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Vol. 80, 2022 (2022), 17 – 27

S. Dutto

DEVELOPMENTS ON PRIMALITY TESTS BASED ON
LINEAR RECURRENT SEQUENCES OF DEGREE TWO

Abstract. Some probabilistic primality tests, like the strong Lucas test that is part of the
widely used Baillie-PSW test, are defined through linear recurrent sequences. When adopting
linear recurrent sequences of degree two, the simple version of the Lucas test as well as tests
based on the Pell hyperbola can be generalized obtaining new powerful primality tests. This
paper describes a deeper analysis of these two generalized tests in order to find the best
parameters by number of pseudoprimes, i.e., the instances of the tests with less composite
integers that are declared primes. The Selfridge method for choosing the parameters of the
Lucas test can be adapted to the generalized tests and, when adopting the parameters among
those with best statistical results, the resulting tests have no pseudoprimes up to 244.

1. Introduction

The problem of deciding whether an integer is prime is very important from a theoreti-
cal point of view, but also for applications like public-key cryptography, for example in
the RSA cryptosystem, which security relies on the integer factorization problem [22].

Primality (or compositeness) tests are implemented exploiting theoretical prop-
erties and can be classified depending on the reliability of their results:

• deterministic tests give a sure result but have high computational costs. Between
them, the AKS test [1] is the only unconditional deterministic algorithm able to
determine in polynomial time the primality of an integer n. Its complexity is
Õ(log6 n) as proved in [12], but it has very slow practical applications;

• probabilistic tests, which are the focus of this paper, have provable bounds on
the probability of false positive results, moreover they are the most used because
of the good trade off between reliability and performance.

The most used probabilistic tests are the Rabin-Miller test and the Baillie-PSW
test. They both include the strong Fermat test, which declares an odd integer n probable
prime for a base a ∈ Z if gcd(n,a) = 1, n−1 = 2rs with s odd and

as ≡ 1 (mod n) or a2ks ≡−1 (mod n) for some 0≤ k < r.

A composite n that satisfies this condition is called strong pseudoprime to base a and
it is proven in [19] that a composite n is a strong pseudoprime to at most one quarter of
all bases a ∈ Z.

This property is the fundamental idea behind the Rabin-Miller test [15, 19],
which tests the integer n by applying the strong Fermat test for k different bases and
declares n probably prime with a probability at most 4−k.
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18 S. Dutto

The Baillie-PSW test [3,18], instead, combines the strong Fermat test with base
a = 2 and the strong Lucas test. The latter exploits two Lucas sequences [9] that, given
the parameters P,Q ∈ Z, are defined as{

U0 = 0, U1 = 1,
Uk = PUk−1−QUk−2, if k > 1,

{
V0 = 2, V1 = P,
Vk = PVk−1−QVk−2, if k > 1.

(1)

Given D = P2− 4Q and j =
(D

n

)
the Jacobi symbol of D over n, the strong Lucas

test declares an odd integer n probable prime for the parameters P,Q ∈ Z if j ̸= 0,
gcd(n,Q) = 1, n− j = 2rs with s odd and

Us ≡ 0 (mod n) or V2ks ≡ 0 (mod n) for some 0≤ k < r.

The parameters P,Q ∈ Z are usually selected depending on n through the Selfridge
method [3] such that:

• D is taken as the first element in {5,−7,9,−11, . . .} such that j =
(D

n

)
=−1;

• P = 1, Q = 1−D
4 .

It is conjectured that there are infinitely many BailliePSW pseudoprimes [16], i.e.,
composite n that are declared primes by both the strong Fermat test with base a = 2
and the strong Lucas test with parameters selected with the Selfridge method. However,
no one has found a BailliePSW pseudoprime yet [6].

The strong Lucas test has a simpler version called Lucas test, which consid-
ers only the sequence (Uk)k≥0 and declares an odd integer n probable prime for the
parameters P,Q ∈ Z with D = P2−4Q if j =

(D
n

)
̸= 0, gcd(n,Q) = 1 and

Un− j ≡ 0 (mod n).

A composite n that passes this test is called Lucas pseudoprime with parameters P, Q.
Lucas pseudoprimes have been widely studied [7, 10, 17, 20, 21], as well as the

idea of primality tests using more general linear recurrence sequences [11, 13].
In particular, in [8] the Lucas test is related with a test based on the points of a

Pell hyperbola. This is a curve depending on a parameter D ∈ Z and is defined through
the Pell equation [4] as CD = {(x,y) ∈ Z2

n |x2−Dy2 ≡ 1 (mod n)}. If n is prime, this
set with the Brahmagupta product

(x1,y1)⊗ (x2,y2) = (x1x2 +Dy1y2,x1y2 + y1x2) (mod n),(2)

is a cyclic group of order n− j with j =
(D

n

)
̸= 0 [14].

The group structure allows to define the Pell test [8], which declares an odd
integer n probable prime for the parameters D ∈ Z and (x̃, ỹ) ∈ CD with j =

(D
n

)
̸= 0 if

yn− j ≡ 0 (mod n), where
(
xn− j,yn− j

)
= (x̃, ỹ)⊗(n− j).
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A composite n that passes this test is called Pell pseudoprime with parameters D, (x̃, ỹ).
In particular, an integer that passes the Pell test with parameters D ∈ Z and

(x̃, ỹ) ∈ CD passes also the Lucas test with parameters P = 2x̃,Q = 1. On the other
hand, if n passes the Lucas test with parameters P ∈ Z,Q = 1, then n passes the Pell
test with parameters D = P2−4,(x̃, ỹ) = (P/2,1/2) ∈ CD.

In [5], generalizations of the Lucas and Pell tests through linear recurrent se-
quences of degree two have been introduced, and this work describes a deeper analysis
of these primality tests. In Section 2, the setting and the main result from [5] is recalled,
while Sections 3 and 4 focus on new results about the choice of parameters for the gen-
eralized Pell test and the generalized Lucas test, respectively. Finally, Section 5 shows
some new results on these tests when their parameters are fixed and when adaptations
of the Selfridge method for choosing the parameters are adopted.

2. Linear recurrent sequences for primality tests

The Pell test can be improved by considering both the coordinates of the obtained point.
The result is the strong Pell test [5], which declares an odd integer n probable prime
for the parameters D ∈ Z and (x̃, ỹ) ∈ CD with j =

(D
n

)
̸= 0 if(

xn− j,yn− j

)
= (x̃, ỹ)⊗(n− j) = (1,0) ∈ CD.

A composite n that passes this test is called strong Pell pseudoprime with parameters
D, (x̃, ỹ). The check in this test can be written in a matrix form as(

xn− j
yn− j

)
=

(
x̃ Dỹ
ỹ x̃

)n− j(1
0

)
≡
(

1
0

)
(mod n).(3)

This structure can be generalized by considering that any matrix M ∈Z2×2 gen-
erates the linear recurrent sequences(

Ṽk
Ũk

)
= Mk

(
1
0

)
, for k ≥ 0,

and the following result holds [5].

LEMMA 1. Let D be the discriminant of the characteristic polynomial of the
matrix M ∈ Z2×2. If p is prime and det(M) ̸≡ 0 (mod p), then

1. (Ṽp−1,Ũp−1)≡ (1,0) (mod p), when
√

D ∈ Z×p ;

2. (Ṽp+1,Ũp+1)≡
(

det(M),0
)
(mod p), when

√
D ̸∈ Z×p .

Therefore, given the sequences (Ũk)k≥0,(Ṽk)k≥0 generated by M ∈ Z2×2 with
gcd(n,det(M)) = 1 and D discriminant of the characteristic polynomial, new primality
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tests can be defined by declaring an odd integer n probable prime if j =
(D

n

)
̸= 0 and

(Ṽn− j,Ũn− j)≡

{
(1,0) (mod n), if j = 1,
(det(M),0) (mod n), if j =−1.

The strong Pell test is an example of this construction, but also the Lucas test
can be improved by considering the sequence (Uk)k≥0 as generated by(

Uk+1
Uk

)
=

(
P −Q
1 0

)k(1
0

)
, for k ≥ 0.(4)

This gives a second condition that defines the double Lucas test [5], which declares
an odd integer n prime for the parameters P,Q ∈ Z with D = P2−4Q if j =

(D
n

)
̸= 0,

gcd(n,Q) = 1 and

(Un+1− j,Un− j)≡

{
(1,0) (mod n), if j = 1,
(Q,0) (mod n), if j =−1.

As for the Lucas and Pell tests, there is an equivalence between double Lucas
and strong Pell tests. In particular, if P ∈ Z and Q = 1, then the matrix in Eq. (4) is
similar to one of the type in Eq. (3) through

(
1 P
0 2

)
and the resulting strong Pell test

has parameters D = P2−4,(x̃, ỹ) = (P/2,1/2) ∈ CD. The vice versa is also true since

the matrix in Eq. (3) is similar to one of the type in Eq. (4) through
(

1 −x̃
0 ỹ

)
, and the

parameters of the resulting double Lucas test are P = 2x̃,Q = 1.

3. Generalized Pell test

In order to obtain a relation between strong Pell tests and double Lucas tests with any
Q, it is possible to consider the generalized Pell conic

CD,Q = {(x,y) ∈ Z2
n |x2−Dy2 ≡ Q (mod n)}.

Despite the product ⊗ introduced in Eq. (2) is no more well defined over CD,Q, taking
a point (x̃, ỹ) ∈ CD,Q defines the linear recurrent sequences(

xk
yk

)
=

(
x̃ Dỹ
ỹ x̃

)k(1
0

)
, for k ≥ 0,

where the determinant of the matrix is x̃2−Dỹ2 ≡ Q (mod n). Using Lemma 1 with
(x̃k)k≥0,(ỹk)k≥0 returns the generalized Pell test [5], which declares an odd integer n
probable prime for the parameters D ∈ Z, (x̃, ỹ) ∈ CD,Q if j =

(D
n

)
̸= 0, gcd(n,Q) = 1

and

(xn− j,yn− j)≡

{
(1,0) (mod n), if j = 1,
(Q,0) (mod n), if j =−1.
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A composite n that passes this test is called generalized Pell pseudoprime with param-
eters D, (x̃, ỹ).

In particular, if n passes the double Lucas test with parameters P,Q ∈ Z then n
passes the generalized Pell test with parameters D = P2−4Q and (x̃, ỹ) = (P/2,1/2).
On the other hand, if n passes the generalized Pell test with parameters D ∈ Z and
(x̃, ỹ)∈CD,Q, then n passes the double Lucas test with parameters P= 2x̃, Q= x̃2−Dỹ2.

PROPOSITION 1. The generalized Pell test is independent of the sign of the
parameters x̃, ỹ ∈ Z.

Proof. Exponentiation with respect to the product ⊗ can be obtained by considering
the isomorphism between CD,Q and Zn[t]/(t2−D) given by (x̃, ỹ)∼= x̃+ tỹ, so that

(xk,yk) = (x̃, ỹ)⊗k ∼= (x̃+ tỹ)k = Ak(D, x̃, ỹ)+ tBk(D, x̃, ỹ), for k ≥ 0,

where

xk = Ak(D, x̃, ỹ) =
⌊k/2⌋

∑
i=0

(
k
2i

)
Dix̃k−2iỹ2i,

yk = Bk(D, x̃, ỹ) =
⌊k/2⌋

∑
i=0

(
k

2i+1

)
Dix̃k−2i−1ỹ2i+1.

Since even integers can be easily declared composite, in the generalized Pell test the
exponent is generally n− j with j =

(D
n

)
=±1 and n odd, so that changing the sign of

x̃ or ỹ results in obtaining{
An− j(D,±x̃,∓ỹ) = An− j(D, x̃, ỹ),
Bn− j(D,±x̃,∓ỹ) =−Bn− j(D, x̃, ỹ),

Thus, in the generalized Pell test, the check on xn− j is the same in both cases, while
yn− j = Bn±1(D, x̃, ỹ)≡ 0 (mod n) if and only if −Bn±1(D, x̃, ỹ)≡ 0 (mod n). In con-
clusion, an integer n that passes the generalized Pell test for the parameters D and (x̃, ỹ)
still passes it if the sign of x̃ or ỹ (or both) is changed, and vice versa.

PROPOSITION 2. The generalized Pell test is independent of the values of the
parameters D, ỹ ∈ Zr{0} as long as Dỹ2 remains unchanged.

Proof. The formulation in the previous proof can be written for any k ≥ 0 as

xk = Ak(D, x̃, ỹ) =
⌊k/2⌋

∑
i=0

(
k
2i

)
x̃k−2i(Dỹ2)i,

yk = Bk(D, x̃, ỹ) =
⌊k/2⌋

∑
i=0

(
k

2i+1

)
x̃k−2i−1(Dỹ2)iỹ.
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Thus, if the parameters D, ỹ ∈ Z and D′, ỹ′ ∈ Z have Dỹ2 = D′ỹ′2, then j =
(D

n

)
=
(D′

n

)
and in the generalized Pell test the check on xn− j uses Ak(D, x̃, ỹ) = Ak(D

′, x̃, ỹ′), so that
it is the same in both cases.

The check on yn− j uses Bk(D, x̃, ỹ) = ỹBk(Dỹ2, x̃,1), with ỹ ̸= 0, so that it be-
comes Bn− j(D, x̃, ỹ)≡ 0 (mod n) if and only if Bn− j(Dỹ2, x̃,1)≡ 0 (mod n). An anal-
ogous results can be obtained with D′, ỹ′ ∈ Z, i.e., Bk(D

′, x̃, ỹ′) = ỹ′Bk(D
′ỹ′2, x̃,1), with

ỹ′ ̸= 0, so that Bn− j(D
′, x̃, ỹ′)≡ 0 (mod n) if and only if Bn− j(D

′ỹ′2, x̃,1)≡ 0 (mod n),

and the thesis is confirmed because Dỹ2 = D′ỹ′2 and j =
(D

n

)
=
(D′

n

)
.

4. Generalized Lucas test

Lemma 1 allows also to generalize the double Lucas test. In particular, considering the
parameters P,Q,R ∈ Z, the linear recurrent sequences(

Ṽk
Ũk

)
=

(
P −Q
R 0

)k(1
0

)
, for k ≥ 0,(5)

define the generalized Lucas test [5], which declares an odd integer n probable prime
for the parameters P,Q,R ∈ Z with D = P2−4QR if j =

(D
n

)
̸= 0, gcd(n,QR) = 1 and

(Ṽn− j,Ũn− j)≡

{
(1,0) (mod n), if j = 1,
(QR,0) (mod n), if j =−1.

A composite n that passes this test is called generalized Lucas pseudoprime with pa-
rameters P, Q, R.

PROPOSITION 3. The generalized Lucas test is independent of the sign of the
parameter P ∈ Z.

Proof. The linear recurrent sequences defined in Eq. (5) are a generalization of Lucas
sequences introduced in Eq. (1), and can be described as{

Ũ0 = 0, Ũ1 = R,
Ũk = PŨk−1−QRŨk−2, if k > 1,

{
Ṽ0 = 1, Ṽ1 = P,
Ṽk = PṼk−1−QRṼk−2, if k > 1,

(6)

If the sign of the parameter P ∈ Zn is changed, then the obtained sequences are{
Ũ ′0 = 0, Ũ ′1 = R,
Ũ ′k =−PŨ ′k−1−QRŨ ′k−2, if k > 1,

{
Ṽ ′0 = 1, Ṽ ′1 =−P,
Ṽ ′k =−PṼ ′k−1−QRṼ ′k−2, if k > 1,

and for any k ≥ 0

Ũ ′k =

{
−Ũk if k is even,
Ũk if k is odd,

Ṽ ′k =

{
Ṽk if k is even,
−Ṽk if k is odd.

This can be verified by induction on the index k:
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• when k = 0 or k = 1 the thesis is confirmed;

• if k > 1 is even, then assuming the thesis true for k−1 and k−2 results in{
Ũ ′k =−PŨ ′k−1−QRŨ ′k−2 =−PŨk−1 +QRŨk−2 =−Ũk,

Ṽ ′k =−PṼ ′k−1−QRṼ ′k−2 = PṼk−1−QRṼk−2 = Ṽk;

• if k > 1 is odd, then assuming the thesis true for k−1 and k−2 results in{
Ũ ′k =−PŨ ′k−1−QRŨ ′k−2 = PŨk−1−QRŨk−2 = Ũk,

Ṽ ′k =−PṼ ′k−1−QRṼ ′k−2 =−PṼk−1 +QRṼk−2 =−Ṽk.

In the generalized Lucas test, k = n± 1 with n odd, so that the interesting case is k
even. Thus, when changing the sign of P, the check on Ṽk remains unchanged, while
Ũn±1 ≡ 0 (mod n) is satisfied iff −Ũn±1 ≡ 0 (mod n).

This result is true for all tests based on Lucas sequences, so that when studying
these tests with fixed parameters for testing different integers, it is sufficient to focus
only on the instances with P≥ 0.

PROPOSITION 4. The generalized Lucas test is independent of the choice of
Q,R ∈ Z, as long as the value of QR remains unchanged.

Proof. The generalized Lucas sequences with parameters P,Q,R ∈ Z can be compared
with the classic Lucas sequences with parameters P,Q′ = QR. By induction on the
index k > 0 it is possible to prove that Ũk = RUk and Ṽk =Vk:

• if k = 0, then Ũ0 = RU0 = 0 and Ṽ0 =V0 = 1;

• if k = 1, then Ũ1 = RU1 = R and Ṽ1 =V1 = P;

• if k > 1, then assuming the thesis true for k−1 and k−2 results in having

Ũk = PŨk−1−QRŨk−2 = PRUk−1−QR2Uk−2

= R(PUk−1−Q′Uk−2) = RUk,

as well as

Ṽk = PṼk−1−QRṼk−2 = PVk−1−QRVk−2

= PVk−1−Q′Vk−2 =Vk.

Thus, the generalized tests with parameters P,Q,R∈Z is equivalent to the double Lucas
test with parameters P,Q′ = QR.

Given two generalized Lucas tests with parameters P,Q,R∈Z and P,Q′,R′ ∈Z,
respectively, if QR = Q′R′, then they are both equivalent to the same double Lucas test
and the thesis is verified.
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D
x̃ 0 1 2 3 µDỹ 1 2 3 1 2 3 1 2 3 1 2 3

5 108 144 126 17 11 14 178 11 14 19 7 17 56
-7 102 104 137 11 3 21 3 7 10 9 5 6 35

-11 92 156 157 4 6 12 4 7 8 2 8 7 39
13 106 120 132 7 2 8 4 8 10 6 4 4 34

-15 81 118 156 8 15 10 5 24 10 7 9 15 38
17 108 187 109 12 8 5 6 12 5 8 5 6 39
µ(x̃,ỹ) 100 138 136 10 8 12 33 12 10 9 6 9

Table 2.1: Number of generalized Pell pseudoprimes up to 220 for different parameters
D,(x̃, ỹ) and their arithmetic means µD,µ(x̃,ỹ) with fixed D or (x̃, ỹ), respectively.

Despite this equivalence makes the generalized Lucas test less important, adapt-
ing the Selfridge method gives very interesting results. As for the other tests based on
Lucas sequences, the idea is to test the integer n with parameters that have discrimi-
nant D such that

(D
n

)
=−1, so that the test is not equivalent to a strong Fermat test [3].

Therefore, the following algorithm for choosing the parameters is introduced:

1. fix P,R > 0;

2. take the minimum D ∈
{

P2−4RQ |Q ∈ Zr{0}
}

such that
(D

n

)
=−1;

3. evaluate Q = P2−D
4R .

In the following section, an analysis on the resulting number of pseudoprimes is per-
formed, in order to find the best values for the parameters of the introduced tests.

5. Numerical experiments

Table 2.1 collects the number of pseudoprimes up to 220 = 1.048.576 for the general-
ized Pell test with different choices of the parameters:

• D is taken among the first six non-square values used in the Selfridge method
(the average number of D to be tried is less than 2 [3]), which are the interesting
cases because of the relation between generalized Pell test and double Lucas test;

• (x̃, ỹ) has coordinates between 0 and 3, since negative values behave as positive
ones because of Proposition 1. Points with coordinate ỹ = 0 can be excluded
because Proposition 2 assures that they are equivalent to cases with D = 0.

The collected data strongly depend on the values of the parameters. However,
their arithmetic means for fixed D or (x̃, ỹ), shown in the last column and row, respec-
tively, allow to understand which values can be considered more reliable, for example
in an adaptation of the Selfridge method introduced in Section 1.

In particular, if the parameters for the generalized Pell test are chosen as:
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Q
P 0 1 2 3 µQR 1 2 3 1 2 3 1 2 3 1 2 3

1 - 118 128 - 2 6 - 118 9 165 251 128 103
-1 - 118 128 60 223 4 121 18 250 74 4 5 91
2 118 251 140 2 20 4 118 223 4 251 13 7 96

-2 118 251 140 223 8 60 18 17 6 4 409 9 105
3 128 140 250 6 4 6 9 4 25 128 7 250 80

-3 128 140 250 4 60 11 250 6 9 5 9 9 73
µP,R 123 170 173 59 53 15 103 64 51 105 116 68

Table 2.2: Number of generalized Lucas pseudoprimes up to 220 for different parame-
ters P,Q,R and their arithmetic means µQ,µP,R with fixed Q or P,R, respectively.

• D first element in {5,−7,9,−11, . . .} such that j =
(D

n

)
=−1;

• (x̃, ỹ) = (3,2), the case with lowest arithmetic mean in Table 2.1;

then, when testing all the integers up to 244 = 17.592.186.044.416, only primes were
declared primes, i.e., no generalized Pell pseudoprime was found.

Analogously, Table 2.2 shows the number of pseudoprimes up to 220 for the
generalized Lucas test with different choices of the parameters, namely for the integers
0 ≤ P ≤ 3,1 ≤ R ≤ 3 and the first six Q obtained by the Selfridge method. Negative
values of P can be excluded thanks to Proposition 3, while Proposition 4 assures that,
if Q is taken among positive and negative integers, then it is possible to consider only
positive values of R. Since cases with same value of QR are equivalent, they return the
same number of pseudoprimes, but they are collected in order to study the behavior of
the test with fixed P,R for the adaptation of the Selfridge method.

Some trivial cases are excluded because they generate sequences for which
Eq. (5) is satisfied by most of the odd integers, namely:

• P = 0, Q = R = 1, related to the matrix
(

0 −1
1 0

)
that has period 4;

• P = 0, Q =−1, R = 1, related to the matrix
(

0 1
1 0

)
that has period 2;

• P = Q = R = 1, related to the matrix
(

1 −1
1 0

)
that has period 6.

The case with P = 2, Q = R = 1 is also excluded since its discriminant D is zero. When
R = 1 the test is simply the double Lucas tests, but these cases are included for the sake
of completeness, as well as the cases with P = 0 in which Ũ2k = 0 ∀k ≥ 0, i.e., in the

test only the check on Ṽn− j = (−QR)
n− j

2 is significant.
The collected quantities strongly depend on the chosen parameters. Table 2.2

contains also the arithmetic means of the values for fixed Q in the last column and for
fixed P,R in the last row, which allow to understand what are the most reliable choices.

When adapting the Selfridge method to the generalized Lucas test, the best
choices for the fixed parameters and the consequent set of possible values of D are,
in order of best statistical results:
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1. P = 1, R = 3 and D ∈ {−11,13,−23,25, . . .};

2. P = 2, R = 3 and D ∈ {−8,16,−20,28, . . .};

3. P = 1, R = 2 and D ∈ {−7,9,−15,17, . . .};

4. P = 1, R = 1 and D ∈ {5,−7,9,−11, . . .} that gives the double Lucas test with
the Selfridge method, with 5777 as first pseudoprime.

In all these cases, D is taken as the minimum with
(D

n

)
=−1 and Q = P2−D

4R .

In particular, when testing the integers up to 244 with the parameters obtained
through method 1, only primes were declared primes, i.e., no generalized Lucas pseu-
doprime with parameters P = 1, R = 3 and Q from the Selfridge method was found.
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