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Abstract—Impedance Boundary Condition (IBC) is a widely
used approximation in the analysis of metasurfaces, and it
greatly simplifies the design process. However, for some ranges
of impedance values of practical interest in metasurface applica-
tions, the Integral Equation formulation has shown instabilities.
This contribution proposes a way to improve that shortcoming;
the method is based on the property of the involved operators
and the nature of the IBC approximation.

Index Terms—Metasurfaces, Integral Equations, Impedance
Boundary Conditions

I. INTRODUCTION

Surface Impedance Boundary conditions (IBC) are a
widespread tool for the design of metasurfaces of various
types. The associate analysis problem can be cast in terms of
Integral Equations (IE) and, for thin structures, this leads to
the Electric Field Integral Equation (EFIE) which is extended
to incorporate the IBC term (EFIE-IBC).

However, the IBC addition to an IE yields an ill-conditioned
matrix for certain ranges of impedance values [2]. In [1] is
proposed a stabilized CFIE-IBC formulation without draw-
back: unfortunately, this is only applied on closed structures,
leaving the possible ill-conditioned EFIE-IBC formulation for
thin flat structures. A solution presented in [2] considers both
sides of the IBC surface instead of the exterior side only when
the model allows it. This paper will investigate a solution to
the one-side EFIE-IBC instabilities, restrained to open planar
surfaces.

II. BACKGROUND AND NOTATION

The IBC (1) relates the electric to the magnetic fields,

n̂×E = n̂×
(
Zs(n̂×H)

)
(1)

J = n̂×H M = −n̂×E (2)

In this work, we will concentrate on isotropic surfaces, and
constant impedance: this allows us to reduce the complexity
while retaining the problem and allowing us to test solutions
to it. The restriction to isotropic IBC allows rewriting the
tensorial surface impedance Zs as the dyadic identity scaled
by the IBC value ZsI.

The surface current is discretized as a linear combination
of Rao-Wilton-Glisson (RWG) functions [3] denoted Λn,
according to the Method of Moments with classical Galerkin
test method, to give a numerical solution of the EFIE-IBC.
For planar structures, the resulting matrix problem is written

as a summation of the discretized EFIE and the Gram matrix
GΛ relative to RWG functions.[

L− ZsG
Λ
]
· JΛ = V E (3)

where, V E denotes the right-hand vector of the linear
system.

The presence of the IBC term may significantly deteriorate
the conditioning of the EFIE-IBC system [2] for reactive IBC
of the ”wrong” sign; this is exemplified in Fig. 1.

Fig. 1: Condition number of the EFIE-IBC according to Zs = Rs − iXs for
a rectangular patch 0.5λ0 × 0.45λ0 with N = 153 RWG functions

Unfortunately, this prevents the use of the EFIE-IBC in
many practical metasurface problems; partial solutions have
been addressed in [2] by shifting from one-sided (”opaque”)
IBC to two-sided (”transparent”) IBC. That enlarges the range
of applicability of the EFIE-IBC but does not solve the
problem for all cases. The issue was also addressed in [1],
but the solution is not directly applicable to thin structures, as
the metasurfaces are.

In this communication, we propose an approach that signifi-
cantly enlarges the applicability range of the integral equation
approach to metasurfaces.

III. A FILTERED EFIE-IBC FORMULATION

The approach presented here is based on the analysis of the
problem that arises by adding the IBC identity to the EFIE
operator. The issue was addressed first in [2] in terms of matrix
properties, which is briefly summarized here. The identity term
adds to the diagonal (and whereabouts), being weighted by
the impedance value, and may add or subtract to the EFIE
diagonal, which is dominantly imaginary; the presence of the
IBC term clearly can result in rendering the diagonal entries



smaller than the off-diagonal terms, with ensuing effect on
the matrix conditioning. This easily leads to totally unstable
solutions.

We address here the issue of avoiding this ill-conditioning
when the sign of the impedance (reactance) cannot be mod-
ified. We recall that an integral equation with a non-singular
(compact) operator (like in inverse problems) is an ill-posed
problem. The ”prototype” of a well-conditioned problem is
a second-order equation, like the Magnetic Field Integral
Equation (MFIE), in which there is an identity plus a non-
singular operator (i.e. a compact one). If the EFIE is not,
it essentially behaves similarly, because the EFIE operator is
singular, which guarantees the well-posedness of the first-kind
EFIE integral equation. Hence, the addition of an identity term
clearly interferes with the posedness of the problem.

We also recall that the IBC arises as the homogenization
approximation of the real structure composed of unit cells;
in many cases, the value of the approximating impedance
depends on the incidence angle, which would not lead to the
IBC, which instead does not retain this spatial dispersion:
the plane-wave response of an identity operator is clearly a
constant for all wave-vectors.

Thus, we identify the problem of the IBC approximation as
the total spectral flatness of the associated term. We, therefore,
propose to limit the spectral range in which we consider the
EFIE-IBC, where ”spectral” here means plane-wave spectrum
(2D Fourier transform). Hence, we aim at restricting the EFIE-
IBC to a pre-defined region of the wavenumber domain.

In this study, this is addressed in the simplest way, by
using basis functions with predefined spectral occupation;
for this reason, we study a rectangular domain and employ
suitable waveguide eigenfunctions. In order to maintain the
solution scalable to non-rectangular domains, we express the
rectangular modes in terms of RWG basis functions; this
allows us to interpret the use of the former as a matrix
basis change. More importantly, the same operations can be
performed via FFT, thus compatible with fast methods; this
implementation is beyond the scope of the present work.

We use standard waveguide vector modes (which guarantee
div-conforming properties needed to discretize the EFIE).

We then have two representation of the current,

JΛ =

N∑
n=1

αnΛn JΦ =

K∑
k=1

γkΦk (4)

We represent each Φk in terms of RWG functions (5),

Φk(r) =

N∑
n=1

ψknΛn(r), (5)

leading to the eigenfunction filtering EFIE-IBC matrix prob-
lem of (3),

ψT ·
[
L− ZsG

Λ
]
· ψ · JΛ = ψT · V E (6)

This spectral basis spans a subspace with prescribed
wavenumber range; by choosing the number of modes one
determines the spectral range of the solution, thus limiting

the ”infinite band” of the identity introduced by the IBC
approximation

IV. NUMERICAL RESULTS

An XY rectangular patch of length L = 0.5λ and width
W = 0.45λ at frequency f = 2.4 GHz and meshed with
a λ/10 edge length provides an example to observe the
eigenfunction filtering interest. An incident plane wave Einc,
coming from the top, illuminates the surface. Waveguide
eigenfunctions [4] are kept in order to represent spatial varia-
tions up to (kxmax, k

y
max) = (3k0, 3k0).

Fig. 2: Impact of the eigenfunction filtering on EFIE-IBC’s condition number
according to reactive isotropic Zs = −iXs values, N = 153, K = 9

Figure 2 shows both matrix problems (3) and (6) condition-
ing, for reactive impedance surface values Zs normalized by
the intrinsic impedance in free space η0. The eigenfunction
filtering controls the condition number increase that appears
for specific inductive values. As the EFIE-IBC cannot be
solved for the unstable values, we verified instead that the
filtered solution was accurate with respect to the RWG one
for the stable impedance values; the error between the filtered
solution and the standard one stayed between 10−5 and 10−4

for capacitive values Xs = [−5Z0;−2Z0].
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