
21 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quadrature of functions with endpoint singular and generalised polynomial behaviour in computational physics /
Lombardi, Guido; Papapicco, Davide. - In: COMPUTER PHYSICS COMMUNICATIONS. - ISSN 0010-4655. - STAMPA.
- 299:(2024), pp. 1-17. [10.1016/j.cpc.2024.109124]

Original

Quadrature of functions with endpoint singular and generalised polynomial behaviour in computational
physics

Publisher:

Published
DOI:10.1016/j.cpc.2024.109124

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987794 since: 2024-04-13T09:53:32Z

Elsevier BV

Computer Physics Communications 299 (2024) 109124

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Quadrature of functions with endpoint singular and generalised polynomial

behaviour in computational physics ✩,✩✩,✩✩✩

Guido Lombardi ∗, Davide Papapicco

Department of Electronics and Telecommunications, Politecnico di Torino, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Numerical integration

Gauss-Legendre quadrature

Asymptotic estimation

Generalised polynomials

Müntz polynomials

Monomial transformation

Floating-point machine precision

Fast and accurate numerical integration always represented a bottleneck in high-performance computational
physics, especially in large and multiscale industrial simulations involving Finite (FEM) and Boundary Element
Methods (BEM). The computational demand escalates significantly in problems modelled by irregular or endpoint
singular behaviours which can be approximated with generalised polynomials of real degree. This is due to both
the practical limitations of finite-arithmetic computations and the inefficient samples distribution of traditional
Gaussian quadrature rules. We developed a non-iterative mathematical software implementing an innovative
numerical quadrature which largely enhances the precision of Gauss-Legendre formulae (G-L) for integrands
modelled as generalised polynomial with the optimal amount of nodes and weights capable of guaranteeing the
required numerical precision. This methodology avoids to resort to more computationally expensive techniques
such as adaptive or composite quadrature rules. From a theoretical point of view, the numerical method
underlying this work was preliminary presented in [1] by constructing the monomial transformation itself and
providing all the necessary conditions to ensure the numerical stability and exactness of the quadrature up to
machine precision. The novel contribution of this work concerns the optimal implementation of said method,
the extension of its applicability at run-time with different type of inputs, the provision of additional insights on
its functionalities and its straightforward implementation, in particular FEM applications or other mathematical
software either as an external tool or embedded suite. The open-source, cross-platform C++ library Monomial
Transformation Quadrature Rule (MTQR) has been designed to be highly portable, fast and easy to integrate in
larger codebases. Numerical examples in multiple physical applications showcase the improved efficiency and
accuracy when compared to traditional schemes.

Program summary

Program title: MTQR

CPC Library link to program files: https://doi .org /10 .17632 /276f78wzsw .1
Developer’s repository link: https://github .com /MTQR /MTQR

Licensing provisions: GNU General Public License 3
Programming language: C++ (C++17 standard)

Supplementary material: User manual (for installation and execution)

Nature of problem: Accuracy and time of execution of the current implementations of high-precision numerical
integration routines for singular and irregular integrands modelled by generalised polynomials are restricted by:
limitations of the floating-point (f.p.) finite-arithmetic of the machine; inability of classical Gaussian quadrature
rules to efficiently capture irregular behaviours or end-point singularities using an optimal number of samples;
relying on significantly expensive techniques as adaptive or composite quadrature rules that severely increase
the number of steps necessary to converge to the desired accuracy threshold. However by precisely manipulating
the G-L samples using an ad-hoc monomial transformation we achieve a one-shot, non-iterative, machine-precise
quadrature rule with straightforward scalability in higher dimensions. The advantages brought by a non-adaptive

✩ This is a collaborative effort: the authors are arranged in alphabetical order. Individual contributions are listed in the CRediT authorship contribution statement.
✩✩ The review of this paper was arranged by Prof. Andrew Hazel.
✩✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .
sciencedirect .com /science /journal /00104655).

* Corresponding author.
Available online 9 February 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: guido.lombardi@polito.it (G. Lombardi).

https://doi.org/10.1016/j.cpc.2024.109124

Received 16 June 2023; Received in revised form 23 January 2024; Accepted 6 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/276f78wzsw.1
https://github.com/MTQR/MTQR
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:guido.lombardi@polito.it
https://doi.org/10.1016/j.cpc.2024.109124
https://doi.org/10.1016/j.cpc.2024.109124
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109124&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

technique are greatly emphasised whenever the problem on hand is characterised by a numerous set of integrand
functions that behave similarly to sets of generalised polynomials.

Solution method: The underlying algorithm is an application of a monomial transformation of (real) order to
the 𝑛min ∈ ℕ quadrature samples (nodes and weights) of the G-L rule. The order of the transformation depends
on the infimum (𝜆min) and supremum (𝜆max) of the Müntz sequence of real degrees of the integrands modelled
by generalised polynomials. With an a-priori full analysis of the set of integrands to be integrated, the design
and the action of such transformation ensures that the bounding monomials are integrated with machine-epsilon
precision in double floating-point (f.p.) format [2] without resorting to less efficient schemes as adaptive or
composite quadrature rules, singularity subtraction and cancellation methods with limited and uncontrolled
precision. The effects of the action of the monomial transformation onto the original G-L samples are clearly

visible by the clustering of the nodes around the endpoint singularity of the integrand function (see Fig. 1.2 of
the user manual shipped with the source code and located in the MTQR/doc sub-directory as indicated in the root
tree in Fig. 2.1 of said manual.)

Additional comments including restrictions and unusual features: To strictly secure the integration with finite-

arithmetic precision at the order of the machine epsilon in double f.p. representation, higher-than-double data
types are necessary to build the quadrature rule; furthermore to compute the optimal number of quadrature
samples, the sole real root of a 7th degree polynomial [1, Equation (62)] has to be computed. For these reasons the
proposed software depends on both the Boost’s [3] Multiprecision header-only library and on the GNU Scientific
Library, GSL [4]. Any source code using MTQR must be linked to those libraries which can be easily installed
and configured for the system specific compiler in both Windows and Linux. Detailed information and assistance
for successfully compiling and building applications with this library can be found in the aforementioned user
manual.

1. Introduction

Efficient and accurate computations of definite integrals are a critical step across the entire scientific spectrum, especially in numerical methods
for partial differential equations (PDEs) using spectral, finite and boundary elements. A well-known pitfall in these methods concerns the integration
of functions featuring either irregular behaviours or endpoint (integrable) singularities [5–13]. While ubiquitous in boundary discretisations of
problems in applied physics (acoustics, electromagnetics, elastodynamics...) where the irregular behaviour and the singularities are embedded
in the field’s potential associated to the operator and/or the unknown fields, this issue also affects surface and volume discretisations. In fact,
critical field behaviours arising in e.g. wave propagation in 2 and 3-dimensional domains tend to degenerate in singularities in the close proximity
of sharp material and geometrical discontinuities [5,11,13] especially at high wave number [14,15]. One particular numerical method that has
established itself as quintessential in various disciplines in both science and engineering is the FEM. To properly address the aforementioned

issues [16,17] in volume discretisations, adaptive conforming finite and spectral elements cannot be deployed as their convergence would require
intensive computational effort. Extended (XFEM), generalised (GFEM) and enriched (ESG) formulations of the finite and spectral element methods
[18–20] provided a rigorous framework for mixed and non-conforming Galerkin approximations of those singular fields by enriching the sub-

spaces with non-classical polynomial basis functions [5,21–24]. Aside from the needs of numerical methods for PDEs, there are several other areas
concerning computational physics where the necessity for highly-precise computation of singular integrals [25–27] is of paramount importance. In
this framework, special attention is devoted to the numerical integration of sets of integrand functions modelling irregular behaviours. Motivated
by this, a considerable wealth of numerical algorithms has been proposed throughout the years to address the general problem of approximating
singular integrals and overcome the limited performance offered by standard Gaussian quadrature rule and/or the computational cost of adaptive
quadrature rules. Most notably [28–31] have spawn an active research on the development of generalised adaptive techniques [32,33] to be
exploited in scientific computing. Those algorithms have the advantage of being robust and general when applied to a wide range of irregular
and singular integrand functions, especially those featuring endpoint logarithmic singularities or functions whose irregular part can be factorised
as a known weight function 𝑤(𝑥). On the other hand, they entail a further computational load in large-scale simulations involving complex, high-

dimensional domains as they rely on iterative constructions of appropriate nodes and weights of specialised quadrature rules for any given integrand.
Improvements have been made [34,35] to ease the effort in constructing such specialised quadrature rules however the underlying concept of the
algorithm remains unchanged. This constitutes a bottleneck in performance especially in those Galerkin approximations of problems that model the
singular behaviour (and/or irregular behaviour) of the solution with generalised polynomials of the form

𝑓 (𝑥) =
𝑚∑

𝑘=1
𝑐𝑘𝑥

𝜆𝑘 , 𝜆𝑘 ∈ (−1,∞] . (1)

Moreover, the implementation of a high-precision quadrature rule for singular and/or non-classical polynomials in (1) is also hindered by the
finite precision and memory of the machines running the simulations; machine-epsilon thresholds in finite arithmetic limit in fact the accuracy
and performance of the numerical algorithm to the user’s computing power and data types. We also note that in numerical applications such is
the case for FEM and BEM, adaptive or composite quadrature algorithms must be run for every element that is either enriched by singular or
irregular basis functions or it is defined over a higher-order (curved) geometry. In recent years a number of efforts in designing optimal quadrature
rules for the isogeometric analysis (IGA) in FEM have resulted in efficient algorithms [36–38] based on the integration of spline functions. It has
been long established in fact [39–41] that piecewise (low-degree) spline interpolation lead to more accurate and more efficient quadratures when
compared to traditional Gaussian rules. These works have been able to produce powerful algorithms that generalise and extend the element-wise
spline interpolation beyond classical Gaussian integration by producing optimal quadrature rules [38,42,43]. While these methods, i.e. Gaussian and
semi-Gaussian spline rules, can be successfully deployed in the quadrature of both smooth and high oscillatory functions, their extension to endpoint
singular integrands is non-trivial and requires further ad-hoc investigation. In [1] a one-shot, non-adaptive and non-iterative method was proposed
to solve this shortcoming while dealing with endpoint singularities (or irregular behaviour); in it a simple yet powerful quadrature rule was proposed
2

which is capable to achieve arbitrary machine-precision with the original field of applications being to ease the computational task required by

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

numerical integration in generalised Galerkin methods for BVPs, with singular and/or non-classical polynomial modelling. This novel algorithm is
based on the optimal design of an ad-hoc monomial transformation applied to selected G-L nodes and weights to capture the endpoint singularity (or
irregular behaviour) of the generalised polynomial integrand in (1) according to the bounds of the (ordered) set [𝜆min, 𝜆max] of real-valued exponents.
In this work we developed a fast, light and portable cross-platform C++ library implementing such Monomial Transformation Quadrature Rule
(MTQR) which assures arbitrary machine-precision integration for these special cases while retaining the minimum (optimal) amount of samples for
the G-L formula. MTQR has been programmed with an emphasis on flexibility (runtime polymorphism and templetisation) and simplicity (minimal
user input) in order to provide a quick integration in larger and more complex open-source codebases s.a. well established finite element solvers
[44–51] and other libraries in numerical mathematics [52–55]. Moreover, the mathematical software can be used as external tool that provides
quadratures for sets of generalised polynomials. The algorithm’s architecture and its library’s implementation allow to straightforwardly adapt the
code to more general, user-defined machine-precision [2], i.e. more or less restrictive than the double f.p. format specified above and throughout
the rest of this work. The integration of MTQR with state-of-the-art numerical integration techniques based on Gaussian and semi-Gaussian spline
rules should allow for the exact analysis of complex structures containing both singularities and smooth/high oscillatory behaviour however this
task falls outside the scope of this work and shall be investigated in future endeavours.

In Section 1, we introduce the motivation and the scope of the present work and report on the state of the art related to the proposed algorithm.
Section 2 presents the derivation of the algorithm itself with the necessary mathematical background, while Section 3 is devoted to its implemen-

tation as a mathematical software. Validation and efficacy of the proposed algorithm is demonstrated in Section 4 presenting two sets of multiple
examples related to different sub-disciplines in computational physics, namely the integration of arbitrary products of Bessel’s functions of the first
kind of fractional order and the assembly of the mass matrix in 2.5-dimensional, additive, vector finite elements arising in electromagnetic scattering
and propagation problems with diffraction phenomena. In this context, we compared the performances of our library against other, well-established
adaptive algorithms implemented in widely-known open-source scientific software. Conclusions are addressed in Section 5 and the Appendix reports
the primary module’s source code of the proposed library. This work is supplemented by a detailed user manual which describes the implemented
code, structure, installation and execution of the library in both Linux and Windows.

2. Derivation

In the following we will derive a consistent formulation of the numerical problem addressed by MTQR and provide the computational steps
required to overcome the aforementioned limitations and contextualise its applications.

2.1. Motivation

The main purpose of MTQR is to provide users and developers of open-source scientific codes a straightforward and light numerical tool
to perform arbitrarily accurate integration of functions that exhibit irregular or singular behaviour at either of the endpoints of the integration
interval. In particular, if the integrand function 𝑓 ∶ (𝑎, 𝑏) →ℝ has an integrable singularity in 𝑥∗ ∈ {𝑎, 𝑏} that can be locally modelled by expanding
𝑓 (𝑥∗) as a generalised polynomial (see Section 3.3 in [16]) of the form (1), then we are concerned with the computation of

𝐼(𝑓) =

𝑏

∫
𝑎

𝑓 (𝑥)𝑑𝑥 , (2)

with an arbitrary (user-defined) machine precision in finite arithmetic (i.e. using f.p. approximations of the real numbers). Of course the analytic
integration of polynomial functions is trivial, however there are several cases in numerical and computational mathematics in which those integrals
are required to be calculated numerically. One straightforward case is when these functions are not known a-priori and thus need to be integrated
during the execution of a simulation. Such instances are commonly encountered in several implementations of Galerkin methods for the approxi-

mation of PDEs where the local weak formulation of the model requires the numerical evaluation of (2) either when enriching the approximation
sub-space with generalised polynomials basis functions or when the forcing term is itself modelled by a generalised or singular polynomial.

2.1.1. Generalised finite methods

In finite, spectral and boundary elements methods we seek for a numerical approximation 𝑢ℎ(𝐱) of a BVP defined over a 𝑑-dimensional domain
Ω ⊂ℝ𝑑 . The approximation sub-space is usually spanned by piecewise classical polynomials that locally interpolate the solution in every discretised
node of the domain and the solution is then expressed as a linear combination of the basis functions of such sub-space. In the generalised finite
methods introduced above the set of classical polynomial basis functions are enriched by generalised polynomials of non-integer degree defined in
the proximity of the singular point 𝐱∗. Therefore the sub-space is no longer spanned by classical polynomials (of integer degree) but instead we
search for a solution that is (locally) well represented by a Müntz polynomial [56], i.e. a generalised polynomial function of type (1) for which the
(increasing) sequence Λ = {−1 < 𝜆𝑘 < 𝜆𝑘+1}𝑘=1,...,𝑚−1 of real-valued exponents satisfies

∞∑
𝑘=1

1
𝜆𝑘

=∞ . (3)

Equality (3) ensures that the Müntz space 𝑀(Λ) = span{𝑥𝜆𝑘 , 𝜆𝑘 ∈ Λ} is dense in [(0, 1)] [57]. Practical examples in which singular solutions
are well approximated by Müntz polynomials are propagation and scattering problems in the presence of corners, wedges, abrupt changes in
the boundaries and any sharp discontinuity within the domain Ω. In the weak formulation of variational BVPs the linear forms often stem from
inner products that involve the computation of the definite integral of some products of the solution 𝑢ℎ(𝐱) with some test functions 𝑣ℎ(𝐱). Proper
employment of the Galerkin method then projects the weak form onto a finite dimensional sub-space which, in our case, has Müntz polynomials
enriching the classical shape functions of integer degree. Elemental matrices for those elements  ∈ℝ𝑑 that contain the singular point 𝐱∗ will now
require an appropriate (accurate and efficient) computation of such scalar quantity

𝑝𝛼(𝐱)𝑝𝑚(𝐱)𝑑𝐱 , 𝑝𝑚(𝐱) ∈ ℙ𝑚[𝑥1,… , 𝑥𝑑] , 𝑝𝛼(𝐱) ∈ (𝑀(Λ))𝑑 , 𝛼 = max(Λ) , (4)
3

∫


Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

i.e. where at least one of the two basis functions is modelled by a non-classical polynomial.

We remark that a detailed and thorough digression on the weak form and operator discretisation is well outside the scope of the present work,
which instead focuses on handling (4) specifically in code implementation of variational numerical methods for PDEs and we refer the discussion
on Müntz-enriched finite methods to the aforecited [18,19,22].

2.2. Background on interpolatory Gaussian quadrature formulae

The development of MTQR starts with the precise approximation of 𝐼(𝑓) = ∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥. Specifically it addresses the numerical computation of

the definite integral using a quadrature rule that assures an arbitrary (user-defined) accuracy while being as efficient as possible by retaining the
optimal number of nodes provided by a Gaussian formula (avoiding to resort to an adaptive or composite technique). In the following we will
refer to the endpoint singular/irregular integrand in (1) where 𝜆min ∶= 𝜆1 = min(Λ) > −1 and 𝜆max ∶= 𝜆𝑚 = max(Λ) < ∞. In numerical analysis,
the approximation 𝐼𝑛(𝑓) of a definite integral 𝐼(𝑓) can be achieved through several distinct approaches. One method, widely used in scientific
computing, is the usage of interpolatory quadrature formulae. They are based on the substitution of the integrand 𝑓 ∶  = (𝑎, 𝑏) → ℝ with a
Lagrange polynomial 𝑛(𝑥) interpolating its values along an ordered set of distinct points ( ∋ 𝑥𝑗 ≠ 𝑥𝑘 ⟺ 𝑗 ≠ 𝑘) called nodes

ℙ𝑛−1 ∋𝑛(𝑥) ∶=
𝑛∑

𝑗=1
𝑓 (𝑥𝑗)𝓁𝑗 (𝑥) ⇒ 𝑛(𝑥𝑗) ≡ 𝑓 (𝑥𝑗) , (5)

where 𝓁𝑗 (𝑥) ∶=
∏𝑛

𝑘=1, 𝑘≠𝑗

𝑥−𝑥𝑘

𝑥𝑗−𝑥𝑘
, ∀𝑗 = 1, … , 𝑛, is a set of 𝑛 orthogonal polynomials of degree 𝑛 − 1 which forms the Lagrangian basis of ℙ𝑛−1[𝑥]. An

interpolatory quadrature formula is built from (5) by substituting the integrand with its Lagrangian polynomial. The resulting quadrature rule has
the form

𝐼𝑛(𝑓) =
𝑛∑

𝑗=1
𝑓 (𝑥𝑗)𝑤𝑗 , 𝐼(𝑓) =

𝑏

∫
𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐼𝑛(𝑓) +𝐸𝑛(𝑓) , (6)

where 𝑤𝑗 ∶= ∫ 𝑏

𝑎
𝓁𝑗 (𝑥)𝑑𝑥 are the so-called weights of the quadrature rule. We remark that to each choice of the partitioning nodes there is a unique set

of quadrature weights; this property derives from the uniqueness of 𝓁𝑗 (𝑥) given an ordered set of distinct nodes in . The term 𝐸𝑛(𝑓) = ∫ 𝑏

𝑎
𝐸′

𝑛
(𝑓)𝑑𝑥

quantifies the absolute error, often referred to as the remainder of the quadrature rule, through the interpolation error of 𝑛(𝑥) of 𝑓 (𝑥). From
a computational point of view, it is ideal however to work with a relative error instead and so we identify, and henceforth use, the following
normalised quantity

𝑅𝑛 ∶=
|𝐸𝑛(𝑓)||𝐼(𝑓)| , (7)

associated to the quadrature formula. Of the many numerical quadrature technique, Gaussian rules assure the maximum degree of precision inte-

grating exactly (i.e. 𝐸𝑛(𝑓) = 0) any classical polynomial up to degree 𝑑 = 2𝑛 − 1, where 𝑛 in the number of samples of the rule itself [58]. Those
formulae are built from nodes that stem out as the roots of the associated orthogonal polynomials [59] from which they take the name. Due to their
simplicity and the wide range of applicability, provided by the weight function 𝑤(𝑥) ≡ 1, G-L quadrature rules are used to integrate sufficiently
well-behaved functions in closed intervals with relatively small number of samples. Functions 𝑓 (𝑥) =𝑤(𝑥)𝑔(𝑥) with endpoint singularities often are
integrated using Gauss-Jacobi (G-J) quadrature rules by rewriting the non-regular weight function as 𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 for specific 𝛼, 𝛽 > −1.
The monomial transformation quadrature rule proposed in [1] on the other hand allows to retain the simplicity of the G-L rule and extend the range
of applicability integrating sets of functions modelled by generalised singular/irregular polynomials with the improved precision at cost comparable
to G-L quadrature and with multiple values of singular/irregular exponents of monomial terms.

2.3. Asymptotic error estimate

When implementing a Gaussian quadrature rule in a software, the accuracy of its result suffers from rounding errors that are embedded in
the f.p. representation of real numbers. It is easy to verify such limitation by checking the exactness of a G-L formula, given by its degree of
precision 𝑑 = 2𝑛 − 1, against its finite-arithmetic counterpart for a given number of quadrature nodes 𝑛. The bottleneck for the fidelity of a
code implementing such rule would be the decimal precision with which nodes and weights of the formula are stored. Tabulated values of those
parameters exist for various Gaussian quadrature rules with up to 32 decimal digits of precision [58]. The constraint on the user side is that
traditional f.p. formats available for most of today’s general-purpose processors and operating systems, s.a. double precision, operate with a much
lower precision (approximately 16 decimal digits respectively). In practice, achieving acceptable results using the classical G-L formula is usually a
trade-off between accuracy and computational cost based on the f.p. format with which the quadrature samples are stored.

This aspect exacerbates whenever the integrand is a generalised polynomial with endpoint singularities; with reference to Fig. 1 we can assess how
non-integer degree monomials are integrated with less finite precision (concave oriented humps) than those of integer-valued degrees (downward
pointing spikes). When integrating polynomials with a G-L quadrature rule it is ideal to achieve close to analytic exactness with the minimum
possible number of nodes. To measure the accuracy of a given formula we can use an a-posteriori relative error for which the numerator of (7) is
computed as the strictly positive difference between the analytic primitive of the integrand 𝐼(𝑓) and its numerical counterpart 𝐼𝑛(𝑓) computed using
the selected quadrature rule with 𝑛 nodes, i.e. |𝐸𝑛(𝑓)| ≡ |𝐼(𝑓) − 𝐼𝑛(𝑓)|. This procedure is computationally inefficient as it involves the numerical
evaluation of the quadrature rule; on the other hand with an a-priori relative error the only knowledge required is that of the integrand function
𝑓 (𝑥). Accurate estimations of the a-priori form for the remainder 𝐸𝑛(𝑓) have been the subject of numerous efforts and constitute the cornerstone
upon which MTQR is built.

Theorem 1. Let 𝐼𝑛(𝑓) be a Gaussian quadrature rule with 𝑃𝑛 ∈ ℙ𝑛 being a polynomial of degree 𝑛, orthogonal to a weight function 𝑤(𝑥) in the closed
interval  = (𝑎, 𝑏). If we consider the analytic continuation of 𝑓 to the complex plane and we specify a contour  that encloses , then the remainder of 𝐼𝑛(𝑓)
4

has the exact form of the following contour integral along 

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Fig. 1. Comparison of how truncation of decimal digits in finite-arithmetic representation of the samples affects the a-posteriori relative error 𝑅𝑛 associated to a G-L
quadrature rule integrating 10000 monomials of the form 𝑥𝜆 ∈  = (0, 1) with 𝜆 uniformly distributed in (−1, 120]. The quadrature formula uses 𝑛 ∈ {12, 24} nodes
and weights stored in double and quadruple (float128) f.p. precision. We report the machine-epsilon 𝜖 = 2−52 in double f.p. format as a reference threshold. We
observe how, after the specified degree of precision 𝑑 = 2𝑛 −1 of each G-L quadrature rule, the error features a slow monotonic increase. Furthermore we notice that
as the number of samples 𝑛 for the G-L formula increases, the portion of the asymptotic a-posteriori relative error that falls below the numerical exactness threshold
gets progressively larger. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

𝐸𝑛(𝑓) =
1
2𝜋𝑖 ∮

Π𝑛(𝑧)
𝑃𝑛(𝑧)

𝑓 (𝑧)𝑑𝑧 , Π𝑛(𝑧) ∶=

𝑏

∫
𝑎

𝑃𝑛(𝑥)
𝑥− 𝑧

𝑑𝑥 , 𝑧 ∈ℂ∕ . (8)

Proof. See Barret [60]. □

The integrand function in the remainder estimate (8) of Theorem 1 is a meromorphic function (recall that 𝑃𝑛 is a polynomial of degree 𝑛 meaning
that the reciprocal 1

𝑃𝑛
has 𝑛 poles distributed along ). Although elegant in its formulation, estimate (8) does not satisfy the rapid evaluation

requirement that we specified in the numerical applications as it requires the explicit computation of a complex contour integral. Furthermore the
explicit form of Π𝑛(𝑧) is complicated to obtain as it requires the evaluation of hyper-geometric functions [61]. It is obvious to see how, even for
simplistic applications of the G-L quadrature rule to monomial integrand functions, the analytic evaluation of the a-priori estimate using (8) is too
expensive, effectively nullifying the efforts of avoiding to compute 𝐸𝑛(𝑓) with the a-posteriori formula. For this reason, asymptotic analysis was
introduced in [62] by expanding both Π𝑛(𝑧) and 𝑃𝑛(𝑧) in a normalised interval  = (0, 1).

Proposition 1. Let 𝑓 (𝑥) = 𝑥𝜆 and 𝐼(𝑓) = ∫ 1
0 𝑥𝜆𝑑𝑥. If the number of nodes 𝑛 (and degree of Legendre polynomials 𝑃𝑛(𝑥)) of the G-L formula 𝐼𝑛(𝑓) is large,

then the following asymptotic equivalence holds

Π𝑛(𝑥)
𝑃𝑛(𝑥)

≈ 2𝜋

(𝑥+ (𝑥2 − 1)
1
2)2𝑛+1

, (9)

and thus the remainder in (8) reduces to

𝐸𝑛(𝑓) = −2−2𝜆 𝜆 sin(𝜋𝜆)
(

𝐵(2𝜆,2𝑛− 𝜆)
2𝑛+ 𝜆

− 𝐵(2𝜆,2 + 2𝑛− 𝜆)
2 + 2𝑛+ 𝜆

)
, (10)

where 𝐵(𝑧, 𝑤) ∶= Γ(𝑧)Γ(𝑤)
Γ(𝑧+𝑤) .

Proof. See Lombardi [1]. □

The result in (10) is meaningful as it enables a fast and concise estimate of the remainder for integrating generalised monomials with real degree
𝜆 ∈ (−1, +∞) in (0, 1). In fact we observe how the new error estimate depends solely on the number of nodes 𝑛 and the real-valued monomial degree
𝜆. Nevertheless, as evinced in Fig. 1, analytic exactness for any finite-arithmetic representation of a quadrature rule implemented in code can never
be achieved.

Therefore, to quantify the performance and accuracy of a numerical integration routine we must specify a threshold of accuracy as an alternative
finite-precision equivalent exactness. In the following we assume such threshold to be, without loss of generality, the machine epsilon in double
precision [2]; this assumption is, as a matter of fact, arbitrary in nature and can be easily changed to be more or less restrictive without impacting
the workflow of the monomial transformation quadrature rule.

The desirable characteristics of a useful a-priori error estimation of a quadrature rule stem from the very task for which it would be used in case
5

of polynomial integration, that is minimising the extensive computation time required for evaluating the 𝜆-asymptotic behaviour of multiple G-L

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Fig. 2. The new “exact” a-priori estimate in (10) is used here to quickly evaluate the 𝜆-asymptotic behaviour of the relative error of a G-L quadrature formula with
𝑛 = 16 nodes integrating monomials 𝑥𝜆, 𝜆 ∈ (−1, 46] of non-integer degree in  = (0, 1). The humps-spike alternation matches the one partially featured by the exact
a-posteriori relative error reported in Fig. 1. The enveloped estimate is obtained by omitting the term sin(𝜋𝜆) from (10) when 𝜆 < 2𝑛 − 1∕2. From the plot of the
enveloped estimate we can derive an approximation of the minimum 𝜆 = 𝛽min ≈ 6.5463 and maximum degree 𝜆 = 𝛽max ≈ 35.7774 of a generalised polynomial to
be integrated with finite-arithmetic (double precision) equivalent exact precision using such formula. (For interpretation of the colours in the figure, the reader is
referred to the web version of this article.)

quadrature rules (i.e. for several values of 𝑛) applied to 𝑥𝜆 integrand by avoiding to compute 𝐼 and 𝐼𝑛 explicitly. In Fig. 2 we depict the asymptotic
analysis performed using the new estimate in (10) for a 𝑛 = 16 nodes G-L formula; a similar pattern is encountered, previously deduced from the
a-posteriori plot, that a steady but somewhat slow degradation of the G-L accuracy is detected once the degree of precision of the formula is reached
i.e. ∀𝜆 > 𝑑 = 2𝑛 − 1. In Fig. 2, the enveloped estimate is obtained by omitting the term sin(𝜋𝜆) from (10) when 𝜆 < 2𝑛 − 1∕2 and it will be used as
the optimal upper error estimate for the design of each monomial transformation quadrature rule.

3. Implementation

Having briefly outlined the fundamental mathematical problem of numerical integration and error estimation we will now discuss how the
implementation of MTQR addresses and ultimately overcomes the shortcomings of the currently available algorithms dealing with integrands
modelled with generalise polynomials. From here onward we will consider  = (0, 1) as the reference interval of integration with 𝑓 (𝑥) having a
potential end-point singularity or irregular behaviour located at 𝑥 = 0. This choice does not limit the applicability of the algorithm as any integrand
defined in (𝑎, 𝑏) with one end-point singularity can be easily mapped in (0, 1) via an affine transformation. In case of multiple singular points, we
can in fact simply partition (𝑎, 𝑏) into as many sub-intervals, each having a singularity at one endpoint. This procedure is of fundamental importance
to avoid numerical cancellation since the action of MTQR on classical G-L nodes causes their clustering near 𝑥 = 0 as previously discussed.

3.1. Monomial transformation

The new a-priori estimate (10), alongside its enveloped version depicted in Fig. 2, is a tool that enables a much swifter analysis of the asymptotic
behaviour of the G-L relative error that we previously computed while producing Fig. 1 using an exact a-posteriori estimate. For any given G-L
formula with 𝑛 nodes, we can rapidly evaluate what the minimum 𝜆 = 𝛽min and maximum value 𝜆 = 𝛽max are for the degree of a generalised
polynomial to be integrated with finite-arithmetic equivalent exactness using a predefined accuracy threshold, for instance the double precision
machine epsilon. We therefore learned that (10) can be effectively used to determine those critical constraints for any G-L formula to achieve
(finite arithmetic equivalent) precise quadratures immediately realising that tabulated values of 𝛽min(𝑛), 𝛽max(𝑛) can be used to design appropriate
transformations of the G-L samples. For instance, by performing the same 𝜆-asymptotic analysis with increasingly greater values of 𝑛 we immediately
notice how the bathtub shaped region of Fig. 2 both deepens (the relative error gets smaller as higher and higher accuracy is achieved with an
increasing number of samples) and widens (the sub-interval 𝜆 ∈ [𝛽min, 𝛽max] gets larger as the degree of precision 𝑑 = 2𝑛 −1 grows linearly with 𝑛).
Furthermore, by recalling that the exact a-priori estimate (10) used in plotting Fig. 2 was derived for the specific 𝜆-asymptotic analysis of generalised
monomial functions of non-integer degrees in (0, 1), we can map any generalised polynomial, including singular ones of real degree 𝜆 >−1, in such
interval where the estimate holds for the G-L quadrature rule. For a given choice of 𝑛 nodes G-L quadrature rule, if a certain monomial 𝑥𝜆 does
not fall within the bathtub, i.e. the “exactness” region provided by the estimate (10), i.e. 𝜆 ∉ [𝛽min, 𝛽max], then an ad-hoc designed monomial map
of (0, 1) onto itself can shift its exponent to fall within the desired interval. If all the 𝛽min(𝑛), 𝛽max(𝑛) values are known or have been tabulated
previously for a given range of 𝑛 ∈ ℕ samples, then the remaining pieces of information needed for constructing the map are the minimum and
maximum non-integer exponents of the integrand function. The fundamental algorithm in MTQR is composed by efficiently coupling an ad-hoc
designed monomial transformation with a G-L quadrature rule by selecting the optimal number of samples 𝑛. Let us start with the latter; given an
input Müntz sequence of real exponents we are interested in fitting its minimum values 𝜆min and its maximum 𝜆max within the exactness region of
6

a G-L quadrature rule associated to the (quasi) minimum number of nodes 𝑛 possible.

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Proposition 2. Let (1) be a Müntz polynomial of degree 𝜆max and lowest degree 𝜆min > −1, then the minimum number 𝑛min of G-L quadrature nodes to
achieve finite-arithmetic equivalent exactness in terms of target double precision using the monomial map is the round toward ceiling of the unique real root 𝑛
of

(−4.0693 ⋅ 10−3 + 4.1296 ⋅ 10−4𝑛)[(8.8147 + 1.0123 ⋅ 10−1𝑛2) ⋅ (1 + 𝜆min) − (1 + 𝜆max)]3 − (1 + 𝜆max)3 = 0, (11)

obtained by a full study of the performance of G-L via linear regressions of the tabulated values of 𝛽min(𝑛), 𝛽max(𝑛).

Proof. See Lombardi [1]. □

Once 𝑛 = 𝑛min is computed from (11), we can now turn our attention to the construction of the monomial transformation of order 𝑟 ∈ ℝ

𝛾𝑟(𝑥) = 𝑥𝑟 , (12)

acting on the 𝑛min samples of the selected quadrature rule. MTQR refers to the tabulated values of 𝛽min(𝑛), 𝛽max(𝑛) (or directly estimate them from
the enveloped version of the estimate (10)) and supplies all the necessary data to compute the order 𝑟 of the monomial transformation uniquely
associated to the set of input polynomials defined by 𝜆min and 𝜆max. From [1] we have

𝑟min ∶=
1 + 𝛽𝑚𝑖𝑛(𝑛)
1 + 𝜆𝑚𝑖𝑛

< 𝑟 <
1 + 𝛽𝑚𝑎𝑥(𝑛)
1 + 𝜆𝑚𝑎𝑥

=∶ 𝑟max , (13)

and in MTQR we compute the order 𝑟 as the mean value between 𝑟min and 𝑟max. By letting map (12) act on the definite integral of a generalised
polynomial of the form (1) we obtain

𝐼(𝑓 (𝑥)) =

1

∫
0

𝑓 (𝑥)𝑑𝑥 =
𝑚∑

𝑘=0
𝑐𝑘

1

∫
0

𝑥𝜆𝑘𝑑𝑥 =
𝑚∑

𝑘=0
𝑐𝑘

1

∫
0

𝑟𝑥𝑟(𝜆𝑘+1)−1𝑑𝑥 . (14)

The numerical approximation for the prescribed machine-precision of (14) is then provided by the monomial transformation quadrature rule with 𝑛
samples and weights 𝑥𝑗 , 𝑤𝑗 defined over the integration interval (0, 1) as a result of the (quasi) optimal selection of 𝑛 = 𝑛𝑚𝑖𝑛 and 𝑟

𝐼𝑛 =
𝑚∑

𝑘=0
𝑐𝑘

𝑛∑
𝑗=1

(𝑤̃𝑗𝑟𝑥̃
𝑟−1
𝑗

)𝑥̃𝑟𝜆𝑘

𝑗
=

𝑚∑
𝑘=0

𝑐𝑘

𝑛∑
𝑗=1

𝑤𝑗𝑥
𝜆𝑘

𝑗
. (15)

From (15) we deduce that the new, proposed numerical integration specified for the integrand 𝑓 (𝑥) is uniquely determined by the ad-hoc manipu-

lation of classical G-L quadrature rule’s nodes and weights 𝑥̃𝑗 , 𝑤̃𝑗 also defined in (0, 1)

𝑥𝑗 = 𝑥̃𝑟
𝑗
, 𝑤𝑗 = 𝑟𝑥̃𝑟−1

𝑗
𝑤̃𝑗 ∀𝑗 = 1, ..., 𝑛 . (16)

From (14)-(16) we observe that the monomial transformation quadrature rule only requires the information regarding the lower (𝜆𝑚𝑖𝑛) and upper
(𝜆𝑚𝑎𝑥) bounds of the Müntz sequence 𝜆 of the input polynomial to retrieve an ad-hoc transformation of the G-L quadrature’s samples to achieve
a finite-arithmetic equivalent exact approximation of the definite integral in (0, 1). We hereby clarify that the evaluation of 𝑛𝑚𝑖𝑛 via (11) is ob-

tained by imposing that 𝑟𝑚𝑖𝑛 = 𝑟𝑚𝑎𝑥 in (13) and considering regression formulae for 𝛽𝑚𝑖𝑛(𝑛), 𝛽𝑚𝑎𝑥(𝑛) (see (60) in [1]) with target double precision.
Moreover, the Müntz space related to the (quasi) optimal quadrature of generalised polynomials in 𝑀(Λ) with 𝜆 ∈ (𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥) is 𝑀(𝐵) with
𝛽 ∈ (𝛽𝑚𝑖𝑛(𝑛𝑚𝑖𝑛), 𝛽𝑚𝑎𝑥(𝑛𝑚𝑖𝑛)) via the monomial transformation (13) with 𝑟 ∈ (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥). Generalisation to arbitrary precision is straightforward and
achieved by selecting appropriate regression formulae for 𝛽𝑚𝑖𝑛(𝑛), 𝛽𝑚𝑎𝑥(𝑛) which can be obtained from the asymptotic error estimation discussed in
Section 2.3.

3.2. Software integration

MTQR is a C++ implementation of the monomial transformation quadrature rule derived thus far. It consists of a collection of highly-templatised
methods and it is written in a procedural programming paradigm. Interaction with the library happens through the so-called primary module (see
Appendix A), an overloaded method that is instantiated by the users by passing the parameters of the input polynomial and it returns optimised
nodes and weights for the machine-precise numerical integration1. A numerical recipe detailing the main steps performed by the library when its
primary module is instantiated is reported below. We prepared a comprehensive user manual for the correct installation of MTQR alongside its

1 To allow MTQR to deal with extreme cases of high monomial transformation order our default datatype is the quadruple precision (float128) to export the new
nodes and weights. If however double precision for those samples is sufficient for them reach the machine epsilon in the computation of the definite integral than
the data type precision is purposely regressed; this allows the user of MTQR to optimise its data and memory management while retaining as much precision as
7

possible. For more detailed information regarding this aspect we refer to the library’s user manual.

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

dependencies [3,4] and running custom applications with it; we refer to such manual (located in the MTQR/doc sub-directory of the library) for
more detailed information.

Data: Sequences (𝑐1, … , 𝑐𝑚) and (𝜆1, … , 𝜆m) of polynomial integrand function of the form (1).

Result: Optimised nodes 𝐱𝑗 and weights 𝐰𝑗 of the monomial transformation quadrature formula.

Set accuracy threshold (e.g. double machine−𝜖 = 2−52);
Extract (𝜆min, 𝜆max) through a sorting algorithm;

Compute 𝑛𝑚𝑖𝑛 from (11);

Derive 𝛽min(𝑛𝑚𝑖𝑛) and 𝛽max(𝑛𝑚𝑖𝑛) from tabulated pre-computed values;

Obtain the monomial transformation’s order 𝑟 ;

Pre-load affinely mapped samples 𝐱̃𝑗 and 𝐰̃𝑗 associated to the 𝑛min G-L rule;

Monomial transformation: Map 𝐱̃𝑗 and 𝐰̃𝑗 in (0, 1) through 𝛾𝑟 (12) obtaining the new nodes 𝐱𝑗 and weights 𝐰𝑗 ;

Assemble and compute the monomial transformation quadrature formula with 𝑛𝑚𝑖𝑛 nodes;

Compute the a-posteriori relative error 𝑅𝑛 using the new nodes and weights;

while 𝑅𝑛 < 𝜖 do

Optimise the f.p. format of the new nodes and weights;

Compute the a-posteriori relative error 𝑅𝑛 using the degraded nodes and weights;

end

Export 𝐱𝑗 , 𝐰𝑗 and the estimated values of the integral of the selected generalised polynomial for testing.

3.3. Computational costs in brief

For what concerns the computational cost of the algorithm, useful run time estimations are provided further in Section 4.1 where comparison
with alternative adaptive quadrature algorithms is performed in terms of number of function evaluations. In brief, the computational cost of MTQR
can be analysed from different points of view: 1) application of the designed MTQR rule to a series of integrals of generalised polynomials, 2)
generation of the MTQR quadrature rule for a selected Müntz space and target precision, 3) background computations to develop 2). Once MTQR
has generated the samples and weights for a selected Müntz space and target precision, the cost of computation of each integral is limited to the one
of ordinary interpolatory quadrature rules in terms of the number of samples, i.e. simply made of integrand function evaluations, multiplications by
weights and summation. In order to generate the MTQR quadrature rule for a selected Müntz space and target precision we apply the algorithm as
described in Section 3.2. In this case, the cost of computation is related to identifying 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 of the set of integrands (i.e. the selected Müntz
space), solve (11) or a similar equation for a target precision different from d.p. with an external tool, compute the monomial transformation of
order 𝑟 according to (13) and finally apply (15) to get the transformed samples and weights. The background computations are primarily referred to
the development of regression formulae for 𝛽𝑚𝑎𝑥(𝑛) and 𝛽𝑚𝑖𝑛(𝑛) which are necessary to get (11) for a selected target precision, e.g. single, double or
quadruple precision for the current state-of-the-art. The computational cost is related to the analysis reported in [1] and they are needed once a for
all. In brief this analysis requires non-linear solvers for a given asymptotic error estimates of the G-L rule and a selected target precision machine
epsilon as a function of the number of samples, see Fig. 2. Finally a rich database with G-L rules as a function of the number of samples needs to be
available at the selected target precision.

4. Applications

Following the discussion of the previous sections we now propose a series of numerical tests with the twofold aim of validating the performance
of MTQR, in terms of both accuracy and computational efficiency, and to provide substantial evidence in support of the previous claim with
regards to its wide scope of applicability and integration in larger, multipurpose codebases. We highlight that the library itself is shipped with
two executable scripts (located in the sub-directory MTQR/tests) that can be used to validate the successful installation of the software (for more
information we refer to the user manual). The numerical experiments that follow are additional tests we implemented with the objective of achieving
the aforementioned goals of efficient accuracy and usefulness in other numerical and computational physics libraries. Relating to the latter goal
we propose two series of tests, each one related to a different discipline and thus targeting different applications in multiphysics. Specifically in
Subsection 4.1 we evaluate MTQR’s performance when dealing with products of Bessel’s functions of the first kind of fractional order (featuring an
endpoint polynomial singularity or irregular behaviour in 𝑥 = 0); in Subsection 4.2 the library is used in the context of Galerkin methods integrating
the elemental contributions to the mass matrix assembled in 2.5-dimensional additive vector finite elements arising in electromagnetic scattering
and propagation problems.

4.1. Integrating arbitrary products of Bessel functions of real order

Indefinite integrals involving arbitrary products of Bessel functions of the first kind of the form

∞

∫
0

𝑓 (𝑥)
𝑛∏

𝑗=1
𝐽𝜈𝑗

(𝑎𝑗𝑥)𝑑𝑥 , 𝜈𝑗 > −1, 𝑎𝑗 > 0 , (17)

are of great interest in a wide variety of applications ranging from theoretical and applied electromagnetics [63–67] to acoustics and elastodynamics
[68–72], fluid dynamics [73–77], theoretical physics [78–82] and several more [83–87] to name but a few. In 1995 an algorithm [88] was proposed
to compute (17) with one product of two Bessel functions of positive integer order (i.e. 𝑛 = 1, 𝜈𝑗 ∈ ℕ) and with 𝑓 (𝑥) being any sufficiently smooth
function. In 2014 an implementation of said algorithm [89] resulted in a MATLAB toolbox named IIPBF which generalised the previous algorithm
to deal with Bessel functions of fractional order. In 2006 a different work [90] provided another MATLAB package, named BESSELINT, which is
able to integrate products of an arbitrary number of Bessel functions (i.e. any 𝑛 ∈ ℕ) albeit with the caveat of having 𝑓 (𝑥) = 𝑥𝑚 where 𝑚 ∈ ℝ s.t. ∑ 𝑚
8

𝑛

𝑗=1 𝜈𝑗 + 𝑚 > −1; two years later an extension of such package [91] allowed to deal with exponential 𝑔(𝑥) = 𝑒−𝑐𝑥𝑥𝑚 and rational 𝑓 (𝑥) = 𝑥

𝑥2+𝑢2

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

kernels (with 𝑢, 𝑐 ∈ℝ, 𝑐 > 0). Both programs provide accurate approximations of (17) by splitting the indefinite integral in a finite and infinite range
integrals in the following matter

∞

∫
0

𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥 =

𝑥0

∫
0

𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥+

∞

∫
𝑥0

𝑓 (𝑥)ℎ(𝑥)𝑑𝑥 , (18)

where we considered the case of a single product of two Bessel functions to comply with both methods. The infinite range integral, which is the main
focus of the two algorithms, is effectively computed using an asymptotic expansion ℎ(𝑥) of the product 𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥) for large 𝑥 thereby obtaining
a more well-behaved integrand. For the finite range integral, both algorithms resort to adaptive quadrature rules and in particular:

• IIPBF uses a Gauss-Kronrod (G-K) technique which is implemented in the toolbox’s routine dqagea via MATLAB’s built-in function quadgk;

• BESSELINT uses an adaptive hard-coded G-L quadrature rule with {5, 7, 11, 15, 19, 23, 27, 31} samples implemented in the routine fri.

Alongside the numerical technique used to integrate the finite range integral, the two methods differ both in the asymptotic approximation for the
infinite range integration and also in the computation of the breakpoint 𝑥0 ∈ (0, ∞) at which the interval decomposition occurs. We will not focus on
these aspects as they are not entirely concerning the potential presence of an endpoint singularity in 𝑥 = 0 which is instead what MTQR is purposely
designed to deal with. As a matter of fact both [88,89] (concerning IIPBF) and [90,91] (concerning BESSELINT) lament a decrease in either accuracy
(quantified in a loss of decimal digits of precision) or efficiency (quantified in an increased number of function evaluations to reach the specified
machine precision) when the integrand 𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥) presents an irregular or singular behaviour in the left endpoint of the integration interval.
Not being an adaptive technique, MTQR can easily overcome the cited limitations when dealing with the aforementioned cases providing a simple,
fast and extremely robust framework that can be easily integrated in either the two toolboxes in lieu of the third-party computationally expensive
adaptive methods that have been deployed by IIPBF and BESSELINT. To prove this claim numerically we propose four test cases with integrand
𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥), and fixed orders

𝑓 (𝑥) = 𝑥
− 1

2 , 𝜈 = 0, 𝜇 = 1, 𝑎 = 1, 𝑏 = 3
2
, (19)

𝑓 (𝑥) = 𝑥
1
6 , 𝜈 = −1

3
, 𝜇 = 0, 𝑎 = 1, 𝑏 = 3 , (20)

𝑓 (𝑥) = 1 , 𝜈 = −1
2
, 𝜇 = −1

3
, 𝑎 = 1, 𝑏 = 1 , (21)

𝑓 (𝑥) = 1 , 𝜈 = 0, 𝜇 = −𝜋

4
, 𝑎 = 1, 𝑏 = 1 , (22)

followed by two further cases with varying parameters

𝑓 (𝑥) = 𝐽𝜂(
√
2𝑥) , 𝜈 = 0, 𝜇 = 0, 𝑎 =

√
3, 𝑏 =

√
4 , (23)

𝑓 (𝑥) = 𝑥𝜇−𝜈+1

𝑥2 + 𝑢2
, 𝜈 = 1

2
, 𝜇 = −1

2
, 𝑎 = 10−1, 𝑏 = 10 . (24)

In (23) we let 𝜂 to vary in (−1, 0) so to evaluate increasingly less strong singularities in 𝑥 = 0; on the other hand in (24) we let 𝑢 to vary in (0.01, 0.1).
In Table 1 we collect the performance showcased by the two algorithms and MTQR for the test cases (19)− (22); in particular we compare both the
relative error (7) computed for each algorithm and the number of function evaluations required to reach such precision. To obtain the listed results
we used the function dqagea, implementing the adaptive G-K (aG-K) technique, for IIPBF and the function fri, implementing several adaptive G-L
(aG-L) quadrature rules, for BESSELINT; we remark that due to the fact that the two toolboxes work on different values for the breakpoint of the
finite range integral, we used 𝑥0 = 1 as a fixed reference value for the upper endpoint of the integration interval in all the test cases. From these
results we can see how MTQR consistently provides more accurate approximations of the finite range integral with a significantly smaller number of
functions evaluations. This last consideration stems from the advantage of MTQR not being an adaptive technique but rather a one-shot application
of transformed G-L quadrature samples (using an ad-hoc monomial transformation) to better capture the singularity in 𝑥 = 0.

The results for the tests (23) − (24) are depicted in Fig. 3 and Fig. 4 respectively. In (23) the kernel 𝑓 (𝑥) is itself a Bessel function of the first
kind whose (real) order 𝜂 is sampled uniformly in (−1, 0) while we keep the orders of the two Bessel functions in the product, 𝜈 and 𝜇, at fixed
(integer) equal values (𝜈 = 𝜇 = 0). With this instance we circumvent both the limitations of IIPBF and BESSELINT since for the former we consider
𝑓 (𝑥) = 𝐽𝜇(

√
2𝑥) while for the latter we set 𝑚 = 0 and 𝑛 = 3 so that it is interpreted as a product of 3 Bessel functions. We notice how MTQR achieves

consistently more accurate results (with one exception) and always with a significant smaller amount of numerical evaluations for the integrand
function. This provides a tool for both IIPBF and BESSELINT to be potentially integrated in order to achieve a much more cost effective solution
integrating whatever function with endpoint singularities.

In (24) we sample 𝑢 uniformly in (0.01, 0.1) for the kernel function while we keep fixed both the (fractional) orders of the two Bessel functions
and the (real) coefficients of their arguments. Also in this case we can see how MTQR achieves more precise results compared only against aG-L
of BESSELINT and only for the lower portion of the sampled interval whereas we notice similar precisions reached by aG-K of IIPBF albeit with an
enormous amount of computational effort in contrast against MTQR. Finally we highlight how test case (24) is part of a different kind of problem
than those for which MTQR was originally designed, as the integrand function is nearly singular rather than singular; this test case thus forces MTQR
beyond its scope of applicability yet resulting in optimal performances in terms of precision and more efficient computations in terms of efficiency.

With this set of numerical tests we thus delivered a simple example of how MTQR can be incorporated in multipurpose software, tackling different
areas of scientific computing, as an efficient, reliable and robust third-party accessory to improve the accuracy and computational efficiency when
dealing with integrals featuring endpoint singular or irregular behaviour. In the following Subsection we provide further evidence of this by using
9

MTQR in the context of Galerkin methods for PDEs.

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Table 1

Comparison of the results obtained by aG-K (used in IIPBF) and aG-L (used in BESSELINT)
with those achieved by MTQR on test cases (19) − (22). For each implementation we report
the relative error 𝑅𝑛(𝑓) =

|𝐼(𝑓)−𝐼𝑛||𝐼(𝑓)| , as defined in (7), associated to the numerical integral
computed by the relevant algorithm; the word exact entails that the relative error falls below
the machine epsilon in double f.p. format. The reference for the analytical value of the finite
range integral 𝐼 = ∫ 1

0 𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥 is provided by means of symbolic computations
using Wolfram Mathematica [92]. Furthermore, as a measure of efficiency, we report the
number of function evaluations (under the columns labelled Fun. Eval.) performed by each
method to reach the specified relative error. Here by number of function evaluations we refer
to the number of times the integrand function 𝑓 (𝑥)𝐽𝜈(𝑎𝑥)𝐽𝜇(𝑏𝑥) is evaluated. We reiterate
that MTQR is not adaptive, as opposed to both aG-K and aG-L, and therefore its number
of function evaluations will (always) coincide with the cardinality of the set of quadrature
samples outputted by the algorithm.

Results

Test case aG-K aG-L MTQR

𝑅𝑛(𝑓) Fun. Eval. 𝑅𝑛(𝑓) Fun. Eval. 𝑅𝑛(𝑓) Fun. Eval.

(19) 4.02 × 10−15 5000 9.71 × 10−16 272 exact 20
(20) 1.76 × 10−15 5000 3.91 × 10−16 306 exact 30
(21) 3.39 × 10−15 5000 4.23 × 10−16 706 exact 50
(22) 1.47 × 10−15 5000 1.47 × 10−15 546 2.67 × 10−16 44

Fig. 3. Relative error (left) and number for function evaluations (right) obtained by aG-K (IIPBF), aG-L (BESSELINT) and MTQR for test case (23); both are in
log-scale on the vertical axis. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

Fig. 4. Relative error (left) and number for function evaluations (right) obtained by aG-K (IIPBF), aG-L (BESSELINT) and MTQR for test case (24); both are in
log-scale on the vertical axis. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

4.2. Mass matrix computation in vector finite elements enriched by singular basis functions

We propose an effective application of the proposed algorithm to FEM in computational electromagnetics amenable of diffraction phenomena al-

though the workflow we hereby present is easily generalised to other applications of computational physics. We particularly refer to 2.5-dimensional
10

problems s.a. electromagnetic propagation in metallic waveguides in the presence of sharp material/geometrical discontinuities (septum, wedge,

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Fig. 5. Triangular cell of a meshed (object) domain and reference rectilinear triangular element in parent domain with parent coordinates 𝜉𝑖 + 𝜉𝑖+1 + 𝜉𝑖−1 = 1 by
applying a polynomial mapping between the domains 𝐫(𝜉𝑖, 𝜉𝑖+1, 𝜉𝑖−1), see [95,96].

etc...) that generates singular/irregular field behaviour. We recall that singular/irregular longitudinal and transverse field behaviours can be poten-

tially excited near such structures:

𝐸𝑧 = 𝑗𝜔𝜇0𝐴𝜌𝜈 sin 𝜈𝜙 (25)

𝐻𝑡 =
𝜈𝐴

𝜌1−𝜈

(
sin 𝜈𝜙 𝜙̂− cos 𝜈𝜙 𝜌̂

)
(26)

𝐻𝑧 = 𝑗𝜔𝜀0𝐵𝜌𝜈 cos 𝜈𝜙+ constant (27)

𝐸𝑡 = − 𝜈𝐵

𝜌1−𝜈

(
cos 𝜈𝜙 𝜙̂+ sin 𝜈𝜙 𝜌̂

)
(28)

where 𝐴 and 𝐵 are appropriate coefficients and with singularity coefficient 𝜈 ≥ 1∕2 [93]. In particular, we consider the elemental contributions of
transverse field components to the elemental mass matrix assembled in 2.5-dimensional, additive, curl-conforming vector finite elements [94] using
the Galerkin method and embedding singular behaviour to proper modelling such sharp discontinuities.

Table 2

Lowest-Order Triangular Curl-Conforming
Bases [5] for transverse field components
in 2.5 dimensional problems with sub-

scripts counted modulo 3, and 𝑖 = 1, 2, 3.
On top regular bases, on bottom singular
additive bases with 𝜈 ≥ 1∕2.

Regular Functions

𝛀𝛽 (𝐫) = 𝜉𝛽+1∇𝜉𝛽−1 − 𝜉𝛽−1∇𝜉𝛽+1

for 𝛽 = 𝑖, 𝑖± 1

Wedge Functions

𝛀𝑠
𝑖±1(𝐫) = ∇

[
𝜉𝑖∓1

(
1 − (1 − 𝜉𝑖)𝜈−1

)]
𝛀𝑠

𝑖
(𝐫) = (1 − 𝜈)

(
(1 − 𝜉𝑖)𝜈 − 1

)
𝛀𝑖(𝐫)

We hereby examine the results obtained by using parent-object domains discretised by triangular meshes and lowest-order triangular elements
for transverse field components in parent coordinates on the reference rectilinear triangle as defined in [5], also readily available in Table 2 and
Figs. 5 and 6 for simplicity.

In order to validate the performance and potential impact and contribution in FEM of MTQR we assemble the elemental mass matrix for the
lowest order curl-conforming vector basis functions defined over both linear and curvilinear triangular elements. We consider the presence of a
singularity in node 𝑖 by applying the quadrature rule in the parent domain with change of variable 𝜒 = 1 − 𝜉𝑖 to avoid numerical cancellation
(mentioned previously in the context of node clustering in proximity of the singular point 𝜉𝑖 = 1)

1

∫
0

1−𝜉𝑖

∫
0

𝚿𝐤(𝐫) ⋅𝚿𝐡(𝐫)𝐽 (𝐫)𝑑𝜉𝑖+1𝑑𝜉𝑖 . (29)

In (29) 𝐽 (𝐫) is the Jacobian of the transformation from the object-space triangle to the parent coordinate reference triangle and 𝚿𝐤(𝐫), 𝑘 = 1, 6 are
the six ordered basis function, i.e. (a) 𝛀𝑖(𝐫), (b) 𝛀𝑖+1(𝐫), (c) 𝛀𝑖−1(𝐫), (d) 𝛀𝑠

𝑖
(𝐫), (e) 𝛀𝑠

𝑖+1(𝐫), (f) 𝛀
𝑠
𝑖−1(𝐫). We recall that due to the definitions of ∇𝜉𝛽

[95,96], the integrand of (29) shows a polynomial term 𝐽 (𝐫) at the denominator for curvilinear triangular elements described by polynomial shape
functions (in case of straight triangular elements 𝐽 (𝐫) is constant).

4.2.1. Rectilinear triangular element

For the sake of reference and simplicity, here we compute the entries (29) to the elemental mass matrix for a rectilinear triangular element in
11

the object domain coincident with the reference triangle (node 𝑖 at (1, 0), node 𝑖 + 1 at (1, 0), node 𝑖 − 1 at (0, 0)). We consider a singular node at

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Fig. 6. Vector plots of Lowest-Order Triangular Curl-Conforming Bases [5] for transverse field components in 2.5 dimensional problems with reference to Fig. 5 and
Table 2: (a) 𝛀𝑖(𝐫), (b) 𝛀𝑖+1(𝐫), (c) 𝛀𝑖−1(𝐫), (d) 𝛀𝑠

𝑖
(𝐫), (e) 𝛀𝑠

𝑖+1(𝐫), (f) 𝛀𝑠
𝑖−1(𝐫) and considering a singularity at node 𝑖. Temperature colour map is applied for intensity,

normalised for each basis function. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

𝑖 with sharp knife singularity, i.e. 𝜈 = 1∕2. With the numbering scheme reported above, the elemental mass matrix with exact, reference values, is
computed using Wolfram Mathematica [92] and it reads

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 − 1

6 0 − 1
54 − 1

15 − 2
15

× 1
3 0 13

756
1
10

1
5

× × 1
6

1
189

1
10

1
30

× × × 1
540

29
2520

19
1260

× × × × 1
4

5
24

× × × × × 1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

To clarify the utility of a special quadrature, we report the matrix relative errors of the mass matrix computed via a G-L quadrature using 24 × 24
samples with respect to (30):

⎡⎢⎢⎢⎢⎢⎢⎣

5.96179⋅10−17 5.96179⋅10−17 1.21025⋅10−18 6.63256⋅10−12 1.98943⋅10−7 8.19178⋅10−8

× 5.12593⋅10−17 1.82846⋅10−19 1.34229⋅10−9 1.22758⋅10−4 4.38496⋅10−5

× × 5.40269⋅10−17 2.91604⋅10−9 7.02045⋅10−5 2.10543⋅10−4

× × × 6.63251⋅10−11 5.74254⋅10−7 3.61148⋅10−7

× × × × 9.81007⋅10−5 7.56777⋅10−5

× × × × × 5.60575⋅10−5

⎤⎥⎥⎥⎥⎥⎥⎦
. (31)

As reference, we also propose the matrix relative errors computed via adaptive GSL’s built-in routine QAGS [4], which implements a 21-point aG-K
technique, with respect to (30)

⎡⎢⎢⎢⎢⎢⎢⎣

exact exact 6.93889⋅10−18 2.07959⋅10−14 2.08167⋅10−16 2.08167⋅10−16

× exact 8.67362⋅10−19 2.6229⋅10−15 exact 2.77556⋅10−16

× × exact 6.06546⋅10−15 1.38778⋅10−16 2.08167⋅10−16

× × × 9.25041⋅10−15 1.50741⋅10−16 4.60158⋅10−16

× × × × 4.44089⋅10−16 1.33227⋅10−16

× × × × × 2.22045⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (32)

Finally, we report the matrix relative errors computed by MTQR (which we reiterate being non-adaptive) with respect to (30)

⎡⎢⎢⎢⎢⎢⎢⎣

9.66863⋅10−18 9.89643⋅10−17 1.20703⋅10−17 5.2196⋅10−18 6.67898⋅10−17 2.21996⋅10−17

× 7.72377⋅10−17 2.41407⋅10−18 6.55449⋅10−17 7.77306⋅10−17 3.88997⋅10−17

× × 4.10268⋅10−17 1.35925⋅10−16 1.22925⋅10−17 5.10886⋅10−17

× × × 5.05374⋅10−16 7.24108⋅10−17 2.78953⋅10−17

× × × × 2.96314⋅10−17 3.37762⋅10−17

× × × × × 1.79792⋅10−17

⎤⎥⎥⎥⎥⎥⎥⎦
. (33)

For what concerns the results in (33) the double integration (29) with solely regular bases is performed by a product of classical G-L quadrature rule
with 2 ×2 samples. If the integrand of (29) contains irregular/singular bases we apply a product quadrature rule with 2 ×18 samples where the first
2 are related to a G-L quadrature rule (inner integral in 𝜉𝑖+1) and the remaining 18 samples are related to MTQR with 𝜆 ∈ (0, 4) (outer integral in
𝜉𝑖). We observe that the selection of the number of samples in MTQR and G-L derives from the a-priori analytical study of the six integrands defined
in (29) which are either classical or generalised Müntz polynomials for regular and singular bases respectively. In particular we note that the inner
12

integration is performed in 𝜉𝑖+1, yielding a regularisation effect on outer integration in 𝜉𝑖.

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

By comparing (33) with (32) we observe the full convergence of the non-adaptive MTQR (with only 36 function evaluations per irregular
integrand) with respect to the performance of the aG-K technique underlying GSL-QAGS. We also note that product quadrature rules using MTQR
are computed once and for all elements of a FEM application, while adaptive integration algorithm must be run for each elements yielding an
increasingly less efficient solution for large, multiscale simulations in computational physics.

4.2.2. Curvilinear triangular element

Often, finite element applications use polynomial shape functions to model curvilinear geometries. In this framework, the integrand of (29)

shows a polynomial behaviour 𝐽 (𝐫) at the denominator resulting in a rational integrand function which cannot be directly, globally and analytically
represented in terms of either classical or generalised polynomials. For demonstrating purposes, in this test case we consider shape functions of
order 2 for the geometry with control points in object domain located at 𝑛𝑜𝑑𝑒 𝑖 (1, 0), 𝑛𝑜𝑑𝑒 𝑖 + 1 (0, 1), 𝑛𝑜𝑑𝑒 𝑖 − 1 (0, 0), and (1∕

√
2, 1∕

√
2), (0, 1∕2),

(1∕2, 0). The resulting curvilinear triangle is a deformed version of the reference triangular element along the edge 𝑖 − 1 (see Fig. 5). We select a
singular node at 𝑖 with sharp knife singularity 𝜈 = 1∕2.

With the usual numbering scheme adopted for the linear case, the elemental mass matrix with reference values is again computed using Wolfram
Mathematica [92]

⎡⎢⎢⎢⎢⎢⎢⎣

0.2824683905612152 −0.0799881369933545 −0.0511288002782521 −0.0134875272625489 −0.0590162878603002 −0.0675515579944396
× 0.2824683905612152 −0.0511288002782521 0.0087648058609067 0.0291436298001587 0.1136894684054350
× × 0.1845734601172637 0.0052347248641515 0.0683970043032625 −0.0045452822860420
× × × 0.0012241429923909 0.0078405230975909 0.0084234049826403
× × × × 0.1721840539890618 0.1098626273234278
× × × × × 0.1397771801706621

⎤⎥⎥⎥⎥⎥⎥⎦
. (34)

As reference, below we propose the matrix relative errors computed with QAGS’s aG-K technique with respect to (34)

⎡⎢⎢⎢⎢⎢⎢⎣

exact 6.93992⋅10−16 1.35714⋅10−16 1.72347⋅10−14 3.76243⋅10−15 4.1088⋅10−16

× exact 1.35714⋅10−16 2.96879⋅10−15 3.16664⋅10−14 7.32405⋅10−16

× × 3.00754⋅10−16 2.17059⋅10−14 8.11602⋅10−16 4.57984⋅10−15

× × × 1.95382⋅10−13 8.62879⋅10−15 4.11882⋅10−16

× × × × 1.61197⋅10−16 1.26319⋅10−16

× × × × × 1.9857⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (35)

Finally, we report the matrix relative errors computed using MTQR with respect to (34)

⎡⎢⎢⎢⎢⎢⎢⎣

6.99866⋅10−17 6.74668⋅10−16 4.26045⋅10−16 4.38676⋅10−16 3.23314⋅10−15 7.64195⋅10−16

× 5.79219⋅10−17 3.24033⋅10−16 6.5069⋅10−16 2.61723⋅10−14 7.06715⋅10−16

× × 2.73857⋅10−16 1.98204⋅10−16 8.36839⋅10−16 6.34363⋅10−15

× × × 4.44293⋅10−16 6.9585⋅10−15 7.96629⋅10−16

× × × × 7.62109⋅10−17 9.69835⋅10−17

× × × × × 1.7804⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (36)

For what concerns the results in (36), in this occasion, the double integration (29) with solely regular bases is performed by a product of classical G-L
quadrature rule with 10 ×10 samples. If the integrand of (29) contains irregular/singular bases we then apply a product quadrature rule with 10 ×30
samples where the first 10 are related to a G-L quadrature rule (inner integral in 𝜉𝑖+1) and the remaining 30 samples are related to MTQR with
𝜆 ∈ (0, 14) (outer integral in 𝜉𝑖). We observe that the selection of the number of samples in MTQR and G-L derives from the a-priori analytical study
of the six integrands defined in (29) for the selected case of curvilinear triangular element which are in general rational polynomials containing
either a classical polynomial numerator or a generalised Müntz polynomial numerator respectively for regular and singular bases respectively.

We observe that, although the denominator of the integrand, i.e. the Jacobian 𝐽 (𝐫), has a smooth polynomial behaviour for “regular” curvilinear
elements, it has a strong impact on limiting the convergence of the numerical integration. In particular, it yields an increase of iterations in adaptive
quadrature rules and an increase of 𝜆-range in MTQR. By comparing (36) with (35) we observe the full convergence of the non-adaptive, more
computationally efficient MTQR with respect to the performance of GSL-QAGS.

We rebate that product quadrature rules using MTQR are computed a-priori once and for all elements of a FEM application, while adaptive
integration algorithm must be repeated for each element. Moreover, in the framework of 2.5D FEM applications with singular modelling, the
proposed product quadrature exceeds in precision and efficiency frequently used traditional schemes of singular integration mainly based on
singularity subtraction or cancellation techniques.

5. Conclusion

In this work we contribute to enrich the network of existing high-precision numerical integration software by issuing an additional fast, light,
portable, and integrable C++ suite, that automatically optimises transformations capable of manipulating the traditional G-L quadrature rule
to fully capture the endpoint singularities/irregularities in those integrands that are modelled by sets of generalised polynomials of non-integer
degree. MTQR is a non-iterative mathematical software that guarantees the required numerical precision (we selected double precision) and it
avoids to resort to computationally expensive algorithms such as adaptive quadrature rules. To the best of our knowledge, there is no other
open-source alternative in existence that matches the precision of MTQR on such a large scale of integrand functions when combined with the
minimum computational cost assured by the algorithm. In the aforementioned user manual the reader will find useful notions and instructions for
its installations and modes of executions in both Linux and Windows. In this work we have shown reliability in MTQR’s accuracy on a wide range
of benchmarking tests in computational physics (dealing with arbitrary products of Bessel functions of real order and additive, curl-conforming
basis functions in vector finite elements), compared its performance against well-known adaptive techniques and further proved its potential of
being integrated in larger codebases as a useful third-party numerical tool. The range of application for MTQR is of particular interest in BEM
13

and FEM formulations frequently arising in Computational Electromagnetics (CEM) and Fluid Dynamics (CFD), as well as structural analysis and

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

fracture mechanics or any other engineering or scientific applications modelling abrupt discontinuities. Finally we think that while the combination
of MTQR with Gaussian and quasi-Gaussian (piecewise) spline rules, we argue, could lead to more refined, efficient and general purpose quadrature
techniques, such implementation is not straightforward and will be investigated in future studies.

CRediT authorship contribution statement

Guido Lombardi: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writ-

ing – original draft, Writing – review & editing. Davide Papapicco: Investigation, Software, Validation, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This study was supported in part by the Italian Ministry of University and Research (MIUR) under the PRIN2017 Grant (2017NT5W7Z) “Chipless
radio frequency identification (RFID) for GREEN TAGging and Sensing - GREEN TAGS” and by European Union under Next Generation EU - PNRR
M4C2, Investimento 1.4 - Avviso n. 3138 del 16/12/2021 - CN00000013 National Centre for HPC, Big Data and Quantum Computing (HPC) - CUP
E13C22000990001.

Appendix A. Primary module’s source code

#include "mtqr.h"

// Global variable controlling the primary module mode of execution
bool loud_mode = true;

// LOUD MODE
template<typename T>
void mtqr(std::vector<T>& muntz_sequence, std::vector<T>& coeff_sequence)
{
// Print initial message and selects user’s inputs
auto input_data = manageData(muntz_sequence, coeff_sequence);
// Extract beta_min, beta_max and n_min
auto monomial_data = streamMonMapData(std::get<0>(input_data));
// Compute order of the monomial transformation
double transf_order = computeMapOrder(std::get<1>(input_data), std::get<1>(monomial_data));
// Compute the new nodes and weights of the Monomial Transformation Quadrature Rule
auto quad_data = computeQuadParams(transf_order, std::get<0>(monomial_data), std::get<2>(monomial_data));
// Cast the quadrature parameter in the most optimised f.p. format possible
optimiseData(quad_data, muntz_sequence, coeff_sequence);

}
template void mtqr<float128>(std::vector<float128>& muntz_sequence, std::vector<float128>& coeff_sequence);
template void mtqr<double>(std::vector<double>& muntz_sequence, std::vector<double>& coeff_sequence);

// SILENT MODE
std::vector<std::vector<double>> mtqr(double lambda_min, double lambda_max)
{
// Deactivate terminal’s and files’ output
loud_mode = false;
// Initialise input parameters of the Monomial transformation quadrature rule
std::vector<double> muntz_sequence = {lambda_min, lambda_max};
std::vector<double> coeff_sequence = {1.0, 1.0};
// Print initial message and selects user’s inputs
auto input_data = manageData(muntz_sequence, coeff_sequence);
// Extract beta_min, beta_max and n_min
auto monomial_data = streamMonMapData(std::get<0>(input_data));
// Compute order of the monomial transformation
double transf_order = computeMapOrder(std::get<1>(input_data), std::get<1>(monomial_data));
// Compute the new nodes and weights of the Monomial Transformation Quadrature Rule
auto quad_data = computeQuadParams(transf_order, std::get<0>(monomial_data), std::get<2>(monomial_data));
// Cast the quadrature parameter in the most optimised f.p. format possible
optimiseData(quad_data, muntz_sequence, coeff_sequence);
// Generate double-precise new nodes and weights and export them in memory as output
std::vector<double> nodes = castVector(std::get<0>(quad_data), std::numeric_limits<double>::epsilon());
std::vector<double> weights = castVector(std::get<1>(quad_data), std::numeric_limits<double>::epsilon());
return std::vector<std::vector<double>> {nodes, weights};

}

References

[1] G. Lombardi, Design of quadrature rules for Müntz and Müntz-logarithmic polynomials using monomial transformation, Int. J. Numer. Methods Eng. 80 (13) (2009) 1687–1717,
14

https://doi .org /10 .1002 /nme .2684.

https://doi.org/10.1002/nme.2684

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

[2] IEEE standard for floating-point arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-2008, https://doi .org /10 .1109 /IEEESTD .2019 .8766229, 2019.

[3] Boost C++ Libraries, https://www .boost .org/, 1999.

[4] B. Gough, GNU Scientific Library Reference Manual, Network Theory Ltd., 2009.

[5] R. Graglia, G. Lombardi, Singular higher order complete vector bases for finite methods, IEEE Trans. Antennas Propag. 52 (7) (2004) 1672–1685, https://doi .org /10 .1109 /TAP .
2004 .831292.

[6] P. Johnston, D. Elliott, A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Eng. 62 (4) (2005) 564–578, https://doi .org /10 .
1002 /nme .1208.

[7] G. Monegato, L. Scuderi, Numerical integration of functions with endpoint singularities and/or complex poles in 3D Galerkin boundary element methods, Publ. Res. Inst. Math. Sci.
41 (4) (2005) 869–895, https://doi .org /10 .2977 /PRIMS /1145474599.

[8] M. Carley, Numerical quadratures for singular and hypersingular integrals in boundary element methods, SIAM J. Sci. Comput. 29 (3) (2007) 1207–1216, https://doi .org /10 .1137 /
060666093.

[9] L. Scuderi, On the computation of nearly singular integrals in 3D BEM collocation, Int. J. Numer. Methods Eng. 74 (11) (2008) 1733–1770, https://doi .org /10 .1002 /nme .2229.

[10] D. Elliott, B. Johnston, P. Johnston, Clenshaw–Curtis and Gauss–Legendre quadrature for certain boundary element integrals, SIAM J. Sci. Comput. 31 (1) (2008) 510–530, https://

doi .org /10 .1137 /07070200X.

[11] R. Graglia, G. Lombardi, Singular higher order divergence-conforming bases of additive kind and moments method applications to 3D sharp-wedge structures, IEEE Trans. Antennas
Propag. 56 (12) (2008) 3768–3788, https://doi .org /10 .1109 /TAP .2008 .2007390.

[12] R. Graglia, G. Lombardi, Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions, IEEE Trans.
Antennas Propag. 56 (4) (2008) 981–998, https://doi .org /10 .1109 /TAP .2008 .919181.

[13] G. Lombardi, R.D. Graglia, Modeling junctions in sharp edge conducting structures with higher order method of moments, IEEE Trans. Antennas Propag. 62 (11) (2014) 5723–5731,
https://doi .org /10 .1109 /TAP .2014 .2355855.

[14] H. Wu, J. Zou, Finite element method and its analysis for a nonlinear Helmholtz equation with high wave numbers, SIAM J. Numer. Anal. 56 (3) (2018) 1338–1359, https://

doi .org /10 .1137 /17M111314X.

[15] T. Chaumont-Frelet, Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, Calcolo 56 (2019), https://doi .org /10 .1007 /s10092 -019 -0346 -z.

[16] Y. Ordokhani, P. Rahimkhani, A numerical technique for solving fractional variational problems by Müntz—Legendre polynomials, J. Appl. Math. Comput. 58 (2018) 75–94,
https://doi .org /10 .1007 /s12190 -017 -1134 -z.

[17] D. Hou, M.T. Hasan, C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math. 18 (1) (2018) 43–62, https://doi .org /10 .1515 /cmam -
2017 -0027.

[18] T. Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Methods Eng. 84 (3) (2010) 253–304,
https://doi .org /10 .1002 /nme .2914.

[19] I. Babuška, U. Banerjee, Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Eng. 201–204 (2012) 91–111, https://doi .org /10 .1016 /j .cma .2011 .09 .
012.

[20] S. Chen, J. Shen, Enriched spectral methods and applications to problems with weakly singular solutions, J. Sci. Comput. 77 (2018) 1468–1489, https://doi .org /10 .1007 /s10915 -
018 -0862 -z.

[21] L. Marin, D. Lesnic, V. Mantič, Treatment of singularities in Helmholtz-type equations using the boundary element method, J. Sound Vib. 278 (1) (2004) 39–62, https://doi .org /
10 .1016 /j .jsv .2003 .09 .059.

[22] J. Shen, Y. Wang, Müntz–Galerkin methods and applications to mixed Dirichlet–Neumann boundary value problems, SIAM J. Sci. Comput. 38 (4) (2016) A2357–A2381, https://

doi .org /10 .1137 /15M1052391.

[23] J. Jiang, M.S. Mohamed, M. Seaid, Hongqiu Li, Identifying the wavenumber for the inverse Helmholtz problem using an enriched finite element formulation, Comput. Methods
Appl. Mech. Eng. 340 (2018) 615–629, https://doi .org /10 .1016 /j .cma .2018 .06 .014.

[24] E. Benvenuti, A. Chiozzi, G. Manzini, N. Sukumar, Extended virtual element method for the Laplace problem with singularities and discontinuities, Comput. Methods Appl. Mech.
Eng. 356 (2019) 571–597, https://doi .org /10 .1016 /j .cma .2019 .07 .028.

[25] A. Jablonski, An effective algorithm for calculating the Chandrasekhar function, Comput. Phys. Commun. 183 (8) (2012) 1773–1782, https://doi .org /10 .1016 /j .cpc .2012 .02 .022.

[26] A. Fowlie, A fast C++ implementation of thermal functions, Comput. Phys. Commun. 228 (2018) 264–272, https://doi .org /10 .1016 /j .cpc .2018 .02 .015.

[27] A. Jablonski, The Chandrasekhar function for modeling photoelectron transport in solids, Comput. Phys. Commun. 235 (2019) 489–501, https://doi .org /10 .1016 /j .cpc .2018 .07 .005.

[28] W. Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal. 4 (3) (1967) 357–362, https://doi .org /10 .1137 /0704031.

[29] G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math. 50 (1) (1994) 9–31, https://doi .org /10 .1016 /0377 -0427(94)90287 -9.

[30] J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J. Numer. Anal. 33 (3) (1996) 971–996, https://doi .org /10 .1137 /
0733048.

[31] P. Kolm, V. Rokhlin, Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl. 41 (3) (2001) 327–352, https://doi .org /10 .1016 /S0898 -1221(00)00277 -
7.

[32] K. Pachucki, M. Puchalski, V. Yerokhin, Extended Gaussian quadratures for functions with an end-point singularity of logarithmic type, Comput. Phys. Commun. 185 (11) (2014)
2913–2919, https://doi .org /10 .1016 /j .cpc .2014 .06 .018.

[33] G. Milovanović, T. Igić, D. Turnić, Generalized quadrature rules of Gaussian type for numerical evaluation of singular integrals, J. Comput. Appl. Math. 278 (2015) 306–325,
https://doi .org /10 .1016 /j .cam .2014 .10 .009.

[34] N. Hale, A. Townsend, Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights, SIAM J. Sci. Comput. 35 (2) (2013) A652–A674, https://

doi .org /10 .1137 /120889873.

[35] I. Bogaert, Iteration-free computation of Gauss–Legendre quadrature nodes and weights, SIAM J. Sci. Comput. 36 (3) (2014) A1008–A1026, https://doi .org /10 .1137 /140954969.

[36] T. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Eng. 199 (5) (2010) 301–313, https://doi .org /10 .
1016 /j .cma .2008 .12 .004.

[37] M. Bartoň, V.M. Calo, Gauss–Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis, Comput. Aided Des. 82 (2017) 57–67,
https://doi .org /10 .1016 /j .cad .2016 .07 .003.

[38] K.A. Johannessen, Optimal quadrature for univariate and tensor product splines, Comput. Methods Appl. Mech. Eng. 316 (2017) 84–99, https://doi .org /10 .1016 /j .cma .2016 .04 .030,
Special Issue on Isogeometric Analysis: Progress and Challenges.

[39] H. Curry, I. Schoenberg, On Pólya frequency functions IV: The fundamental spline functions and their limits, J. Anal. Math. 17 (1) (1966) 71–107, https://doi .org /10 .1007 /
BF02788653.

[40] M.J. Marsden, An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory 3 (1) (1970) 7–49, https://doi .org /10 .1016 /
0021 -9045(70)90058 -4.

[41] C. de Boor, On calculating with b-splines, J. Approx. Theory 6 (1) (1972) 50–62, https://doi .org /10 .1016 /0021 -9045(72)90080 -9.

[42] R.R. Hiemstra, F. Calabrò, D. Schillinger, T.J. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, Comput.
Methods Appl. Mech. Eng. 316 (2017) 966–1004, https://doi .org /10 .1016 /j .cma .2016 .10 .049, Special Issue on Isogeometric Analysis: Progress and Challenges.

[43] M. Bartoň, R. Ait-Haddou, V.M. Calo, Gaussian quadrature rules for C1 quintic splines with uniform knot vectors, J. Comput. Appl. Math. 322 (2017) 57–70, https://doi .org /10 .
1016 /j .cam .2017 .02 .022.

[44] A. Logg, G. Wells, DOLFIN: automated finite element computing, ACM Trans. Math. Softw. 37 (2010), https://doi .org /10 .1145 /1731022 .1731030.

[45] R. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Softw. 30 (2004) 502–516, https://doi .org /10 .1145 /1039813 .
1039820.

[46] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M.S.V. Tomov, I. Akkerman, J. Dahm, D. Medina,
S. Zampini, MFEM: A modular finite element methods library, in: Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl.
81 (2021) 42–74, https://doi .org /10 .1016 /j .camwa .2020 .06 .009.

[47] P.C. Africa, lifex: A flexible, high performance library for the numerical solution of complex finite element problems, SoftwareX 20 (2022) 101252, https://doi .org /10 .1016 /j .softx .
15

2022 .101252.

https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.boost.org/
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib8DE26E94A18B9C86CCDF0CD7F467FCD1s1
https://doi.org/10.1109/TAP.2004.831292
https://doi.org/10.1109/TAP.2004.831292
https://doi.org/10.1002/nme.1208
https://doi.org/10.1002/nme.1208
https://doi.org/10.2977/PRIMS/1145474599
https://doi.org/10.1137/060666093
https://doi.org/10.1137/060666093
https://doi.org/10.1002/nme.2229
https://doi.org/10.1137/07070200X
https://doi.org/10.1137/07070200X
https://doi.org/10.1109/TAP.2008.2007390
https://doi.org/10.1109/TAP.2008.919181
https://doi.org/10.1109/TAP.2014.2355855
https://doi.org/10.1137/17M111314X
https://doi.org/10.1137/17M111314X
https://doi.org/10.1007/s10092-019-0346-z
https://doi.org/10.1007/s12190-017-1134-z
https://doi.org/10.1515/cmam-2017-0027
https://doi.org/10.1515/cmam-2017-0027
https://doi.org/10.1002/nme.2914
https://doi.org/10.1016/j.cma.2011.09.012
https://doi.org/10.1016/j.cma.2011.09.012
https://doi.org/10.1007/s10915-018-0862-z
https://doi.org/10.1007/s10915-018-0862-z
https://doi.org/10.1016/j.jsv.2003.09.059
https://doi.org/10.1016/j.jsv.2003.09.059
https://doi.org/10.1137/15M1052391
https://doi.org/10.1137/15M1052391
https://doi.org/10.1016/j.cma.2018.06.014
https://doi.org/10.1016/j.cma.2019.07.028
https://doi.org/10.1016/j.cpc.2012.02.022
https://doi.org/10.1016/j.cpc.2018.02.015
https://doi.org/10.1016/j.cpc.2018.07.005
https://doi.org/10.1137/0704031
https://doi.org/10.1016/0377-0427(94)90287-9
https://doi.org/10.1137/0733048
https://doi.org/10.1137/0733048
https://doi.org/10.1016/S0898-1221(00)00277-7
https://doi.org/10.1016/S0898-1221(00)00277-7
https://doi.org/10.1016/j.cpc.2014.06.018
https://doi.org/10.1016/j.cam.2014.10.009
https://doi.org/10.1137/120889873
https://doi.org/10.1137/120889873
https://doi.org/10.1137/140954969
https://doi.org/10.1016/j.cma.2008.12.004
https://doi.org/10.1016/j.cma.2008.12.004
https://doi.org/10.1016/j.cad.2016.07.003
https://doi.org/10.1016/j.cma.2016.04.030
https://doi.org/10.1007/BF02788653
https://doi.org/10.1007/BF02788653
https://doi.org/10.1016/0021-9045(70)90058-4
https://doi.org/10.1016/0021-9045(70)90058-4
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1016/j.cma.2016.10.049
https://doi.org/10.1016/j.cam.2017.02.022
https://doi.org/10.1016/j.cam.2017.02.022
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1145/1039813.1039820
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.softx.2022.101252
https://doi.org/10.1016/j.softx.2022.101252

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

[48] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II finite element library: Design, features, and
insights, in: Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl. 81 (2021) 407–422, https://doi .org /10 .1016 /j .camwa .
2020 .02 .022.

[49] S. Badia, A.F. Martín, A tutorial-driven introduction to the parallel finite element library FEMPAR v1.0.0, Comput. Phys. Commun. 248 (2020) 107059, https://doi .org /10 .1016 /j .
cpc .2019 .107059.

[50] F. Verdugo, S. Badia, The software design of Gridap: A finite element package based on the Julia JIT compiler, Comput. Phys. Commun. 276 (2022) 108341, https://doi .org /10 .
1016 /j .cpc .2022 .108341.

[51] M.W. Scroggs, I. Baratta, C. Richardson, G. Wells, Basix: a runtime finite element basis evaluation library, J. Open Sour. Softw. 7 (73) (2022) 3982, https://doi .org /10 .21105 /joss .
03982.

[52] Z.-G. Yan, Y. Pan, G. Castiglioni, K. Hillewaert, J. Peiró, D. Moxey, S.J. Sherwin, Nektar++: Design and implementation of an implicit, spectral/hp element, compressible flow
solver using a jacobian-free Newton–Krylov approach, in: Development and Application of Open-Source Software for Problems with Numerical PDEs, Comput. Math. Appl. 81
(2021) 351–372, https://doi .org /10 .1016 /j .camwa .2020 .03 .009.

[53] F. Xu, Q. Xiong, V. Aizinger, G. Ducrozet, Development and application of open-source software for problems with numerical PDEs, in: Development and Application of Open-Source
Software for Problems with Numerical PDEs, Comput. Math. Appl. 81 (2021) 1–2, https://doi .org /10 .1016 /j .camwa .2020 .12 .002.

[54] G. Stabile, G. Rozza, Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. Fluids (2018), https://

doi .org /10 .1016 /j .compfluid .2018 .01 .035.

[55] M.W. Hess, A. Lario, G. Mengaldo, G. Rozza, Reduced order modeling for spectral element methods: current developments in Nektar++ and further perspectives, 2022.

[56] V. Milovanovic, G.V. Gradimir, Müntz orthogonal polynomials and their numerical evaluation, in: Applications and Computation of Orthogonal Polynomials, 1999, pp. 179–194.

[57] J. Almira, Müntz type theorems I, Surv. Approx. Theory 3 (2007) 152–194.

[58] A. Stroud, D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, 1966.

[59] G. Szegő, Orthogonal Polynomials, Colloquium Publications, vol. 23, American Mathematical Society, 1939.

[60] W. Barrett, Convergence properties of gaussian quadrature formulae, Comput. J. 3 (4) (1961) 272–277, https://doi .org /10 .1093 /comjnl /3 .4 .272.

[61] D. Elliott, Uniform asymptotic expansions of the Jacobi polynomials and an associated function, Math. Comput. 25 (114) (1971) 309–315, https://doi .org /10 .2307 /2004926.

[62] J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9 (4) (1972) 573–602, https://doi .org /10 .
1137 /0709051.

[63] M. Holmes, R. Kashyap, R. Wyatt, Physical properties of optical fiber sidetap grating filters: free-space model, IEEE J. Sel. Top. Quantum Electron. 5 (5) (1999) 1353–1365, https://

doi .org /10 .1109 /2944 .806761.

[64] G. Fikioris, P. Cottis, A. Panagopoulos, On an integral related to biaxially anisotropic media, J. Comput. Appl. Math. 146 (2) (2002) 343–360, https://doi .org /10 .1016 /S0377 -
0427(02)00368 -0.

[65] R. Golubović, A.G. Polimeridis, J.R. Mosig, The weighted averages method for semi-infinite range integrals involving products of Bessel functions, IEEE Trans. Antennas Propag.
61 (11) (2013) 5589–5596, https://doi .org /10 .1109 /TAP .2013 .2280048.

[66] K.A. Michalski, J.R. Mosig, Efficient computation of Sommerfeld integral tails – methods and algorithms, J. Electromagn. Waves Appl. 30 (3) (2016) 281–317, https://doi .org /10 .
1080 /09205071 .2015 .1129915.

[67] M.P.S. dos Santos, J.A.F. Ferreira, J.A.O. Simões, R. Pascoal, J. Torrão, X. Xue, E.P. Furlani, Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical
non-linear model for energy transduction, Sci. Rep. 6 (2016), https://doi .org /10 .1038 /srep18579.

[68] J.M. Roesset, Nondestructive dynamic testing of soils and pavements, J. Appl. Sci. Eng. 1 (1999) 61–81, https://doi .org /10 .6180 /jase .1998 .1 .2 .01.

[69] R. Craster, Scattering by cracks beneath fluid-solid interfaces, J. Sound Vib. 209 (2) (1998) 343–372, https://doi .org /10 .1006 /jsvi .1997 .1252.

[70] N. Robinson, An isotropic elastic medium containing a cylindrical borehole with a rigid plug, Int. J. Solids Struct. 39 (19) (2002) 4889–4904, https://doi .org /10 .1016 /S0020 -
7683(02)00414 -6.

[71] M. Bevis, E. Pan, H. Zhou, F. Han, R. Zhu, Surface deformation due to loading of a layered elastic half-space: constructing the solution for a general polygonal load, Acta Geophys.
63 (2016) 957–977, https://doi .org /10 .1515 /acgeo -2015 -0034.

[72] M.A. Ceballos, Numerical evaluation of integrals involving the product of two Bessel functions and a rational fraction arising in some elastodynamic problems, J. Comput. Appl.
Math. 313 (2017) 355–382, https://doi .org /10 .1016 /j .cam .2016 .09 .043.

[73] A.M.J. Davis, Drag modifications for a sphere in a rotational motion at small, non-zero Reynolds and Taylor numbers: wake interference and possibly Coriolis effects, J. Fluid Mech.
237 (1992) 13–22, https://doi .org /10 .1017 /S002211209200332X.

[74] J.P. Tanzosh, H.A. Stone, Motion of a rigid particle in a rotating viscous flow: an integral equation approach, J. Fluid Mech. 275 (1994) 225–256, https://doi .org /10 .1017 /
S002211209400234X.

[75] D.M. Tartakovsky, J.D. Moulton, V.A. Zlotnik, Kinematic structure of minipermeameter flow, Water Resour. Res. 36 (9) (2000) 2433–2442, https://doi .org /10 .1029 /
2000WR900178.

[76] J. Sherwood, Optimal probes for withdrawal of uncontaminated fluid samples, Phys. Fluids 17 (2005), https://doi .org /10 .1063 /1 .2006128.

[77] G. Ledder, V.A. Zlotnik, Evaluation of oscillatory integrals for analytical groundwater flow and mass transport models, Adv. Water Resour. 104 (2017) 284–292, https://doi .org /
10 .1016 /j .advwatres .2017 .04 .007.

[78] S. Groote, J. Körner, A. Pivovarov, On the evaluation of sunset-type Feynman diagrams, Nucl. Phys. B 542 (1) (1999) 515–547, https://doi .org /10 .1016 /S0550 -3213(98)00812 -8.

[79] J.T. Conway, Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries, Mon. Not. R. Astron. Soc. 316 (3) (2000) 540–554,
https://doi .org /10 .1046 /j .1365 -8711 .2000 .03523 .x.

[80] M. Mobilia, Competition between homogeneous and local processes in a diffusive many-body system, J. Stat. Mech. Theory Exp. 04 (2005), https://doi .org /10 .1088 /1742 -5468 /
2005 /04 /P04003.

[81] J. Salo, H.M. El-Sallabi, P. Vainikainen, Statistical analysis of the multiple scattering radio channel, IEEE Trans. Antennas Propag. 54 (11) (2006) 3114–3124, https://doi .org /10 .
1109 /TAP .2006 .883964.

[82] A. Kisselev, Approximate formula for the total cross section for a moderately small eikonal function, Theor. Math. Phys. 201 (2019) 1484–1502, https://doi .org /10 .1134 /
S0040577919100064.

[83] M. Ikonomou, P. Köhler, A.F. Jacob, Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines, Z. Angew.
Math. Mech. 75 (11) (1995) 917–926, https://doi .org /10 .1002 /zamm .19950751109.

[84] H.A. Stone, H.M. McConnell, Hydrodynamics of quantized shape transitions of lipid domains, Proc. Math. Phys. Sci. 448 (1932) (1995) 97–111.

[85] X. You-Sheng, L. Ji, L. Hua-Mei, W. Feng-Min, Analysis for the potential function of the digital microstructure image of porous media, Commun. Theor. Phys. 40 (4) (2003) 393,
https://doi .org /10 .1088 /0253 -6102 /40 /4 /393.

[86] N.P. Singh, T. Mogi, Electromagnetic response of a large circular loop source on a layered earth: a new computation method, Pure Appl. Geophys. 162 (2005) 181–200, https://

doi .org /10 .1007 /s00024 -004 -2586 -2.

[87] E.P. Petrov, P. Schwille, Translational diffusion in lipid membranes beyond the Saffman-Delbrück approximation, Biophys. J. 94 (5) (2008) L41–L43, https://doi .org /10 .1529 /
biophysj .107 .126565.

[88] S. Lucas, Evaluating infinite integrals involving products of Bessel functions of arbitrary order, J. Comput. Appl. Math. 64 (3) (1995) 269–282, https://doi .org /10 .1016 /0377 -
0427(95)00143 -3.

[89] J.T. Ratnanather, J.H. Kim, S. Zhang, A.M.J. Davis, S.K. Lucas, Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions, ACM Trans. Math.
Softw. 40 (2) (mar 2014), https://doi .org /10 .1145 /2508435.

[90] J.V. Deun, R. Cools, Algorithm 858: Computing infinite range integrals of an arbitrary product of Bessel functions, ACM Trans. Math. Softw. 32 (4) (2006) 580–596, https://

doi .org /10 .1145 /1186785 .1186790.

[91] J. Van Deun, R. Cools, Integrating products of Bessel functions with an additional exponential or rational factor, Comput. Phys. Commun. 178 (8) (2008) 578–590, https://

doi .org /10 .1016 /j .cpc .2007 .11 .010.

[92] W. R. Inc., Mathematica, Version 13.2, Champaign, IL, 2022, https://www .wolfram .com /mathematica, 2023.
16

[93] J.V. Bladel, Singular Electromagnetic Fields and Sources, Oxford University Press, 1991.

https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.cpc.2019.107059
https://doi.org/10.1016/j.cpc.2019.107059
https://doi.org/10.1016/j.cpc.2022.108341
https://doi.org/10.1016/j.cpc.2022.108341
https://doi.org/10.21105/joss.03982
https://doi.org/10.21105/joss.03982
https://doi.org/10.1016/j.camwa.2020.03.009
https://doi.org/10.1016/j.camwa.2020.12.002
https://doi.org/10.1016/j.compfluid.2018.01.035
https://doi.org/10.1016/j.compfluid.2018.01.035
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib0BEC9A3E1B0AB1B2B1155E2150B38A4Es1
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib7614A3A23688102088E2100FA67A8397s1
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib9742519E1440E7E27E995401C7A5A727s1
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib7989EDE6409A439BD2E9BED8DECB7CACs1
https://doi.org/10.1093/comjnl/3.4.272
https://doi.org/10.2307/2004926
https://doi.org/10.1137/0709051
https://doi.org/10.1137/0709051
https://doi.org/10.1109/2944.806761
https://doi.org/10.1109/2944.806761
https://doi.org/10.1016/S0377-0427(02)00368-0
https://doi.org/10.1016/S0377-0427(02)00368-0
https://doi.org/10.1109/TAP.2013.2280048
https://doi.org/10.1080/09205071.2015.1129915
https://doi.org/10.1080/09205071.2015.1129915
https://doi.org/10.1038/srep18579
https://doi.org/10.6180/jase.1998.1.2.01
https://doi.org/10.1006/jsvi.1997.1252
https://doi.org/10.1016/S0020-7683(02)00414-6
https://doi.org/10.1016/S0020-7683(02)00414-6
https://doi.org/10.1515/acgeo-2015-0034
https://doi.org/10.1016/j.cam.2016.09.043
https://doi.org/10.1017/S002211209200332X
https://doi.org/10.1017/S002211209400234X
https://doi.org/10.1017/S002211209400234X
https://doi.org/10.1029/2000WR900178
https://doi.org/10.1029/2000WR900178
https://doi.org/10.1063/1.2006128
https://doi.org/10.1016/j.advwatres.2017.04.007
https://doi.org/10.1016/j.advwatres.2017.04.007
https://doi.org/10.1016/S0550-3213(98)00812-8
https://doi.org/10.1046/j.1365-8711.2000.03523.x
https://doi.org/10.1088/1742-5468/2005/04/P04003
https://doi.org/10.1088/1742-5468/2005/04/P04003
https://doi.org/10.1109/TAP.2006.883964
https://doi.org/10.1109/TAP.2006.883964
https://doi.org/10.1134/S0040577919100064
https://doi.org/10.1134/S0040577919100064
https://doi.org/10.1002/zamm.19950751109
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib1BC85B50AD7ECA0ED966B9E7982AE9D5s1
https://doi.org/10.1088/0253-6102/40/4/393
https://doi.org/10.1007/s00024-004-2586-2
https://doi.org/10.1007/s00024-004-2586-2
https://doi.org/10.1529/biophysj.107.126565
https://doi.org/10.1529/biophysj.107.126565
https://doi.org/10.1016/0377-0427(95)00143-3
https://doi.org/10.1016/0377-0427(95)00143-3
https://doi.org/10.1145/2508435
https://doi.org/10.1145/1186785.1186790
https://doi.org/10.1145/1186785.1186790
https://doi.org/10.1016/j.cpc.2007.11.010
https://doi.org/10.1016/j.cpc.2007.11.010
https://www.wolfram.com/mathematica
http://refhub.elsevier.com/S0010-4655(24)00047-X/bib0DF8748782AAEE9E257EE74C6D52B5A5s1

Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

[94] J. Nedelec, Mixed finite elements in ℝ3 , Numer. Math. 35 (1980) 315–341, https://doi .org /10 .1007 /BF01396415.

[95] R. Graglia, D. Wilton, A. Peterson, Higher order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propag. 45 (3) (1997) 329–342, https://

doi .org /10 .1109 /8 .558649.
17

[96] R.D. Graglia, A.F. Peterson, Higher-order techniques in computational electromagnetics, in: Electromagnetic Waves, Institution of Engineering and Technology, 2015.

https://doi.org/10.1007/BF01396415
https://doi.org/10.1109/8.558649
https://doi.org/10.1109/8.558649
http://refhub.elsevier.com/S0010-4655(24)00047-X/bibC9913C26ADD9186BF0449FE3F8CBFC7Fs1

	Quadrature of functions with endpoint singular and generalised polynomial behaviour in computational physics
	1 Introduction
	2 Derivation
	2.1 Motivation
	2.1.1 Generalised finite methods

	2.2 Background on interpolatory Gaussian quadrature formulae
	2.3 Asymptotic error estimate

	3 Implementation
	3.1 Monomial transformation
	3.2 Software integration
	3.3 Computational costs in brief

	4 Applications
	4.1 Integrating arbitrary products of Bessel functions of real order
	4.2 Mass matrix computation in vector finite elements enriched by singular basis functions
	4.2.1 Rectilinear triangular element
	4.2.2 Curvilinear triangular element

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Primary module’s source code
	References

