to elicit emotions [37, 38]. The use of images over other
kind of stimuli represents a great advantage, as images are standardized
stimuli. Image datasets were experimentally validated (e.g., International
Affective Picture System - IAPS [38], Open Affective Standardized Image
Set - OASIS [39], and Geneva Affective Picture Database - GAPED [40]).
There are several publicly-available databases of EEG signals that can be
used for emotion recognition (e.g., DEAP [41], SEED [42], and DREAMER
[43]). Each dataset contains different physiological signals and is character-
ized by a well-established experimental setup (in terms of stimulus sources,
emotional theory adopted, number of subjects, and psychometric metrolog-
ical references). For a comprehensive description of the various available
datasets, see [30].

In case of self-produced datasets, the EEG data must be carefully pre-
processed in order to be used in the emotion assessment. Some steps are
often helpful to achieve a successful EEG signal preprocessing: (i) line noise
removal, (ii) referencing, (iii) bad channels removal, and (iv) artifacts removal



(see [19] for insights).

Once the EEG signal has been pre-processed, it is usually divided into
epochs, and a feature extraction process is then applied. EEG features can be
categorized into three domains, namely time, frequency, and time-frequency.

o Time domain: the main features are the statistics of the signal, such as
mean, variance, skewness, kurtosis, etc [44, 45, 46]. Other time-domain
features are the Hjorth parameters, namely Activity, Mobility, and
Complexity [47]. Good results in the recognition of emotional states
can be achieved by using entropy-based features, i.e., approximate,
sample, differential, and wavelet entropy [48]. Higher-order crossing
(HOC), the fractal dimension, and the Non-Stationary Index (NSI)
[49, 50, 51] are further time domain feature often used for the EEG
analysis.

o Frequency domain: the most used feature is the power spectral density
(PSD). PSD is the signal power in the unit frequency band [52]. Other
representative features of different emotional states involving the PSD
are: (i) logarithm, (ii) maximum, (iii) minimum and, (iv) standard
deviation of the power spectrum.

o Time-frequency domain: the time-frequency analysis (TFA) allows to
observe spectrum changes with time[53]. The short-time Fourier trans-
form (STFT),the continuous wavelet transform (CWT), the discrete
wavelet transform (DWT) [54], matching pursuit, and empirical mode
decomposition are the most used methods to extract time-frequency
features.

The number of EEG features is often very high, therefore a feature selec-
tion strategy is required [55]. Another critical point is the large number of
EEG channels often used for signal acquisitions. A high number of channels
can lead to high computational complexity. Therefore, the selection of the
most informative EEG channels can be crucial [56].

3.3. Machine Learning for Emotion Recognition

After the EEG signal has been properly pre-processed and a suitable set
of features has been extracted, the data are ready to be fed to a supervised



P ol Feature Feature/channel o
I e O R ] B
[\f\/\/\/L extraction selection

|
EEG acquisitions

prediction

scores

Figure 2: A pipeline of a classical ML process involving EEG signals.

ML system. The typical pipeline of a ML framework applied to an EEG
emotion recognition task is reported in Fig. 2.

A large part of the current literature on Emotion Recognition proposed
methods framed into Transfer Learning approach. This is because in the
classical supervised ML framework a set of already labeled data has to be
available. This implies that, in EEG emotion recognition tasks, a set of EEG
signals recorded from one or more subjects has to be labeled with the emo-
tion felt during the acquisition. Labeled data can then be used to train the
ML system, generating a ML model able to classify the input data. Once the
ML model is obtained, new unlabeled data can be fed to the ML model to
estimate the corresponding emotion/class. Reserving a portion of the labeled
data outside the training stage to evaluate the trained model is a good prac-
tice. These data can then be used to evaluate the final model predictions
using suitable performance metrics (e.g., accuracy). However, a standard
hypothesis of traditional ML methods is that all available data come from
the same probability distribution, no matter if involved in the training pro-
cess or not. Due to the characteristics of the EEG data, this assumption
results not always verified in the EEG signal. Indeed, the EEG recordings of
different subjects can be strongly different from each other, even under the
same conditions [19]. Strong differences can arise also for EEG recordings
acquired from the same subject but in different times/sessions, leading to low
generalization performance in cross-subject/session problems. In the current
literature, this problem was initially addressed by exploiting additional unla-
beled data belonging to the target subject/session during the training stage
(Transductive Learning approaches). However, these methods do not make
any consideration about the data distributions. Indeed, the training EEG
data can belong to probability distribution(s) sensibly different from the ones
of the data used outside of the training stage. In ML literature, this can be
considered an instance of the Dataset Shift problem [57]. Dataset Shift oc-
curs in an experimental environment where the standard ML assumption is
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Figure 3: PRISMA flow diagram of the systematic review process.

not verified, i.e. the distributions of the training data and the data used
outside the training stage may be different. The idea that data used inside
and outside of training stage can belong to different probability distributions
is the main hypothesis of the transfer learning approaches.

In the last years, several ML architectures and methods have been pro-
posed to address the dataset shift problem following the base assumptions of
transfer learning, and different categorizations of these methods have been
reported [58, 59]. One of the first and most important review on Transfer
Learning methods was proposed in [58]. However, several new strategies were
proposed in the following years (e.g., Domain Generalization-based works).

4. Papers selection method

The present literature review took into account the guidelines for system-
atic literature reviews presented by Kitchenham ([60]). In addition, PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) rec-
ommendations were adopted in order to transparently report the document
extraction process ([24]). The survey was conducted covering the period



between January 2010 to March 2022, using the following databases: Sco-
pus, IEEE (Institute of FElectrical and FElectronics Engineers), Xplore, and
PubMed.

In accordance with the PRISMA recommendations, the review pipeline
comprised four successive steps: ’Identification’, ’Screening’, 'Eligibility’,
and, finally, 'Inclusion’, which considerably reduced the amount of surveyed
work. For the initial identification of the articles, the following query was
used in all selected data sources, taking into account titles and abstracts:
EEG AND (Emotion OR Preference) AND ("Domain Adaptation” OR "Do-
main Generalization” OR, "Transfer Learning” OR, ”Adversarial” OR "Trans-
fer” OR "Cross Session” OR "Cross Subject” OR ”"Cross Gender” OR "Non-
stationary EEG”).

From the first phase, 418 articles were collected. Therefore, duplicated
papers, not peer-reviewed, or not written in English were excluded from
review as an initial prescreening process. For each paper that passed the
screening stage, a careful examination of the full text was carried out. In
a final screening, further papers were excluded according to the following
exclusion criteria: (a) generalizability issue not explicitly stated, (b) absence
of a cross-subject/cross-session validation strategy, (c¢) adoption of a 'mul-
timodal’ approach (i.e. aimed at supporting EEG-based classification with
other biosignals and/or information), (d) lack of focus on emotion recogni-
tion. As a result, 75 papers remained and were included in the review anal-
ysis. The complete flow diagram of the systematic review process according
to PRISMA is presented in Fig. 3.

5. Results

The analyzed works can be divided into two main big families, based
on the assumption about the origin of the handled data (e.g. from a single
population/domain described by the same probability distribution or from
different populations/domains):

o (Classical ML approaches: all data are assumed to belong to the same
population and are described by the same probability distribution;

o Transfer Learning (TL) approaches: these methods rely on the hypoth-
esis that data can belong to different populations (domains). Data with
heterogeneous probability distributions can lead to the dataset shift
problem, resulting in a loss of the model’s generalization. In general,



the main goal of a TL method is to exploit the knowledge extracted
from a Source domain to solve a problem in a Target domain. TL meth-
ods try to reduce the discrepancy between the probability distributions
of the different domains.

5.1. Classical ML approaches

A model trained on a set of EEG data acquired from a given subject at
a specific time (or during a specific session) could not work as expected in
classifying EEG signal acquired from a different subject or from the same
subject at different times. In other words, the model can result in poor gen-
eralization performance. To deal with this problem, several solutions based
on ML approaches have been proposed over the years. One attempt to mit-
igate the problem was the adoption of Transductive methods. Transductive
methods [61] start from the hypothesis that the unlabeled data target of the
classification problem are available in the training stage. However differently
from the DA methods, no assumption about the distribution of the data is
made. The idea is that in several problems there is only a specific set of
data (usually corresponding to the test set) to classify, and it is available at
training time. Note that standard ML approaches the goal is to generalize on
new unseen data and the test set is used only to validate the learned model
on new, unseen data adopting the inductive learning principle [61], while in
Transductive learning the goal is to correctly classify the test set only, there-
fore the classification problem is defined only on the test data. Transductive
SVM (TSVM, [62]) is an example of a transductive method. Differently from
classical SVMs that leverage only on labeled data, TSVMs exploit both la-
beled and unlabeled test data to find the best decision boundary between the
classes. In other words, the target data is an additional set of information
about the data in the training stage. One of the main drawback of TSVM
is that an estimation of the number of elements of each class in the test
set is needed. Progressive TSVM (PTSVM, [63]) tries to progressively solve
this problem labeling the unlabeled data during the training stage. How-
ever, the only study collected in this review that explicitly uses transdutive
methods is [64], where a PTSVM is used in a cross-session Emotion Recog-
nition problem on EEG data acquired from different subjects. Instead, the
greatest part of the reviewed proposals consisted in proper feature transfor-
mations and/or feature selection processes. The former wants to transform
the data features to hold only the most useful information, assuming that it



is shared between all the subjects/sessions, while the latter are methods to
select only the most useful features from the input signals without changing
them. Usually, the feature extraction/selection is one of the first step of a
machine learning pipeline, where the data are transformed before being fed
to the machine learning model. These methods adopt the classical Machine
Learning framework, that is no knowledge of the effective data on which the
model will be effectively used after the training is available in the training
stage. This can be viewed as a consequence of the the starting hypothesis
of the traditional ML methods stating that all the available data, no mat-
ter if used in the training process or not, come from the same probability
distribution, therefore the training data are enough for the generalization
purpose. In other words, the training data are enough to generalize over all
the possible data.

In the EEG Emotion Recognition case, this means that a proper EEG
data transformation is enough to allow a MLL model to generalize well on never
seen EEG data, independently from the fact the these new data belongs to a
subject/session used during the training stage or not. Going deeper, in a ML
problem on EEG data the feature extraction and selection process can be
made considering two different aspects: i) the acquired EEG features or ii)
the electrodes. In the first case, a proper transformation or selection strategy
for the EEG features is made.

FEEG features extraction/selection strategies

The reviewed literature proposed different works discussing if several
known feature extraction methods are suitable to generalize across several
Emotion Recognition datasets [65, 66]. In particular, in [65] the authors
investigated the robustness of Emotion Recognition features in different ex-
perimental conditions, subjects, and datasets.

In [67, 68] Sequential Backward Selection (SBS) was applied to find a
good set of features able to generalize across different subjects. To find the
best subset of features, SBS decreases the number of features in an iterative
way measuring, at each step, the performance on a given classifier (SVM in
[67], Decision Trees in [68]). SBS method is adopted to exploit the significant
differences between the classes. A Leave-One-Subject-Out (LOSO) verifica-
tion strategy was employed on DEAP and SEED datasets in [67], while [68]
validates its results on DEAP and self-produced data.

In [69, 70] a family of Transferable Recursive Feature Elimination (TRFE)
methods are used to remove the EEG features resulting not generic for all



the involved subjects. The proposed feature selector is validated using SVM
classifiers on DEAP dataset, analyzing both the within-subject and the cross-
subject behaviours. In [71] Cross-subject Recursive Feature Elimination (C-
RFE) is exploited to rank the features in order of importance removing the
ones giving a low contribution to the classification. The method is validated
on SVM classifiers.

In [72], an improved version of the well-known Differential Entropy fea-
tures is proposed. Differently from the classical DE which consider only the
frequency domain of the data, The Dynamic Differential Entropy (DDE)
features take into account both the time-domain and the frequency domain.
The goal is to learn a set of common characteristics across different subjects
maximizing the difference between classes and minimizing, at the same time,
the difference within classes.

In [73] a latent representation of the EEG data from SEED and DEAP
is learned through a Variational Auto Encoder (VAE, [74]) and then clas-
sified using a LSTM. VAEs start from the hypothesis that all the data are
generated by a random process involving latent variables. A VAE is usually
trained to encode the input data into a latent representation, and then map-
ping it to a reconstructed version of the data. [73] assumes that i) there exists
learnable intrinsic features shared across several EEG signals belonging to
different subjects and taking part in emotional processes, and ii) these intrin-
sic features can be learned and encoded in the VAE latent representations.
The power of VAE to represent latent EEG factors is also investigated in
[75], together with classical Auto-Encoders (AEs) and Restricted Boltzmann
Machines (RBMs). Final emotion classifications are made with an LSTM,
while the generalization performances are evaluated in LOSO on DEAP and
SEED dataset.

In [76] the cross-subject problem is tackled using Variational Mode De-
composition (VMD) as feature extraction technique. The proposed frame-
work is validated in an Hold-Out (HO) way, taking care that no intersection
exists between subjects’ data in the training and the test set. Performance
are measured using a DNN as emotions classifier. Despite the encouraging
results reported, no reason about why the proposed system works well in a
cross-subject approach seems to be provided. In [77, 78, 79] is shown that
some normalization functions usually used to preprocess the EEG data can
affect the cross-subject performances.

In particular, in [77] several normalization functions were applied and
evaluated following two different schemes: i) All-subjects, where the whole



dataset was normalized, ii) Single-subject, where the normalization is applied
individually to each subject. The All-subject schema is the most common
method to normalize the entire dataset. Single-subject, instead, consider each
subject individually, applying normalization on each subject. The authors
empirically shown, on SEED dataset, that Single-subject Z-score performs
better in a EEG emotion recognition problem respect to other normalization
schemes, such as min-max normalization. On the same data, in [78] the
authors apply single-subject Z — score normalization after each layer of a
neural network (Stratified Normalisation).

Differently, in [79] a simple transformation of the original data is pro-
posed. It consists in transforming the original features into binary vectors,
having 0 or 1 as components values if the feature is lower or higher than the
median feature value, respectively. The author assumption is that this leads
to a more effective reduction of the subject-dependent part of the EEG signal.

Channel selection strategies

In [80, 81] a general channels set for Emotion Recognition valid for sev-
eral subject is searched exploring different channels selection strategies. To
achieve EEG-based cross-session emotion recognition, the authors of [82] sep-
arate discriminative features from the noisy and redundant ones learning the
importance of the EEG channels in an Emotion recognition task. The pro-
posed strategy is evaluated on pairs of sessions chosen a-priori.

In [83] a neural network to classify emotion by EEG signals is proposed.
The proposed network introduces a channel-attention layer to select the most
important channels for a set of emotions. Notably, the different subjects’
personalities are taken into account, grouping together subjects with similar
personalities and training a different network for each group. Validation is
made on the ASCERTAIN dataset. This dataset results particularly suited
for this task, since it links together personality and emotional state and
physiological reactions. The structure of the electrodes is taken into account
and modeled as a graph.

To model structured data, graph representation methodologies resulted
effective achieving significant performance in many applications, included
EEG emotion signal processing [84]. Indeed, GNNs are useful to retain the
spatial structure of the electrodes disposition. Usually, the graph structure
is fixed and given a priori following the spatial disposition of the electrodes
on the scalp. Differently, Dynamical Graph Convolutional Neural Networks



(DGCNN, [84]) and Self-Organized Graph Neural Network (SOGNN, [85])
changes the graph structure leveraging on the input brain signals, instead
of relying on a predefined graph structure. The resulting graph can be pro-
cessed by graph convolutional layers to extract the more suitable features
and channels for emotion recognition. The features obtained are also tested
in cross-subject scenarios [86].
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Figure 4: The proposed taxonomy of the Transfer Learning methods in EEG-based emo-
tion recognition. Starting from the root node, the criterion "target data used in the
training phase” leads to the creation of two child nodes: Domain Adaptation (if yes) and
Domain Generalization (if no). Domain Generalization in turn generates two nodes de-
pending on the type of data transformation: learned (Deep DG) or unlearned (Shallow
DG@G). From Domain Adaptation, the Supervised DA node is generated if all target data
labels are used in the training phase; otherwise, the Semisupervised/Unsupervised DA
node is generated. From the latter node, four branches distinguish the data handling
strategy: (i) data is transformed using an a priori defined function (Shallow DA), (ii) the
data transformation function is learned as part of the method (Deep DA), (iii) data is
selected or reweighted using some strategy (Instance Reweighting and Selection), and (iv)
a combination of the previous approaches is applied (Hybrid). The Shallow DA methods
are divided into two leaf nodes according to the projection space of the transformation: (i)
all data is projected into the same space as the Target domain (Target Space-based), (ii) a
new shared space is used between the Source and Target (Shared Space-based). Similarly,
for Deep DA methods, two branches lead to two leaf nodes: (i) Common Space-based
if the Source and Target are projected into a new shared space, (ii) Common+Specific
Space-based if Source and Destination are first projected into a single shared space, then,
for each available domain, a projection is used in an ad hoc space.



In the following of this section, the reviewed papers are discussed consid-
ering the belonging family (classical ML and TL approaches). In particular,
TL-based works are discussed according to the proposed taxonomy.

5.2. TL methods

With respect to Classical ML, TL approaches are gaining popularity
thanks to their reported better performances. In literature, current TL meth-
ods are divided in two main categories according to the use of target data in
the training phase:

o Domain Adaptation (DA) methods: the DA general assumption is that
data of the Target are available during the training of the model, to-
gether with data belonging to the Source domain(s). For instance, in
the EEG Emotion Recognition, data acquired from both source and
target subjects/sessions are available during the model construction.

o Domain Generalization (DG) methods: in these methods, data be-
longing to several domains are available and can be used during the
training, but no data from the target domain are available during the
training stage. The knowledge extracted from multiple source domains
is exploited to improve the model generalization. For instance, in the
EEG Emotion Recognition, labeled data acquired from different sub-
ject/session can be considered as belonging to different domains, and
can be used to build a model able to generalize to a new unseen sub-
ject/session, where no data are available during the construction of
model. Domain Generalization methods can be splitted in two subcat-
egories depending on the type of data transformation: learned (Deep

DG) or unlearned (Shallow DG).

Regarding the DA methods, a further division can be made, depending on
the use made of the target data labels in the training phase:

o Supervised DA methods (also known as PreTrained methods, PT):
these methods benefit from the availability of labeled data from the
target subject/session during the training stage; Supervised DA meth-
ods adapt a model already trained on a known Source domain to work
in a new Target domain, where a labeled dataset can be sampled. Since
supervised DA methods usually relied on a model already trained, they
are also known as PreTrained methods.



o Unsupervised and Semisupervised DA (UDA) methods: these methods
benefit from the availability of unlabeled data coming from the target
subject/session during the training stage. The method is Unsupervised
if only unlabeled target data are exploited. Instead, the method is
Semisupervised if further labeled target data are available.

UDA methods, in turn, can be distinguished based on the strategy for han-
dling data:

o Shallow DA: data are transformed using an a priori defined function;

e Deep DA: the data transformation function is learned as part of the
method;

o Instance Reweighting and Selection (IRS): data are selected or reweighted
using some strategy;

o Hybrid: a combination of the previous approaches is applied.

The Shallow DA methods can be further divided according to the projection
space of data transformation: (i) all data are projected into the same space
as the Target domain (Target Space-based - TSB), (ii) a new shared space is
used between the Source and Target (Shared Space-based - SSB). Similarly,
two subcategories can be identified also for Deep DA methods: (i) Common
Space-based (CS) if the Source and Target are projected into a new shared
space, (ii) Common+Specific Space-based (CSS) if Source and Destination
are first projected into a single shared space, then, for each available domain,
a projection is used in an ad hoc space.

Relying on the above considerations, a taxonomy of the TL methods used in
EEG-based emotion recognition is reported in Fig. 4.

Transfer Learning methods are based on the concepts of Domain and
Task. Following the survey of Pan et al. [58], a Domain can be defined as
aset D = {F, P(X)} where F' is a feature space and P(X) is the marginal
probability distribution of a specific dataset X = {x1,29,...,2,} € F. In-
stead, a Task isa set T'= {L, f} where L is a label space and f is a predictive
function usually learned by the data. For instance, f(x;) assigns the predicted
label to x; € X. Therefore, f can be equivalently viewed as the probability
of a label y given a data z, i.e. p(y € L|z € X).



A Dataset of n points can be defined as a set S = {(z; € X,y; € L)} .

Transfer learning wants to exploit the knowledge of a domain D4 on a task
T4 to resolve the same or another task Tg on another domain Dpg.
By the definition of domain, it is straightforward that two domains Dy =
{F4,P(X4)} and D = {Fp, P(Xg)} can be considered different if they
differ in the feature spaces or in the marginal probability distributions. Ob-
viously, the same holds for two Tasks T4 = {La, fa} and Ts = {Lp, f5}.
More in details, the following cases can happen:

1. Dy = Dpgand T4 = Tg: since the Tasks and the domains are the same,
this can be considered a standard ML Problem.

2. Dy # Dp: Fa# Fgor Fy = Fp and P(X4) # P(Xp)

3. Ta#Tp: Ly# Lpor fa# [p.

Due to the non-stationarity of the EEG signals between different sub-
jects/sessions, an emotion classification problem can be viewed as a multi-
domain problem where the data belonging to each subject/session are sam-
pled from different domains. More specifically, given two different subjects
A and B, a common feature space is assumed to be shared by the two do-
mains (i.e. the EEG data representation), the conditional data distribu-
tions P(L|Xa) = P(Lp|Xp) are assumed to be the same, but the marginal
probability distributions are assumed different on the available data, i.e.
P(X4) = P(Xp). Therefore, generalizing across different subjects/sessions
can be viewed as reducing a discrepancy measure between several domains.

In the current literature, TL strategies can be divided into DA and DG
families. These families differ mainly in which data are processed during the
learning stage. DA methods start from the hypothesis that data sampled
from at least two different domains are available, consisting in one or more
Source domains and one Target domain. Usually, methods involving more
that a single source domain are said multi-source. In contrast, DG methods
rely on the hypothesis that d > 2 source domains together with their labeled
samples are available, while any data from the Target domain is unknown.
DA and DG methods are getting a great deal of attention in the scientific lit-
erature in different contexts (e.g. image classification and voice recognition),
and several proposals have been made until now. One trend of the literature
is to adapt DA/DG methods originally proposed for a context to another
one. For example, in [87] methods to adapt DA strategies for image classi-
fication to EEG emotion classification are proposed. However, each context
has its characteristics and peculiarities, making the transfer of a DA method



from a task to another task not immediate. Several attempts were made by
the scientific community to adapt well-established DA /DG methods in tasks
involving the processing of EEG signals in the emotion recognition field.

Emotion Recognition tasks usually involve several subjects or sessions
with different statistical properties, therefore they can be easily reduced
to TL framework. In particular, since data belonging to different sub-
jects/sessions can have different statistical properties due to the non-stationarity
of the signal, each subject/ can be viewed as a different domain. However,
it is interesting to notice that several TL strategies proposed in literature
were developed assuming that the generalization problem is composed by
two domains, the former for the corresponding to all the available labeled
data (usually the training set), and the latter to the unlabeled one (usually
the test set). Several recent Emotion Recognition works proposed strate-
gies following this framework, considering all the labeled data available as
belonging to the same domain, regardless to actual probability distributions
they belong to. This can be viewed as strong assumption, since it implicitly
assume that all subjects/sessions belong to the same probability distribu-
tion, that it is the same to consider all the data as belonging to the same
subject/session. Instead, more recent works project the available data in a
multi-source framework, considering each labeled subject /session as belong-
ing to different domain.

Regarding DA methods, they can further be divided into the following
subfamiles:

o Unsupervised/semi-supervised Domain Adaptation (UDA) methods;
o Supervised DA, also known as PreTraining (PT), methods.

The main difference between them is that, while labeled dataset Ssouree =
{(x;,y:)}i~; can be sampled from the Source domain(s), only feature data
points Xrgrget = {25 };":1 € Frarger can be sampled from the Target one, with-
out knowledge (unsupervised DA) or minimal knowledge (semi-supervised
DA) on their real labels.

UDA methods

We consider a method as UDA if it uses unlabeled data belonging to the
Target domain during the training stage. If no extra labeled target data is
available in the training stage, the method is said Unsupervised, otherwise if
there are also labeled target data, the method is considered Semisupervised.



Several UDA methods relied on minimizing discrepancy measures between
the Source and the Target domains. In [59] these methods are categorized
into shallow DA and deep DA, where

A) Shallow DA: a a-priori defined function for a new data representation is
given. At most the mapping parameters are learned, without affecting
the starting data representation;

B) Deep DA: the data representation is fully learned as part of the DA
strategy.

However, this categorization does not consider works leveraging on the
hypothesis that not all the training data can effectively be useful for the
target space. In order to avoid negative transfer, a selection of the training
data may be necessary. Therefore, in this work the Instance Reweighting and
Selection (IRS) category is added. Reviewing the literature, it results that
these methods are used, in some case, together with Shallow DA and Deep
DA. In the proposed taxonomy, such methods are identified as belonging to
the Hybrid category.

In the following part of this section, reviewed studies according to the
categorization above discussed are reported.

A) Shallow DA methods
Different Shallow DA strategies were proposed in literature, usually relied
on one of following alternatives:

- Target Space-Based (TSB): searching for a good transformation which
directly maps data belonging to the Source domain to the Target do-
main space;

- Shared Space-Based (SSB): searching for a good transformation which
maps Source S and Target T" data in a new shared space having minimal
discrepancy between S and T'.

Once all the data are projected in a common space, any supervised method
can be applied for classification, as both source and target domains follow a
similar distribution.



- TSB methods:

As TSB proposal, [88] tried to align the source space toward the target
one (Subspace Alignment, SA). Rather than using the data in their original
feature spaces, PCA is adopted for a more robust and compact data repre-
sentation. More specifically, two PCA projection matrices Zg and Zp are
computed for the Source and the Target domain, respectively. Therefore, a
transformation matrix M able to align the source space to the target one is
searched by an optimization problem, that is

argmj\}n [|ZsM — Z7||%.

This problem has a closed form solution, that is M = Z% Z.

In [89] Adaptive Subspace Feature Matching (ASFM) is proposed for
EEG-based Emotion Recognition. Relying on SA, ASFM takes in care that
subject attention level and user fatigue can lead to mismatched marginal and
conditional distributions of the data.

Differently from other DA strategies, in [90] (Multi-Subject Subspace
Alignment, MSSA) the ASFM strategy is applied to each source subject in-
dividually, then the projected data are fed to different subject-specific clas-
sifiers.

Other data transformations have been investigated in the DA scenario
for EEG emotion recognition, such as Robust Principal Component Analysis
(RCA) [91] in [92]. RCA decomposes a set X of dataas X = L+S, with L and
S superimposed matrices, in particular the former is a low-rank matrix, the
latter a sparse matrix. These matrices are computed resolving the following
optimization problem:

min [ L] + AllSl:

where || - ||« is the matrix nuclear norm, || - ||; the [; norm and A a weighting
parameter. In [92] a proposal to build a Cross-Day emotion recognition model
using RCA is made.

In [93] a method originally proposed for personalized handwriting recogni-
tion (Style Transfer Mapping, STM [94]) is adapted for EEG emotion recog-
nition task to generalize across different subjects. In a nutshell, STM maps
source data to target data by an affine transformation. The solution of the
proposed problem is in closed form, so it can be easily computed. Few la-
beled target data are used to select source data, therefore it starts from the
hypothesis that a small amount of labeled data is available.



- SSB methods:

On the other side, among the SSB methods, the Maximum Mean Discrep-
ancy (MMD,[95]) is one of the most used discrepancy measure in DA/DG
strategies. MMD was originally proposed to test if two probability distribu-
tions are different or not. Formally, the authors show that, in a Reduced
Kernel Hilbert Space (RKHS), a discrepancy measure between two distribu-
tions p and ¢ can be defined as

MMD(p,q) = |[Exgp(d(Xs)) — Expng(o(X7))|[F

where ¢(-) is an appropriate feature mapping. In [95] is proven that, in a
RKHS, MM D(p,q) is 0 if and only if the two distributions p and ¢ are the
same.

MMD can be empirical estimated as the difference between the averages
of two dataset sampled from the two distributions projected in a RKHS.
Therefore, considering Xg and X7 as two sets sampled from the Source and
the Target domain respectively, empirical M M D(Xg, X7) can be expressed

as.
| Xs| | X7|

MMD(Xs, Xr) = H,X ‘Zdb -5 |Z¢ )

where Xg) and ng) are elements of Xg and Xp respectively. In other words,
having two samples beloning to two different distributions, the distance be-
tween the two distributions can be estimate through the distance between
the averages of the samples projected in a RKHS.

Transfer Component Analysis (TCA, [96]) is one of the most used MMD-
based DA method. In the proposing work, two different TCA versions were
proposed: i) an unsupervised version, consisting in finding a data transfor-
mation such that the data variance is maximally preserved and, at the same
time, the MMD distance of the domains distributions is minimized, and ii)
a supervised one, where the dependence between training data and labels is
taken into account.

A performance evaluation of the Unsupervised TCA applied on EEG data
for Emotion Recognition was made in [97]. Instead of using all the available
EEG data, a random selection of samples from Source domain data, letting
out the data of a subject as target. Since TCA allows to project data in a
reduced space, in [98] several spaces with different dimensions are evaluated
on SEED dataset. Instead, in [99] TCA is tested on self-made EEG data.



In [100] through Transfer Sparse Coding (TSC) the MMD was used to
find a sparse representation of image data sampled from different distribution.
Sparse code representations are well-known data approximation obtained as
linear combinations of elements in a set of basis functions. In a nutshell, a
sparse coding method searches for a representative over-complete set of basis
functions (a dictionary) together with an encoding that best represent the
data. In its simplest form, the sparse coding problem can be expressed as

. . 2 )
min || X = Bl + 2> Isi

=1

where X € R™*" is a matrix containing addthe n data points to approximate
while B € R™** and S € R**" are the dictionary matrix and the encoding
matrix respectively, with k& > m to ensure the over-completeness. The spar-
sity is induced by the second equation term on the coefficient matrix columns
s; and regulated through the hyperparameter A € R. However, if X is com-
posed of data sampled from two different domains (e.g., X = [Xg|X7]) the
above formalization does not take into account the differences between the
marginal distributions. To deal with this problem, [100] adds a further reg-
ularization term to the objective function that considers the MMD distance
between the different domains of the input data.

Similarly, PCA and Fisher criteria [101] are used together in in [102]
with the aim to compute a common dictionary between source and target
domain, but preserving the local information between samples together with
the discriminative knowledge between the domains. This work required a
little set of labeled data from the target domain during the training stage,
falling in the Semi-supervised DA approaches.

While it is not specifically designed for Domain Adaptation, Kernel-PCA
(KPCA,[103]) is often used in comparisons with several DA methods. In a
nutshell, KPCA uses the kernel trick [104] to project the data into a kernel
space followed by a PCA. A comparison between Kernel-PCA and TCA for
EEG emotion recognition is reported in [97].

Proposed in [105] Subspace Alignment Auto-Encoder (SAAE) combines
together auto-encoders and subspace alignment. The subspace alignment is
obtained through MMD and KPCA to maximize the embedded data vari-
ance. Before the transformation, an auto-encoder trained on source and
target data was employed to extract features from the data.

In [106] several shallow DA approoaches such as TCA, KPCA, TSVM are



evaluated on SEED dataset in a Leave-On-Subject-Out approach, while in
[107] similar methods are tested on SEED and DEAP also for Cross-Dataset
generalization.

[107] exploits Maximum Independence Domain Adaptation (MIDA) [108]
in the EEG Emotion Recognition case. As similar methods, MIDA projects
the data into a subspace able to reduce the inter-domain discrepancy in
distributions. In this case the independence between domain is computed
with the Hilbert-Schmidt Indipendence Criterion (HSIC, [109]).

B) Deep DA methods

In deep DA approaches, a feature data representation transformation is
embedded into the DA method, in an end-to-end way..

Deep DA methods can be further divided in:

- Common Space (CS): Source and Target are projected in a new shared
space;

- Common+Specific Spaces (css): Source and Target are first projected
in a unique shared space, then, for each available domain, a projection
into an ad-hoc space is used.

- CS methods:

As CS methods, [110] (Deep Domain Confusion, DDC) proposed two
identical neural networks trained together, the former classifying data from
the Source domain, the latter adapting the distance between Source and
Target domains using features of Target data. A combination of both the
classification performance and the MMD is used as final loss to minimize.
[111] uses DDC for cross-subject EEG emotion recognition. The networks’
architectures used are of type residual CNNs [112]. To be fed to CNNs, the
EEG inputs are firstly transformed into Electrode-frequency Distribution
Maps (EFDMs, [113]). The proposed results are validated with a LOSO
approach.

The authors of [114] proposed a DA framework exploiting characteristics
of a standard Convolutional Neural Network (CNN), usually composed by a
sequence of convolutional layers ended by a fully-connected ones. The start
hypothesis is that in a DNN the transition from general to the particular
task features grows with the increasing of the network depth. Indeed, in a
CNN, while the initial convolutional layers learn general features, the final
fully-connected ones learn domain specific features that are not transferable.



Their proposed model (Deep Adaptation Network, DAN) deeply adapt the
final fully connected layers minimizing the Multi-Kernel Maximum Mean
Discrepancies (MK-MMD, [115]), a multiple kernel variant of MMD used as
distribution discrepancy measurement. DAN was evaluated in EEG emotion
recognition on SEED and SEED-IV in [116]. In [117] the proposed Multi-
Spatial Domain Adaptation Network (MSDAN) aligns source and target do-
mains considering the spatial relationships between the electrodes. This is
done by using Graph Convolutional Layers and exploiting MMD distance
in the resulting graph space. Differently from other works, [117] uses data
acquired in a Virtual Reality (VR) environment to generate stimuli, and the
cross-device problem is taken into account.

One of the most used deep DA strategies is the Domain Adversarial Learn-
ing, proposed in [59, 118, 119]. The authors proposed an embedded problem
formulation considering both the desired task and the Source-Target discrep-
ancy. The basic idea is to make the data distributions indistinguishable for
an ad-hoc domain classifier. This can be obtained by a deep neural net-
work model (Domain Adversarial Neural Network, DANN) that, for each
input, predicts both the corresponding class and the belonging domain. In
a nutshell, DANN is composed of three main components: a feature extrac-
tor, a label predictor, and a domain classifier. Therefore, a learning process
searches for a feature mapping maximizing the class prediction performances
and, at the same time, also maximizing the domain classification loss to make
the feature distributions as similar as possible. DANN is evaluated in EEG
emotion recognition task in [120] on SEED. In [121] BiDANN, a variation of
the original DANN, is adopted for EEG emotion recognition, but consider-
ing the differences between the brain hemispheres. More in detail, EEG data
from the two hemispheres are processed separately: two different features
mapping, together with a domain discriminator, are learned for the brain
hemispheres, instead of just one feature mapping as in the original DANN
formulation. Difference between the hemispheres in a DA approach is not
dealt only by BiDANN; for instance, BIHDM [122, 123] uses two different
RNN to encode the data belonging to the two hemispheres, and a domain
discriminator is used to mix up the features of the Source and the Target
domain. In [124] the authors propose a new DA method which is framed in
the context of deep adversarial learning approaches. In particular a tempo-
ral convolutional network is used as encoder. Interestingly, the method is
successfully evaluated in both cross-subject and cross-dataset. In [125, 126]
domain adversarial approaches are used together with Graph Neural Net-



works (GNN, [87]) as feature extractor. In particular, [125] leverages on
an attention mechanism [127] to lead the learning process to focus on the
more tricky areas of the feature space. Performances are evaluated on SEED
dataset. Instead, [126] proposed a Node-wise Domain Adversarial Training
(NodeDAT') method to regularize the learning of a GNN for better subject-
independent performances. In EEG literature, domain adversarial learning
addand attentional mechanisms are widely used in several other studies for
EEG data recognition, for example in [128, 129, 130, 131, 132, 133]. In partic-
ular, in [130] possible differences between several brain regions are also taken
into account with a proposed attention module. In [134] (ATtention-based
LSTM with Domain Discriminator, ATDD-LSTM) a domain discriminator
in terms of LSTMs is presented to reduce the discrepance between the dis-
tributions. An attention-based encoder-decoder focuses on emotion-related
input data, helping the final classification probability estimation.

An interesting adversarial approach was also investigated in [135]. The
proposed work exploits the Covariance Matrices between EEG data and Rie-
mannian distances [136]. The work proposed a new kind of Neural Network
(daSPDnet) able to retain the intrinsic geometry information of the data.
However, a little set of labeled data belonging to the Target domain are re-
quired during the training process, resulting as semi-supervised DA method.
A similar approach, also requiring a few of labeled target data, was proposed
in [137].

In [128] Adversarial Discriminative Domain Adaptation (ADDA), a strat-
egy to tackle the DA on an image classification task, was proposed. Differ-
ently from DANN, the ADDA basic idea consisted in building two different
functions for the Source and the Target domains, represented with two differ-
ent encoders Eg and Ep, respectively. Eg is trained together with a classifier
C using labeled data from the Source domain. Then, through an adversar-
ial learning procedure, Er is trained to map the Target domain data in the
same space of Eg outputs. Target data can now be classified by C, con-
seguently. A similar idea was adapted in EEG Emotion Recognition tasks
in [138] (Wasserstein GAN Domain Adaptation, WGANDA). More in detail,
two generators, the former for the Source and the latter for the Target do-
main, are pre-trained to output two feature vectors of the same size. These
vectors are assumed to belong to the same feature space. Then, an adver-
sarial training step based on minimizing the Wasserstein distance tunes the
parameters of the generators such that the outputs match more closely as
possible between them. The combined outputs are then used as input for a



final classifier.

Inspired by the MMD optimization made in [105], in [129](TDANN) a
two stage DA method is proposed. In the first stage, MMD is minimized
training a 2D CNN equipped with adaBN [139]. To be fed to the 2D CNN
and to preserve spatial information, the EEG input signals are transformed
into images [140, 141]. In the second stage, a domain discriminator is used to
further reduce the distance between the source and the target distributions.
The method was evaluated in a LOSO cross validation framework. One of
the main issue of the DANN networks is that only the feature data without
any label is considered during the adversarial learning process. This type of

DA methods can overlap the distributions of Source and Target domains
by reducing the distance between them without any consideration on the
belonging classes, resulting in a simple mixing of the samples of the two do-
mains, leading the categories within each domain to not be distinguishable.
Indeed, in DANN the decision boundary inside each domain is ignored. Dif-
ferently, in [142] (Maximum Classifier Discrepancy, MCD), also the labels of
the Source domain data are considered, helping to build a good task-specific
decision boundaries between the classes. In particular, MCD exploits differ-
ent classifiers fed with the same inputs and evaluating the discrepancy. More
in detail, two classifier C; and C5 having the same structure are fed with the
output of a feature generator G. G can be fed with data = coming from
the source or the target domain. The output of C; and Cy are the labels
of the input x transformed by . Before the training step, C; and Cy start
from different initial states, rising two different classifiers after the training.
How much the two classifiers disagree on their predictions on the same input
is defined discrepancy by the authors. Indeed, the generator G is trained
to minimize the discrepancy (that is, project source and target data in the
same space), while C; and Cy are trained to maximize the discrepancy (so
that the two classification boundaries are far from each other). The learned
generator G will be able to relocate the target domain data in the source
space, but considering its most probable belonging class. Task-Specific Do-
main Adversarial Neural Network (T-DANN, [143]) is an MCD similar model
proposed for EEG Emotion Recognition. T-DANN adapts the conditional
distribution between domains and, at the same time, adapts classification
boundaries between classes exploiting MCD in conjunction with a domain
discriminator.

From a different point of view, [144] exploits a few-shot learning approach
together with an attention mechanism to deal with the excessive alignment



problem. Few-shot learning-based approaches are also used in [145] where
Siamese Networks [146] are used to evaluate the similarity between samples
belonging to different domains. Siamese networks were originally proposed
to determine whether two different inputs belong to the same class or not.
In [145] the Siamese framework is enhanced to handle different domains.
However, this method require a few of labeled data belonging to the Target
domain.

In [147] the authors propose a DA approach for EEG-based emotion recog-
nition based on a Multi-source co-Adaptation framework by mining diverse
Correlation Information (MACI). Notably, MACI consider each subject as
belonging to a different domain. The proposed method is compared with
several both standard (shallow) DA approaches and CNN-based (deep) DA
approaches. Cross-subjects and cross-datasets evaluations are performed.
The authors of [148] propose a novel approach which attempts to unify in an
unique optimization problem two standard DA approaches, that are instance
reweighting and feature matching. This novel approach is named Progressive
Low-Rank Subspace Alignment (PLRSA). In particular, instance reweight-
ing is implemented by minimizing the Maximum Mean Discrepancy (MMD)
distance with TrAdaBoost algorithm, and feature matching by Transfer Com-
ponent Analysis (TCA). Importantly, a tiny amount of labeled target data
is used. The proposed method is evaluated in a both cross-subjects and
cross-sessions scenario. The method is compared with five state-of-the-art
DA methods. The results seem promising, however the time complexity is a
little more expensive than related state-of-the-art methods.

In [149], Neighborhood Component Analysis (NCA, [150]) is employed
to learn the Mahalanobis distance between data. Therefore, data are lin-
early projected into a subspace such that the classification accuracy is maxi-
mized and the dimensionality of the EEG features is reduced. The obtained
features are then used with Geodesic flow kernel for Unsupervised Domain
Adaptation [151]. In another direction goes Multi-source Domain Transfer
Discriminative Dictionary Learning modeling (MDTDDL) [152]. In this case,
dictionary learning are used to learn a joint subspace between Source and
Target domains [153]. DEEP and SEED are evaluated both in Cross-Subject
and Cross-Session mode.

- ¢ss methods:
Although several studies start from the hypothesis that a single common
feature space is enough for DA, Common+Specific Space (CSS) methods go



in different direction, assuming that a single shared classifier built in a shared
space still has poor performance with sessions/subjects never seen. Notably,
in these studies each subject/session available is considered as a single do-
main, and not as a whole. Hypothetically, EEG data representations can
be splitted into emotional components shared among all the subjects, and
private components, specific to each subject.

Leveraging on this hypothesis, [23] builds a shared encoder and private en-
coders for each source subject data, with the aim to capture the subject-
invariant emotional representations and private components, respectively.
The learned encoders are then used to build several emotion classifiers. Fi-
nally, a classifier for a new subject is built. The parameters of these clas-
sifiers are learned exploiting the shared encoder. A fusion strategy between
the classifiers” outputs is then applied to obtain the final classification re-
sult. However, the proposed framework requires few labeled target data,
falling in the semisupervised DA category. Multi-source EEG-based Emo-
tion Recognition Network (MEERNet) [154] proposed a different classifier
for each different domain (subject or session), preceded by a feature extrac-
tor shared by all the domains. Final classification is made averaging between
domain-specific classifiers. Similarly, [155] proposed a framework composed
of a common feature extractor to map all the domains in a common sub-
space, a main task classifier or regressor, and private discriminators for each
domain. The training is made reducing the Wasserstein distance between the
marginal distribution of each source domain and target one in an adversarial
way. In [156] the authors proposed a Multi Source-Marginal Distribution
Adaptation (MS-MDA) algorithm for EEG emotion recognition. Also in
this case, the key idea is that the final response is obtained aggregating the
responses of different target-source specific classifiers, preceded by a com-
mon feature extractor. Notably, the authors explore the impact of different
types of data normalization on the performance of the proposed model. MS-
MDA is also compared with several standard DA methods. Similarly, the
authors of [157] proposed Multi-Source and Multi-Representation Adapta-
tion (MSMRA), an approach with many similarities with MS-MDA. Both
cross-subjects and cross-sessions evaluations are performed.

Supervised DA (PreTraining) methods

In the supervised DA category, four studies were included in the re-
view. In [158] a pretrained version of InceptionResnetV2 [159] is used as
feature extractor for EEG data. The classification is made by a final net-



work layer added to the InceptionResnetV2 network. Instead, [160] exploited
DenseNet121 [161] as pre-trained model to build a new architecture fed with
EEG data transformed into spectrogram images.

In [113] a CNN trained on different subjects and sessions of the SEED dataset
is then re-trained on a small amount of data acquired from a subject belonging
to the DEAP dataset. This was made to evaluate the cross-dataset emotion
recognition performances. In [162] several classifiers trained on different data
belonging to different subjects and sessions are ensembled together obtain-
ing a final classifier suitable both for cross-sessions and cross-subjects EEG
emotion recognition.

IRS € Hybrid

IRS methods take into account that not all the training data can effec-
tively be useful for the target space. Indeed, a part of the data can lead
toward bad performance, therefore it can be better to remove them or to
reduce their weights in the training stage. In [163] TrAdaBoost [164], a
semi-supervised DA method acting the instances’ weights, is used to score
the source EEG data in order to avoid possible negative influence of the data
during the training process. In a nutshell, a small amount of labeled target
data available during the training stage helps to vote on the usefulness of
each of the available source data instance. As initial step, only the source
subjects data closest to the target one are selected. Similarity between sub-
jects is computed according to the MMD similarity and fed to TrAdaBoost
as auxiliary data.

In the revised literature, IRS methods are often used as an initial step of
other DA methods. For instance, in [165, 166] the similarity between source
and target EEG data is measured using the Pearson Correlation Coefficient
and the Average Frechet Distance, respectively. In particular, in [166] EEG
source data closer to the available target data are projected to a new space
through TCA, together with the target one. Finally, the classification step
is made by an Echo State Network (ESN, [167]).

In [168] (DMATN) source data belonging to the existing subjects are
divided into several subdomains. Then, a set of subdomains is chosen as the
most relevant ones for the target data. The proposed architecture combines
together DAN and DANN to learn representation that are domains invariant.



DG methods

Differently from classical DA, DG assumes that data from several domains
are available, but no data from the target domain is observed during the
training stage. Differently from classical domain adaptation methods, data
from several domains are available, but no data from the test domain is
observed during the training stage [169]. DG methods can be divided as:

A) shallow DG: a data transformation is given a priori;

B) deep DG: the data rapresentation is learned as part of the DG strategy.

A) Shallow DG methods

Shallow DG methods share the same principles of shallow DA ones, build-
ing a shared space between domains, letting the input data representation
unchanged. Domain Invariant Component Analysis (DICA) [169] searches
for common features across several domains. Features data are transformed
by a learned orthogonal transformation able to minimize the dissimilarity
between a set of known domains and preserving, at the same time, the rela-
tions between data features and their real labels. The authors also provided
an unsupervised DICA version which did not take care of the class labels.

In [170] Scatter Component Analysis (SCA) is proposed. The aim of the
authors is to propose a method adapt both for DG and DA requirements.
SCA searches for a data transformation where, at the same time, i) the source
and the target domains are similar, ii) elements of the same class are similar,
iii) elements of different classes are well separated, and iv) the variance of
the whole data is maximized. This is made introducing Scatter, a measure
closely related to MMD. In [171], SCA and DICA are applied and evaluated
on SEED dataset.

B) Deep DG methods

On the other side, deep DG methods embed the data representation as
part of the generalization strategy. In [172] data from similar subjects are
used to train the same classifier. The similarity is computed through a clus-
tering algorithm. This subset of similar subjects is used to train a final CNN
classifier. Notably, in [173] a similar strategy is adopted, but for DA context.

[174] joined together BIDANN and Variational Autoencoder (VAE), ob-
taining a subject-invariant Bi-lateral Variational Domain Adversarial Neural
Network (BiVDANN). VAEs are generative neural networks able to learn
embedding of data in a latent space. As any classical autoencoder, a VAE is
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Figure 5: Pie charts for distribution of papers occurrences according to: a) generalization
types, b) categories of the taxonomy, c) used datasets, d) emotional theories.

composed of an encoder network able to project data to an embedding space,
and an decoder network able to reconstruct the original input from the em-
bedding. In the proposed work, the learned features are further refined by
domain adversarial training made across different subjects, with the aim to
learn subject-independent features. Furthermore, to maximize cross-dataset
performance, spectral topography data of the EEG signal are used as input.
The pie charts in Figure 5 show some statistics about the papers included
in the survey. First of all, it is evident that almost three quarters of the
studies surveyed (73.4 %) focus on a cross-subject mode of generalization,
while cross-session studies account for only 17 % and only 9 % operate a cross-
dataset mode of generalization. Graph b) shows the percentage distribution
according to the proposed taxonomy. Looking at this graph, it is evident that
the majority of generalization studies are moving towards the use of Deep
DA (CS) (29.33 %), at the expense of more traditional approaches, which
still retain 24 %. This is followed by Shallow DA (SSB) approaches (9.33 %),
Deap DA (CSS) (6.67 %), Shallow DA (TSB) (5.33 %), Supervised DA and
UDA (IRS) (4 %), and finally Deap DG and Hybrid DA (2.67 %).
The pie chart in Figure 5.c) shows the number of times each EEG dataset



is exploited in the reviewed literature. The mainly used datasets are SEED
(45.8 %) and DEAP (27.5 %). This is followed by 8.3 % of studies that
propose their own self-produced dataset. Among the other datasets available
in the literature, only SEED IV stands out (at 7.5 %), which is interesting
in that it adopts a discrete space of four emotions for classification (happy,
sad, fear and neutral). Instead, each of the other datasets do not exceed 5
% (MAHNOB [175] and DREAMER [43] (3.33 %), CMEED [176] (1.7 %),
ASCERTAIN [177], MDME [178] and SDMN [179] (0.8 %)).

Finally, Figure 5.d) offers an interesting statistic about the interest of
the authors of the studies examined in the various perspectives of emotion
representation. As already mentioned in section 1.3, the two dominant per-
spectives, and the only ones considered in the literature examined, are those
based on categorical and dimensional models. More than 80 per cent of the
works are based on a representation of emotions, and then their subsequent
classification in terms of valence and arousal (and only in one case also dom-
inance [135]).

In Tab. 1 all papers included in the review were reported, indicating if
belonging to the proposed taxonomy or to classical ML methods. Moreover,
for each research study as the type of generalization (cross-subject, cross-
session, or cross-device), the EEG dataset, the adopted classifier (whether
proposed as a personal contribution or adopted from the literature), and
the validation strategy is reported. Studies in which the description of the
experimental setup was not sufficiently clear, especially in terms of valida-
tion strategies, were voluntarily omitted from the table for reproducibility
issues. The best performer solutions in terms of mean classification accu-
racy are proposed in Table 2. Only cross-subject studies were considered,
as most of the studies examined. Ten classification issues were focused on.
Each issue is defined by considering the number and type of classes (bi-
nary and ternary on valence and arousal, quaternary on the two-dimensional
valence-arousal plane, binary and quaternary on discrete dimensions) and the
adopted dataset (DEAP, SEED, other). For each issue, the best performer
study in terms of accuracy was identified. Only studies reporting both mean
accuracy and standard deviation were included in the performance assess-
ment.



6. Discussion

To date, no robust electroencephalographic patterns are recognized in
scientific literature for correlating with emotional states. Some studies base
their results on the asymmetry of scalp activations. In general, many the-
ories still coexist and are not statistically well founded (validated on small
experimental samples) [180, 181, 182].

When aiming for a generalization goal in EEG-based Emotion Recogni-
tion, Transfer Learning methods are becoming more and more established in
the literature. Domain Adaptation methods (Deep DA (CSB), Shallow DA
(SSB), IRS DA, Deep DA (CSS), Shallow DA (TSB) and Supervised DA)
exceed 60 % of the total surveyed studies and exhibit very high accuracy
performances in the table of best performers (see Table 2). In particular,
Deep DA (Common Space) is used by five best performers studies. This
could be also due to the current massive use of Deep DA (Common Space) in
the literature. Indeed, one third of the surveyed studies (Figure 5.d) belongs
to this category.

However, a still substantial percentage of works (22.67 %) belongs to the
Classical ML category. An emblematic case in this context is [85], namely
the best performer in the classification issue on SEED IV with four discrete
classes. This is an interesting study based on a self-organized graph construc-
tion module. This solution can be considered as a peculiar implementation
of the well established adaptive filters strategy, when the generalization goal
is pursued by customizing the network to the current input. Conversely,
the DA strategies make the data belonging to different domains more ho-
mogeneous by means of appropriate transformations. The different impact
between DA and adaptive filters approaches can be better appreciated by
making a comparison between the previous study and [126]. Both studies
address the problem of four-class classification on the same dataset by using
a pipeline based on graphs and deep networks. In the first case, an adaptive
graph is used without any DA methods, while the second study makes use of
a (nonadaptive) graph approach in combination with DA techniques. Even
though they use different approaches, the reported accuracy performances
are comparable. This suggests how the dynamic search for feature extrac-
tion procedures represents an interesting frontier for future studies in this
area, not excluding the potential of using this approach in combination with
DA/DG techniques.

Several issues should be taken into account considering TL methods.



Firstly, UDA methods require the availability of unlabeled target data in the
training phase. In the emotion recognition problem, this implies that EEG
recordings belonging to the target session/subject are provided. This avail-
ability is not granted, especially in online applications. In alternative, initial
calibration data can be acquired from the target subject, but this requires
additional efforts both for the subjects and the operators.

Secondly, a large part of DA strategies uses the source data as they all be-
long to the same domain. This assumption can be too strong, especially if
the source data are acquired in different sessions or, worse, from different
subjects. This point is taken into account by multi-source DA approaches,
such as Transductive Parameter Transfer (TPT) [183], or by multi-source
DA approaches specific for EEG data, such as MSSA or MEERNet, where
different source subjects/sessions are considered as different source domains,
and by DG methods.

Thirdly, in several DA strategies labels of both the source and target do-
mains are not considered in the alignment of the domains. This type of DA
methods can lead to overlapping distributions of source and target domains,
without any consideration on the belonging classes. As a consequence, the
class separability can worsen. This can be a weakness of some Shallow DA
methods, such as unsupervised TCA.

Specific weakness can be highlighted for each DA category of the proposed
taxonomy.

Shallow DA methods require data projections between different spaces by
means of handcrafted transformations. Therefore, the adopted transforma-
tions may not be suitable for the available data. Moreover, among proposed
data transformations, some of them require all the data be processed to-
gether, with a large amount of memory needed.

On the other side, Deep DA methods require a greater number of parame-
ters with respect to a shallow method. This can result in high computational
complexity, such as in MACI and Adversarial learning-based methods. This
can lead toward overfitting and the curse of dimensionality problems [104]
if not enough data are available. However, despite their high computational
load, Deep DA methods exhibit the best performance in terms of accuracy
at least in four of the cases considered, as can be seen in Tab. 2.

Instance Reweighting and Selection methods select or score data to manage
uncorrelation between source and target data. Therefore, a part of the data
may not fully used in the training stage, making these methods strongly
dependent on the score/selection function adopted. Moreover, their compu-



tational cost can be not negligible, since they re-weight the available data
according to their similarity.

Supervised DA methods require models trained on data belonging to the
source domain. In several tasks (such as image classification) several pre-
trained model on big amount of data are freely and publicly available to
the user (for example ResNet models trained on ImageNet [112]). How-
ever, it is harder to find similar models trained on EEG data for Emotion
Recognition task. This can be due to the scarcity of publicly available large
dataset. Moreover, also by collecting together several public dataset, the re-
sulting model may have low performance. Indeed, being the EEG is a highly
non-stationary signal, it results very susceptible to different experimental
conditions. In contrast to DA approaches, the aim of Domain Generalization
(DG) is to generalize over several domains. Therefore, data belonging to the
target may not be required in the training stage. Instead, data from several
other domains (i.e. sessions/subjects) are required. This may be impracti-
cal especially in experimental scenarios, due to the difficulties of enrolling
subjects and the time required to conduct multiple acquisitions. Thus, DA
approaches are currently the most proposed methods in Emotion Recogni-
tion scenarios involving TL.

Originally, the well-known TL methods were developed outside the Emo-
tion Recognition framework. In recent years, several studies have exploited
these methods in emotion recognition but focusing only on their effectiveness,
without conducting an in-depth analysis of the specific contributions made
by TL methods in this field. In fact, several DA pipelines consist of several
steps, and a comparison of performance with and without TL methods does
not identify the most effective steps. For example, in [184] it is shown that
in several cases the data normalization adopted as first step of several TL
pipelines has a stronger impact on the model generalization respect to the
TL methods themselves. Other studies [77, 78, 79] have confirmed that sim-
ple data normalization with low computational and spatial efforts allows for
interesting results in EEG-based Emotion Recognition, in some cases com-
parable or better than several current DA /DG approaches. In general, the
merits of TL techniques are not in question, but in the future, a more in-
depth analysis by scientists is needed, for example by accompanying their
proposals with ablation studies.

Another point to take into account is that the proliferation of EEG acqui-
sition devices on the market is not always coupled with consistency in terms of



quality between the various devices (considering electrode type and position-
ing, interference shielding, and signal-to-noise ratio, amplification strategies,
etc). A comparison among different studies must take into account the qual-
ity of EEG instrumentation used. The ITEC 60601-2-26 standard applies to
basic safety and essential performance of electroencephalographs used in a
clinical environment. Among the requirements, the minimum overall signal
quality for an electroencephalographic device to be considered acceptable is
defined [185]. Even if IEC 60601-2-26 is a standard specifically developed
for clinical purposes, it is nowadays the only available standard for EEG in-
strumentation quality certification. In the future, it is desirable for research
to be increasingly based on certified instruments. However, an encouraging
trend emerges from the most recent public datasets. Indeed, they are all
based on standardized equipment: (i) Neuroelectrics Enobio 8 in the case of
LUMED [158], (ii) NuAmp Neuroscan in the case of CMEED [134], and (iii)
gtec.Hlamp in the case of the dataset produced by [129]).

A further concern in the use of public datasets is its underlying theoret-
ical background, often uncritically accepted by the scientists. Many studies
validate the same machine learning algorithm on different datasets although
the targeted psychic phenomena are radically different. Indeed, each dataset
leverages on a specific theory of emotions and related experimental setup of
emotion elicitation. For instance, DEAP is based on a dimensional approach
and SEED IV on discrete one.

Finally, at present, the available public datasets do not adopt an estab-
lished practice of psychological screening of the subjects involved. In general,
studies on EEG-based emotion assessment could benefit from administer-
ing psychometric questionnaires to participants. Indeed, psychological data
could help to understand individual differences in emotional response, lead-
ing to clustering of subjects [173]. Recently, unsupervised clustering based
on large datasets is emerging as a promising strategy for empirical identifi-
cation of personality types [186]. Meanwhile, correlations have been found
between personality types and EEG patterns [187]. Moreover, prior psycho-
logical assessments allow to manage bias due to individual traits or states.
The introduction of psycho-metric tests and assessments during the produc-
tion of upcoming datasets could lead to a much more fruitful use of data in
support of generalization.



7. Conclusion

In this work, a systematic literature review collecting papers on machine
learning strategies to pursue (cross-subjects and cross-sessions) generaliz-
ability in EEG-based emotion recognition was carried out. Among the 418
articles retrieved from Scopus, IEEE (Institute of Electrical and Electron-
ics Engineers) Xplore, and PubMed databases, 75 papers resulted eligible.
Furthermore, the studies with the best results in terms of average classifica-
tion accuracy were identified, and the ten best results considering as many
classification problems were highlighted.

Most of the analyzed works adopted Classical ML or TL approaches to
deal with the generalization problem. In particular, TL methods received a
considerable attention from the scientific community, as their basic frame-
work is particularly suited to the EEG Emotion Recognition generalization
problem. In spite of their limitations (i.e., the need for target data during
the training stage), today DA methods result to be particularly encouraging
to handle the EEG Emotion Recognition generalization problem. DG meth-
ods aim to achieve a more generalized approach compared to DA, which
relies on target data availability. However, due to the challenging nature of
this approach, current DG methods generally have lower performance than
DA approaches in the task of Emotion Recognition. Finally, works relying
on simple ML methods combined with proper normalization strategies lead
to interesting results with a low computational load. This can be due to
the ability of some simple transformations to project data into spaces where
shared characteristics between the domains are emphasized.

An interesting perspective based on self-organized graph construction
modules emerged as peculiar strategy. This suggests how the adaptive fea-
ture extraction procedures represent an interesting frontier for future studies
in this area, not excluding the potential of using this approach in combination
with DA/DG techniques.

Future research on EEG-based emotion assessment could also benefit from
administering psychometric questionnaires to participants in order to con-
duct a psychological screening of the experimental sample. This could help
to understand individual differences in emotional responses, leading to clus-
tering of subjects also taking into account the different subjects’ personality.
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Acronyms

A-DNN - Adversarial Deep Neural Network
AD-TCN - Adversarial Discriminative Temporal Convolutional Network
ASFM - Adaptive Subspace Feature Matching
ASI - Add-Session-In
ATDD-LSTM - Attention-based LSTM
BiDANN - Bi-hemispheres DANN
BiHDM - Bi-Hemispheric Discrepancy Model
BiLSTM - Bidirectional LSTM
BiVDANN - Bi-lateral Variational Domain Adversarial Neural Network
CS - Common Space-based
DAN - Deep Adaptation Network
DANN - Domain Adversarial Neural Network
DASC - Domain Adaptation Subject Clustering
DASRC - Domain Adaptation Sparse Representation Classifier
DDC - Deep Domain Confusion
DECNN - Dynamic Empirical Convolutional Neural network
DGCNN - Dynamical Graph Convolutional Neural Networks
DG-DANN - Domain Generalization DANN
DResNet - Domain Residual Network
ESN - Echo State Network
GNB - Gaussian Naive Bayes



HO - Hold Out

IRS - Instance Reweighting and Selection

LOO - Leave One Out

LSTM - Long short-term memory

MACI - Multi-Source Co-adaptation Correlation Information
MDTDDL - Multi-source Domain Transfer Discriminative Dictionary Learn-
ing modelling

MEERNet - Multi-Source EEG-based Emotion Recognition Network
MIDA - Maximum Independence Domain Adaptation

MSDAN - Multi-Spatial Domain Adaptation Network

MS-MDA - Multi Source-Marginal Distribution Adaptation

MSSA - Multi-Subject Subspace Alignment

Na - not available

NCA = Neighborhood Component Analysis

O20SE - ONE-TO-ONE-SESSION

PLRSA - Progressive Low-Rank Subspace Alignment

PPDA - Plug-and-Play Domain Adaptation

R2G-STNN - Regional To Global Spatial-Temporal Neural Network
RCNN - Residual CNN

RF - Random Forest

RFE - Recursive Feature Elimination

RGNN - Regularized Graph Neural Network

RPCA - Robust Principal Component Analysis

SAAE - Subspace Alignment Auto Encoder

SBS - Sequential Backward Selection

SDA-FSL - Single-Source Domain Adaptive Few-Shot Learning Network
SE2SE - session-to-session

SOGNN - Self-Organized Graph Neural Network

sp - self-produced

css - Specific+Common Space-based

SSB - Shared Space-Based

STM - Style Transfer Mapping

SU2SU - subject-to-subject

SVM - Support Vector Machine

TCA - Transfer Component Analysis

TDANN - Two-Level Domain Adaptation Neural Network

TPT - Transductive Parameter Transfer

TRFE - Transferable Recursive Feature Elimination



TSB - Target Space-Based

UDA - Unsupervised/Semi-supervised Domain Adaptation

VAE - Variational Auto Encoder

WGANDA - Wasserstein Generative Adversarial Network Domain Adap-
tation

wMADA - Wasserstein-Distance-based Multi-Source Adversarial Domain
Adaptation
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Table 1: Reviewed studies on generalization strategies for emotion recognition. Datasets
used, classifiers, evaluation strategy, and type of generalization (i.e. intersubjects, cross
sessions and cross datasets) are presented for each entry in the table. (sp = self produced,
nl = not labeled; for the other abbreviations see section 8).

Classifier Category H Study ‘ Dataset ‘ Classifier ‘ Evaluation Strategy ‘ Cross Subject | Cross Session | Cross Dataset
I [70] | DEAP | TRFE | LOO | X | | |
| [65 | DEAP, MAHNOB,sp | RF | LOO | X | | X |
Il 166] | DEAP, SEED | svM | LOO \ X \ \ \
I (84 | SEED, DREAMER | DGONN | LOO | X | | |
Il 67 | DEAP, SEED | svM | LOO | X | | |
I| [68] | DEAP, sp | SBS | LOO | X | | |
Il 169] | DEAP | TRFE | LOO \ X \ | |

CLASSICAL ML || [73] | DEAP, SEED | VAE-LSTM | LOO \ X \ \ \
I [76] | DEAP | svM | LOO | X | | |
| [79 | DEAP, MAHNOB, DREAMER|  SVM | LOO | X | | |
I (7] | DEAP, MAHNOB | RFE | LOO | X | | |
I (72 | SEED | DECNN | LOO | X | | |
Il 175 | DEAP, SEED | VAE-LSTM | LOO \ X \ \ \
Il 177 | SEED | svM | LOO \ X \ | |
Il 178 | SEED | SsVM | LOO | X | | |
Il 83 | ASCERTAIN | BILSTM | LOO \ X \ \ \
Il 185 | SEED, SEED IV | SOGNN | LOO \ X \ \ |
I 164 | SEED, sp | PISVM | LOO | | X | |
| [163] | DEAP | svM | LOO | X | | |

UDA (IRS) | [149] | DEAP |  NCA | LOO | X | | |

|| [168] | SEED | DMATN | LOO | X | | |

Il 189 | SEED | ASFM | LOO \ X \ X | |

SHALLOW DA (TSB) || [90] | SEED | MSSA | LOO \ X \ \ \
I 92 | MDME, SDMN |  RPCA | ASI | | X | |

|| 193] | SEED | ST™M | LSO | X | | |

I 97 | SEED | TCA | LOO | X | | |

| [105] | SEED | SAAE | SU2SU, SE2SE, LOO | X | X | |

|| [106] | SEED | TPT | LOO | X | | |

SHALLOW DA (SSB) || [107] | DEAP, SEED | MDA | LOO | X | | X |
I (98] | SEED | TCA | LOO | X | | |
| o2 | DEAP, SEED | DASRC | LOO \ | X | X |
L 9] | » | toa | o | x| |
|| [120] | SEED | DANN | LOO | X | | |
| [116] | SEED, SEED IV |  DAN | LOO | X | | |
| [121] | SEED | BIDANN | LOO | X | | |
Il [38] | DEAP | WGANDA | LOO \ X \ \ \
| [ | SEED | DDC | LOO | X | | |
| [130] | SEED | R2G-STNN | LOO | X | | |
|| [131] | DEAP, SEED | nl | LOO, SU2SU, O20SE | X | X | |
| [123] | SEED, SEED IV, MPED | B{HDM | LOO | X | | |
| n26] | SEED, SEED IV | RGNN | LOO \ X \ \ \
| [129] | SEED, sp | TDANN | LOO | X | X | |

DEEP DA (CS) || [133] | SEED, CMEED | ADNN | LOO | X | | |
|| [134] | DEAP, SEED, CMEED | ATDD-LSTM | LOO | X | X | |
|| [117] | sp |  MSDAN | LOO | X | | |
[| [132] | SEED | nl | LOO | X | | |
| (137 | SEED | ul | LOO | X | | |
| [143] | SEED | TDANN | SU2SU | X | | |
| [144] | DEAP, SEED | SDA-FSL | LOSO | X | | X |
| [147] | DEAP, SEED | MACT | LOO | X | | X |
Il 48] | DEAP, SEED | PLRSA |  LOO,SU2SU | X \ X \ \
| [124] | DEAP, DREAMER | AD-TCN | LOO | X | | X |
| [122] | SEED | BHDM | LOO | X | | |
| [152] | DEAP, SEED | MDTDDL | LOO | X | | X |




Classifier Category H Study ‘ Dataset Classifier Evaluation Strategy | Cross Subject | Cross Session | Cross Dataset
| 23 | SEED | PPDA | LOO | X | | \
|| [154] | SEED, SEED IV | MEERNet \ LOO \ X \ X | |

DEEP DA (CSS) || [173] | DEAP, sp | DASC | LOO | X | | |
|| [156] | SEED \ MS-MDA \ LOO \ X \ X \ \
|| [155] | SEED | wMADA | LOO | X | | |

UDA (HYBRID) || [165] | sp | GNB | ASI | | X \ \
|| [166] | DEAP | ESN | LOO | X | | |
|| [158] | DEAP, SEED, sp | ul \ LOO \ X \ | X \

SUPERVISED DA || [113] | DEAP, SEED | RCNN | LOO | X | | X |
|| [160] | DEAP, SEED | Densenet | LOO | X | | |

DEEP DG || [171] | SEED | DG-DANN, DResNet | LOO \ X \ \ \
|| [174] | DEAP, SEED | BiVDANN | LOO | X | | |

Table 2: The most representative studies according to their classification accuracy, cate-
gorised by EEG dataset (SEED, DEAP, others), by number and type of classes considered.
DIM = Dimensional; DIS = Discrete; sp = self-produced.

Proposed Study|Dataset Reference #Classes Accuracy
category Theory
SUPERVISED DAH [158] ‘ DEAP ‘ DIM (VAL) ‘ #2 (LV/HV) ‘ 72.81 + 5.07 ‘
H ‘ Other DIM (VAL) ‘ #2 (LV/HV) ‘ 81.80 + 10.92 ‘
UDA (IRS) H [166] ‘ DEAP ‘ DIM (VAL) ‘ #3 (LV/MV/HV) ‘ 68.06 + 10.93 ‘
DEEP DA (CSS) || [173] | DEAP | DIM (VAL-ARO) #2 (LV/HV) 73.90 + 13.50 (VAL)
#2 (LA/HA) 68.80 & 11.20 (ARO)
DEEP DA (CS) || [131] | DEAP | DIM (VAL-ARO) | #4 (LALV-HALV- 62.66 + 10.45
LAHV-HAHV)
DEEP DA (CS) H [144] ‘ SEED ‘ DIM (VAL) ‘ #2 (LV/HV) ‘ 97.66 + 14.46 ‘

DEEP DA (Cs) || 134] #3 (LV/MV/HV)

SEED ‘ DIM (VAL)

90.92 £+ 1.05 ‘

Other | DIM (VAL-ARO) #2 (LV/HV) 94.21 + 5.88 (VAL)
#2 (LA/HA) 88.03 £ 6.32 (ARO)

DEEP DA (CS) || [129] | Other |DIS (HAPPY, SAD|#2 (JOY/SADNESS)| 83.79 + 1.55 (JOY/SAD)
FEAR, ANGER) | #2 (JOY/ANGER) [84.13 + 1.37 (JOY/ANGER)
#2 (JOY/FEAR) | 81.72 + 1.30 (JOY/FEAR)

CLASSICAL ML || [85] | Other |DIS (HAPPY, SAD| #4 (HAPPY/SAD/ 75.27 £ 8.19
FEAR, NEUTRAL)| FEAR/NEUTRAL)




