
15 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enhancing the Reliability of Split Computing Deep Neural Networks / Esposito, G.; Guerrero-Balaguera, J. -D.; Condia, J.
E. R.; Levorato, M.; Reorda, M. S.. - (2024), pp. 1-7. (Intervento presentato al convegno 2024 IEEE 30th International
Symposium on On-Line Testing and Robust System Design (IOLTS) tenutosi a Rennes (FR) nel 03-05 July 2024)
[10.1109/IOLTS60994.2024.10616071].

Original

Enhancing the Reliability of Split Computing Deep Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS60994.2024.10616071

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993329 since: 2024-10-11T13:41:11Z

IEEE

Enhancing the Reliability of Split Computing Deep
Neural Networks

Giuseppe Esposito∗, Juan-David Guerrero-Balaguera∗, Josie E. Rodriguez Condia∗,
Marco Levorato†, Matteo Sonza Reorda∗

∗Politecnico di Torino - Department of Control and Computer Engineering (DAUIN), Turin, Italy
{giuseppe.esposito, juan.guerrero, josie.rodriguez, matteo.sonzareorda}@polito.it

†University of California - Computer Science Department, Irvine, US
levorato@uci.edu

Abstract—1Artificial intelligence is becoming increasingly pop-
ular for IoT applications in safety-critical fields (e.g., autonomous
systems and biomedical, robots). Unfortunately, the inference’s
workload process alone increases as the model size grows. To meet
the computational power limitations of mobile devices running
IoT applications, modern services sometimes resort to the Split
Computing paradigm. Split Computing divides the inference
process of a Neural Network into Head and Tail for their
execution in a mobile device and a server, respectively, which
also allows the reduction of the overall IoT device’s computational
cost. Nonetheless, Split Computing can be used in safety-critical
fields where reliability is crucial, especially when mobile devices
have computational and cost restrictions.

This paper introduces hardening techniques acting on the
software to mitigate the effects of hardware faults on Split
Computing models. The proposed hardening techniques consist
of i) a bounded activation function whose thresholds are refined
by training, and ii) a per-channel bounding of the bottleneck
quantization of the split points. To quantitatively assess their
effectiveness, we resorted to two different split configurations
of a model for image classification. In addition, we considered a
Split Computing model for object detection. Our findings indicate
that the proposed approaches effectively reduces fault effects by
3.5% for image classifiers and 5.73% for object detectors when
compared with other hardening approaches for general DNNs.

Index Terms—Split Computing (SC), Neural Networks, Hard-
ening strategies, Computer Vision, Reliability.

I. INTRODUCTION

Recently, Deep Neural Networks (DNNs) have increased
in popularity in the implementation of Artificial Intelligence
(AI) algorithms on IoT systems. Due to the high computa-
tional power that AI algorithms require to perform inference,
their execution often resorts to High-Performance Computing
systems or powerful AI accelerators (e.g., Tensor Processing
Units, or ’TPUs’) operating in parallel matrix multiplications
and simpler operations, so significantly speeding up the whole
process. Mobile devices typically use Commercial-Off-The-
Shelf (COTS) hardware to accomplish the task the DNN
is aimed at, which can affect the software implementation

1This work has been supported by the National Resilience and Recovery
Plan (PNRR) through the National Center for HPC, Big Data and Quantum
Computing.

and raise concerns for safety-critical applications with strong
reliability requirements due to potential hardware faults. AI
algorithms are pervasive in a wide range of applications such
as avionics [1], nuclear power plants [2], and automotive [3].

Aside from the reliability requirements of IoT applications,
the limited capabilities that mobile devices provide often
need a careful optimization in terms of memory, power, and
energy consumption. The optimization can be accomplished
by reducing the complexity of the model using strategies such
as quantization, Neural Architecture Search and Knowledge
Distillation [4]–[7], facing the challenge of finding the best
trade-off between model accuracy and model size. In the lit-
erature, workload optimization and model accuracy balancing
for mobile devices is achieved by means of Split Computing
(SC): a strategy to distribute the DNN data processing between
the IoT device and the cloud [8]. Given the total number of
layers (L) that compose a DNN, SC consists of deploying
the first subset of l layers, denoted as Head, on the mobile
device and the remaining subset of layers, denoted as Tail, on
the cloud/edge server [9]. This implies that, during inference,
the intermediate output of the DNN (a.k.a. feature map)
is sent to a cloud/edge server through a wireless connec-
tion. In the case of deep models, the high dimensionality
of the intermediate output might not meet the constraints
that the bandwidth imposes. For this reason recent studies
[10] have proposed tuning techniques acting on the splitting
point position between Head and Tail model, along with a
compression mechanism (e.g., replacing one layer by one, or
a block, of bottleneck layers) that injects an encoder-decoder
structure at the splitting point. By doing so the encoder, which
becomes part of the Head model, decreases the depth of the
output, and the decoder, deployed on the cloud, effectively
reconstructs the intermediate output. Although the decreased
amount of information that is transmitted through the wireless
connection, the depth reduction performed on the encoder’s
output poses some limitations from the reliability perspective,
because of the information loss. Specifically, a possible early
corruption of the DNN arising from a hardware fault is likely
to impact wider patches of the feature map.

Unfortunately, recent studies have shown that the commer-
cial hardware used by mobile and IoT devices can be affected
by hardware faults during in-field operation [11], and the979-8-3503-7055-3/24/$31.00 ©2024 IEEE

Fig. 1. Supervised Compression for Split Computing design paradigm, [15].

fault probability increases as semiconductors advances. These
faults can be caused by internal defects, e.g., due to premature
aging, or external impacts like radiation effects. Especially in
applications in which the Head model is deployed on mobile
devices to support safety-critical applications (e.g., drones and
self-driving cars [12]), the sensitivity of the DNN to hardware
faults must not be underestimated since they might cause
disastrous consequences e.g., car accidents.

Previous work focuses on the reliability evaluation of SC
models rather than enhancing their resilience to permanent
faults. In [13], the authors proposed an analytical model
for estimating the reliability of SC systems. On the other
side, authors in [14] experimentally performed a reliability
assessment deducing that the average number of predictions
affected by faults arising from all the layers deployed on
the mobile device can reach 85%. Clearly, these studies do
not provide an experimental assessment of their hardening
techniques on split computing DNNs or SC-based strategies
for reliability improvement.

In this work, we propose, for the first time, two hardening
techniques at the application level tailored for SC models
(Adaptive Clipper and Saturation Quantizer). The first tech-
nique (Adaptive Clipper) enhances the efficacy of a further
training step, based on the original SC training pipeline,
after restricting the activation function’s mapping range. The
second solution (Saturation Quantizer) explores the effects
of a per-channel quantization strategy, where the outliers are
cut off from mapped entries distribution. The comparison in
SC DNN resilience with two existing techniques adapted to
SC architectures showed a noteworthy improvement, which
outperforms one of the two reference methodologies.

The paper is structured as follows: Section II presents an
overview of SC, supervised compression of DNNs, and strate-
gies used to enforce DNN robustness. Section III describes the
proposed hardening techniques along with the fault injection
framework for the SC DNN reliability assessment. Section IV
details the experimental setup for several split DNN models
trained for image classification and object detection tasks.
Section V introduces the experimental results. Section VI
concludes the paper and discusses future work.

II. RELATED WORK

A. Split Computing

Nowadays, IoT systems have become much more sophisti-
cated with the integration of AI applications. However, these
applications usually require more computational power than

mobile devices can provide due to their power and computa-
tional constraints. An area of recent IoT research focuses on
finding a trade-off between the constrained resources of low-
power devices and AI model accuracy. Split Computing is a
promising architecture paradigm for achieving this goal [12].
Most challenges of SC models are related to identifying the
most efficient trade-off among energy consumption, latency,
and performance. Given the model (D) composed of L layers,
SC divides D into Head and Tail as indicated in Fig. 1. The
Head model consists of the first l layers of the AI model and
is executed on the mobile device, generating intermediate out-
puts. These features are transmitted wirelessly to an edge/cloud
server to proceed with Tail’s inference. The Tail utilizes the
last L − l layers of D to process the input feature map
transmitted from the device. The inference result may then
be transmitted back to the mobile device to complete the task.
The work presented in [15] utilized supervised compression to
accomplish the task of lightening the transmitted information
through the connection with some modifications to the original
neural network architectures. The process entails replacing a
segment of the initial architecture of the deep neural network
with an encoder-decoder structure at the split point. This
results in the encoder becoming a component of the head
model on the mobile device, while the decoder becomes a part
of the tail model. The feature compression itself is carried
out by a series of bottleneck layers in the early stages of
the network [10]. One technique for supervised compression
is In-network neural compression, also known as Channel
Reduction and Bottleneck Quantization (CR+BQ). [16]

One of the most recent trends in object detection archi-
tectures is to process intermediate DNN’s output to detect
elements in the image, but, by doing so, designing any split
architecture becomes unfeasible, since the introduction of the
encoder-decoder structure would break the forward process of
the split model. Object Detectors such as YOLOv4, which
present those strong limitations, were not included in the
model selection as they would break the entire inference
process.

B. Hardening strategies for Split Computing Neural Networks

There exist a variety of techniques to improve the de-
pendability of a system including fault prevention, removal,
tolerance, and prediction. Many research works suggest that
DNNs have inherent resilience to faults [17] but the safety-
critical applications require higher resiliency to hardware
faults. Both software and hardware can be designed to mitigate
faults that may impact a system’s dependability. Therefore, the
authors of [18] divided strategies for robustness improvement
into four categories: i) Model-based approaches: the goal is
to derive a model that meets the performance requirements.
By construction, when mapped onto hardware, it is capable of
tolerating certain hardware-level faults. ii) Proactive hardware-
based techniques: the objective is to enable the accelerator
design to passively tolerate specific hardware-level faults. iii)
Reactive hardware-based techniques: the objective is to enable
the accelerator to respond to faults in real-time, with built-in

monitoring of fault occurrence and low-latency error recovery
whenever a fault occurs. iv) Cross-layer approaches: the model
and hardware share an objective of error tolerance.

The most common approaches for improving the system’s
reliability fall into the second category. Specifically, one
possible idea is to customize activation functions occurring
at the end of each convolutional block. Typically, activation
functions are clipped with thresholds, based on training dataset
statistics (e.g., the absolute maximum detected at each acti-
vation function) [19] or according to a fine-tuning algorithm
that maximizes a reliability index [20], [21]. Moreover, the
activation functions’ shape can be customized by smoothing
the mapping function at the extreme points with fine-tuned
thresholds [22]. The authors of [23] proposed to dynamically
update the clipping thresholds to selectively protect layers
output based on the corresponding feature maps distributions.

In [24] it is proposed to redesign the maxpool layer of
CNNs so as to alter the fault propagation. The authors halt
the processing of the frame and move on to the next frame, or
use the second largest element if it is reasonably small and if
the value of the max element is higher than a threshold. The
authors of [25] employed an approach based on clipping all
ReLU functions with 6 as the upper bound and then swapping
the BatchNormalization layer and, ReLU activation function
such that the check is performed directly on the Convolutional
layer, which is the most power expensive and then vulnerable
to faults.

However, to the best of our knowledge, the effects of the
mentioned techniques have never been evaluated on SC DNNs
and, consequently, ad-hoc designed hardening strategies have
not been proposed, yet. Consequently, this study presents the
employed methodology to protect SC Neural Networks trained
with CR+BQ supervised compression.

III. METHODS

This section proposes two solutions to improve the relia-
bility of mobile devices in SC systems comprising embedded
COTS GPUs,: i) Adaptive Clipper, which performs a further
training step that is biased from statistics extracted from the
fault-free model, and ii) Saturation Quantizer, which re-
moves extreme outliers from the input feature map. Moreover,
two state-of-the-art hardening techniques, originally intended
for general-purpose DNNs, were adapted to the SC models to
compare their hardening effects in SC paradigm.

COTS execute the inference of lightweight head models
under minimal specialized infrastructures to extend their relia-
bility and fault tolerance. In addition, we assessed the SW-level
robustness against hardware-aware faults in the mobile device
side as the sole threat to the SC system’s reliability. Hence,
it is assumed that the communication system and edge/cloud
server operate correctly.

As discussed in [26], bit-flips in DNN weights are suitable
for modeling the occurrence of a permanent fault in mem-
ory elements. However, each neuron of convolutional layers
represents the output of an inner product between the input
vector x and the weights matrix w. Consequently, flipping the

MSB (i.e., bit position with the highest value in a real number
binary representation) of a w’s entry, can cause a substantial
change in weight value along with the produced output. The
propagation of the mentioned fault leads to a prevalence of
critical faults. Therefore, fault injection often leads to values
very close to 0 or, in the opposite case, to very high values;
this implies that any scalar product involving the convolutions
or BatchNormalization operation may result in NaN , ∞, or
extremely high values whose propagation is likely to cause
system failures. The following sections will first outline the
best practices and the main limitations of the SC that are
considered during the adaptation of models generally used
for the deployment to report a real case. Subsequently, the
implementation process of Adaptive Clipper and Saturation
Quantizer is detailed.

A. Split Computing Neural Network models preparation

The depth and, consequently, the not-negligible workload
of an inference step deployed from the head of SC models on
mobile devices, requires the adaptation of new SC architec-
tures to the SC training framework [27]. The model selection
was performed by considering both the suitability of the split
in terms of encoder-decoder design and the constrained power
resources that the mobile device, used to execute the DNN,
is provided. It is currently best practice to use residual blocks
in the design of a new feature extractor. This tool utilizes
the linear mapping of the input (i.e. skip connections) to the
output of the corresponding convolutional block. The redesign
of the original architecture must take into account the skip
connection, which enables deeper model training [28], [29].
This ensures that the forward pass of the data through the
network is not interrupted while the model is still able to learn
to accomplish the task it is aimed for.

During the bottleneck design process, the best approach
is to not replace the first pretrained convolutional block of
the teacher model with the encoder architecture such that
the extraction process focuses on target high-level features.
Additionally, it is important to keep the bottleneck output
feature map spatial dimensions fixed to those of the original
layers. This ensures that the Mean Squared Error (MSE)
between the corresponding outputs of the subsequent layers
can be coherently computed along with the composition of
the resulting loss function.

Eventually, the hyperparameter configurations, used during
the training phase, are set to closely match the original strategy
used for teacher training in terms of learning rate scheduler,
data transformations and batch size.

B. Adaptive Clipper

Figure 2 outlines the hardening process of an SC DNN with
Adaptive Clipper. The Rectified Linear Unit (ReLU) activation
function is the particular case of Hard Hyperbolic Tangent
(HardTanH) where, given the input feature map x, the entries
are mapped to 0 if x ≤ 0; otherwise, an identity function is
applied. The aim is to replace activation functions at the end

Fig. 2. Adaptive Clipper implementation

Fig. 3. Saturation Quantizer truncated quantization process.

of convolutional blocks with a clipped version to minimize the
resulting overhead.

Given the pretrained student model S, the distribution of
the feature maps at the end of each convolutional block is
profiled such that their maximum (max) can be computed
through an inference step of training data. Consequently, the
encoder’s ReLU layers are replaced with HardTanH functions
where the lower bound is set to 0 and max is used as the
upper bound of the HardTanH function according to the step
function in Equation 1. This ensures that the model maintains
not only the non-negativity property of the ReLU output but
also fixes the extreme statistics of our target distribution. Once
the new model has been designed, a new training step resorts
to the corresponding not-hardened SC DNN training strategy.
By doing so, the weights are adjusted at each parameter update
according to the new reference distribution statistics improving
the inherent robustness of the system.

HardTanH(x,max(x)) =

0 for x ≤ 0

x for 0 < x < max(x)

max(x) for x ≥ max(x)
(1)

C. Saturation Quantizer

Supervised Compression for Split Computing [15] relies on
the channel-reduction and quantization of mid-level feature

maps (a.k.a. Neural Compression) to avoid a bottleneck in
the wireless connection through the injection of an encoder-
decoder architecture. This includes the quantization of the
encoder block output by mapping the tensor entries to the
interval [0, 255], where the min and max of the input distribu-
tion correspond to the lower and upper bounds, respectively.
255 is typically chosen as the upper bound such that when the
mapped tensor is cast to int8, the entries distribution cover all
the available bit-space while the information loss is minimized.
Eventually, mapped data are cast to int8. Such quantization is
performed with statistics (max and min) computed at runtime.
Then, when a fault has significant effects on mid-level outputs
(e.g., sharp increase), the distribution of input tensor entries
may be significantly skewed towards small values due to the
presence of outliers, which then become the maximum value
of the distribution and max subsequently mapped to 255. As
illustrated in Fig. 3 the aim of the Saturation Quantizer tech-
nique is to cut off the outliers from input entries distribution
by truncating it before 5th and after the 95th percentiles.
By doing so, Saturation Quantizer is able to cut extreme
outliers off from the distribution and avoid the sharp increase
of the skewness degree in the input distribution. The beneficial
effects of such a technique are further enhanced by computing
the statistics of interest from the distribution designed by each
channel of the feature map. This implies an increase in the
computational cost that is tolerable since the quantization is
executed only once per input batch.

IV. EXPERIMENTAL SETUP

The evaluation of our hardening approaches are tested
through a set of Fault Injection campaigns on the layers’
weights tensor of the SC Head model to observe the impacts
of permanent faults on two tasks: i) SC MobileNet V3 Small
Classifier for image classification with 2 split configurations
which involve channel reduction to 6 and 12 channels tested
on CIFAR10, and ii) SC Single Shot Detection (SSD) 300 with
backbone VGG16 for object detection with channel reduction
to 6 channels tested on COCO 2017. We specifically used
the Channel Reduction + Bottleneck Quantization (CR+BQ)
method, which involves the point-wise quantization of the
encoder output feature map from floating-point to 8-bit format.

To compare our approaches (Adaptive Clipper and Satura-
tion Quantizer) with state-of-the-art techniques, we adapted
Ranger [19] and Swap ReLU6 [25] (based on the swap Batch-
Normalization and ReLU operators within a convolutional
block), to SC paradigm and used them as a reference for
the resiliency improvement of SC models. Since the results
from the original works of the mentioned strategies reported
beneficial effects on the image classifier, the hardening ef-
fect of such strategies was tested, in the Split Computing
paradigm, for the 2 split configurations of the SC MobileNet
V3 Small Classifier. Moreover, both the object detector and
the image classifier are compared with the non-protected DNN
(baseline). The considered metrics of interest are the overhead
that the different implementations add to the baseline, the
percentage of faults that the protected model can cover over

all injected faults, and the relative degradation of the metric of
interest for each task. Specifically, for image classification, we
considered the Mean Relative Accuracy Degradation (MRAD),
and for object detection we considered the Faulty Intersection
over Union (Faulty IoU), which is the ratio between the
overlapping pixels over the total number of pixels between the
bounding box predicted by the golden model and the bounding
box predicted by the corrupted model.

The object detection Fault Injection campaigns were per-
formed, on a 6 node cluster with 2 Intel 16-cores Xeon
Scalable Processors Gold 6130 2.10 GHz, and equipped with
6 NVIDIA Tesla V100 SXM2, and 32 GB of RAM. Similarly,
the Fault Injection campaigns related to image classification
tasks were deployed on a workstation HP Z2 G5 with an
Intel Core i9-10800 CPU with 20 cores, 32 GB of RAM, and
equipped with an NVIDIA Ampere GPU RTX 3060TI.

To conduct reliability evaluation on SC DNNs, our fault
injection framework resorts to a runtime perturbation tool
for PyTorch-implemented models [14] based on PyTorchFI
[30]. This framework enables the perturbation of either a
DNN learnable parameter or a neuron through the use of a
user-defined function. The proposed method configures the FI
campaign through a configuration file that includes operational
specifications, such as the DNN target model, the layer or set
of layers subject to perturbations, and the split point location.
This initializes the SC model and sets the target layers for
the injection. Moreover, the experiment confidence level can
be set, along with the error margin and the fault instances
probability, and consequently, the number of faults to inject is
computed referring to the analytical model detailed in [31].

Based on the model under testing, the position of the
learnable parameters to corrupt is randomly extracted from a
Uniform distribution within the weights tensor corresponding
to the layer to corrupt. Therefore, the FI campaign is executed,
and the stuck-at faults are injected while the model evaluates
the test set of the same dataset on which it was trained.
The collected inference results are then sent to the report
generation module, which performs some data preparation for
further analysis. The framework classifies injected faults as i)
Critical Silent Data Corruption (SDC), when the error induces
a misclassification, ii) Safe SDC, when the corruption changes
the confidence level of the prediction but not the assigned label
or iii) Masked, when the prediction does not change according
to the severity of the effect of the corruption on the model’s
behavior.

V. EXPERIMENTAL RESULTS

This section reports and analyzes the experimental results of
Fault injection campaigns on hardened SC models for image
classification considering CR+BQ with channel reduction to 6
and 12 channels for SC MobileNetV3Small Classifier where
targeted layers (i.e., 0,1,2) are executed on the mobile device
with 5% of error margin and 50% of fault instances probability.
For object detection, we considered split configuration with
channel reduction to 6 channels for SSD300 with VGG16
where targeted layers belong to the Head model (i.e., 0,

Fig. 4. Percentage of Critical-SDCs on the SC Mobilenet V3 Small Classifier
with 2 split configurations: 1) 6 channels reduction (left) and 2) 12 channels
reduction (right) per injection layer on the evaluated hardening strategies and
the original SC model (Baseline).

1, 2, 3, 4). Moreover, it is provided an estimation of the
additional overhead that the adaptation to SC paradigm of
the considered techniques implies at inference time. The
campaigns performed for both tasks satisfy a 5% error margin
and 50% fault instances probability while the confidence level
is set to 99% for image classification and to 98% for object
detection.

A. Image Classification

As observed in the results of Fig. 4 Adaptive Clipper pro-
vides a positive effect in the reduction of miss-classifications
(from 17.73% and 14.31% less Critical-SDCs) regardless of
the split configuration and the injection layer for those mod-
els accomplishing Image Classification tasks. Despite Swap-
ReLU6 and Adaptive Clipper are based on the same intu-
ition of Ranger, they overall demonstrate higher effectiveness,
which enhances the importance of their additional step of
model retraining to adapt the mid-level outputs to the target
feature map distributions. Moreover, a slight increase in fault
coverage can be noticed in Adaptive Clipper when the split
configuration with a reduction to 12 channels is used. In this
case, the number of kernels used at the split point and the
number of channels of the corresponding output feature map
from the teacher are closer, therefore it is easier for the feature
extracted from the student to fit the original distribution,
limiting the loss of information and consequently increas-
ing resiliency. The beneficial effects of Saturation Quantizer,
shown in Fig. 4, are independent from the Split Configuration,
showing a constant and moderate trend of fault coverage
increase ranging from 1% to 3.2%.

In addition to the coverage, we considered also a suitable
metric to compare the performance degradation in the presence
of faults. For image classification, we chose the Mean Relative
Accuracy Degradation (MRAD) which focuses on the rate of
decrease in the Top1 accuracy of the faulty model compared
with the Top1 accuracy of the fault-free model (Golden
model). Fig. 5 provides key information about the type of
faults detected by the different techniques. Specifically, it high-

Fig. 5. Mean Relative Accuracy Degradation (MRAD) on SC Mobilenet V3
Small Classifier with 2 split configurations: 1) 6 channels reduction (left) and
2) 12 channels reduction (right) for the evaluated hardening strategies and the
original SC model (baseline) when varying the faulty bit position.

Fig. 6. Percentage of masked faults produced by SC SSD300 with VGG16
object detector with split configuration concerning channel reduction to 6
channels per injection layer by proposed hardening strategy compared to the
original SC student model (Baseline).

lights the capability of activation clipping-based techniques to
cover the MSB bit-flips as expected from the method presented
in section III.

B. Object Detection

Since Object Detectors perform 2 downstream tasks (regres-
sion of box edges and box label classification), the severity
assessment of the metric degradation focuses mainly on the
comparison of the area and on the overlapping w.r.t. the golden
model predictions. Then, the evaluation of such models relies
on the Faulty IoU score, the percentage of overlapping over
the total number of pixels involved into the golden, and the
faulty prediction. Fig. 6 depicts the coverage of Adaptive
Clipper along the injection layers reaching 10% of additional
Masked prediction w.r.t. the Baseline. On the other side,
Saturation Quantizer provides a more limited improvement.
The growing beneficial contribution of Adaptive Clipper is
due to the higher capability of the fault to propagate through
the inference process for the early stages of fault injection.
Further analysis that focused on both Critical and Safe SDCs
revealed that the consequently decreased number of SDCs has
led to the halving of wrongly labeled bounding boxes (from
16.1% to 8.8%) and the decrease of misplaced or misshaped
bounding boxes (from 32.0% to 22.1%).

C. Overhead estimate

When the strategy resorts to model-based approaches, there
is the risk of seriously increasing the deployed workload on

TABLE I
ESTIMATION OF OPERATION’S OVERHEAD

SC Model Ranger Swap
ReLU6

Adaptive
Clipper

Saturation
Quantizer

Mobilenet V3
Small 0.320% 0.160% 0.160% 0.018%

SSD 300
with VGG16 0.031% 0.015% 0.015% 0.018%

the mobile device since they, in turn, resort to a modification
of the original DNN. In fact the hardening techniques might
increase the amount of learnable parameters and, consequently,
the model size. Table I reports the relative overhead for the
proposed strategies. The overhead is computed considering the
number of basic operations (addition, subtraction, multiplica-
tion, division and comparison) and computing the percentage
of increase w.r.t. the baseline model. To make the calculation
fairer, an arbitrary weight is assigned to each operation based
on: computational complexity, memory access patterns and
parallelism and vectorization. It is clear that Adaptive Clipper
makes a contribution that is at least comparable to state-of-
the-art techniques, despite the Saturation Quantizer adding the
lowest overhead to the inference process in both models due to
the single execution of bottleneck quantization per inference
step. The advantage of Adaptive Clipper lies in the replace-
ment of original activation functions with tuned HardTanH
activation functions. This is similar to Swap ReLU6, which
also adds the same overhead, while Ranger adds two additional
checks after the original activation functions that explain the
higher overhead.

VI. CONCLUSIONS

In this work, we proposed two solutions (Adaptive Clipper
and Saturation Quantizer) to enhance the reliability of DNNs
using the Split Computing paradigm. Both solutions focus
on protecting the Head computing part (first part of the
split), which is typically computed on mobile and embedded
devices. The flexibility of the proposed solutions allow the
implementation of the Adaptive Clipper on all SC-based
DNNs, while Saturation Quantizer is more effective on all
SC models that include mid-level output quantization. In
addition, both solutions can be combined to extend system
resilience. The experiments evaluated the effectiveness of both
solutions as hardening techniques under image classification
and object detection tasks. We evaluate both solutions with
respect to state-of-the-art strategies considering their fault
coverage, metrics degradation and the overall overhead.

Our experiment findings highlight the importance of train-
ing when proactive hardware-based techniques (specifically,
clipping the activation functions) are used to enhance the
inherent robustness of the system masking, on average, 5.73%
of hardware faults effects in the object detection model.

As future works, we plan to evaluate the effectiveness of
the proposed techniques on hardware-aware fault injection at
the neuron level and extend the development of new SC DNN
hardening strategies.

REFERENCES

[1] Johnson et al., “A review of fault management techniques used in safety-
critical avionic systems,” Progress in Aerospace Sciences, vol. 32, no. 5,
pp. 415–431, 1996.

[2] P. Kumar, L. K. Singh, and C. Kumar, “Performance evaluation of safety-
critical systems of nuclear power plant systems,” Nuclear Engineering
and Technology, vol. 52, no. 3, pp. 560–567, 2020.

[3] R. Weissnegger, M. Schuss, C. Kreiner, M. Pistauer, K. Römer, and
C. Steger, “Simulation-based verification of automotive safety-critical
systems based on east-adl,” Procedia computer science, vol. 83, pp.
245–252, 2016.

[4] C.-H. Wang, K.-Y. Huang, Y. Yao, J.-C. Chen, H.-H. Shuai, and W.-
H. Cheng, “Lightweight deep learning: An overview,” IEEE Consumer
Electronics Magazine, pp. 1–12, 2022.

[5] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

[6] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha,
K. Banerjee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas et al.,
“Mixed precision training of convolutional neural networks using integer
operations,” arXiv preprint arXiv:1802.00930, 2018.

[7] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 535–541.

[8] L. Sun, X. Jiang, H. Ren, and Y. Guo, “Edge-cloud computing and arti-
ficial intelligence in internet of medical things: architecture, technology
and application,” IEEE Access, vol. 8, pp. 101 079–101 092, 2020.

[9] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[10] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, 2019, pp. 1–6.

[11] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and
P. Bonnot, “Reliability challenges of real-time systems in forthcoming
technology nodes,” in 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2013, pp. 129–134.

[12] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and
early exiting for deep learning applications: Survey and research
challenges,” ACM Comput. Surv., vol. 55, no. 5, dec 2022. [Online].
Available: https://doi.org/10.1145/3527155

[13] J.-D. Guerrero-Balaguera, I. A. Harshbarger, J. E. R. Condia, M. Levo-
rato, and M. Sonza Reorda, “Reliability estimation of split dnn models
for distributed computing in iot systems,” in 2023 IEEE 32nd Interna-
tional Symposium on Industrial Electronics (ISIE), 2023, pp. 1–4.

[14] G. Esposito, J.-D. Guerrero-Balaguera, J. E. R. Condia, M. Levorato,
and M. Sonza Reorda, “Assessing the reliability of different split
computing neural network applications,” in IEEE 25Th Latin American
Test Symposium (LATS), 2024.

[15] Y. Matsubara et al., “Supervised compression for resource-constrained
edge computing systems,” in IEEE/CVF Winter Conf. on Applications
of Computer Vision (WACV), 2022, pp. 923–933.

[16] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[17] A. Gebregiorgis and M. B. Tahoori, “Testing of neuromorphic circuits:
Structural vs functional,” in 2019 IEEE International Test Conference
(ITC). IEEE, 2019, pp. 1–10.

[18] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design
& Test, 2023.

[19] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2021, pp. 1–13.

[20] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon, “Fitact: Error
resilient deep neural networks via fine-grained post-trainable activation
functions,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2022, pp. 1239–1244.

[21] J. Zhan, R. Sun, W. Jiang, Y. Jiang, X. Yin, and C. Zhuo, “Improving
fault tolerance for reliable dnn using boundary-aware activation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 10, pp. 3414–3425, 2021.

[22] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2020, pp. 1241–1246.

[23] Z. Liu and X. Yang, “An efficient structure to improve the reliability of
deep neural networks on arms,” Microelectronics Reliability, vol. 136,
p. 114729, 2022.

[24] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[25] N. Cavagnero, F. Dos Santos, M. Ciccone, G. Averta, T. Tommasi,
and P. Rech, “Transient-fault-aware design and training to enhance
dnns reliability with zero-overhead,” in 2022 IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS).
IEEE, 2022, pp. 1–7.

[26] Y. Liu et al., “Fault injection attack on deep neural network,” in
2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017, pp. 131–138.

[27] “Supervised compression for split computing framework,” https://github.
com/yoshitomo-matsubara/sc2-benchmark.git.

[28] K. He et al., in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016.

[29] A. Howard et al., “Searching for mobilenetv3,” in IEEE/CVF Int. Conf.
on Computer Vision (ICCV), 2019, pp. 1314–1324.

[30] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,” in
50th Annu. IEEE/IFIP Int. Conf. on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 2020, pp. 25–31.

[31] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in Design, Automation & Test in Europe Conf. & Exh.,
2009, pp. 502–506.

https://doi.org/10.1145/3527155
https://github.com/yoshitomo-matsubara/sc2-benchmark.git
https://github.com/yoshitomo-matsubara/sc2-benchmark.git

	Introduction
	Related Work
	Split Computing
	Hardening strategies for Split Computing Neural Networks

	Methods
	Split Computing Neural Network models preparation
	Adaptive Clipper
	Saturation Quantizer

	Experimental setup
	Experimental results
	Image Classification
	Object Detection
	Overhead estimate

	Conclusions
	References

