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Abstract: This study presents a reinforcement-learning-based approach for energy management
in hybrid electric vehicles (HEVs). Traditional energy management methods often fall short in
simultaneously optimizing fuel economy, passenger comfort, and engine efficiency under diverse
driving conditions. To address this, we employed a Q-learning-based algorithm to optimize the
activation and torque variation of the internal combustion engine (ICE). In addition, the algorithm
underwent a rigorous parameter optimization process, ensuring its robustness and efficiency in
varying driving scenarios. Following this, we proposed a comparative analysis of the algorithm’s
performance against a traditional offline control strategy, namely dynamic programming. The results
in the testing phase performed over ARTEMIS driving cycles demonstrate that our approach not
only maintains effective charge-sustaining operations but achieves an average 5% increase in fuel
economy compared to the benchmark algorithm. Moreover, our method effectively manages ICE
activations, maintaining them at less than two per minute.

Keywords: hybrid electric vehicles (HEVs); drivability; fuel economy; energy management;
reinforcement learning (RL)

1. Introduction

The extensive use of fossil fuel-powered vehicles is widely acknowledged as one of
the major contributors to climate change, air, and noise pollution. Governments in various
states have announced plans to reduce or even eliminate the sale of conventional vehicles,
recognizing the need to address these environmental challenges. Strategies such as energy
diversification, fuel decarbonization, and the adoption of electrified solutions are being
implemented to tackle these pressing issues. To actively contribute to this evolving scenario,
diverse powertrain technologies and alternative fuels can be employed, each with its own
advantages and disadvantages. As an example, hydrogen-based solutions face challenges
due to the lack of a widespread infrastructure, making them unsuitable for short-term
implementation. Similar considerations, along with the imperative to decarbonize the
energy production system, should also be taken into account when discussing the adoption
of battery-powered vehicles.

In this context, a bridge solution may be represented by hybrid electric vehicles
(HEVs). According to several statistical analyses available online, the hybrid market is
expected to grow by 20% over the next five years, with the plug-in segment leading the
way [1,2]. From a technical point of view, hybrid electric vehicles combine the main
advantages of conventional and fully electric vehicles; however, owing to their complex
nature, they require sophisticated control logic to obtain a proper energy split among the
on-board energy sources, making them widely investigated in the literature. They can be
classified according to different classification methods depending on whether they can be
recharged by an external source, i.e., PHEVs, or not, i.e., HEVs or whether the traction
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mechanical power can be provided by the electric motor only, i.e., series configuration,
by the electric motor and the engine, i.e., parallel configuration, or complex when either
these two configurations are enabled [3,4]. Focusing on the parallel one, in turn, it can be
classified according to the position of the electric motor, i.e., P0 if it is connected through
a belt to the engine, P1 if directly connected to the engine crankshaft, P2 if in between
the engine and the transmission, P3 if post-transmission and P4 if on the opposite axle of
the engine. Four operating modes are allowed where in turn the engine (pure thermal) or
electric motor (pure electric) provides traction alone, or simultaneously (power-split) or
the engine provides traction while recharging the battery (battery charging). Depending
on the final application considered (off-line or on-line), several control logics [4–6] can be
adopted including rule-based [7–12], optimization-based [13–19], data-driven [20–32] and
reinforcement learning (RL) [33–44] among the main ones. Rule-based controllers require a
substantial calibration effort and they fail to achieve good performance when applied to a
driving scenario other than the calibration one. In contrast, optimization-based approaches,
such as dynamic programming, not only entail significant computational effort but also rely
on prior knowledge of the driving cycle, making them unsuitable for real-time applications.
In the classical approaches, a minimization or maximization function is usually defined
to enhance, as an example, fuel economy, while ensuring charge-sustaining operation, or
a weighted average between carbon dioxide and pollutant emissions [7–47]. However,
in this field, a real-time algorithm capable of working in diverse driving scenarios and
capable of complying with one or a combination of these goals is still a debated topic
especially when customized controllers need to be developed. Reinforcement-learning-
based methods, in the last few years, established themselves as a good candidate solution
to handle these complex and non-linear control problems. Indeed, the RL agent can be used
in a real-time application, avoiding the computational burden typical of optimization-based
techniques and the degradation of performance of rule-based solutions when applied to
driving scenarios different from the calibration ones [41].

1.1. Related Works

In the domain of HEV energy management, RL holds promise for efficiently distribut-
ing power between onboard energy sources to enhance fuel economy while adhering
to vehicular component and battery SOC constraints [33–44,47]. RL algorithms can be
broadly classified into two categories: value-based and policy-based methods. Value-based
algorithms exploit learned knowledge to make decisions for a given state. On the other
hand, policy-based methods aim to directly model the policy function associated with
state–action pairs [48–50]. State-of-the-art RL algorithms exhibit various degrees of com-
plexity and computational effort. Notable examples include Q-learning, deep Q-learning,
double Q-learning, and actor–critic. By continually interacting with the environment, the
Q-learning agent learns and refines its control policy, leveraging the experience gained
through exploration-exploitation law. In deep Q-learning, a neural network approximates
action Q-values for each state, but caution is needed to prevent over-estimations. Double
Q-learning addresses this concern by employing two neural networks, the online and
target networks, to separately handle action selection and value estimation [42]. Mean-
while, actor–critic implementations utilize two neural networks: one for policy-based
action selection (actor) and another for evaluating action outcomes and estimating value
functions (critic) [40]. For instance, Xu et al. [43] employ Q-learning to achieve real-time
control, striking a balance between fuel economy and charge sustainability. Chen et al. [44]
proposed an energy management control based on model predictive control coupled with
double Q-learning to improve the fuel economy and manage the charge-sustaining phase
of a power-split PHEV ruling out comfort and drivability requirements. Similar reward
considerations are shown in [47] for a deep reinforcement-learning-based energy manage-
ment with an AMSGrad optimization method and benchmarked with classical dynamic
programming. Han et al. [42] propose a double-deep Q-learning algorithm, achieving
remarkable improvements in fuel economy while maintaining battery SOC close to a target
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value. Their approach demonstrates about 7% enhancement over conventional deep Q-
learning and nearly 93% of dynamic programming’s performance. Despite the multitude
of examples, the current literature tends to overlook the integration of drivability and ride
comfort requirements in HEV energy management, especially within the context of RL
techniques. Even when multiple deep reinforcement learning algorithms are compared, the
focus remains predominantly on well-established metrics such as fuel consumption, battery
health degradation, and charge-sustaining SOC [39–43]. The broader considerations of ride
quality and comfort requirements often remain unexplored.

1.2. Contribution

In light of the aforementioned literature gaps that predominantly focus on established
metrics such as fuel consumption and battery health degradation, in this work, we introduce
passenger comfort and ride quality considerations in the design of an RL-based solution
for the HEV energy management control problem. To enhance the driving experience, the
frequency of ICE de/activations is minimized, while engine torque variation is constrained
to a range of 0-80 Nm to ensure smoother engine operation. These parameters are grounded
in engineering principles and are designed to simulate the physical constraints inherent to
a real-world ICE. The chosen RL algorithm, Q-learning, systematically refines its decision-
making process based on historical experiences, gradually improving real-time decision-
making. To the best of the authors’ knowledge, no existing examples in the literature
showcase the integration of comfort and ride quality considerations within an RL-based
energy management control problem. While the recent literature has increasingly moved
toward the deployment of sophisticated RL algorithms, often at the expense of an in-
depth understanding of the complex physics of the problem domain, our approach takes a
different tack. Before adopting more complex methods, we opted to rigorously evaluate
the effectiveness of Q-learning, a well-established and state-of-the-art RL technique. This
decision was guided by our intent to discern whether a well-understood algorithm could
offer a robust solution to the multi-objective optimization problem at hand. In doing
so, we aim to establish a meaningful baseline against which to compare the potential
benefits and drawbacks of more complex RL strategies, thereby ensuring that any shift
toward greater algorithmic complexity is both warranted and advantageous. The key
advantages of the proposed approach lie in its ability to adapt to various driving scenarios
and account for multiple factors affecting energy consumption, such as driving style,
road gradients, engine operation, performance, drivability, and battery state of charge.
Considering these factors, the algorithm can dynamically adjust powertrain operation and
energy allocation strategies to balance fuel economy, efficient engine operation, passenger
comfort, and ride quality. First, the system dynamics of the HEV powertrain are modelled
according to a road load approach. To evaluate the effectiveness of the proposed method,
extensive simulations are conducted on unknown driving scenarios. Comparative analyses
are performed against a conventional offline control strategy, showcasing the tabular Q-
learning algorithm’s potential in fuel efficiency and overall system performance. Four
perspectives are contributed to the related literature.

1. Integration of comfort and ride quality indicators, such as ICE de/activation frequency
and torque rate variation constraints, into the energy management control problem
using an off-policy RL approach.

2. Testing the approach in diverse driving scenarios to validate its applicability and
reliability.

3. Comparison against a benchmark solution to demonstrate the proposed approach’s
performance in fuel and energy efficiency, as well as overall system performance.

4. Development of a concise, real-time map for use in automotive control units or similar
decision-making systems across different domains.

The rest of this paper is organized as follows: in Sections 2 and 3, we present the
vehicle modelling approach and the problem formulation. In Section 4, we present and
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discuss the simulation results. Finally, in Section 5, we draw the main conclusions and
highlight potential avenues for future research.

2. Vehicle Model

A Jeep Renegade 4xe represented as a parallel P4 architecture, whose scheme is
reported in Figure 1, was considered for the purpose of this study [19]. Specifically,
the internal combustion engine (ICE) is responsible for powering the front axle, while
the electric motor (EM or MGP4) drives the rear axle and is directly connected to the
high-voltage battery pack. The main vehicle specifications, obtained by secondary data
available online [19], are listed in Table 1. The model and algorithm were developed and
implemented within the MATLAB® simulation environment [51].

Figure 1. Scheme of the considered electrified architecture.

Table 1. Vehicle specifications.

Component Parameter Value

Vehicle Mass, kg 1850
RLa, N 125.22
RLb, N

(m·s) 1.95

RLc, N
(m·s2)

0.59
Tyre radius, m 0.29

Engine Displacement, l 1.4
Rated Power, kW 133
Maximum torque, Nm 270

EM Rated Power, kW 44
Maximum torque, Nm 250

Battery Type NMC
Nominal capacity, Ah 28.4
Nominal voltage, V 400

The HEV powertrain was modelled according to a road load approach as follows:

Pdem = (ma + 0.5ρcd A f v2 + mgϵr)v (1)
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where m, ρ, cd and A f refer to the vehicle mass, air density, drag coefficient and the vehicle
frontal area, respectively. The main components such as the electric machine and engine
were modelled using quasi-static look-up tables. The torque wheel Tw was computed as a
function of the engine torque (Teng or TICE ) and the electric motor torque (TEM) considering
the driveline.

Tw = Tengτg(ngear)τf ηgη f + TEMτrη
sign(TEM)
r (2)

where the subscripts g, f and r refer to the gearbox, the front and rear axle differential
efficiencies (η) or transmission ratios (τ), depending on the case. The gear shifting schedule
was determined using a rule-based strategy tied to the road speed, aiming to enhance
the vehicle’s performance, approach real-time vehicle usage, and meet passenger comfort
requirements [19]. The battery power (Pbatt) was in turn computed considering the electric
motor power (PEM) and the overall losses of the electric motor (PEM,loss) along with the
power related to the auxiliaries (Paux).

Pbatt = PEM + PEM,loss + Paux (3)

The battery state of charge (SOC) dynamics was evaluated by considering an equivalent
open circuit model that consists of an ideal open circuit voltage source in series with an
equivalent resistance modelled as in Equation (4):

˙SOC =
Voc −

√
V2

oc − 4ReqPbatt

2ReqCbatt
(4)

Voc, Req, and Cbatt represent the open circuit voltage, the internal resistance, and the battery
capacity, respectively.

3. Problem Formulation

The energy management control problem in hybrid electric vehicles can be framed as
a constrained optimization problem over a finite time horizon [3,4]. The optimal control
theory provides various approaches to solve this problem by defining a control strat-
egy for a given system that meets a specific optimality criterion. In the problem under
analysis, we employed two distinct algorithms: a global optimization algorithm and a
reinforcement-learning-based one. The control strategies selected were optimized to ensure
the maintenance of the battery SOC within the 18% to 22% range during charge-sustaining
mode, owing to the capacity of the PHEV’s battery pack considered for the purpose of this
study [19]. In Figure 2, the controller design and its operational scheme are summarized.
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Figure 2. Q-learning design scheme.

3.1. Control Problem

The control system considered in the present research work takes the form:

ẋ = f (t, x(t), u(t)), x(t0) = x0 (5)

where the state vector is x(t) ∈ X ⊂ Rn, i.e., x(t) has to satisfy a set of inequality con-
straints N(x(t), t) ≤ 0; u(t) ∈ U ⊂ Rm is the control vector and t ∈ Rn is the time with t0
and x0 representing the initial conditions; in this work, we assumed that the control set is a
closed subset of Rm that varies with time. The objective is to find the optimal control law
that minimizes a cost functionals of the form [52]:

J(t0, x0, t f , u) :=
∫ t f

t0

L(t, x(t), u(t))dt + K(t f , x f ) (6)

where tf and xf := x(tf) are the terminal time and state, L is the running cost whose
domain is R× X×U→ R and K is the terminal cost whose domain is R× X→ R. In
the context of HEVs, the running cost is usually related to fuel consumption whereas
the terminal constraint is designed to account for the charge sustainability requirement.
The minimization of J is typically subject to multiple constraints, usually associated with
physical limitations of powertrain components, the energy stored in the battery, and
requirements related to charge sustainability. Specifically, the charge-sustaining constraint
ensures that the vehicle keeps its electrical charge without an external source throughout a
given driving mission

x(t f ) = x(t0), (7)

typically with a certain tolerance to account for practical considerations and to simply
maintain energy within predefined boundaries [4]:

K(t f , x f ) = ϕ
[

x(t f )− x(t0)
]
. (8)

In addition, usually, the battery SOC is bound within a certain range to avoid prema-
ture ageing phenomena. To include drivability and ride quality requirements, we added a
component to the running cost representative of the frequency of ICE de/activations.
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3.2. Benchmark Algorithm

We selected dynamic programming (DP), a numerical method for solving multistage
decision-making problems, to solve this constrained finite-horizon control problem and we
used it as a benchmark against which to compare the performance of the proposed algo-
rithm. Given that DP is a well-established approach commonly employed in HEV energy
management control problems, we have chosen to omit a formal definition within this study,
reporting here just a summary of the algorithm itself (Algorithm 1). We direct interested
readers to refer to established sources for a comprehensive understanding [4,45,52–55]. We
assessed the performance of the DP algorithm on different objective functions, namely:

1. A classical approach where fuel economy and charge sustainability are considered;
2. A trade-off between fuel economy and drivability/comfort requirements ensuring

charge sustaining operation [19].

The primary aim was to formulate a control problem that closely emulates real-world
driving priorities, thereby creating a benchmark akin to a high-fidelity scenario.

Algorithm 1 Dynamic programming with terminal constraint

1: Backward Phase:
2: Initialize V(t f , x) for all states x at the final time step t f
3: for t← t f − 1 downto 1 do
4: for each state x at time t do
5: Consider all possible control u in state x at time t
6: Calculate the expected value V(t, x, u) associated with each action
7: Apply constraints to eliminate infeasible actions
8: Update the value function V(t, x) for state x at time t based on the calculated

values
9: end for

10: end for
11: Forward Phase:
12: Initialize the optimal policy π(t, x) for all states x and time steps t
13: for t← 1 to t f − 1 do
14: for each state x at time t do
15: Choose the control u∗ that maximizes V(t, x, u)
16: Set the policy π(t, x) = u∗

17: end for
18: end for
19: Output: Optimal value function V(t, x) and policy π(t, x) for all time steps t and

states x

3.3. Proposed Solution

Q-learning is said to be an off-policy temporal difference control algorithm. An off-
policy method decouples the learning policy from the policy being evaluated, allowing the
agent to learn from experiences generated by following a different exploratory policy. This
allows the agent to explore the environment more extensively early in the training phase
and gradually move towards exploitation as it accumulates knowledge according to an
ϵ–greedy law [48], which addresses the trade-off between exploration and exploitation. In
the present work, the ϵ–greedy law assumes the form of an exponential decay function.

Q(xk, uk)← Q(xk, uk)

+ α

[
rk+1 + γ max

u′
Q(xk+1, u′)−Q(xk, uk)

] (9)

where Q(xk, uk) represents the Q-value of state–action pair (xk, uk), the update rule adjusts
this value based on the immediate reward rk+1, the learning rate α, and the discounted
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future reward γmaxu′ Q(xk+1, u′), thereby integrating current experience to refine future
action-value estimations.

On-policy methods, on the other hand, update the policy based on actions taken during
learning, which means that the agent’s policy converges with the observed behaviour
during training. Specifically, the Q-value is updated using the action actually taken in the
next state, Q(xk+1, uk+1), reflecting a learning approach that assesses and improves upon
the policy it employs to make decisions.

Q(xk, uk)← Q(xk, uk)

+ α[rk+1 +γQ(xk+1, uk+1)−Q(xk, uk)]
(10)

The rewards an agent receives depend on the control actions and are designed in such
a way to be representative of the contribution of each control action to the ultimate goal. In
the Q-learning representation, the value function transition, which represents the updated
value of the Q–table for a state–action pair resulting from each reward, is stored in a table.
By extrapolating the actions corresponding to the highest values for each combination of
the state variables, it is possible to create a lookup table of rules for real-time use. The
Q–table is updated by adding the learning rate (α) multiplied by the temporal difference
error, which is the difference between the current Q-value and the sum of the immediate
stage cost and the discounted maximum Q-value of the next state, with the discount factor
(γ) as reported in Equation (9). This process enables the agent to iteratively update the
Q-values based on observed rewards, transitions, and potential future rewards, gradually
improving its policy. Algorithm 2 shows the main algorithm structure.

Algorithm 2 Tabular Q-learning

1: Initialize the Q-values for all state–action pairs in a table form
2: Define the set of allowable actions u(x) for each state x
3: Initialize the current state s and choose an initial action u using an exploration strategy

(e.g., epsilon-greedy)
4: for Nepisodes do
5: Take action u, observe the next state x′ and receive a reward r
6: Update the Qvalue for the current state–action pair using the temporal difference

learning rule
7: Choose the next action u′ using a policy derived from the Qvalue and the allowable

actions for state x′

8: Set x = x′ and u = u′

9: end for
10: Use the trained Qvalue to make decisions in the environment

Simulation Setup and Q-Learning Based Controller Design

The ICE torque functions as the decision variable u. The state vector x, on the other
hand, incorporates the battery SOC, the power required at the wheels, and the ICE torque.
Including ICE torque in the state vector is essential for continuously monitoring and
regulating its rate of change. This ensures the consistent and gradual modulation of
the controlled torque over time and therefore the comfort of the ride. The reward was
designed to include three main components: fuel consumption mf, the frequency of ICE
de/activations (x3 < 0∧ u > 0), and battery SOC charge sustainability (x1,ref − x1).

rt = c1 −
[
c2 ·m f + c3 · |x1,ref − x1|+ c4 · (x3 < 0∧ u > 0)

]
(11)

The variables x1 and x3 represent the first and third state variables, respectively. The
weights of each term of the reward function (c2, c3, c4) were properly adjusted to achieve
the best compromise between fuel economy, charge-sustainability, and frequency of ICE
de/activations. c1 is a non-negative constant introduced to limit numerical problems during
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the learning process. In addition, local constraints were imposed on state, control variables,
and all the intermediate variables to compute them so as to guarantee the functioning of
the vehicle’s main components:

SOCmin ≤ SOC(t) ≤ SOCmax (12a)

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max (12b)

Tv,min ≤ Tv(t) ≤ Tv,max (12c)

ωv,min ≤ ωv(t) ≤ ωv,max, v = ICE, EM (12d)

Table 2 summarizes the parameters and configuration setup of the proposed algorithm.

Table 2. Experiment configuration and parameters for tabular Q-learning.

Parameter Value

Learning Rate α 0.9
Discount Factor γ 0.99
ϵ greedy law Exponential decay
Action(s) {TICE}
State(s) {SOC, Pw, TICE}
Reward Function c1 −

[
c2 ·m f + c3 ·

∣∣x1,ref − x1
∣∣+ c4 · (x3 < 0∧ u > 0)

]

The Q–table was initialized as a three-dimensional array where each element was
sampled independently from a normal distribution, characterized by a mean of k1 and a
standard deviation of k2, tuned offline to achieve the desired performance.

The pure electric operating condition was modelled by simulating a fictitious scenario
where the internal combustion engine torque was set to a negative value. Consequently,
when the controller set TICE = −z, it indicates the pure electric mode. During acceleration
conditions, a maximum torque variation of 80 Nm within the selected 1 s sample time
was permitted, while during braking conditions, a maximum variation of −100 Nm was
allowed, so as to enforce the ride quality requirements.

From an algorithmic point of view, the termination condition was established based
on a predetermined number of episodes, whereas the early stopping criteria focused on the
evaluation of the cumulative reward and on the value of the cumulative discounted return.
As a remark, the cumulative reward represents the total sum of the rewards obtained by
the agent during the entire learning process without applying any discount.

R =
T

∑
t=0

rt (13)

By measuring the cumulative reward, it is possible to evaluate the overall performance and
see if it improves over time. On the other hand, discounted cumulative reward calculates
the sum of discounted rewards over time, using a discount factor, represented by gamma.

Rγ =
T

∑
t=0

γtrt (14)

The discount factor reduces the importance of future rewards compared to immediate
ones. For this reason, although it was evaluated as a criterion for assessing the performance
of the algorithm and considering early termination, it was not regarded as the primary
early termination criterion.

Furthermore, a pure exploitation validation was conducted every 500 episodes to
assess the agent’s overall performance and evaluate the learning phase, and the Q–table
was saved for testing purposes. The overall algorithmic system design scheme is depicted
in Figure 2.
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4. Results
4.1. Evaluation Metrics

From a physical point of view, the performance evaluation encompassed several
metrics including the cumulative fuel consumption over the driving mission, the frequency
of ICE de/activations, and the final state of charge (SOC) of the battery. Specifically, the
fuel consumption per unit of distance travelled (L/100km) was selected as the energy
efficiency index; the frequency of ICE activations, measured in occurrences per minute
(1/min), was selected as the passengers’ comfort index; the final SOC (SOCf) was selected
as the charge-sustaining index.

4.2. DP Results

The main results for the WLTP driving cycle, summarized in Table 3, are presented con-
sidering the aforementioned metrics. As outlined in Section 3.2, the algorithm performance
was evaluated considering different objective functions accounting for:

1. Fuel economy and charge sustainability (I);
2. Trade-off between fuel-economy, charge sustainability and drivability (II) [19];
3. Same reward function used for the Q-learning learning algorithm (III) (Please refer to

Equation (11)).

Complementing this analysis, Figure 3 depicts the SOC trends, showcasing the outcomes
of employing different objective functions.

Table 3. Performance results for DP algorithm on the WLTP driving cycle.

Label 1 FC 2 fICE
2 SOCf FCcorr

2,3

- L/100 km 1/min - L/100 km

I 6.69 2.1 0.201 6.71

II 7.08 0.13 0.203 7.18

III 7.6 0.07 0.203 7.74
1 It indicates a specific objective function; 2 FC = Fuel consumption; fICE = Frequency of ICE activations;
FCcorr = Corrected fuel consumption. 3 Correction of fuel consumption to account for SOC variation.

0 200 400 600 800 1000 1200 1400 1600 1800
Time, s

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

SO
C

, -

DP I DP II DP III

Figure 3. Batterystate of charge (SOC) trends for dynamic programming (DP) on WLTP driving cycle,
highlighting the impact of three different objective functions.
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4.3. Comparison Assumptions

To establish a mathematically consistent comparison between two algorithms, they
should attempt to solve the same mathematical problem, which in this case includes the
same vehicle model, the same objective function, and the same constraints. The off–policy
method should converge to the benchmark algorithm we chose, dynamic programming,
over an infinite time horizon. Once the two algorithms achieve comparable results in
terms of cumulative cost function and cumulative reward function, the comparison should
be consistent from a physical point of view as well. However, in practical scenarios,
particularly when addressing a multi-objective control problem, identifying a feasible
objective function that yields the desired outcomes might be challenging. This is due in part
to the fact that the benchmark algorithm allows for the enforcement of a final state, whereas
achieving this outcome with the off-policy approach is not straightforward. Consequently,
we opted to compare the results obtained from both reinforcement learning (RL) and
dynamic programming (DP), utilizing two different objective functions, with a specific
emphasis on physics and set goals. Specifically, as shown in the reward function in Table 2,
the RL agent faced a penalty based on the SOC value compared to the reference one, a
penalty every time it starts the engine, and a term related to fuel consumption throughout
the driving mission. On the dynamic programming side, the cost function we selected
resulting from the best trade-off among the defined objectives, includes a penalty for the
frequency of ICE de/activations, a contribution term for consumption, and a final state
constraint [19].

4.4. Correction of Fuel Consumption to Account for SOC Variation with Respect to the Target Value

In practical implementations, when the final SOC does not reach the target value, we
corrected the actual value of fuel consumption by accounting for the net amount of energy
variation in the battery, as carried out in [4].

ṁ f ,corr = ṁ f + θ∆SOC (15)

where θ translates the amount of energy used in the battery into an equivalent fuel con-
sumption considering the ICE efficiency ηICE and the fuel lower heating value Hf,LHV.

θ =
Pbatt

ηICE · H f ,LHV
(16)

4.5. Q-Learning Results and Discussion

The agent was trained and validated on the worldwide harmonised light vehicle
test procedure (WLTP) driving cycle, whereas the testing was performed on the Artemis
cycles, including urban (AUDC), rural (ARDC), and motorway (AMDC) segments. The
Artemis driving cycles show higher average, and max speeds, and faster acceleration
compared to the WLTP cycle. These cycles are designed to adapt to various vehicle types
and sizes, incorporating both transient and steady-state driving conditions. The goal
is to prove the robustness of the proposed algorithm when applied to driving cycles
different from the training one. The performance of the algorithm was assessed considering
the cumulative reward, depicted in Figure 4. As observed, despite some fluctuations
in the trend caused by the absence of regularization techniques, the algorithm exhibits
convergence at approximately episode 1500. The figure showcases four stars representing
validation episodes focused on pure exploitation, which are conducted every 500 episodes.
Specifically, QA refers to episode 1000, QB to episode 1500, QC to episode 2000, and QD to
episode 2500. On the other hand, the remaining points correspond to the epsilon-greedy
approach, where the exploration percentage exponentially decreases during the training
phase. During episodes 1 to 850, there is an empty block indicating that the agent was
unable to reach the end of the episode.

The observed discrepancy in cumulative rewards between episode 2500 and episode
1500 provides evidence of a potential local minimum, suggesting a limitation in agent
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performance. While alternative techniques or strategies could have been explored to
mitigate this issue, it is worth noting that both outcomes were on the descending part of
the exploration-exploitation law curve, with an ϵ lower than 0.2. Therefore, the current
configuration was retained.
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Figure 4. Evolution of cumulative reward over episodes with validation and epsilon-greedy ap-
proaches.
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Figure 5. Trends of battery SOC during training with intermittent exploitation introduced every
500 episodes for WLTP driving cycle.

The main training, validation, and testing results are summarized in Figure 5 and
Tables 4–6, respectively. The labels indicate the different Q–tables obtained through the
pure exploitation episodes. The average fuel consumption achieved during the training
and validation processes is approximately 7.58 L/100 km, ranging from 7.62 L/100 km in
episode 1000 to 7.53 L/100 km in episode 2500. The average frequency of ICE de/activations
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is approximately 1.15 1/min, with variations from 1.63 1/min in episode 1000 to 0.8 1/min
in episode 2500. On average we obtain a final state of charge (SOCf) of approximately 0.207,
ranging from 0.212 in episode 1000 to 0.201 in episode 2500.

Table 4. Performance results for training and validation on the WLTP driving cycle.

Qval
1 Episode FC 2 fICE

2 SOCf FCcorr
2,3

- - L/100 km 1/min - L/100 km

QA 1000 7.62 1.63 0.212 9.89

QB 1500 7.59 1 0.207 8.39

QC 2000 7.56 1.17 0.206 8.07

QD 2500 7.53 0.8 0.201 7.55
1 It indicates a specific pure-exploitation validation episode; 2 FC = Fuel consumption; fICE = Frequency of ICE
activations; FCcorr = Corrected fuel consumption. 3 Correction of fuel consumption to account for SOC variation.

To enhance result comprehension, Table 5 provides a comprehensive summary of
performance in relation to the DP algorithm with different objective functions. Among the
analyzed results from dynamic programming, DPII stands out as the one that effectively
balances fuel consumption, charge sustainability, and drivability. On average, the different
episodes of pure exploitation regarding fuel consumption exhibit a mean deviation below
7%, whereas in terms of engine activations, on average they occur approximately 9 times as
frequently. On the final SOC side, the comparison was not performed because starting from
QB, there is a percentage deviation of 3.5% from the target, which we considered within
acceptable tolerance ranges.

Table 5. Comparative performance analysis during the WLTP validation phase for the proposed
algorithm and DP.

Fuel Consumption % Difference

Qval
1 w.r.t. 2 DPI DPII w.r.t. DPIII

QA +13.9 +7.6 +0.2

QB +13.45 +7.2 −0.13

QC +13 +6.78 −0.53

QD +12.56 +6.35 −0.92

Corrected fuel consumption % difference

Qval w.r.t. DPI w.r.t. DPII w.r.t. DPIII

QA +46 +37.7 +27.8

QB +25 +16.85 +8.4

QC +20.27 +12.39 +4.26

QD +12.52 +5.15 −2.45

Frequency of ICE de/activations compared to DP

Qval w.r.t. DPI w.r.t. DPII w.r.t. DPIII

QA −0.47 +1.5 +1.56

QB −1.1 +0.87 +0.93

QC −0.93 +1.04 +1.1

QD −1.3 +0.67 +0.73
1 It indicates a specific pure-exploitation validation episode; 2 with respect to.

The Q–table was initialized as a three-dimensional array and each element was in-
dependently sampled from a normal distribution, characterized by a certain mean and
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standard deviation. For the sake of completeness, we reported in Figure 6 a sliced view at a
specific wheel power request for the QB table to give the reader a visual representation of
the Q–table. This includes a 3D visualization in Figure 6(a) showcasing the distinct shape
of the Q–table in a particular section, as well as a 2D top-view representation in Figure 6(b)
to provide an overview of its contents and stored values.
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Figure 6. Visual representations of the QB Table in both 3D and 2D views at a specific wheel power
request.

For the testing phase on the three Artemis driving cycles, we selected the two Q–
tables that lead to the highest and lowest cumulative reward, namely QB and QD. They
both achieve a final SOC within the feasible range of 0.18–0.22, with QB showing higher
proximity to the target value. However, QB exhibits higher fuel consumption and frequency
of ICE activations compared to QD.

Specifically, for the urban driving cycle (AUDC), QB consumes 5.77 L/100 km, approx-
imately 16.33% higher than QD’s fuel consumption of 4.96 L/100 km. Additionally, QB
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has a higher frequency of ICE activations of 0.66 1/min, representing a 36.81% increase
compared to QD’s frequency of 0.483 1/min.

For the rural driving cycle (ARDC) and the motorway one (AMDC), QB shows an
increase in fuel consumption of approximately 5.6% and 4.3% respectively, compared to
the QD. Additionally, QB exhibits higher frequencies of ICE de/activations, with a 40%
increase for ARDC and an 85% increase for AMDC.

Table 6. Performance results: training on the WLTP driving cycle and testing on an unknown driving
cycle.

Qval
1 Cycle FC 2 fICE

2 SOCf FCcorr
2,3

- - L/100 km 1/min - L/100 km

QB AUDC 5.77 0.66 0.2 5.77

QB ARDC 6.74 1.72 0.2 6.74

QB AMDC 10.87 1.24 0.202 10.91

QD AUDC 4.96 0.483 0.187 16.26

QD ARDC 6.38 1.22 0.192 7.75

QD AMDC 10.42 0.67 0.192 11.15
1 It indicates a specific pure-exploitation validation episode; 2 FC = Fuel consumption; fICE = Frequency of ICE
activations; FCcorr = Corrected fuel consumption. 3 Correction of fuel consumption to account for SOC variation.

Adopting a conservative approach for the final comparison, the results of Artemis
cycles of QB were compared to those of DPII, which offers the best trade-off among fuel con-
sumption, the frequency of ICE de/activations, and charge sustainability (Tables 7 and 8).
On the fuel economy side, the proposed algorithm obtains an average increase of around
5%, whereas on the frequency of ICE activations side, we have an average frequency of
around 12 times higher. The best performances are observed for the AUDC cycle, and the
worst for the AMDC cycle. Figure 7 shows the results in terms of SOC for both DPII and QB
for AUDC (top), ARDC (middle) and AMDC (bottom) cycles. Similarly, Figure 8 shows the
results in terms of ICE torque. During the testing phase, the proposed algorithm demon-
strates the ability to maintain the charge-sustaining behaviour even on unknown driving
cycles. It achieves a fuel economy comparable to the benchmark algorithm optimized for
the specific driving mission while keeping the frequency of ICE de/activations below 2 per
minute.

Table 7. Performance results for DPII1 algorithm on the Artemis driving cycles.

Cycle FC 1 fICE
1 SOCf FCcorr

1,2

- L/100 km 1/min - L/100 km

AUDC 5.75 0.121 0.2018 5.97

ARDC 6.27 0.167 0.202 6.36

AMDC 10.1 0.06 0.202 10.17
1 FC = Fuel consumption; fICE = Frequency of ICE activations; FCcorr = Corrected fuel consumption. 2 Correction
of fuel consumption to account for SOC variation.
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Table 8. Comparative performance analysis of QB2 and DPII1 during the ARTEMIS testing phase.

Cycle FC 1 fICE
1 FCcorr

1,2 SOCf
- L/100 km 1/min L/100 km -

AUDC 5.77 0.66 5.77 0.201
w.r.t. 3 DPII +0.34% +0.54 −3.35 -

ARDC 6.74 1.72 6.74 0.1998
w.r.t. DPII +7.49% +1.55 +5.97 -

AMDC 10.87 1.23 10.91 0.2019
w.r.t. DPII +7.62% +1.17 + 7.27 -

1 FC = Fuel consumption; fICE = Frequency of ICE activations; FCcorr = Corrected fuel consumption. 2 Correction
of fuel consumption to account for SOC variation. 3 with respect to.
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Figure 7. Trends of battery SOC for DPII and QB on ARTEMIS driving cycles.
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5. Conclusions

The present paper showed the potentiality of reinforcement learning in the form of
tabular Q-learning in the HEV energy management control problem when the charge-
sustaining phase, fuel economy, comfort and engine operation requirements are considered.
The system dynamics of the HEV powertrain were modelled according to a road load
approach. A pure exploitation validation of the Q-learning algorithm was conducted every
500 episodes to assess the agent’s overall performance and evaluate the learning phase, and
the Q–table was saved for testing purposes. The average fuel consumption achieved during
the training and validation processes was approximately 7.58 L/100 km, ranging from
7.62 L/100 km in episode 1000 to 7.53 L/100 km in episode 2500. The average frequency
of ICE de/activations was approximately 1.15 1/min, with variations from 1.63 1/min
in episode 1000 to 0.8 1/min in episode 2500. On average, we obtained a final state of
charge (SOCf) of approximately 0.207, ranging from 0.212 in episode 1000 to 0.201 in
episode 2500. To evaluate the effectiveness of the proposed approach, extensive simulations
were conducted on unknown driving scenarios. Specifically, for the testing phase on the
three Artemis driving cycles, we selected the two Q–tables that lead to the highest and
lowest cumulative reward, namely QB and QD. They both achieved a final SOC within the
feasible range of 0.18–0.22, with QB showing higher proximity to the target value. However,
QB exhibits higher fuel consumption and frequency of ICE activations compared to QD.
Comparative analyses were performed against a conventional offline control strategy,
showcasing the tabular Q-learning algorithm’s potential in fuel efficiency and overall
system performance. During the testing phase, the proposed algorithm demonstrated
the ability to maintain the charge-sustaining behaviour, even on unknown driving cycles.
It achieved a fuel economy comparable to the benchmark algorithm, optimized for that
specific driving mission while keeping the frequency of ICE de/activations below 2 per
minute. In particular, it achieved an average fuel economy increase of approximately 5%
compared to the benchmark algorithm. Additionally, it demonstrated an average frequency
of approximately 12 times higher for the frequency of ICE activations side. The next steps
include a validation in a Hardware-in-the-Loop (HIL) simulation environment, with a
comparison to commonly used algorithms.
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