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Fast and accurate numerical integration always represented a bottleneck in high-performance computational 
physics, especially in large and multiscale industrial simulations involving Finite (FEM) and Boundary Element 
Methods (BEM). The computational demand escalates significantly in problems modelled by irregular or endpoint 
singular behaviours which can be approximated with generalised polynomials of real degree. This is due to both 
the practical limitations of finite-arithmetic computations and the inefficient samples distribution of traditional 
Gaussian quadrature rules. We developed a non-iterative mathematical software implementing an innovative 
numerical quadrature which largely enhances the precision of Gauss-Legendre formulae (G-L) for integrands 
modelled as generalised polynomial with the optimal amount of nodes and weights capable of guaranteeing the 
required numerical precision. This methodology avoids to resort to more computationally expensive techniques 
such as adaptive or composite quadrature rules. From a theoretical point of view, the numerical method 
underlying this work was preliminary presented in [1] by constructing the monomial transformation itself and 
providing all the necessary conditions to ensure the numerical stability and exactness of the quadrature up to 
machine precision. The novel contribution of this work concerns the optimal implementation of said method, 
the extension of its applicability at run-time with different type of inputs, the provision of additional insights on 
its functionalities and its straightforward implementation, in particular FEM applications or other mathematical 
software either as an external tool or embedded suite. The open-source, cross-platform C++ library Monomial 
Transformation Quadrature Rule (MTQR) has been designed to be highly portable, fast and easy to integrate in 
larger codebases. Numerical examples in multiple physical applications showcase the improved efficiency and 
accuracy when compared to traditional schemes.

Program summary

Program title: MTQR

CPC Library link to program files: https://doi .org /10 .17632 /276f78wzsw .1
Developer’s repository link: https://github .com /MTQR /MTQR

Licensing provisions: GNU General Public License 3
Programming language: C++ (C++17 standard)

Supplementary material: User manual (for installation and execution)

Nature of problem: Accuracy and time of execution of the current implementations of high-precision numerical 
integration routines for singular and irregular integrands modelled by generalised polynomials are restricted by: 
limitations of the floating-point (f.p.) finite-arithmetic of the machine; inability of classical Gaussian quadrature 
rules to efficiently capture irregular behaviours or end-point singularities using an optimal number of samples; 
relying on significantly expensive techniques as adaptive or composite quadrature rules that severely increase 
the number of steps necessary to converge to the desired accuracy threshold. However by precisely manipulating 
the G-L samples using an ad-hoc monomial transformation we achieve a one-shot, non-iterative, machine-precise 
quadrature rule with straightforward scalability in higher dimensions. The advantages brought by a non-adaptive 
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technique are greatly emphasised whenever the problem on hand is characterised by a numerous set of integrand 
functions that behave similarly to sets of generalised polynomials.

Solution method: The underlying algorithm is an application of a monomial transformation of (real) order to 
the 𝑛min ∈ ℕ quadrature samples (nodes and weights) of the G-L rule. The order of the transformation depends 
on the infimum (𝜆min) and supremum (𝜆max) of the Müntz sequence of real degrees of the integrands modelled 
by generalised polynomials. With an a-priori full analysis of the set of integrands to be integrated, the design 
and the action of such transformation ensures that the bounding monomials are integrated with machine-epsilon 
precision in double floating-point (f.p.) format [2] without resorting to less efficient schemes as adaptive or 
composite quadrature rules, singularity subtraction and cancellation methods with limited and uncontrolled 
precision. The effects of the action of the monomial transformation onto the original G-L samples are clearly

visible by the clustering of the nodes around the endpoint singularity of the integrand function (see Fig. 1.2 of 
the user manual shipped with the source code and located in the MTQR/doc sub-directory as indicated in the root 
tree in Fig. 2.1 of said manual.)

Additional comments including restrictions and unusual features: To strictly secure the integration with finite-

arithmetic precision at the order of the machine epsilon in double f.p. representation, higher-than-double data 
types are necessary to build the quadrature rule; furthermore to compute the optimal number of quadrature 
samples, the sole real root of a 7th degree polynomial [1, Equation (62)] has to be computed. For these reasons the 
proposed software depends on both the Boost’s [3] Multiprecision header-only library and on the GNU Scientific 
Library, GSL [4]. Any source code using MTQR must be linked to those libraries which can be easily installed 
and configured for the system specific compiler in both Windows and Linux. Detailed information and assistance 
for successfully compiling and building applications with this library can be found in the aforementioned user 
manual.

1. Introduction

Efficient and accurate computations of definite integrals are a critical step across the entire scientific spectrum, especially in numerical methods 
for partial differential equations (PDEs) using spectral, finite and boundary elements. A well-known pitfall in these methods concerns the integration 
of functions featuring either irregular behaviours or endpoint (integrable) singularities [5–13]. While ubiquitous in boundary discretisations of 
problems in applied physics (acoustics, electromagnetics, elastodynamics...) where the irregular behaviour and the singularities are embedded 
in the field’s potential associated to the operator and/or the unknown fields, this issue also affects surface and volume discretisations. In fact, 
critical field behaviours arising in e.g. wave propagation in 2 and 3-dimensional domains tend to degenerate in singularities in the close proximity 
of sharp material and geometrical discontinuities [5,11,13] especially at high wave number [14,15]. One particular numerical method that has 
established itself as quintessential in various disciplines in both science and engineering is the FEM. To properly address the aforementioned

issues [16,17] in volume discretisations, adaptive conforming finite and spectral elements cannot be deployed as their convergence would require 
intensive computational effort. Extended (XFEM), generalised (GFEM) and enriched (ESG) formulations of the finite and spectral element methods 
[18–20] provided a rigorous framework for mixed and non-conforming Galerkin approximations of those singular fields by enriching the sub-

spaces with non-classical polynomial basis functions [5,21–24]. Aside from the needs of numerical methods for PDEs, there are several other areas 
concerning computational physics where the necessity for highly-precise computation of singular integrals [25–27] is of paramount importance. In 
this framework, special attention is devoted to the numerical integration of sets of integrand functions modelling irregular behaviours. Motivated 
by this, a considerable wealth of numerical algorithms has been proposed throughout the years to address the general problem of approximating 
singular integrals and overcome the limited performance offered by standard Gaussian quadrature rule and/or the computational cost of adaptive 
quadrature rules. Most notably [28–31] have spawn an active research on the development of generalised adaptive techniques [32,33] to be 
exploited in scientific computing. Those algorithms have the advantage of being robust and general when applied to a wide range of irregular 
and singular integrand functions, especially those featuring endpoint logarithmic singularities or functions whose irregular part can be factorised 
as a known weight function 𝑤(𝑥). On the other hand, they entail a further computational load in large-scale simulations involving complex, high-

dimensional domains as they rely on iterative constructions of appropriate nodes and weights of specialised quadrature rules for any given integrand. 
Improvements have been made [34,35] to ease the effort in constructing such specialised quadrature rules however the underlying concept of the 
algorithm remains unchanged. This constitutes a bottleneck in performance especially in those Galerkin approximations of problems that model the 
singular behaviour (and/or irregular behaviour) of the solution with generalised polynomials of the form

𝑓 (𝑥) =
𝑚∑

𝑘=1
𝑐𝑘𝑥

𝜆𝑘 , 𝜆𝑘 ∈ (−1,∞] . (1)

Moreover, the implementation of a high-precision quadrature rule for singular and/or non-classical polynomials in (1) is also hindered by the 
finite precision and memory of the machines running the simulations; machine-epsilon thresholds in finite arithmetic limit in fact the accuracy 
and performance of the numerical algorithm to the user’s computing power and data types. We also note that in numerical applications such is 
the case for FEM and BEM, adaptive or composite quadrature algorithms must be run for every element that is either enriched by singular or 
irregular basis functions or it is defined over a higher-order (curved) geometry. In recent years a number of efforts in designing optimal quadrature 
rules for the isogeometric analysis (IGA) in FEM have resulted in efficient algorithms [36–38] based on the integration of spline functions. It has 
been long established in fact [39–41] that piecewise (low-degree) spline interpolation lead to more accurate and more efficient quadratures when 
compared to traditional Gaussian rules. These works have been able to produce powerful algorithms that generalise and extend the element-wise 
spline interpolation beyond classical Gaussian integration by producing optimal quadrature rules [38,42,43]. While these methods, i.e. Gaussian and 
semi-Gaussian spline rules, can be successfully deployed in the quadrature of both smooth and high oscillatory functions, their extension to endpoint 
singular integrands is non-trivial and requires further ad-hoc investigation. In [1] a one-shot, non-adaptive and non-iterative method was proposed 
to solve this shortcoming while dealing with endpoint singularities (or irregular behaviour); in it a simple yet powerful quadrature rule was proposed 
2

which is capable to achieve arbitrary machine-precision with the original field of applications being to ease the computational task required by 



Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

numerical integration in generalised Galerkin methods for BVPs, with singular and/or non-classical polynomial modelling. This novel algorithm is 
based on the optimal design of an ad-hoc monomial transformation applied to selected G-L nodes and weights to capture the endpoint singularity (or 
irregular behaviour) of the generalised polynomial integrand in (1) according to the bounds of the (ordered) set [𝜆min, 𝜆max] of real-valued exponents. 
In this work we developed a fast, light and portable cross-platform C++ library implementing such Monomial Transformation Quadrature Rule 
(MTQR) which assures arbitrary machine-precision integration for these special cases while retaining the minimum (optimal) amount of samples for 
the G-L formula. MTQR has been programmed with an emphasis on flexibility (runtime polymorphism and templetisation) and simplicity (minimal 
user input) in order to provide a quick integration in larger and more complex open-source codebases s.a. well established finite element solvers 
[44–51] and other libraries in numerical mathematics [52–55]. Moreover, the mathematical software can be used as external tool that provides 
quadratures for sets of generalised polynomials. The algorithm’s architecture and its library’s implementation allow to straightforwardly adapt the 
code to more general, user-defined machine-precision [2], i.e. more or less restrictive than the double f.p. format specified above and throughout 
the rest of this work. The integration of MTQR with state-of-the-art numerical integration techniques based on Gaussian and semi-Gaussian spline 
rules should allow for the exact analysis of complex structures containing both singularities and smooth/high oscillatory behaviour however this 
task falls outside the scope of this work and shall be investigated in future endeavours.

In Section 1, we introduce the motivation and the scope of the present work and report on the state of the art related to the proposed algorithm. 
Section 2 presents the derivation of the algorithm itself with the necessary mathematical background, while Section 3 is devoted to its implemen-

tation as a mathematical software. Validation and efficacy of the proposed algorithm is demonstrated in Section 4 presenting two sets of multiple 
examples related to different sub-disciplines in computational physics, namely the integration of arbitrary products of Bessel’s functions of the first 
kind of fractional order and the assembly of the mass matrix in 2.5-dimensional, additive, vector finite elements arising in electromagnetic scattering 
and propagation problems with diffraction phenomena. In this context, we compared the performances of our library against other, well-established 
adaptive algorithms implemented in widely-known open-source scientific software. Conclusions are addressed in Section 5 and the Appendix reports 
the primary module’s source code of the proposed library. This work is supplemented by a detailed user manual which describes the implemented 
code, structure, installation and execution of the library in both Linux and Windows.

2. Derivation

In the following we will derive a consistent formulation of the numerical problem addressed by MTQR and provide the computational steps 
required to overcome the aforementioned limitations and contextualise its applications.

2.1. Motivation

The main purpose of MTQR is to provide users and developers of open-source scientific codes a straightforward and light numerical tool 
to perform arbitrarily accurate integration of functions that exhibit irregular or singular behaviour at either of the endpoints of the integration 
interval. In particular, if the integrand function 𝑓 ∶ (𝑎, 𝑏) →ℝ has an integrable singularity in 𝑥∗ ∈ {𝑎, 𝑏} that can be locally modelled by expanding 
𝑓 (𝑥∗) as a generalised polynomial (see Section 3.3 in [16]) of the form (1), then we are concerned with the computation of

𝐼(𝑓 ) =

𝑏

∫
𝑎

𝑓 (𝑥)𝑑𝑥 , (2)

with an arbitrary (user-defined) machine precision in finite arithmetic (i.e. using f.p. approximations of the real numbers). Of course the analytic 
integration of polynomial functions is trivial, however there are several cases in numerical and computational mathematics in which those integrals 
are required to be calculated numerically. One straightforward case is when these functions are not known a-priori and thus need to be integrated 
during the execution of a simulation. Such instances are commonly encountered in several implementations of Galerkin methods for the approxi-

mation of PDEs where the local weak formulation of the model requires the numerical evaluation of (2) either when enriching the approximation 
sub-space with generalised polynomials basis functions or when the forcing term is itself modelled by a generalised or singular polynomial.

2.1.1. Generalised finite methods

In finite, spectral and boundary elements methods we seek for a numerical approximation 𝑢ℎ(𝐱) of a BVP defined over a 𝑑-dimensional domain 
Ω ⊂ℝ𝑑 . The approximation sub-space is usually spanned by piecewise classical polynomials that locally interpolate the solution in every discretised 
node of the domain and the solution is then expressed as a linear combination of the basis functions of such sub-space. In the generalised finite 
methods introduced above the set of classical polynomial basis functions are enriched by generalised polynomials of non-integer degree defined in 
the proximity of the singular point 𝐱∗. Therefore the sub-space is no longer spanned by classical polynomials (of integer degree) but instead we 
search for a solution that is (locally) well represented by a Müntz polynomial [56], i.e. a generalised polynomial function of type (1) for which the 
(increasing) sequence Λ = {−1 < 𝜆𝑘 < 𝜆𝑘+1}𝑘=1,...,𝑚−1 of real-valued exponents satisfies

∞∑
𝑘=1

1
𝜆𝑘

=∞ . (3)

Equality (3) ensures that the Müntz space 𝑀(Λ) = span{𝑥𝜆𝑘 , 𝜆𝑘 ∈ Λ} is dense in [(0, 1)] [57]. Practical examples in which singular solutions 
are well approximated by Müntz polynomials are propagation and scattering problems in the presence of corners, wedges, abrupt changes in 
the boundaries and any sharp discontinuity within the domain Ω. In the weak formulation of variational BVPs the linear forms often stem from 
inner products that involve the computation of the definite integral of some products of the solution 𝑢ℎ(𝐱) with some test functions 𝑣ℎ(𝐱). Proper 
employment of the Galerkin method then projects the weak form onto a finite dimensional sub-space which, in our case, has Müntz polynomials 
enriching the classical shape functions of integer degree. Elemental matrices for those elements  ∈ℝ𝑑 that contain the singular point 𝐱∗ will now 
require an appropriate (accurate and efficient) computation of such scalar quantity

𝑝𝛼(𝐱)𝑝𝑚(𝐱)𝑑𝐱 , 𝑝𝑚(𝐱) ∈ ℙ𝑚[𝑥1,… , 𝑥𝑑 ] , 𝑝𝛼(𝐱) ∈ (𝑀(Λ))𝑑 , 𝛼 = max(Λ) , (4)
3

∫

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i.e. where at least one of the two basis functions is modelled by a non-classical polynomial.

We remark that a detailed and thorough digression on the weak form and operator discretisation is well outside the scope of the present work, 
which instead focuses on handling (4) specifically in code implementation of variational numerical methods for PDEs and we refer the discussion 
on Müntz-enriched finite methods to the aforecited [18,19,22].

2.2. Background on interpolatory Gaussian quadrature formulae

The development of MTQR starts with the precise approximation of 𝐼(𝑓 ) = ∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥. Specifically it addresses the numerical computation of 

the definite integral using a quadrature rule that assures an arbitrary (user-defined) accuracy while being as efficient as possible by retaining the 
optimal number of nodes provided by a Gaussian formula (avoiding to resort to an adaptive or composite technique). In the following we will 
refer to the endpoint singular/irregular integrand in (1) where 𝜆min ∶= 𝜆1 = min(Λ) > −1 and 𝜆max ∶= 𝜆𝑚 = max(Λ) < ∞. In numerical analysis, 
the approximation 𝐼𝑛(𝑓 ) of a definite integral 𝐼(𝑓 ) can be achieved through several distinct approaches. One method, widely used in scientific 
computing, is the usage of interpolatory quadrature formulae. They are based on the substitution of the integrand 𝑓 ∶  = (𝑎, 𝑏) → ℝ with a 
Lagrange polynomial 𝑛(𝑥) interpolating its values along an ordered set of distinct points ( ∋ 𝑥𝑗 ≠ 𝑥𝑘 ⟺ 𝑗 ≠ 𝑘) called nodes

ℙ𝑛−1 ∋𝑛(𝑥) ∶=
𝑛∑

𝑗=1
𝑓 (𝑥𝑗 )𝓁𝑗 (𝑥) ⇒ 𝑛(𝑥𝑗 ) ≡ 𝑓 (𝑥𝑗 ) , (5)

where 𝓁𝑗 (𝑥) ∶=
∏𝑛

𝑘=1, 𝑘≠𝑗

𝑥−𝑥𝑘

𝑥𝑗−𝑥𝑘
, ∀𝑗 = 1, … , 𝑛, is a set of 𝑛 orthogonal polynomials of degree 𝑛 − 1 which forms the Lagrangian basis of ℙ𝑛−1[𝑥]. An 

interpolatory quadrature formula is built from (5) by substituting the integrand with its Lagrangian polynomial. The resulting quadrature rule has 
the form

𝐼𝑛(𝑓 ) =
𝑛∑

𝑗=1
𝑓 (𝑥𝑗 )𝑤𝑗 , 𝐼(𝑓 ) =

𝑏

∫
𝑎

𝑓 (𝑥)𝑑𝑥 = 𝐼𝑛(𝑓 ) +𝐸𝑛(𝑓 ) , (6)

where 𝑤𝑗 ∶= ∫ 𝑏

𝑎
𝓁𝑗 (𝑥)𝑑𝑥 are the so-called weights of the quadrature rule. We remark that to each choice of the partitioning nodes there is a unique set 

of quadrature weights; this property derives from the uniqueness of 𝓁𝑗 (𝑥) given an ordered set of distinct nodes in . The term 𝐸𝑛(𝑓 ) = ∫ 𝑏

𝑎
𝐸′

𝑛
(𝑓 )𝑑𝑥

quantifies the absolute error, often referred to as the remainder of the quadrature rule, through the interpolation error of 𝑛(𝑥) of 𝑓 (𝑥). From 
a computational point of view, it is ideal however to work with a relative error instead and so we identify, and henceforth use, the following 
normalised quantity

𝑅𝑛 ∶=
|𝐸𝑛(𝑓 )||𝐼(𝑓 )| , (7)

associated to the quadrature formula. Of the many numerical quadrature technique, Gaussian rules assure the maximum degree of precision inte-

grating exactly (i.e. 𝐸𝑛(𝑓 ) = 0) any classical polynomial up to degree 𝑑 = 2𝑛 − 1, where 𝑛 in the number of samples of the rule itself [58]. Those 
formulae are built from nodes that stem out as the roots of the associated orthogonal polynomials [59] from which they take the name. Due to their 
simplicity and the wide range of applicability, provided by the weight function 𝑤(𝑥) ≡ 1, G-L quadrature rules are used to integrate sufficiently 
well-behaved functions in closed intervals with relatively small number of samples. Functions 𝑓 (𝑥) =𝑤(𝑥)𝑔(𝑥) with endpoint singularities often are 
integrated using Gauss-Jacobi (G-J) quadrature rules by rewriting the non-regular weight function as 𝑤(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 for specific 𝛼, 𝛽 > −1. 
The monomial transformation quadrature rule proposed in [1] on the other hand allows to retain the simplicity of the G-L rule and extend the range 
of applicability integrating sets of functions modelled by generalised singular/irregular polynomials with the improved precision at cost comparable 
to G-L quadrature and with multiple values of singular/irregular exponents of monomial terms.

2.3. Asymptotic error estimate

When implementing a Gaussian quadrature rule in a software, the accuracy of its result suffers from rounding errors that are embedded in 
the f.p. representation of real numbers. It is easy to verify such limitation by checking the exactness of a G-L formula, given by its degree of 
precision 𝑑 = 2𝑛 − 1, against its finite-arithmetic counterpart for a given number of quadrature nodes 𝑛. The bottleneck for the fidelity of a 
code implementing such rule would be the decimal precision with which nodes and weights of the formula are stored. Tabulated values of those 
parameters exist for various Gaussian quadrature rules with up to 32 decimal digits of precision [58]. The constraint on the user side is that 
traditional f.p. formats available for most of today’s general-purpose processors and operating systems, s.a. double precision, operate with a much 
lower precision (approximately 16 decimal digits respectively). In practice, achieving acceptable results using the classical G-L formula is usually a 
trade-off between accuracy and computational cost based on the f.p. format with which the quadrature samples are stored.

This aspect exacerbates whenever the integrand is a generalised polynomial with endpoint singularities; with reference to Fig. 1 we can assess how 
non-integer degree monomials are integrated with less finite precision (concave oriented humps) than those of integer-valued degrees (downward 
pointing spikes). When integrating polynomials with a G-L quadrature rule it is ideal to achieve close to analytic exactness with the minimum 
possible number of nodes. To measure the accuracy of a given formula we can use an a-posteriori relative error for which the numerator of (7) is 
computed as the strictly positive difference between the analytic primitive of the integrand 𝐼(𝑓 ) and its numerical counterpart 𝐼𝑛(𝑓 ) computed using 
the selected quadrature rule with 𝑛 nodes, i.e. |𝐸𝑛(𝑓 )| ≡ |𝐼(𝑓 ) − 𝐼𝑛(𝑓 )|. This procedure is computationally inefficient as it involves the numerical 
evaluation of the quadrature rule; on the other hand with an a-priori relative error the only knowledge required is that of the integrand function 
𝑓 (𝑥). Accurate estimations of the a-priori form for the remainder 𝐸𝑛(𝑓 ) have been the subject of numerous efforts and constitute the cornerstone 
upon which MTQR is built.

Theorem 1. Let 𝐼𝑛(𝑓 ) be a Gaussian quadrature rule with 𝑃𝑛 ∈ ℙ𝑛 being a polynomial of degree 𝑛, orthogonal to a weight function 𝑤(𝑥) in the closed 
interval  = (𝑎, 𝑏). If we consider the analytic continuation of 𝑓 to the complex plane and we specify a contour  that encloses , then the remainder of 𝐼𝑛(𝑓 )
4

has the exact form of the following contour integral along 
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Fig. 1. Comparison of how truncation of decimal digits in finite-arithmetic representation of the samples affects the a-posteriori relative error 𝑅𝑛 associated to a G-L 
quadrature rule integrating 10000 monomials of the form 𝑥𝜆 ∈  = (0, 1) with 𝜆 uniformly distributed in (−1, 120]. The quadrature formula uses 𝑛 ∈ {12, 24} nodes 
and weights stored in double and quadruple (float128) f.p. precision. We report the machine-epsilon 𝜖 = 2−52 in double f.p. format as a reference threshold. We 
observe how, after the specified degree of precision 𝑑 = 2𝑛 −1 of each G-L quadrature rule, the error features a slow monotonic increase. Furthermore we notice that 
as the number of samples 𝑛 for the G-L formula increases, the portion of the asymptotic a-posteriori relative error that falls below the numerical exactness threshold 
gets progressively larger. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

𝐸𝑛(𝑓 ) =
1
2𝜋𝑖 ∮

Π𝑛(𝑧)
𝑃𝑛(𝑧)

𝑓 (𝑧)𝑑𝑧 , Π𝑛(𝑧) ∶=

𝑏

∫
𝑎

𝑃𝑛(𝑥)
𝑥− 𝑧

𝑑𝑥 , 𝑧 ∈ℂ∕ . (8)

Proof. See Barret [60]. □

The integrand function in the remainder estimate (8) of Theorem 1 is a meromorphic function (recall that 𝑃𝑛 is a polynomial of degree 𝑛 meaning 
that the reciprocal 1

𝑃𝑛
has 𝑛 poles distributed along ). Although elegant in its formulation, estimate (8) does not satisfy the rapid evaluation 

requirement that we specified in the numerical applications as it requires the explicit computation of a complex contour integral. Furthermore the 
explicit form of Π𝑛(𝑧) is complicated to obtain as it requires the evaluation of hyper-geometric functions [61]. It is obvious to see how, even for 
simplistic applications of the G-L quadrature rule to monomial integrand functions, the analytic evaluation of the a-priori estimate using (8) is too 
expensive, effectively nullifying the efforts of avoiding to compute 𝐸𝑛(𝑓 ) with the a-posteriori formula. For this reason, asymptotic analysis was 
introduced in [62] by expanding both Π𝑛(𝑧) and 𝑃𝑛(𝑧) in a normalised interval  = (0, 1).

Proposition 1. Let 𝑓 (𝑥) = 𝑥𝜆 and 𝐼(𝑓 ) = ∫ 1
0 𝑥𝜆𝑑𝑥. If the number of nodes 𝑛 (and degree of Legendre polynomials 𝑃𝑛(𝑥)) of the G-L formula 𝐼𝑛(𝑓 ) is large, 

then the following asymptotic equivalence holds

Π𝑛(𝑥)
𝑃𝑛(𝑥)

≈ 2𝜋

(𝑥+ (𝑥2 − 1)
1
2 )2𝑛+1

, (9)

and thus the remainder in (8) reduces to

𝐸𝑛(𝑓 ) = −2−2𝜆 𝜆 sin(𝜋𝜆)
(

𝐵(2𝜆,2𝑛− 𝜆)
2𝑛+ 𝜆

− 𝐵(2𝜆,2 + 2𝑛− 𝜆)
2 + 2𝑛+ 𝜆

)
, (10)

where 𝐵(𝑧, 𝑤) ∶= Γ(𝑧)Γ(𝑤)
Γ(𝑧+𝑤) .

Proof. See Lombardi [1]. □

The result in (10) is meaningful as it enables a fast and concise estimate of the remainder for integrating generalised monomials with real degree 
𝜆 ∈ (−1, +∞) in (0, 1). In fact we observe how the new error estimate depends solely on the number of nodes 𝑛 and the real-valued monomial degree 
𝜆. Nevertheless, as evinced in Fig. 1, analytic exactness for any finite-arithmetic representation of a quadrature rule implemented in code can never 
be achieved.

Therefore, to quantify the performance and accuracy of a numerical integration routine we must specify a threshold of accuracy as an alternative 
finite-precision equivalent exactness. In the following we assume such threshold to be, without loss of generality, the machine epsilon in double 
precision [2]; this assumption is, as a matter of fact, arbitrary in nature and can be easily changed to be more or less restrictive without impacting 
the workflow of the monomial transformation quadrature rule.

The desirable characteristics of a useful a-priori error estimation of a quadrature rule stem from the very task for which it would be used in case 
5

of polynomial integration, that is minimising the extensive computation time required for evaluating the 𝜆-asymptotic behaviour of multiple G-L 



Computer Physics Communications 299 (2024) 109124G. Lombardi and D. Papapicco

Fig. 2. The new “exact” a-priori estimate in (10) is used here to quickly evaluate the 𝜆-asymptotic behaviour of the relative error of a G-L quadrature formula with 
𝑛 = 16 nodes integrating monomials 𝑥𝜆, 𝜆 ∈ (−1, 46] of non-integer degree in  = (0, 1). The humps-spike alternation matches the one partially featured by the exact 
a-posteriori relative error reported in Fig. 1. The enveloped estimate is obtained by omitting the term sin(𝜋𝜆) from (10) when 𝜆 < 2𝑛 − 1∕2. From the plot of the 
enveloped estimate we can derive an approximation of the minimum 𝜆 = 𝛽min ≈ 6.5463 and maximum degree 𝜆 = 𝛽max ≈ 35.7774 of a generalised polynomial to 
be integrated with finite-arithmetic (double precision) equivalent exact precision using such formula. (For interpretation of the colours in the figure, the reader is 
referred to the web version of this article.)

quadrature rules (i.e. for several values of 𝑛) applied to 𝑥𝜆 integrand by avoiding to compute 𝐼 and 𝐼𝑛 explicitly. In Fig. 2 we depict the asymptotic 
analysis performed using the new estimate in (10) for a 𝑛 = 16 nodes G-L formula; a similar pattern is encountered, previously deduced from the 
a-posteriori plot, that a steady but somewhat slow degradation of the G-L accuracy is detected once the degree of precision of the formula is reached 
i.e. ∀𝜆 > 𝑑 = 2𝑛 − 1. In Fig. 2, the enveloped estimate is obtained by omitting the term sin(𝜋𝜆) from (10) when 𝜆 < 2𝑛 − 1∕2 and it will be used as 
the optimal upper error estimate for the design of each monomial transformation quadrature rule.

3. Implementation

Having briefly outlined the fundamental mathematical problem of numerical integration and error estimation we will now discuss how the 
implementation of MTQR addresses and ultimately overcomes the shortcomings of the currently available algorithms dealing with integrands 
modelled with generalise polynomials. From here onward we will consider  = (0, 1) as the reference interval of integration with 𝑓 (𝑥) having a 
potential end-point singularity or irregular behaviour located at 𝑥 = 0. This choice does not limit the applicability of the algorithm as any integrand 
defined in (𝑎, 𝑏) with one end-point singularity can be easily mapped in (0, 1) via an affine transformation. In case of multiple singular points, we 
can in fact simply partition (𝑎, 𝑏) into as many sub-intervals, each having a singularity at one endpoint. This procedure is of fundamental importance 
to avoid numerical cancellation since the action of MTQR on classical G-L nodes causes their clustering near 𝑥 = 0 as previously discussed.

3.1. Monomial transformation

The new a-priori estimate (10), alongside its enveloped version depicted in Fig. 2, is a tool that enables a much swifter analysis of the asymptotic 
behaviour of the G-L relative error that we previously computed while producing Fig. 1 using an exact a-posteriori estimate. For any given G-L 
formula with 𝑛 nodes, we can rapidly evaluate what the minimum 𝜆 = 𝛽min and maximum value 𝜆 = 𝛽max are for the degree of a generalised 
polynomial to be integrated with finite-arithmetic equivalent exactness using a predefined accuracy threshold, for instance the double precision 
machine epsilon. We therefore learned that (10) can be effectively used to determine those critical constraints for any G-L formula to achieve 
(finite arithmetic equivalent) precise quadratures immediately realising that tabulated values of 𝛽min(𝑛), 𝛽max(𝑛) can be used to design appropriate 
transformations of the G-L samples. For instance, by performing the same 𝜆-asymptotic analysis with increasingly greater values of 𝑛 we immediately 
notice how the bathtub shaped region of Fig. 2 both deepens (the relative error gets smaller as higher and higher accuracy is achieved with an 
increasing number of samples) and widens (the sub-interval 𝜆 ∈ [𝛽min, 𝛽max] gets larger as the degree of precision 𝑑 = 2𝑛 −1 grows linearly with 𝑛). 
Furthermore, by recalling that the exact a-priori estimate (10) used in plotting Fig. 2 was derived for the specific 𝜆-asymptotic analysis of generalised 
monomial functions of non-integer degrees in (0, 1), we can map any generalised polynomial, including singular ones of real degree 𝜆 >−1, in such 
interval where the estimate holds for the G-L quadrature rule. For a given choice of 𝑛 nodes G-L quadrature rule, if a certain monomial 𝑥𝜆 does 
not fall within the bathtub, i.e. the “exactness” region provided by the estimate (10), i.e. 𝜆 ∉ [𝛽min, 𝛽max], then an ad-hoc designed monomial map 
of (0, 1) onto itself can shift its exponent to fall within the desired interval. If all the 𝛽min(𝑛), 𝛽max(𝑛) values are known or have been tabulated 
previously for a given range of 𝑛 ∈ ℕ samples, then the remaining pieces of information needed for constructing the map are the minimum and 
maximum non-integer exponents of the integrand function. The fundamental algorithm in MTQR is composed by efficiently coupling an ad-hoc 
designed monomial transformation with a G-L quadrature rule by selecting the optimal number of samples 𝑛. Let us start with the latter; given an 
input Müntz sequence of real exponents we are interested in fitting its minimum values 𝜆min and its maximum 𝜆max within the exactness region of 
6

a G-L quadrature rule associated to the (quasi) minimum number of nodes 𝑛 possible.
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Proposition 2. Let (1) be a Müntz polynomial of degree 𝜆max and lowest degree 𝜆min > −1, then the minimum number 𝑛min of G-L quadrature nodes to 
achieve finite-arithmetic equivalent exactness in terms of target double precision using the monomial map is the round toward ceiling of the unique real root 𝑛
of

(−4.0693 ⋅ 10−3 + 4.1296 ⋅ 10−4𝑛)[(8.8147 + 1.0123 ⋅ 10−1𝑛2) ⋅ (1 + 𝜆min) − (1 + 𝜆max)]3 − (1 + 𝜆max)3 = 0, (11)

obtained by a full study of the performance of G-L via linear regressions of the tabulated values of 𝛽min(𝑛), 𝛽max(𝑛).

Proof. See Lombardi [1]. □

Once 𝑛 = 𝑛min is computed from (11), we can now turn our attention to the construction of the monomial transformation of order 𝑟 ∈ ℝ

𝛾𝑟(𝑥) = 𝑥𝑟 , (12)

acting on the 𝑛min samples of the selected quadrature rule. MTQR refers to the tabulated values of 𝛽min(𝑛), 𝛽max(𝑛) (or directly estimate them from 
the enveloped version of the estimate (10)) and supplies all the necessary data to compute the order 𝑟 of the monomial transformation uniquely 
associated to the set of input polynomials defined by 𝜆min and 𝜆max. From [1] we have

𝑟min ∶=
1 + 𝛽𝑚𝑖𝑛(𝑛)
1 + 𝜆𝑚𝑖𝑛

< 𝑟 <
1 + 𝛽𝑚𝑎𝑥(𝑛)
1 + 𝜆𝑚𝑎𝑥

=∶ 𝑟max , (13)

and in MTQR we compute the order 𝑟 as the mean value between 𝑟min and 𝑟max. By letting map (12) act on the definite integral of a generalised 
polynomial of the form (1) we obtain

𝐼(𝑓 (𝑥)) =

1

∫
0

𝑓 (𝑥)𝑑𝑥 =
𝑚∑

𝑘=0
𝑐𝑘

1

∫
0

𝑥𝜆𝑘𝑑𝑥 =
𝑚∑

𝑘=0
𝑐𝑘

1

∫
0

𝑟𝑥𝑟(𝜆𝑘+1)−1𝑑𝑥 . (14)

The numerical approximation for the prescribed machine-precision of (14) is then provided by the monomial transformation quadrature rule with 𝑛
samples and weights 𝑥𝑗 , 𝑤𝑗 defined over the integration interval (0, 1) as a result of the (quasi) optimal selection of 𝑛 = 𝑛𝑚𝑖𝑛 and 𝑟

𝐼𝑛 =
𝑚∑

𝑘=0
𝑐𝑘

𝑛∑
𝑗=1

(𝑤̃𝑗𝑟𝑥̃
𝑟−1
𝑗

)𝑥̃𝑟𝜆𝑘

𝑗
=

𝑚∑
𝑘=0

𝑐𝑘

𝑛∑
𝑗=1

𝑤𝑗𝑥
𝜆𝑘

𝑗
. (15)

From (15) we deduce that the new, proposed numerical integration specified for the integrand 𝑓 (𝑥) is uniquely determined by the ad-hoc manipu-

lation of classical G-L quadrature rule’s nodes and weights 𝑥̃𝑗 , 𝑤̃𝑗 also defined in (0, 1)

𝑥𝑗 = 𝑥̃𝑟
𝑗
, 𝑤𝑗 = 𝑟𝑥̃𝑟−1

𝑗
𝑤̃𝑗 ∀𝑗 = 1, ..., 𝑛 . (16)

From (14)-(16) we observe that the monomial transformation quadrature rule only requires the information regarding the lower (𝜆𝑚𝑖𝑛) and upper 
(𝜆𝑚𝑎𝑥) bounds of the Müntz sequence 𝜆 of the input polynomial to retrieve an ad-hoc transformation of the G-L quadrature’s samples to achieve 
a finite-arithmetic equivalent exact approximation of the definite integral in (0, 1). We hereby clarify that the evaluation of 𝑛𝑚𝑖𝑛 via (11) is ob-

tained by imposing that 𝑟𝑚𝑖𝑛 = 𝑟𝑚𝑎𝑥 in (13) and considering regression formulae for 𝛽𝑚𝑖𝑛(𝑛), 𝛽𝑚𝑎𝑥(𝑛) (see (60) in [1]) with target double precision. 
Moreover, the Müntz space related to the (quasi) optimal quadrature of generalised polynomials in 𝑀(Λ) with 𝜆 ∈ (𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥) is 𝑀(𝐵) with 
𝛽 ∈ (𝛽𝑚𝑖𝑛(𝑛𝑚𝑖𝑛), 𝛽𝑚𝑎𝑥(𝑛𝑚𝑖𝑛)) via the monomial transformation (13) with 𝑟 ∈ (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥). Generalisation to arbitrary precision is straightforward and 
achieved by selecting appropriate regression formulae for 𝛽𝑚𝑖𝑛(𝑛), 𝛽𝑚𝑎𝑥(𝑛) which can be obtained from the asymptotic error estimation discussed in 
Section 2.3.

3.2. Software integration

MTQR is a C++ implementation of the monomial transformation quadrature rule derived thus far. It consists of a collection of highly-templatised 
methods and it is written in a procedural programming paradigm. Interaction with the library happens through the so-called primary module (see 
Appendix A), an overloaded method that is instantiated by the users by passing the parameters of the input polynomial and it returns optimised 
nodes and weights for the machine-precise numerical integration1. A numerical recipe detailing the main steps performed by the library when its 
primary module is instantiated is reported below. We prepared a comprehensive user manual for the correct installation of MTQR alongside its 

1 To allow MTQR to deal with extreme cases of high monomial transformation order our default datatype is the quadruple precision (float128) to export the new 
nodes and weights. If however double precision for those samples is sufficient for them reach the machine epsilon in the computation of the definite integral than 
the data type precision is purposely regressed; this allows the user of MTQR to optimise its data and memory management while retaining as much precision as 
7

possible. For more detailed information regarding this aspect we refer to the library’s user manual.
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dependencies [3,4] and running custom applications with it; we refer to such manual (located in the MTQR/doc sub-directory of the library) for 
more detailed information.

Data: Sequences (𝑐1, … , 𝑐𝑚) and (𝜆1, … , 𝜆m) of polynomial integrand function of the form (1).

Result: Optimised nodes 𝐱𝑗 and weights 𝐰𝑗 of the monomial transformation quadrature formula.

Set accuracy threshold (e.g. double machine−𝜖 = 2−52);
Extract (𝜆min, 𝜆max) through a sorting algorithm;

Compute 𝑛𝑚𝑖𝑛 from (11);

Derive 𝛽min(𝑛𝑚𝑖𝑛) and 𝛽max(𝑛𝑚𝑖𝑛) from tabulated pre-computed values;

Obtain the monomial transformation’s order 𝑟 ;

Pre-load affinely mapped samples 𝐱̃𝑗 and 𝐰̃𝑗 associated to the 𝑛min G-L rule;

Monomial transformation: Map 𝐱̃𝑗 and 𝐰̃𝑗 in (0, 1) through 𝛾𝑟 (12) obtaining the new nodes 𝐱𝑗 and weights 𝐰𝑗 ;

Assemble and compute the monomial transformation quadrature formula with 𝑛𝑚𝑖𝑛 nodes;

Compute the a-posteriori relative error 𝑅𝑛 using the new nodes and weights;

while 𝑅𝑛 < 𝜖 do

Optimise the f.p. format of the new nodes and weights;

Compute the a-posteriori relative error 𝑅𝑛 using the degraded nodes and weights;

end

Export 𝐱𝑗 , 𝐰𝑗 and the estimated values of the integral of the selected generalised polynomial for testing.

3.3. Computational costs in brief

For what concerns the computational cost of the algorithm, useful run time estimations are provided further in Section 4.1 where comparison 
with alternative adaptive quadrature algorithms is performed in terms of number of function evaluations. In brief, the computational cost of MTQR 
can be analysed from different points of view: 1) application of the designed MTQR rule to a series of integrals of generalised polynomials, 2) 
generation of the MTQR quadrature rule for a selected Müntz space and target precision, 3) background computations to develop 2). Once MTQR 
has generated the samples and weights for a selected Müntz space and target precision, the cost of computation of each integral is limited to the one 
of ordinary interpolatory quadrature rules in terms of the number of samples, i.e. simply made of integrand function evaluations, multiplications by 
weights and summation. In order to generate the MTQR quadrature rule for a selected Müntz space and target precision we apply the algorithm as 
described in Section 3.2. In this case, the cost of computation is related to identifying 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 of the set of integrands (i.e. the selected Müntz 
space), solve (11) or a similar equation for a target precision different from d.p. with an external tool, compute the monomial transformation of 
order 𝑟 according to (13) and finally apply (15) to get the transformed samples and weights. The background computations are primarily referred to 
the development of regression formulae for 𝛽𝑚𝑎𝑥(𝑛) and 𝛽𝑚𝑖𝑛(𝑛) which are necessary to get (11) for a selected target precision, e.g. single, double or 
quadruple precision for the current state-of-the-art. The computational cost is related to the analysis reported in [1] and they are needed once a for 
all. In brief this analysis requires non-linear solvers for a given asymptotic error estimates of the G-L rule and a selected target precision machine 
epsilon as a function of the number of samples, see Fig. 2. Finally a rich database with G-L rules as a function of the number of samples needs to be 
available at the selected target precision.

4. Applications

Following the discussion of the previous sections we now propose a series of numerical tests with the twofold aim of validating the performance 
of MTQR, in terms of both accuracy and computational efficiency, and to provide substantial evidence in support of the previous claim with 
regards to its wide scope of applicability and integration in larger, multipurpose codebases. We highlight that the library itself is shipped with 
two executable scripts (located in the sub-directory MTQR/tests) that can be used to validate the successful installation of the software (for more 
information we refer to the user manual). The numerical experiments that follow are additional tests we implemented with the objective of achieving 
the aforementioned goals of efficient accuracy and usefulness in other numerical and computational physics libraries. Relating to the latter goal 
we propose two series of tests, each one related to a different discipline and thus targeting different applications in multiphysics. Specifically in 
Subsection 4.1 we evaluate MTQR’s performance when dealing with products of Bessel’s functions of the first kind of fractional order (featuring an 
endpoint polynomial singularity or irregular behaviour in 𝑥 = 0); in Subsection 4.2 the library is used in the context of Galerkin methods integrating 
the elemental contributions to the mass matrix assembled in 2.5-dimensional additive vector finite elements arising in electromagnetic scattering 
and propagation problems.

4.1. Integrating arbitrary products of Bessel functions of real order

Indefinite integrals involving arbitrary products of Bessel functions of the first kind of the form

∞

∫
0

𝑓 (𝑥)
𝑛∏

𝑗=1
𝐽𝜈𝑗

(𝑎𝑗𝑥)𝑑𝑥 , 𝜈𝑗 > −1, 𝑎𝑗 > 0 , (17)

are of great interest in a wide variety of applications ranging from theoretical and applied electromagnetics [63–67] to acoustics and elastodynamics 
[68–72], fluid dynamics [73–77], theoretical physics [78–82] and several more [83–87] to name but a few. In 1995 an algorithm [88] was proposed 
to compute (17) with one product of two Bessel functions of positive integer order (i.e. 𝑛 = 1, 𝜈𝑗 ∈ ℕ) and with 𝑓 (𝑥) being any sufficiently smooth 
function. In 2014 an implementation of said algorithm [89] resulted in a MATLAB toolbox named IIPBF which generalised the previous algorithm 
to deal with Bessel functions of fractional order. In 2006 a different work [90] provided another MATLAB package, named BESSELINT, which is 
able to integrate products of an arbitrary number of Bessel functions (i.e. any 𝑛 ∈ ℕ) albeit with the caveat of having 𝑓 (𝑥) = 𝑥𝑚 where 𝑚 ∈ ℝ s.t. ∑ 𝑚
8

𝑛

𝑗=1 𝜈𝑗 + 𝑚 > −1; two years later an extension of such package [91] allowed to deal with exponential 𝑔(𝑥) = 𝑒−𝑐𝑥𝑥𝑚 and rational 𝑓 (𝑥) = 𝑥

𝑥2+𝑢2
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kernels (with 𝑢, 𝑐 ∈ℝ, 𝑐 > 0). Both programs provide accurate approximations of (17) by splitting the indefinite integral in a finite and infinite range 
integrals in the following matter

∞

∫
0

𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥 =

𝑥0

∫
0

𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥+

∞

∫
𝑥0

𝑓 (𝑥)ℎ(𝑥)𝑑𝑥 , (18)

where we considered the case of a single product of two Bessel functions to comply with both methods. The infinite range integral, which is the main 
focus of the two algorithms, is effectively computed using an asymptotic expansion ℎ(𝑥) of the product 𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥) for large 𝑥 thereby obtaining 
a more well-behaved integrand. For the finite range integral, both algorithms resort to adaptive quadrature rules and in particular:

• IIPBF uses a Gauss-Kronrod (G-K) technique which is implemented in the toolbox’s routine dqagea via MATLAB’s built-in function quadgk;

• BESSELINT uses an adaptive hard-coded G-L quadrature rule with {5, 7, 11, 15, 19, 23, 27, 31} samples implemented in the routine fri.

Alongside the numerical technique used to integrate the finite range integral, the two methods differ both in the asymptotic approximation for the 
infinite range integration and also in the computation of the breakpoint 𝑥0 ∈ (0, ∞) at which the interval decomposition occurs. We will not focus on 
these aspects as they are not entirely concerning the potential presence of an endpoint singularity in 𝑥 = 0 which is instead what MTQR is purposely 
designed to deal with. As a matter of fact both [88,89] (concerning IIPBF) and [90,91] (concerning BESSELINT) lament a decrease in either accuracy 
(quantified in a loss of decimal digits of precision) or efficiency (quantified in an increased number of function evaluations to reach the specified 
machine precision) when the integrand 𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥) presents an irregular or singular behaviour in the left endpoint of the integration interval. 
Not being an adaptive technique, MTQR can easily overcome the cited limitations when dealing with the aforementioned cases providing a simple, 
fast and extremely robust framework that can be easily integrated in either the two toolboxes in lieu of the third-party computationally expensive 
adaptive methods that have been deployed by IIPBF and BESSELINT. To prove this claim numerically we propose four test cases with integrand 
𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥), and fixed orders

𝑓 (𝑥) = 𝑥
− 1

2 , 𝜈 = 0, 𝜇 = 1, 𝑎 = 1, 𝑏 = 3
2
, (19)

𝑓 (𝑥) = 𝑥
1
6 , 𝜈 = −1

3
, 𝜇 = 0, 𝑎 = 1, 𝑏 = 3 , (20)

𝑓 (𝑥) = 1 , 𝜈 = −1
2
, 𝜇 = −1

3
, 𝑎 = 1, 𝑏 = 1 , (21)

𝑓 (𝑥) = 1 , 𝜈 = 0, 𝜇 = −𝜋

4
, 𝑎 = 1, 𝑏 = 1 , (22)

followed by two further cases with varying parameters

𝑓 (𝑥) = 𝐽𝜂(
√
2𝑥) , 𝜈 = 0, 𝜇 = 0, 𝑎 =

√
3, 𝑏 =

√
4 , (23)

𝑓 (𝑥) = 𝑥𝜇−𝜈+1

𝑥2 + 𝑢2
, 𝜈 = 1

2
, 𝜇 = −1

2
, 𝑎 = 10−1, 𝑏 = 10 . (24)

In (23) we let 𝜂 to vary in (−1, 0) so to evaluate increasingly less strong singularities in 𝑥 = 0; on the other hand in (24) we let 𝑢 to vary in (0.01, 0.1). 
In Table 1 we collect the performance showcased by the two algorithms and MTQR for the test cases (19)− (22); in particular we compare both the 
relative error (7) computed for each algorithm and the number of function evaluations required to reach such precision. To obtain the listed results 
we used the function dqagea, implementing the adaptive G-K (aG-K) technique, for IIPBF and the function fri, implementing several adaptive G-L 
(aG-L) quadrature rules, for BESSELINT; we remark that due to the fact that the two toolboxes work on different values for the breakpoint of the 
finite range integral, we used 𝑥0 = 1 as a fixed reference value for the upper endpoint of the integration interval in all the test cases. From these 
results we can see how MTQR consistently provides more accurate approximations of the finite range integral with a significantly smaller number of 
functions evaluations. This last consideration stems from the advantage of MTQR not being an adaptive technique but rather a one-shot application 
of transformed G-L quadrature samples (using an ad-hoc monomial transformation) to better capture the singularity in 𝑥 = 0.

The results for the tests (23) − (24) are depicted in Fig. 3 and Fig. 4 respectively. In (23) the kernel 𝑓 (𝑥) is itself a Bessel function of the first 
kind whose (real) order 𝜂 is sampled uniformly in (−1, 0) while we keep the orders of the two Bessel functions in the product, 𝜈 and 𝜇, at fixed 
(integer) equal values (𝜈 = 𝜇 = 0). With this instance we circumvent both the limitations of IIPBF and BESSELINT since for the former we consider 
𝑓 (𝑥) = 𝐽𝜇(

√
2𝑥) while for the latter we set 𝑚 = 0 and 𝑛 = 3 so that it is interpreted as a product of 3 Bessel functions. We notice how MTQR achieves 

consistently more accurate results (with one exception) and always with a significant smaller amount of numerical evaluations for the integrand 
function. This provides a tool for both IIPBF and BESSELINT to be potentially integrated in order to achieve a much more cost effective solution 
integrating whatever function with endpoint singularities.

In (24) we sample 𝑢 uniformly in (0.01, 0.1) for the kernel function while we keep fixed both the (fractional) orders of the two Bessel functions 
and the (real) coefficients of their arguments. Also in this case we can see how MTQR achieves more precise results compared only against aG-L 
of BESSELINT and only for the lower portion of the sampled interval whereas we notice similar precisions reached by aG-K of IIPBF albeit with an 
enormous amount of computational effort in contrast against MTQR. Finally we highlight how test case (24) is part of a different kind of problem 
than those for which MTQR was originally designed, as the integrand function is nearly singular rather than singular; this test case thus forces MTQR 
beyond its scope of applicability yet resulting in optimal performances in terms of precision and more efficient computations in terms of efficiency.

With this set of numerical tests we thus delivered a simple example of how MTQR can be incorporated in multipurpose software, tackling different 
areas of scientific computing, as an efficient, reliable and robust third-party accessory to improve the accuracy and computational efficiency when 
dealing with integrals featuring endpoint singular or irregular behaviour. In the following Subsection we provide further evidence of this by using 
9

MTQR in the context of Galerkin methods for PDEs.
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Table 1

Comparison of the results obtained by aG-K (used in IIPBF) and aG-L (used in BESSELINT) 
with those achieved by MTQR on test cases (19) − (22). For each implementation we report 
the relative error 𝑅𝑛(𝑓 ) =

|𝐼(𝑓 )−𝐼𝑛||𝐼(𝑓 )| , as defined in (7), associated to the numerical integral 
computed by the relevant algorithm; the word exact entails that the relative error falls below 
the machine epsilon in double f.p. format. The reference for the analytical value of the finite 
range integral 𝐼 = ∫ 1

0 𝑓 (𝑥)𝐽𝜈 (𝑎𝑥)𝐽𝜇(𝑏𝑥)𝑑𝑥 is provided by means of symbolic computations 
using Wolfram Mathematica [92]. Furthermore, as a measure of efficiency, we report the 
number of function evaluations (under the columns labelled Fun. Eval.) performed by each 
method to reach the specified relative error. Here by number of function evaluations we refer 
to the number of times the integrand function 𝑓 (𝑥)𝐽𝜈(𝑎𝑥)𝐽𝜇(𝑏𝑥) is evaluated. We reiterate 
that MTQR is not adaptive, as opposed to both aG-K and aG-L, and therefore its number 
of function evaluations will (always) coincide with the cardinality of the set of quadrature 
samples outputted by the algorithm.

Results

Test case aG-K aG-L MTQR

𝑅𝑛(𝑓 ) Fun. Eval. 𝑅𝑛(𝑓 ) Fun. Eval. 𝑅𝑛(𝑓 ) Fun. Eval.

(19) 4.02 × 10−15 5000 9.71 × 10−16 272 exact 20
(20) 1.76 × 10−15 5000 3.91 × 10−16 306 exact 30
(21) 3.39 × 10−15 5000 4.23 × 10−16 706 exact 50
(22) 1.47 × 10−15 5000 1.47 × 10−15 546 2.67 × 10−16 44

Fig. 3. Relative error (left) and number for function evaluations (right) obtained by aG-K (IIPBF), aG-L (BESSELINT) and MTQR for test case (23); both are in 
log-scale on the vertical axis. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

Fig. 4. Relative error (left) and number for function evaluations (right) obtained by aG-K (IIPBF), aG-L (BESSELINT) and MTQR for test case (24); both are in 
log-scale on the vertical axis. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

4.2. Mass matrix computation in vector finite elements enriched by singular basis functions

We propose an effective application of the proposed algorithm to FEM in computational electromagnetics amenable of diffraction phenomena al-

though the workflow we hereby present is easily generalised to other applications of computational physics. We particularly refer to 2.5-dimensional 
10

problems s.a. electromagnetic propagation in metallic waveguides in the presence of sharp material/geometrical discontinuities (septum, wedge, 
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Fig. 5. Triangular cell of a meshed (object) domain and reference rectilinear triangular element in parent domain with parent coordinates 𝜉𝑖 + 𝜉𝑖+1 + 𝜉𝑖−1 = 1 by 
applying a polynomial mapping between the domains 𝐫(𝜉𝑖, 𝜉𝑖+1, 𝜉𝑖−1), see [95,96].

etc...) that generates singular/irregular field behaviour. We recall that singular/irregular longitudinal and transverse field behaviours can be poten-

tially excited near such structures:

𝐸𝑧 = 𝑗𝜔𝜇0𝐴𝜌𝜈 sin 𝜈𝜙 (25)

𝐻𝑡 =
𝜈𝐴

𝜌1−𝜈

(
sin 𝜈𝜙 𝜙̂− cos 𝜈𝜙 𝜌̂

)
(26)

𝐻𝑧 = 𝑗𝜔𝜀0𝐵𝜌𝜈 cos 𝜈𝜙+ constant (27)

𝐸𝑡 = − 𝜈𝐵

𝜌1−𝜈

(
cos 𝜈𝜙 𝜙̂+ sin 𝜈𝜙 𝜌̂

)
(28)

where 𝐴 and 𝐵 are appropriate coefficients and with singularity coefficient 𝜈 ≥ 1∕2 [93]. In particular, we consider the elemental contributions of 
transverse field components to the elemental mass matrix assembled in 2.5-dimensional, additive, curl-conforming vector finite elements [94] using 
the Galerkin method and embedding singular behaviour to proper modelling such sharp discontinuities.

Table 2

Lowest-Order Triangular Curl-Conforming 
Bases [5] for transverse field components 
in 2.5 dimensional problems with sub-

scripts counted modulo 3, and 𝑖 = 1, 2, 3. 
On top regular bases, on bottom singular 
additive bases with 𝜈 ≥ 1∕2.

Regular Functions

𝛀𝛽 (𝐫) = 𝜉𝛽+1∇𝜉𝛽−1 − 𝜉𝛽−1∇𝜉𝛽+1

for 𝛽 = 𝑖, 𝑖± 1

Wedge Functions

𝛀𝑠
𝑖±1(𝐫) = ∇

[
𝜉𝑖∓1

(
1 − (1 − 𝜉𝑖)𝜈−1

)]
𝛀𝑠

𝑖
(𝐫) = (1 − 𝜈)

(
(1 − 𝜉𝑖)𝜈 − 1

)
𝛀𝑖(𝐫)

We hereby examine the results obtained by using parent-object domains discretised by triangular meshes and lowest-order triangular elements 
for transverse field components in parent coordinates on the reference rectilinear triangle as defined in [5], also readily available in Table 2 and 
Figs. 5 and 6 for simplicity.

In order to validate the performance and potential impact and contribution in FEM of MTQR we assemble the elemental mass matrix for the 
lowest order curl-conforming vector basis functions defined over both linear and curvilinear triangular elements. We consider the presence of a 
singularity in node 𝑖 by applying the quadrature rule in the parent domain with change of variable 𝜒 = 1 − 𝜉𝑖 to avoid numerical cancellation 
(mentioned previously in the context of node clustering in proximity of the singular point 𝜉𝑖 = 1)

1

∫
0

1−𝜉𝑖

∫
0

𝚿𝐤(𝐫) ⋅𝚿𝐡(𝐫)𝐽 (𝐫)𝑑𝜉𝑖+1𝑑𝜉𝑖 . (29)

In (29) 𝐽 (𝐫) is the Jacobian of the transformation from the object-space triangle to the parent coordinate reference triangle and 𝚿𝐤(𝐫), 𝑘 = 1, 6 are 
the six ordered basis function, i.e. (a) 𝛀𝑖(𝐫), (b) 𝛀𝑖+1(𝐫), (c) 𝛀𝑖−1(𝐫), (d) 𝛀𝑠

𝑖
(𝐫), (e) 𝛀𝑠

𝑖+1(𝐫), (f) 𝛀
𝑠
𝑖−1(𝐫). We recall that due to the definitions of ∇𝜉𝛽

[95,96], the integrand of (29) shows a polynomial term 𝐽 (𝐫) at the denominator for curvilinear triangular elements described by polynomial shape 
functions (in case of straight triangular elements 𝐽 (𝐫) is constant).

4.2.1. Rectilinear triangular element

For the sake of reference and simplicity, here we compute the entries (29) to the elemental mass matrix for a rectilinear triangular element in 
11

the object domain coincident with the reference triangle (node 𝑖 at (1, 0), node 𝑖 + 1 at (1, 0), node 𝑖 − 1 at (0, 0)). We consider a singular node at
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Fig. 6. Vector plots of Lowest-Order Triangular Curl-Conforming Bases [5] for transverse field components in 2.5 dimensional problems with reference to Fig. 5 and 
Table 2: (a) 𝛀𝑖(𝐫), (b) 𝛀𝑖+1(𝐫), (c) 𝛀𝑖−1(𝐫), (d) 𝛀𝑠

𝑖
(𝐫), (e) 𝛀𝑠

𝑖+1(𝐫), (f) 𝛀𝑠
𝑖−1(𝐫) and considering a singularity at node 𝑖. Temperature colour map is applied for intensity, 

normalised for each basis function. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

𝑖 with sharp knife singularity, i.e. 𝜈 = 1∕2. With the numbering scheme reported above, the elemental mass matrix with exact, reference values, is 
computed using Wolfram Mathematica [92] and it reads

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3 − 1

6 0 − 1
54 − 1

15 − 2
15

× 1
3 0 13

756
1
10

1
5

× × 1
6

1
189

1
10

1
30

× × × 1
540

29
2520

19
1260

× × × × 1
4

5
24

× × × × × 1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

To clarify the utility of a special quadrature, we report the matrix relative errors of the mass matrix computed via a G-L quadrature using 24 × 24
samples with respect to (30):

⎡⎢⎢⎢⎢⎢⎢⎣

5.96179⋅10−17 5.96179⋅10−17 1.21025⋅10−18 6.63256⋅10−12 1.98943⋅10−7 8.19178⋅10−8

× 5.12593⋅10−17 1.82846⋅10−19 1.34229⋅10−9 1.22758⋅10−4 4.38496⋅10−5

× × 5.40269⋅10−17 2.91604⋅10−9 7.02045⋅10−5 2.10543⋅10−4

× × × 6.63251⋅10−11 5.74254⋅10−7 3.61148⋅10−7

× × × × 9.81007⋅10−5 7.56777⋅10−5

× × × × × 5.60575⋅10−5

⎤⎥⎥⎥⎥⎥⎥⎦
. (31)

As reference, we also propose the matrix relative errors computed via adaptive GSL’s built-in routine QAGS [4], which implements a 21-point aG-K 
technique, with respect to (30)

⎡⎢⎢⎢⎢⎢⎢⎣

exact exact 6.93889⋅10−18 2.07959⋅10−14 2.08167⋅10−16 2.08167⋅10−16

× exact 8.67362⋅10−19 2.6229⋅10−15 exact 2.77556⋅10−16

× × exact 6.06546⋅10−15 1.38778⋅10−16 2.08167⋅10−16

× × × 9.25041⋅10−15 1.50741⋅10−16 4.60158⋅10−16

× × × × 4.44089⋅10−16 1.33227⋅10−16

× × × × × 2.22045⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (32)

Finally, we report the matrix relative errors computed by MTQR (which we reiterate being non-adaptive) with respect to (30)

⎡⎢⎢⎢⎢⎢⎢⎣

9.66863⋅10−18 9.89643⋅10−17 1.20703⋅10−17 5.2196⋅10−18 6.67898⋅10−17 2.21996⋅10−17

× 7.72377⋅10−17 2.41407⋅10−18 6.55449⋅10−17 7.77306⋅10−17 3.88997⋅10−17

× × 4.10268⋅10−17 1.35925⋅10−16 1.22925⋅10−17 5.10886⋅10−17

× × × 5.05374⋅10−16 7.24108⋅10−17 2.78953⋅10−17

× × × × 2.96314⋅10−17 3.37762⋅10−17

× × × × × 1.79792⋅10−17

⎤⎥⎥⎥⎥⎥⎥⎦
. (33)

For what concerns the results in (33) the double integration (29) with solely regular bases is performed by a product of classical G-L quadrature rule 
with 2 ×2 samples. If the integrand of (29) contains irregular/singular bases we apply a product quadrature rule with 2 ×18 samples where the first 
2 are related to a G-L quadrature rule (inner integral in 𝜉𝑖+1) and the remaining 18 samples are related to MTQR with 𝜆 ∈ (0, 4) (outer integral in 
𝜉𝑖). We observe that the selection of the number of samples in MTQR and G-L derives from the a-priori analytical study of the six integrands defined 
in (29) which are either classical or generalised Müntz polynomials for regular and singular bases respectively. In particular we note that the inner 
12

integration is performed in 𝜉𝑖+1, yielding a regularisation effect on outer integration in 𝜉𝑖.
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By comparing (33) with (32) we observe the full convergence of the non-adaptive MTQR (with only 36 function evaluations per irregular 
integrand) with respect to the performance of the aG-K technique underlying GSL-QAGS. We also note that product quadrature rules using MTQR 
are computed once and for all elements of a FEM application, while adaptive integration algorithm must be run for each elements yielding an 
increasingly less efficient solution for large, multiscale simulations in computational physics.

4.2.2. Curvilinear triangular element

Often, finite element applications use polynomial shape functions to model curvilinear geometries. In this framework, the integrand of (29)

shows a polynomial behaviour 𝐽 (𝐫) at the denominator resulting in a rational integrand function which cannot be directly, globally and analytically 
represented in terms of either classical or generalised polynomials. For demonstrating purposes, in this test case we consider shape functions of 
order 2 for the geometry with control points in object domain located at 𝑛𝑜𝑑𝑒 𝑖 (1, 0), 𝑛𝑜𝑑𝑒 𝑖 + 1 (0, 1), 𝑛𝑜𝑑𝑒 𝑖 − 1 (0, 0), and (1∕

√
2, 1∕

√
2), (0, 1∕2), 

(1∕2, 0). The resulting curvilinear triangle is a deformed version of the reference triangular element along the edge 𝑖 − 1 (see Fig. 5). We select a 
singular node at 𝑖 with sharp knife singularity 𝜈 = 1∕2.

With the usual numbering scheme adopted for the linear case, the elemental mass matrix with reference values is again computed using Wolfram 
Mathematica [92]

⎡⎢⎢⎢⎢⎢⎢⎣

0.2824683905612152 −0.0799881369933545 −0.0511288002782521 −0.0134875272625489 −0.0590162878603002 −0.0675515579944396
× 0.2824683905612152 −0.0511288002782521 0.0087648058609067 0.0291436298001587 0.1136894684054350
× × 0.1845734601172637 0.0052347248641515 0.0683970043032625 −0.0045452822860420
× × × 0.0012241429923909 0.0078405230975909 0.0084234049826403
× × × × 0.1721840539890618 0.1098626273234278
× × × × × 0.1397771801706621

⎤⎥⎥⎥⎥⎥⎥⎦
. (34)

As reference, below we propose the matrix relative errors computed with QAGS’s aG-K technique with respect to (34)

⎡⎢⎢⎢⎢⎢⎢⎣

exact 6.93992⋅10−16 1.35714⋅10−16 1.72347⋅10−14 3.76243⋅10−15 4.1088⋅10−16

× exact 1.35714⋅10−16 2.96879⋅10−15 3.16664⋅10−14 7.32405⋅10−16

× × 3.00754⋅10−16 2.17059⋅10−14 8.11602⋅10−16 4.57984⋅10−15

× × × 1.95382⋅10−13 8.62879⋅10−15 4.11882⋅10−16

× × × × 1.61197⋅10−16 1.26319⋅10−16

× × × × × 1.9857⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (35)

Finally, we report the matrix relative errors computed using MTQR with respect to (34)

⎡⎢⎢⎢⎢⎢⎢⎣

6.99866⋅10−17 6.74668⋅10−16 4.26045⋅10−16 4.38676⋅10−16 3.23314⋅10−15 7.64195⋅10−16

× 5.79219⋅10−17 3.24033⋅10−16 6.5069⋅10−16 2.61723⋅10−14 7.06715⋅10−16

× × 2.73857⋅10−16 1.98204⋅10−16 8.36839⋅10−16 6.34363⋅10−15

× × × 4.44293⋅10−16 6.9585⋅10−15 7.96629⋅10−16

× × × × 7.62109⋅10−17 9.69835⋅10−17

× × × × × 1.7804⋅10−16

⎤⎥⎥⎥⎥⎥⎥⎦
. (36)

For what concerns the results in (36), in this occasion, the double integration (29) with solely regular bases is performed by a product of classical G-L 
quadrature rule with 10 ×10 samples. If the integrand of (29) contains irregular/singular bases we then apply a product quadrature rule with 10 ×30
samples where the first 10 are related to a G-L quadrature rule (inner integral in 𝜉𝑖+1) and the remaining 30 samples are related to MTQR with 
𝜆 ∈ (0, 14) (outer integral in 𝜉𝑖). We observe that the selection of the number of samples in MTQR and G-L derives from the a-priori analytical study 
of the six integrands defined in (29) for the selected case of curvilinear triangular element which are in general rational polynomials containing 
either a classical polynomial numerator or a generalised Müntz polynomial numerator respectively for regular and singular bases respectively.

We observe that, although the denominator of the integrand, i.e. the Jacobian 𝐽 (𝐫), has a smooth polynomial behaviour for “regular” curvilinear 
elements, it has a strong impact on limiting the convergence of the numerical integration. In particular, it yields an increase of iterations in adaptive 
quadrature rules and an increase of 𝜆-range in MTQR. By comparing (36) with (35) we observe the full convergence of the non-adaptive, more 
computationally efficient MTQR with respect to the performance of GSL-QAGS.

We rebate that product quadrature rules using MTQR are computed a-priori once and for all elements of a FEM application, while adaptive 
integration algorithm must be repeated for each element. Moreover, in the framework of 2.5D FEM applications with singular modelling, the 
proposed product quadrature exceeds in precision and efficiency frequently used traditional schemes of singular integration mainly based on 
singularity subtraction or cancellation techniques.

5. Conclusion

In this work we contribute to enrich the network of existing high-precision numerical integration software by issuing an additional fast, light, 
portable, and integrable C++ suite, that automatically optimises transformations capable of manipulating the traditional G-L quadrature rule 
to fully capture the endpoint singularities/irregularities in those integrands that are modelled by sets of generalised polynomials of non-integer 
degree. MTQR is a non-iterative mathematical software that guarantees the required numerical precision (we selected double precision) and it 
avoids to resort to computationally expensive algorithms such as adaptive quadrature rules. To the best of our knowledge, there is no other 
open-source alternative in existence that matches the precision of MTQR on such a large scale of integrand functions when combined with the 
minimum computational cost assured by the algorithm. In the aforementioned user manual the reader will find useful notions and instructions for 
its installations and modes of executions in both Linux and Windows. In this work we have shown reliability in MTQR’s accuracy on a wide range 
of benchmarking tests in computational physics (dealing with arbitrary products of Bessel functions of real order and additive, curl-conforming 
basis functions in vector finite elements), compared its performance against well-known adaptive techniques and further proved its potential of 
being integrated in larger codebases as a useful third-party numerical tool. The range of application for MTQR is of particular interest in BEM 
13

and FEM formulations frequently arising in Computational Electromagnetics (CEM) and Fluid Dynamics (CFD), as well as structural analysis and 
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fracture mechanics or any other engineering or scientific applications modelling abrupt discontinuities. Finally we think that while the combination 
of MTQR with Gaussian and quasi-Gaussian (piecewise) spline rules, we argue, could lead to more refined, efficient and general purpose quadrature 
techniques, such implementation is not straightforward and will be investigated in future studies.
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Appendix A. Primary module’s source code

#include "mtqr.h"

// Global variable controlling the primary module mode of execution
bool loud_mode = true;

// LOUD MODE
template<typename T>
void mtqr(std::vector<T>& muntz_sequence, std::vector<T>& coeff_sequence)
{
// Print initial message and selects user’s inputs
auto input_data = manageData(muntz_sequence, coeff_sequence);
// Extract beta_min, beta_max and n_min
auto monomial_data = streamMonMapData(std::get<0>(input_data));
// Compute order of the monomial transformation
double transf_order = computeMapOrder(std::get<1>(input_data), std::get<1>(monomial_data));
// Compute the new nodes and weights of the Monomial Transformation Quadrature Rule
auto quad_data = computeQuadParams(transf_order, std::get<0>(monomial_data), std::get<2>(monomial_data));
// Cast the quadrature parameter in the most optimised f.p. format possible
optimiseData(quad_data, muntz_sequence, coeff_sequence);

}
template void mtqr<float128>(std::vector<float128>& muntz_sequence, std::vector<float128>& coeff_sequence);
template void mtqr<double>(std::vector<double>& muntz_sequence, std::vector<double>& coeff_sequence);

// SILENT MODE
std::vector<std::vector<double>> mtqr(double lambda_min, double lambda_max)
{
// Deactivate terminal’s and files’ output
loud_mode = false;
// Initialise input parameters of the Monomial transformation quadrature rule
std::vector<double> muntz_sequence = {lambda_min, lambda_max};
std::vector<double> coeff_sequence = {1.0, 1.0};
// Print initial message and selects user’s inputs
auto input_data = manageData(muntz_sequence, coeff_sequence);
// Extract beta_min, beta_max and n_min
auto monomial_data = streamMonMapData(std::get<0>(input_data));
// Compute order of the monomial transformation
double transf_order = computeMapOrder(std::get<1>(input_data), std::get<1>(monomial_data));
// Compute the new nodes and weights of the Monomial Transformation Quadrature Rule
auto quad_data = computeQuadParams(transf_order, std::get<0>(monomial_data), std::get<2>(monomial_data));
// Cast the quadrature parameter in the most optimised f.p. format possible
optimiseData(quad_data, muntz_sequence, coeff_sequence);
// Generate double-precise new nodes and weights and export them in memory as output
std::vector<double> nodes = castVector(std::get<0>(quad_data), std::numeric_limits<double>::epsilon());
std::vector<double> weights = castVector(std::get<1>(quad_data), std::numeric_limits<double>::epsilon());
return std::vector<std::vector<double>> {nodes, weights};

}
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[59] G. Szegő, Orthogonal Polynomials, Colloquium Publications, vol. 23, American Mathematical Society, 1939.

[60] W. Barrett, Convergence properties of gaussian quadrature formulae, Comput. J. 3 (4) (1961) 272–277, https://doi .org /10 .1093 /comjnl /3 .4 .272.

[61] D. Elliott, Uniform asymptotic expansions of the Jacobi polynomials and an associated function, Math. Comput. 25 (114) (1971) 309–315, https://doi .org /10 .2307 /2004926.

[62] J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9 (4) (1972) 573–602, https://doi .org /10 .
1137 /0709051.

[63] M. Holmes, R. Kashyap, R. Wyatt, Physical properties of optical fiber sidetap grating filters: free-space model, IEEE J. Sel. Top. Quantum Electron. 5 (5) (1999) 1353–1365, https://

doi .org /10 .1109 /2944 .806761.

[64] G. Fikioris, P. Cottis, A. Panagopoulos, On an integral related to biaxially anisotropic media, J. Comput. Appl. Math. 146 (2) (2002) 343–360, https://doi .org /10 .1016 /S0377 -
0427(02 )00368 -0.
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