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ABSTRACT

This work presents a predictive torque vectoring controller that optimally monitors
the vehicle limits of handling using active torque distribution in the rear axle of a
fully electric vehicle. It works in combination with a feedforward controller designed
to improve the vehicle’s agility. The overall torque vectoring strategy is described
together with the vehicle lateral dynamics, sideslip angle estimator, and torque al-
location method. Numerical simulations for various scenarios and road profiles show
the benefits of predicting the vehicle’s handling limits and the enhancement of ve-
hicle stability in terms of reduced vehicle sideslip angle and driver effort. The pro-
posed optimal control method for predicting vehicle handling limit violations does
not require a dedicated solver, making it a promising candidate for real-time appli-
cations. The case study is a vehicle equipped with two rear in-wheel motors in the
framework of HiPERFORM, an ECSEL Joint Undertaking (JU) European research
project. Hardware-in-the-loop (HiL) tests were performed on a dedicated e-axle test
bench to integrate the torque vectoring controller with the real e-motors and a
dual inverter. The results of the HiL testing demonstrate that the torque-vectoring
requirements are satisfied by the hardware configuration in use.

KEYWORDS

electric vehicle; in-wheel motor; torque vectoring; optimal control, feedforward
control

1. Introduction

Electric mobility research is paving the way for the development of new powertrain
layouts to maximize the potential of electric motors. Among all the configurations, ve-
hicles equipped with in-wheel e-motors seem quite promising since intelligent traction
control can be done to improve vehicle dynamics and active safety performance. The
powertrain acts as a chassis actuator in these vehicles, allowing full control of wheel
torque distribution, i.e., the so-called torque vectoring (TV) [1].

Different control strategies can be exploited for torque vectoring control. Typically,
the steering angle information, which is a known exogenous disturbance applied by
the driver, is used to generate either a yaw rate target or a direct yaw moment that
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modifies the dynamics of the vehicle chassis [2]. A comparison of feedback control
techniques for torque vectoring control of fully electric vehicles is presented in [3].
Proportional Integral controller for tracking a desired yaw rate [4] or adaptive lin-
ear quadratic regulators for both rear-wheel drive [5] and all-wheel drive layouts [6,7]
are well-known candidates. Applications of sliding mode controllers for torque vec-
toring, are particularly effective to improve tracking performance in the presence of
plant-model mismatch and disturbances [8]. A common drawback of sliding mode con-
trollers is chattering which can be improved with advanced anti-chattering techniques
[9,10]. More sophisticated feedforward TV control variants have been reported in the
literature either by utilising the flatness properties of a vehicle model [11] or by employ-
ing input-output linearization [12]. In general, a feedforward-based TV can improve
the vehicle’s agility. However, because feedforward operates in an open loop, special
attention should be paid to the plant-model mismatch when using nonlinear feedfor-
ward controllers. Adding a state feedback regulator to compensate for any undesirable
behaviour is a common practice.

The use of model predictive controllers (MPC) for torque vectoring is gaining at-
tention because it offers a unique framework to optimally handle the vehicle dynamics
considering the bounds on the yaw rate and sideslip angle, and the limits of the yaw
moment generator (e-motor torques in the case of fully electric vehicles) or tire slips
[13–16]. Detailed comparison of linear and non-linear MPC-based TV controllers for
a vehicle equipped with a rear e-axis is presented in [16]. Once again, questions have
been raised regarding the real-time implementation of the MPC as well as the relative
balance between performance and complexity of the problem. Using MPC requires
solving a quadratic programming problem in real time which is hard to formulate
when the vehicle model predictor contains tire nonlinearities. Its implementation be-
comes more complex when limits on the yaw rate and sideslip angle are added to the
problem formulation. They should be properly handled by using softening constraints
to avoid infeasibility issues.

In this work, we propose a novel torque vectoring method that generates two yaw
moment contributions: one coming from a feedforward controller that improves the
agility of the vehicle and a state feedback regulator that optimally monitors the vehi-
cle’s handling limits. The latter is based on a nonlinear control problem that predicts
the evolution of the vehicle as well as the limits of handling violation in terms of max-
imum yaw rate and body sideslip angle. The way the control problem is formulated
ensures that a correcting yaw moment is only applied when the vehicle starts to veer
outside of its handling limits. The nonlinear control problem is cast into a quadratic
programming problem without inequality constraints and is hence simple enough to be
solved in real time without the need for a dedicated quadratic programming solver. The
current study attempts, to some extent, to bridge the gap between purely theoretical
simulations and practical concerns about torque vectoring implementation.

The target of the proposed optimal controller is to guarantee vehicle stability similar
to standard Electronic Stability Control (ESC) strategies but acting on rear in-wheel
motors and using the prediction of the vehicle limits of handling. Typically, ESC
variants are activated when the vehicle reaches predefined limits in terms of maximum
allowable yaw rate and sideslip angle. In other words, ECS reacts in a “triggered”
mode only when an unsafe deviation is measured [2, § 5.3] and with no prediction at
all. This work solves the triggering phenomenon and the lack of prediction because
the control problem is formulated to effectively handle the activation and deactivation
of a safe yaw moment generation using the prediction of yaw rate and vehicle sideslip
limits.
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Some studies have proposed predictive torque vectoring controllers based on MPC
formulations that treat the state deviations as inequality constraints, and hence the
limits of yaw rate and body sideslip are predicted and properly handled. However, to
the author’s knowledge, no previous work has investigated the benefits of using these
limits to generate a correcting yaw moment without the need for a dedicated quadratic
programming solver as proposed in this work. The case study is a vehicle equipped
with two rear in-wheel motors in the framework of HiPERFORM, an ECSEL Joint
Undertaking (JU) European research project. The scope of the project includes the
performance evaluation of a rear e-axle, consisting of a dual inverter (Ideas & Motion)
and two in-wheel motors (Elaphe).

The performance of the proposed controller is firstly assessed through numerical
simulations of both open-loop manoeuvres (i.e., by setting a steering angle profile
with no driver on board) and closed-loop manoeuvres (i.e., driver in the loop). It is
also validated by hardware-in-the-loop testing on a dedicated e-axle test rig with real
vehicle components. The dual inverter controls the torque in both in-wheel motors. It
receives, via CAN communication, the wheel torque references from the torque vector-
ing controller. The latter is deployed into dSPACE SCALEXIO AutoBox hardware,
which is a modular real-time system for in-vehicle use. The test campaign is intended
to demonstrate that the hardware configuration in use meets the torque-vectoring
requirements.

The work is organized as follows. The vehicle model formulation is described in
Section 2, which includes details on the modeling of the vehicle tire and of the operation
of the in-wheel motors. The torque vectoring control strategy is discussed in Section 3,
including the two main ingredients: an optimal controller that monitors the limits of
handling and a feedforward controller designed to improve vehicle agility. Furthermore,
in the dedicated subsection, the methodology for the estimation of the vehicle state
sideslip angle is presented. The control framework is completed with a description of
the torque distribution and anti-slip control algorithms. The numerical simulations
are presented in Section 4, with a focus on open-loop manoeuvres and closed-loop
manoeuvres to assess the influence of the state target prediction. Section 5 presents the
performance obtained through the hardware in the loop with the e-axle test campaign.
Finally, Section 6 concludes the work.

2. Vehicle model

The vehicle under study is a full-electric car outfitted with two in-wheel motors in
the rear axle. The goal is to properly handle the torque generated by each motor
to guarantee the requested longitudinal force while, at the same time, generating a
correcting yaw moment to improve the lateral dynamics. The yaw moment and wheel
forces are depicted in a top view of the vehicle in Figure 1.

The lateral dynamics of the vehicle is modeled in terms of yaw rate (r) and sideslip
angle (β) using a dual-track vehicle model as described in [17, § 8.4] and based on the
assumptions of negligible force due to road bank angle, known and constant vehicle
speed, small sideslip angle and steering angle δ, negligible aerodynamic forces and
negligible tire self-alignment moment:
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Figure 1. Tire forces and yaw moment on the vehicle.

mvx

(

β̇ + r
)

= FyF + FyR (1)

Jz ṙ = lFFyF − lRFyR +Mz, (2)

where m is the vehicle mass, vx is the vehicle longitudinal velocity, Jz is the yaw
moment of inertia, lF and lR are the longitudinal distances from the centre of gravity.
Mz is a yaw moment actively generated by the rear in-wheel motor when a differential
torque is applied. The front and rear tire lateral forces (FyF , FyR) are given by

Fy,F = Fy,FL(αF , Fz,FL) + Fy,FR(αF , Fz,FR),

Fy,R = Fy,RL(αR, Fz,RL) + Fy,RR(αR, Fz,RR),
(3)

with front and rear slip angles given by

αF = β +
lF r

vx
− δ,

αR = β −
lRr

vx
.

(4)

The vertical forces Fz,ij are calculated using the weight distribution but assuming
lateral and longitudinal acceleration of the carriage (ax, ay) as measured in the vehicle
[17]:

Fz,FL = m ·

(

lR
l
g −

hCoG

l
ax

)[

1

2
−

hCoG · ay
bF · g

]

Fz,FR = m ·

(

lR
l
g −

hCoG

l
ax

)[

1

2
+

hCoG · ay
bF · g

]

Fz,RL = m ·

(

lF
l
g +

hCoG

l
ax

)[

1

2
−

hCoG · ay
bR · g

]

Fz,RR = m ·

(

lF
l
g +

hCoG

l
ax

)[

1

2
+

hCoG · ax
bR · g

]

,

(5)

where l is the vehicle wheelbase, and bF and bR are the front and rear track width,
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respectively.
Equations (1)-(5) represent the nominal model of the vehicle and can be condensed

to the nonlinear time-domain representation

ξ̇ = f(ξ, u, δ, p), (6)

with the state vector ξ = [β, r]⊺, the yaw moment Mz ≡ u as manipulated input, the
steering angle (δ) as known disturbance input, and vector p = [vx, ax, ay]

⊺ lumps
the time-varying parameters: longitudinal speed, longitudinal acceleration and lateral
acceleration of the chassis, respectively, all assumed as measured quantities available
from the vehicle control unit (VCU). Hereinafter, the nonlinear system (6) is used as
the nominal model of the vehicle. The analysis carried out in this work refers to a
vehicle having the data reported in Table 1.

Table 1. Vehicle data

Vehicle parameter value Description Units

m 1430 mass kg
Jz 2059.2 Yaw moment kgm2

of inertia
lF 0.996 Distance of COG m

from front axle
lR 1.494 Distance of COG m

from rear axle
hCoG 0.65 Distance of COG m

from ground
bF = bR 1.565 Track width m
Rw 0.308 Wheel effective m

rolling radius

2.1. Vehicle tires

The tire forces in Equation (3) are obtained considering the time-varying distribution
of the vertical force. To do so, the heuristic approach

Fy,ij = kred,ij

(

k1 −
Fz,ij

k2

)

· Fz,ij · arctan (k3 · αi) , (7)

with i = F (front), R(rear), j = L (left), R(right) is adopted from [17, § 9.5.2]. Equation
(7) is a nonlinear function of the vertical force and the sideslip angle of the wheel.
It approximates the Pacejka-based formulation when time-varying vertical forces are
considered but using only parameters: k1, k2, k3. A reduction factor kred,ij is present
to limit the tire forces with the tire-road friction and the combined lateral-longitudinal
slip effect.

The lateral forces in Equation (7) are fitted to the type of tire under study:
205/55r16. The coefficients are fitted once and offline from a given Pacejka-based
tire dataset as depicted in Fig. 2. The error of this approximation is minimized using
nonlinear least squares in MatlabTM. The parameters are k1 = 0.6819, k2 = 1.385e+05
and k3 = 40.85 with 95 % confidence bounds. The fit (NRMSE index) value is 85.6 %
which is considered sufficient.
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Figure 2. Comparison of Equation (7) (surface) to the data of the tire 205/55r16 (blue dotted lines). The
latter is obtained from the Pacejka magic formula.

2.2. In-wheel motors operation

Two in-wheel motors Elaphe M700 (version VD2) are mounted on the rear axle of the
vehicle. They are water-cooled outer rotor synchronous in-wheel motors with surface-
mounted permanent magnets. Each motor is able to deliver a continuous torque of 400
Nm (maximum torque 700 Nm), 60 kW of maximum power. Both in-wheel motors are
controlled in torque mode i.e., the torque vectoring controller receives the accelerator
pedal demand coming from the driver and then translates it into two torque demands
for both motors. Note that if the torque demand is not equally split, a yaw moment
is generated.

3. Torque vectoring control strategy

Figure 3 depicts the overall control scheme. The goal is to generate a correcting yaw
moment by applying a differential torque on the rear axle, which is equipped with
two in-wheel e-motors. The torque vectoring produces two distinct yaw moments:
Mz,FF , Mz,FB. The first one is produced by a feedforward controller, which forces
the vehicle to behave in a desired manner. The second contribution comes from an
optimal state feedback controller, which is used to stabilize the vehicle if its dynamics
exceed the limits of handling. An extended Kalman filter estimator combined with
a kinematic formula is also present to estimate the body sideslip angle. All of these
elements are discussed in detail further below.

3.1. Optimal controller for handling limits monitoring

A state feedback controller is proposed to monitor vehicle behaviour, specifically the
vehicle’s handling limits in terms of maximum permissible sideslip angle (βmax) and
yaw rate (rmax). It predicts when the vehicle tends to move out of the limits of handling
and hence generates a correcting yaw moment Mz,FB if needed. To do so, we propose
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Figure 3. General torque vectoring control scheme. The vehicle, predictive driver, scenario and vehicle en-
vironment are set using MatlabTM environment, specifically the Vehicle Dynamics BlocksetTM. The main
ingredients of the proposed TV controller are: i) a kinematic-based sideslip angle estimator, ii) a feedforward

controller for agility improvement, iii) an optimal state feedback regulator for handling limits monitoring, and
iv) a torque allocation method / anti-slip controller that sets the torque references to the rear in-wheel motors.

a finite-horizon optimal control problem defined as

min
∆u0,...,∆uN−1

1

2

N−1
∑

i=0

(

∥

∥ei|k
∥

∥

2

Q
+
∥

∥ui|k
∥

∥

2

Ru

+
∥

∥∆ui|k
∥

∥

2

R∆u

)

(8a)

subj. to

ξi+1|k = Akξi|k +Bkui|k +Bdkδk, i = 0, . . . , N − 1 (8b)

ui|k = ui−1|k +∆ui|k, i ≥ 0 (8c)

u−1|k = Mz,sat|k−1 (8d)

ξ0|k = ξ̂k (8e)

ei|k = ξi|k − ξref,i|k, i = 0, . . . , N − 1, (8f)

to find the optimal yaw moment variation from i = 0 to N :

∆u⋆ =
[

∆u⋆0, . . . , ∆u⋆N−1

]

⊺
. (9)

The optimal yaw moment contribution Mz,FB to be applied during the next time
interval is generated using only the first element ∆u⋆0 of the optimal predicted sequence:

Mz,FB = uk−1 +∆u⋆0. (10)

The subscript i|k in problem (8) is used to denote a variable at time k + i that
is predicted at time k (i.e. predictions of their values i steps ahead). Matrices A, B,
Bd are initialized by applying exact discretization to the continuous Jacobians of the
nonlinear model (6). Equation (8c) is used to cast the problem into an incremental
input–output (IIO) model and hence use ∆u⋆ as the optimization variable. Note that
Equation (8d) is used to initialize the optimizer with the active yaw moment that was
effectively applied during the previous time interval: Mz,sat|k−1.

The state deviation (8f) is calculated using state targets ξref k =
[

rref k βref k
]

⊺
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given by

βref i|k = βmax · tanh

(

βi|k

βmax

)

,

rref i|k = rmax tanh

(

ri|k

rmax

)

, i = 0, . . . , N − 1,

(11)

where βmax = arctan(0.02µg), and rmax = 0.85µg/VCOG define the limits of handling
of the vehicle [18]. With these target definitions, the cost term of the state deviation
is nonzero only when the vehicle is out of the limits of handling. This formulation is
necessary for allowing the feedforward controller to act on the vehicle but only if the
resulting manoeuvre is safe. If the vehicle tends to move out of the limits of handling
(rmax, βmax), the state feedback regulator enters into action.

Because the state targets presented in (11) are nonlinearly dependent on the state
evolution, they introduce nonlinearity in the cost function (8a). To reduce the com-
plexity of the problem, in this work, the evolution of the state targets is not predicted
inside the optimizer but calculated a priori every time step. To do so, at time k, the
predictor model (8b, 8c) is firstly simulated from i = 0 to N−1 but using the previous
optimal input sequence (∆u⋆

i=1:N−1|k−1) to obtain

[

ξ̄0|k, ..., ξ̄N |k

]

⊺
≡ X̄

(

ξ̂0|k, ∆u⋆
i=1:N−1|k−1, δk

)

. (12)

which is an approximation of the state evolution from i = 0 to N . Hence, the predicted
target vector

Xref =
[

ξref 0|k, ..., ξrefN |k

]

⊺

, (13)

which is needed in (8f), is obtained from (11) as a function of X̄ , βmax, rmax. This
procedure is done at every time step before running the optimizer to populate ξref,i|k
in (8f). In this way, the nonlinear complexity on ei|k is avoided because, inside the
optimizer, the targets are no longer dependent on the current state evolution, and a
numerical approximation is used instead.

Another simpler approach to solving the nonlinearity on the cost function is consid-
ering persistent targets i.e., ξref i|k = ξref 0|k, i = 0, ..., N . The drawback, in that case,

is that the prediction of state deviation deteriorates. The importance of state target
prediction is studied with numerical simulations in Section 4.

3.1.1. Solving the quadratic programming (QP) problem

By handling the nonlinearities on the cost function as previously explained, and prop-
erly selecting the weights Q ⪰ 0, R ⪰ 0 and R∆u ≻ 0, problem (8) turns into a
quadratic programming problem.

The optimizer is initialized with estimates of current states in (8e) and previous
input applied in (8d). The latter is the output coming from the torque allocation/anti-
slip function.

The weights Q, Ru, and R∆u are used to normalize the cost function. They are
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defined in terms of maximum deviation of states, input u, and input variation ∆u as

Q =

[

1
e2βmax

0

0 1
e2rmax

]

, Ru =
1

Mz
2
,max

, R∆u =
1

∆Mz
2
,max

(14)

Mz,max = (|TRR,max|+ |TRL,max|)
bR
2Rw

(15)

∆Mz,max = (|∆TRR,max|+ |∆TRL,max|)
bR
2Rw

(16)

Problem (8) is a quadratic programming (QP) problem with only equality con-
straints. It is then reformulated, using the batch approach [19,20], in terms of the
decision variable ∆u by substituting the plant model (8b, 8c) into the objective func-
tion from i = 0 to N − 1 as

V⋆ ≜ min
∆u

1

2
∆u⊺M∆u+ g

(

ξ̂k, ûk−1, δk, Xref

)

⊺

∆u+ V̄, (17)

where M is the Hessian matrix, g(·) define the linear term of the cost function, V̄ has
no influence on the optimizer as it only affects the optimal value of (17). The expression
(17) is a positive definite quadratic function of ∆u. Therefore, its minimum can be
found by computing its gradient and setting it to zero. This yields the optimal vector
of future input deviations:

∆u⋆ = M−1g
(

ξ̂k, ûk−1, δk, Xref

)

⊺

=
[

∆u⋆0, . . . , ∆u⋆N−1

]

⊺
(18)

It should be noted that the linear term g(·) of the cost function is dependent on the
current state estimates, the previously applied input, the actual steering angle, and the
predicted evolution of the state targets. The state feedback controller acts differently
than a pure feedback controller because it uses the measured steering disturbance and
an approximation of the state target evolution to calculate the optimal yaw moment
variation that penalizes the violation of the limits of handling. The vehicle dynamics
is evolved inside the optimizer to obtain the optimal yaw moment variation ∆u∗0. Note
that the optimal controller accounts for the overall yaw moment applied during the
previous time interval, see ûk−1 in equation (8d). The latter is needed because at each
time step, the applied yaw moment is the combination of both the optimal controller
and a feedforward controller actions.

3.2. Feedforward controller

The feedforward (FF) controller is designed to enable the vehicle to handle like a
more compact sedan. To generate the feedforward control action, two vehicle models
are used, one representing the desired vehicle dynamics and the other representing the
original vehicle dynamics. Then the feedforward controller generates a yaw moment
Mz,FF that forces the vehicle to behave as the desired vehicle dynamics.

Figure 4 shows the models involved in obtaining the FF controller. It is projected
in such a way that the yaw rate of the nominal model equals the yaw rate generated
by the desired model when a steering disturbance is applied, i.e., re = 0.
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Figure 4. FF controller design. The feedforward controller generates a yaw moment Mz,FF that steers the

vehicle to behave as the desired vehicle dynamics.

The well known linear single-track vehicle model based on cornering stiffness coef-
ficients [18, § 2.6].

ξ̇ ≈ Ã(vx)ξ + B̃Mz,FF + B̃dδ, (19)

is preferred to design the FF controller. It is a simplified version of the nonlinear
vehicle model (6), with matrices

Ã =





−Cα,F+Cα,R

vxm
−

Cα,F lF

vx
−

Cα,RlR

vx

vxm
− 1

Cα,RlR
J̄z

− Cα,F lF
Jz

−Cα,F l2F
Jzvx

− Cα,Rl2R
Jzvx



 ,

B̃ =

(

0
1
Jz

)

B̃d =

(

Cα,F

vxm
Cα,F lF

Jz

)

,

(20)

with front and rear cornering stiffness values Cα,F = 117310 N/rad and Cα,R =
58855 N/rad, respectively. The remaining model parameters are detailed in Table
1.

The desired vehicle fd(·) in Figure 4 is similarly formulated as

ϵ̇ = fd(ϵ, δ, vx) = Ā(vx)ϵ+ B̄(vx)δ, (21)

where

Ā =





− C̄α,F+C̄α,R

vxm̄
−

C̄α,F l̄F

vx
−

C̄α,Rl̄R

vx

vxm̄
− 1

C̄α,R l̄R
J̄z

− C̄α,F l̄F
J̄z

− C̄α,F l̄2F
J̄zvx

− C̄α,R l̄2R
J̄zvx



 , B̄ =

(

C̄α,F

vxm̄
C̄α,F l̄F

J̄z

)

,

with state vector ϵ = [β̄ r̄]⊺. The bar accent (̄·) over the parameters and states of the
desired model means that they belong to a desired vehicle and hence they are not
necessarily identical to those ones of the nominal vehicle model.

For the sake of clarity and without losing generality, at a specific time instant, the
FF controller can be written using Laplace notation as

FF (s) =
Mz,FF (s)

δ(s)
=

Gdes(s)−Gpd(s)

Gpu(s)

= CFF (sI −AFF )
−1BFF +DFF

(22)
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where Gdes(s) =
rd(s)
δ(s) , Gpd(s) =

r(s)
δ(s) , Gpu(s) =

r(s)
Mz,FF (s) .

Equation (22) is valid only in the vicinity of that operating point. Hence to achieve
nominal zero error re = 0 in open loop, the FF controller actually results in a contin-
uous linear-time-variant (LTV) state space model

ζ̇(t) = AFF (t)ζ(t) +BFF (t)δ(t)

Mz,FF = CFF (t)ζ(t) +DFF (t)δ(t).
(23)

It is generated using MatlabTM symbolic tools as presented in Appendix A. At each
time step k, the state space matrices are updated and exact discretization is then
applied to obtain Mz,FF k

.
In this work, the desired vehicle model was designed with lower inertia (J̄z = 0.75Jz),

which corresponds to a conventional compact sedan vehicle powered by ICE and with-
out the high voltage battery and in-wheel motors. Figure 5 shows a Bode diagram of
the FF controller at different vehicle speeds. The feedforward generates a yaw moment
Mz,FF that fulfils the control requirement re = 0 (see Figure ). The feedforward reacts
in open loop directly as a consequence of the applied steering angle.
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Figure 5. Bode diagram of feedforward controller: FF (s) =
Mz,FF (s)

δ(s)
obtained at different vehicle speeds.

The desired vehicle model is formulated with lower yaw inertia than the nominal vehicle i.e., J̄z = 0.75Jz .

Only the variation in the inertia of the desired vehicle is investigated in this work;
the remaining parameters of the desired model are set to those of the nominal model
(19). A more in-depth investigation is reserved for future works.

Even if the feedforward controller works in open-loop mode depending merely on the
steering angle, the yaw moment it generates (Mz,FF ) is known by the state feedback
controller (see Equation (8d) in problem (8)) and hence properly handled by the state
feedback controller.
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3.3. Combined model-kinematics-based estimation of sideslip angle

Estimating the vehicle sideslip angle β is crucial to improve vehicle stability. It is done
by using a combined model-kinematics-based estimation approach i.e., the fusion of an
extended Kalman filter (EKF) that estimates the sideslip (β̂), with a kinematics-based

formulation that estimates its time derivative
ˆ̇
βkin. The EKF is model-based while the

kinematics equation relies on direct measurements.
The mathematical reasoning behind the EKF algorithm is quite involved and beyond

the scope of this work. The reader is directed to references [21], [22] for an extensive
treatment. A simplified version of the EKF presented in [21] is proposed here as follows.

The nonlinear dynamics of the vehicle are known from (6) as a continuous-time
model whereas the output vector:

z = [r, FyF , FyR]
⊺ ; (24)

will be available at discrete instants of time. Literature refers that adding the estimated
lateral forces (FyF , FyR) as measured quantities improves the speed of the sideslip
angle estimation. The calculation of the lateral forces is already presented in Equation
(3). Equation (6) is then rewritten in the hybrid form [21]:

ξ̇ = f (ξ, u, δ, p,wn, t) , (25a)

zk = g (ξk, uk, δ, pk,vnk) , (25b)

wn(t) ∼ (0, Q̄), (25c)

vnk ∼ (0, R̄) (25d)

where the process noise wn is continuous-time white noise with covariance Q̄, and the
measurement noise vn is discrete-time white noise with covariance R̄. They are used
to tune the EKF estimates.

With model (25a)-(25b), the current state estimate is projected ahead in time, while
the EKF measurement update step (used to adjust the projected estimate by an actual
measurement at that time) is done using the measurement of the yaw rate (rmeas) and

the estimation of lateral forces (F̂yF , F̂yR) from the measured lateral acceleration ay
and yaw acceleration ṙmeas, and from the vehicle parameters m, Jz, lf , lR:

F̂yF =
maylR + Jz ṙmeas

lF + lR
(26)

F̂yR =
maylF − Jz ṙmeas

lF + lR
(27)

The EKF steps to obtain the state estimates x̂ = [β̂EKF r̂EKF ]
⊺ are described in

Appendix B.
The estimation of the sideslip using only the EKF can deteriorate due to plant-

model mismatch. To avoid this, the kinematics formula:

β̇kin =
ay
vx

− r + g sinϕr. (28)

is quite often proposed to get a reliable time derivative of the sideslip angle i.e., β̇kin,
from direct measurements of speed, lateral acceleration and roll angle ϕr. However,
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the direct integration of (28) to obtain β̂ is prompt to errors and hence avoided in real
implementations. In this work, Equation (28) is combined with the EKF as proposed
in [23]:

β̂ =
1

τs+ 1
β̂EKF +

τ

τs+ 1
β̇kin, (29)

with τ = 10/(2π). By using the new estimation method, the need to do integration
of the kinematics-based value is eliminated. Instead, a pseudo integral is used in (29)
for the kinematics-based value. The reader is directed to reference [23] for an extensive
treatment on this topic.

3.4. Torque distribution and anti-slip control

The yaw moment is applied by distributing the corresponding torque on each in-wheel
motor of the rear axle. Firstly, the driver request is equally split to apply the same
torque on each e-motor of the rear axle:

Tbias =
Treq

2
(30)

The application of only Tbias on each rear wheel will guarantee the longitudinal force
request. A torque quantity ∆T is added as follows:

TRR,ref = Tbias +∆T, (31)

TRL,ref = Tbias −∆T, (32)

and calculated as

∆T =
MzRw

2bR
, (33)

to generate the desired yaw moment Mz where

Mz = Mz,FF +Mz,FB, (34)

which lumps both the feedforward yaw moment contribution Mz,FF and the feedback
control action Mz,FB. It is worth noticing that even if the two controllers are designed
separately, problem (8) is updated every time step with the actual yaw moment that
has been applied during the previous time interval.

3.4.1. Anti-slip control and yaw moment saturation

The differential torque needed to generate Mz is limited by the anti-slip control. The
latter is based on a saturation function:

Ssat = Smax tanh

(

Sactual

Smax

)

, (35)
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that depends on the current longitudinal slip value Sactual of the wheel and a desired
maximum wheel slip value Smax as shown in Fig. 6. A normalized reduction factor

γ =
|Ssat − Sactual|

|Ssat(Smax)|
; 0 ≤ γ ≤ 1 (36)

is then calculated. The procedure is done in both the rear wheels to obtain γRL, γRR,
and the highest reduction factor is used to limit the differential torque as follows:

∆Tsat = (1− γmax)∆T. (37)

The saturated yaw moment:

usat = Mz,sat =

(

Tbias +∆Tsat

Rw
−

Tbias −∆Tsat

Rw

)

bR, (38)

is finally applied. The anti-slip control works as a time-varying yaw moment saturation
stage that produces zero yaw moment when the condition Sactual ≥ Smax is met in any
of the rear wheels. The benefit of this saturation approach is, first of all, its simplicity,
since it depends merely on a unique tuning parameter: Smax. Note also that the anti-
slip control acts only on the differential torque ∆T and hence does not affect the
longitudinal tire force request.
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Figure 6. Slip saturation stage. The tire slip is limited to Smax = 0.2. Note that the limitation in torque is
minimum when the tire slip is below 0.1. A normalized reduction factor αi for each rear wheel (i = RL, RR)
is calculated at each time step. They are used to limit the differential torque ∆T and hence the applied yaw
moment as stated in Equation (38).
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4. Numerical Results

The proposed torque vectoring controller is a combination of an optimal controller with
a feedforward controller as explained in Section 3. Throughout all the simulations, both
the controllers are executed at 50 Hz while the inner anti-slip control runs at 100 Hz.
The optimal controller is set with a prediction horizon N = 30, maximum allowed
deviations of the sideslip eβmax

= βmax and yaw rate ermax
= rmax. The input weights

Ru and R∆u are set as detailed in (14) - (16) to properly normalize the objective
function to give equal effort for same “badness”. The maximum wheel torque values
TRL,max and TRR,max are updated every time step with the torque boundary map of
the in-wheel motors at the actual speed, while ∆Mz,max is set to 1000 Nm.

The torque vectoring controller is initially evaluated in simulation using open and
closed-loop manoeuvres. Its performance is compared to that of an identical, passive
vehicle, i.e., one with no TV controller intervention and equal power distribution on
the rear axle.

4.1. Open loop manoeuvres

The steady-state performance evaluation is done with slow ramp steer manoeuvre
(SRS) [24]. The steering wheel angle δSw is increased from 0° to 100° with a slope of
1 deg/s at a constant speed of 100 km/h. The manoeuvre has been performed in low
adherence conditions (µ = 0.5) to better highlight the shaping of the understeering
response in the proximity to the limits of handling.

The understeer curve is reported in Figure 7 (a). The proposed controller does not
affect the steady-state vehicle response in the lateral acceleration range below 0.3
g, while at higher values of lateral acceleration, a more progressive response in the
transition from the linear to the nonlinear range can be noticed. The peak value of
the sideslip angle is reduced by 36 % for the controlled vehicle (Figure 7 (b)). The
sideslip angle is progressively limited while approaching the lateral acceleration limits,
improving rear-end stability. The state feedback control action is primarily responsible
for the improvement of stability.
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Figure 7. Numerical simulation of slow ramp steer (SRS) manoeuvre 100 km/h, low adherence conditions

µ = 0.5. Controlled vehicle = blue continuous line; passive vehicle = black dotted line. (a) Steering wheel angle
δSw vs. lateral acceleration ay . (b) Vehicle sideslip angle β vs. lateral acceleration ay .

The transient steering behaviour of the vehicle is evaluated through the sine sweep
manoeuvre with increasing frequency (SSI) at the constant speed of 100 km/h [25]. The
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linear transfer function between the steering wheel angle δSw input and the vehicle’s
yaw rate r output is obtained with the Welch’s averaged periodogram method, then
the frequency response function is evaluated, Figure 8. The aim of the test is to assess
the performance of the vehicle and the influence of the controller in terms of lateral
agility [1,12]. The torque vectoring controller leads to a different natural eigenfrequency
f( rmax

δSw
) with respect to the passive configuration. The resonance peak of the controlled

vehicle is shifted towards a frequency 30 % higher. On the other hand, the torque
vectoring controller configuration has a more underdamped response showing a higher
magnitude of the resonance peak. Furthermore, by analyzing the phase response plot
(Figure 8 b), the controlled vehicle shows a faster front-end response and a reduced
phase delay for the frequency range below 1.1 Hz.

The agility enhancement of the vehicle related to the transient steering response
evaluated through the SSI test is mainly provided by the feedforward control action.
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Figure 8. Numerical simulation of sine sweep manoeuvre (SSI) 100 km/h, dry asphalt µ = 1. Frequency
response function between δSw input and r output. Controlled vehicle = blue continuous line; passive vehicle
= black dotted line.

4.2. Closed loop manoeuvres

The performance of the controller is evaluated by following Standard [26]. An obstacle
avoidance manoeuvre with a double lane change in a tight path is applied as shown
in Figure 9. From the analysis of the Lissajous diagram between the steering wheel
angle δsw and the yaw rate r reported in Figure 9 (a), the hysteresis of the yaw
rate response to the steering input is reduced in the case of the controlled vehicle.
The action provided by the feedforward control contribution leads to a more linear
relationship between the steering angle and the yaw response. The controlled vehicle
shows a yaw response closer to the reference one (3.2), as far as a reduced steering
wheel effort is required by the driver to overcome the manoeuvre. The yaw moment
contribution provided by the state feedback regulator is more evident when the vehicle
approaches the stability limits, as it emerges from Figure 9 (b). The sideslip angle β of
the controlled vehicle is reduced throughout the manoeuvre (Figure 9 (d)). The peak
value of the sideslip angle is reduced by 29 % when torque vectoring is enabled. The
simulated trajectory (Figure 9 (c)) shows that the controlled vehicle can better follow
the reference trajectory (goodness of fit of 64 % for the controlled vehicle and 61 %
for the passive).
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Figure 9. Numerical simulations of obstacle avoidance manoeuvre with a double lane change. Vehicle speed:
50 km/h, tight path, µ = 1. Controlled vehicle = blue continuous line; passive vehicle = orange continuous line.
a) Lissajous diagram of steering wheel angle and yaw rate. b) Yaw moment contributions vs time. c) Vehicle
trajectory. d) Sideslip angle β vs. time.

4.3. Assessment of the state target prediction

The limit’s handling monitoring is assessed in closed-loop manoeuvre through double
lane change at 120 km/h. To highlight the stability improvement provided by the
prediction of the state targets, the manoeuvre has been performed in low friction
conditions (µ = 0.5). In this condition the passive vehicle is not able to accomplish
the manoeuvre, the vehicle spins out of the trajectory.

The simulation results are reported in Figure 10. Two different configurations of
the optimal state feedback controller are reported: “predicted state target” where
the evolution of the state targets is considered in a predicted target vector (13), and
“persistent target” with a constant target vector for the entire time horizon.

The torque vectoring controller with the “predicted state target” configuration re-
duces the state deviation (8f): up to 51 % for the sideslip angle β, and up to 45 %
for the yaw rate r when compared with the “persistent state target” configuration
(figure 10 a,b). The peak values of the vehicle sideslip angle and the yaw rate are
reduced (figure 10 c,d) and get closer to the stability limit reference state targets (11),
thus the stability performance of the vehicle in the simulated manoeuvre is enhanced.
Furthermore, as shown in Figure 10 (f), the applied corrective yaw moment (38) is
much smoother and faster when the prediction of the state target evolution is used
in comparison to the configuration with ”persistent state target,” resulting in a faster
generation of the yaw rate (figure 10 d) and less steering wheel effort required by the
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driver (figure 10 e).
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Figure 10. Numerical simulation of obstacle avoidance manoeuvre with a double lance change. Vehicle speed
120 km/h, normal path, low adherence road conditions (µ = 0.5). Comparison between optimal state feedback
controller with state targets prediction (blue continuous line) and with persistent state targets (orange contin-
uous line). a) Sideslip angle β state deviation. b) Yaw rate r state deviation. c) Sideslip angle β vs. time. d)

Yaw rate r vs. time. e) Steering wheel angle δsw vs. time. f) Applied yaw moment vs. time.

5. Hardware in the Loop with e-axle

The methodology is validated through the hardware-in-the-loop testing on a devoted
rig realized within the HiPERFORM project at the CARS research center of the Po-
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litecnico di Torino, in collaboration with the project partners. HIL aims to fine-tune
the motor control and validate the reliability of the torque vectoring control strat-
egy in real time. In addition, HIL ensured the efficient execution of the designed
control scheme in real time. The vehicle, driver model, and control strategy were
deployed to a modular real-time system (dSpace SCALEXIO Autobox). The rig con-
sists of two in-wheel motors, a dual inverter, and an e-axle test bench equipped with
two dynamometers. The rig mimics the wheels and the layout is shown in Figure
11. The wheel speed (ωRL,ref , ωRR,ref ) is imposed by the vehicle model onto the dy-
namometer and the actual speed (ωRL,act, ωRR,act) is fed back to the TV controller.
The torque references (TRL,ref , TRR,ref ) are set by the torque vectoring controller
(driver model) in case of torque vectoring equipped vehicle (Passive vehicle). The ac-
tual torque (TRL,act, TRR,act) measured in the rig is fed back to the vehicle dynamics
model. CAN protocol is used to interface all signals between the rig and the Modular
real-time system.

To this end, an exhaustive testing campaign is carried out, and two tests are re-
ported: a) An obstacle avoidance manoeuvre involving a double lane change on a tight
path at a speed of 50 km/h and a friction coefficient of 0.85. b) An obstacle avoidance
manoeuvre with a double lane change at a speed of 120 km/h and a friction coefficient
of 0.85. The key performance indices for the tests are still the body sideslip angle (β),
yaw rate (r), and steering angle (δ) but this time in a more realistic scenario with
real in-wheel motors, a dual inverter and a SCALEXIO AutoBox hardware. For the
HiL test, a high µ = 0.85 was used in order to reduce tire slide and hence avoid wheel
torque saturation inside the anti-slip control.

The test campaign started with the integration of the dual inverter and e-motors,
the calibration of the motor position sensors and the torque controller. The torque
commands (TRL,ref , TRR,ref ) are sent every 10 ms via CAN. A slew rate limit set to
500 Nm/s inside the dual-inverter was enough to guarantee the torque references in
all driving scenarios. A maximum communication latency of almost 20 ms was present
on the test bench but it did not affect the vehicle’s performance.

Figure 12a reports the performance with the TV controller enabled and disabled
(passive vehicle) in an obstacle avoidance manoeuvre involving a double lane change
on a tight path at a speed of 50 km/h and a friction coefficient of 0.85. It is evident
from the plots that the TV vehicle outperforms the passive vehicle. The body sideslip
angle in the TV vehicle is reduced by 54 % while the yaw rate is reduced by 4.8 %,
and the steering effort is reduced by 14 %. A similar benefit can be observed in a
double lane change manoeuvre at 120 km/h and a friction coefficient of 0.85 as shown
in Figure 12b. The steering wheel angle is set in open loop, which means the driver
model is absent from the loop and a previously recorded steering wheel angle is sent to
the TV controller and vehicle dynamics model. The test yielded in reduction of body
sideslip angle by 32.5 % and yaw rate by 11.4 %.

6. Conclusions

A novel torque vectoring control method to enhance vehicle manoeuvrability and pre-
dict handling limit violation has been investigated in this study. An adaptive predictive
state feedback controller generates a correcting yaw moment when the vehicle tends
to move beyond the handling limits. It acts in combination with a feedforward con-
troller. The latter is designed to improve vehicle agility using the front steering angle
information. The resulting yaw moment is converted into torque references for the two
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Figure 11. Hardware in the loop scheme with a picture of the test bench. EM: e-motors (5, 6), DYN:
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rear in-wheel motors installed on the vehicle. The torque vectoring scheme is discussed
in detail including also a sideslip angle estimator, a torque allocation method and the
anti-slip control.

The contribution of the present study is twofold: first, the way the vehicle handling
limits are dealt with. In fact, violations of vehicle handling limits are directly writ-
ten into the objective function of an optimal control problem that predicts vehicle
evolution. It resulted in a nonlinear formulation, which has been approximated to a
quadratic programming problem with no inequality constraints. Its implementation
does not require a dedicated solver, making it a promising candidate for real-time
applications. Second: the improvement of vehicle agility using a dynamic feedforward
controller. Typically, the literature proposes torque vectoring schemes with yaw rate
targets that change proportionally with the steering commands i.e., yaw rate targets
purely based on the evaluation of the well-known bicycle model at steady-state to
guarantee desired steering characteristics: understeering, neutral steering or oversteer-
ing. Instead, we proposed a dynamic feedforward controller written as an adaptive
state-space system that considers also the dynamics of both actual and desired vehicle
models.

Several numerical simulations were carried out. Firstly, the steady-state performance
evaluation is done with slow ramp steer manoeuvre showing a sideslip reduction of up
to 36 %. More aggressive manoeuvres were conducted to assess the torque vectoring
controller in terms of vehicle handling and stability performance showing a significant
improvement when torque vectoring is applied. In critical conditions where a passive
vehicle is unstable, the proposed torque vectoring scheme is able to stabilize the vehicle.
In general, the active safety and the overall stability of the vehicle were improved in
low adherence conditions.

Furthermore, the benefits of using predictive state target evolution are demon-
strated. When the handling limits are monitored using predicted vehicle evolution,
the deviation of the vehicle states beyond the identified limits of sideslip angle β and
yaw rate r is significantly reduced. It is worth noting that this is accomplished by
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Figure 12. Hardware in the loop with and without torque vectoring (Passive), road friction coefficient µ =

0.85. Type of test: Obstacle avoidance manoeuvre with a double lane change at different conditions: a) vehicle
speed: 50 km/h in a tight path b) Vehicle speed: 120 km/h, normal path and no driver in the loop i.e., the
same steering disturbance δ is applied in both cases.

generating a lower active yaw moment (i.e., smoother control action) when compared
to the case of persistent target generation.

Finally, the hardware in the loop with the e-axle test campaign allowed for validating
the deployability of the control algorithm, the feasibility of generating the required yaw
moment in terms of e-motor torque references, and the control method reliability when
integrated into the CAN communication network with the dual inverter.

Future work will focus on fine-tuning the vehicle model and observer using experi-
mental data collected from a real vehicle, as well as assessing how a real driver feels
when using the proposed torque vectoring controller.
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Appendix A. Feedforward controller design

MatlabTM symbolic tools are used to obtain the time-varying feedforward controller:

FF (s) =
a21 b12

a12 a21−a11 a22+a11 s+a22 s−s2
− ã21 b̃12

σ1

− b22 (a11−s)
a12 a21−a11 a22+a11 s+a22 s−s2

+ b̃22 (ã11−s)
σ1

ã21 b̃11
σ1

− b̃21 (ã11−s)
σ1

(A1)
with σ1 = ã12 ã21− ã11 ã22+ ã11 s+ ã22 s−s2. Terms (ãij , b̃ij), (āij , b̄ij) are the matrix
elements of the corresponding state space models (19) and (21), respectively.

Only the variation of yaw moment inertia is evaluated in this work however note
that all the coefficients involved in the desired model are modifiable as desired.

Appendix B. EKF

At time instant k, the extended Kalman filter uses the following partial derivatives
evaluated at the current operating point:
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F =
∂f

∂ξ

∣

∣

∣

∣ ξ=ξ̂−k
u=Mzk−1

δ=δk
p=pk

, W =
∂f

∂wn

= I2×2

H =
∂g

∂ξ

∣

∣

∣

∣ ξ=ξ̂−k
u=Mzk−1

δ=δk
p=pk

, V =
∂g

∂vn
= I3×3

with f(·) and g(·) given by Equations (25a)-(25b). The EKF algorithm is executed
as follows:

(1) EKF Initialization: Set the initial estimates for the states and its covariance
error:

ξ̂+0 = E(ξ0)

P+
0 = E[(ξ0 − ξ+0 )(ξ0 − ξ+0 )

T ]

(2) EKF time update Equations: Integrate the state estimate and its covariance
from time (k − 1)+ to time k−:

˙̂
ξ = f

(

ξ̂, u, δ, p, 0
)

Ṗ = −PH⊺R̄−1HP + FP + PF ⊺ + Q̄

The integration starts with ξ̂ = ξ̂+k−1 and P = P+
k−1. At the end of the integration

we have ξ̂ = ξ̂−k and Pk = P−
k . The predicted output is

z−k = g
(

ξ̂−k , uk−1, δk, pk, 0
)

(3) EKF measurement update Equations:

Kk = P−
k H⊺

k

(

HkP
−
k H⊺

k + VkR̄kV
⊺

k

)−1

ξ̂+k = ξ̂−k +Kk

(

zk − z−k
)

P+
k = (I −KkHk)P

−
k

From step 3 we have the state estimates: [β̂EKF , r̂EKF ]
⊺ = ξ̂+k .

Step 1) is executed once during the initialization whereas 2) and 3) are repeated
at each time step. All the terms with a plus superscript means that they have been
already corrected by the measurement (i.e., step 3) completed) while the minus means
only the update from the known equations (i.e., just after step 2) is completed). The
term Pk is the error covariance matrix of the state estimate at time step k.
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