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Abstract

Heart Rate Variability (HRV) is a good predictor of human health because the heart rhythm is
modulated by a wide range of physiological processes. This statement embodies both challenges
to and opportunities for HRV analysis. Opportunities arise from the wide-ranging applicability of
HRV analysis for disease detection. The availability of modern high-quality sensors and the low data
rate of heart rate signals make HRV easy to measure, communicate, store, and process. However,
there are also significant obstacles that prevent a wider use of this technology. HRV signals are
both nonstationary and nonlinear and, to the human eye, they appear noise-like. This makes them
di�cult to analyze and indeed the analysis findings are di�cult to explain. Moreover, it is di�cult
to discriminate between the influences of di↵erent complex physiological processes on the HRV.
These di�culties are compounded by the e↵ects of aging and the presence of comorbidities. In this
review, we have looked at scientific studies that have addressed these challenges with advanced signal
processing and Artificial Intelligence (AI) methods.

Keywords: Heart rate variability, Artificial intelligence, Computer-aided diagnosis, Patient remote
monitoring

1. Introduction

If the heart trembles, has little power and sinks, the disease is advancing (the Ebers Papyrus c.
1530 BC). The ancient Egyptians understood that the pulse, that emanates from the heart, underpins
disease diagnosis and prognostication. The pulse became a quantifiable parameter when Herophilos
(335–280 BC) succeeded in timing its rate against a water clock. Using mechanical timepieces, Hales
measured beat-to-beat interval variations in the pulse rate [1, Page 12], which predates, by more than
200 years, modern Heart Rate Variability (HRV) derived from digitized Electrocardiogram (ECG)
recordings [2]. Initially, HRV analysis was confined to linear methods, such as statistical measures
and frequency domain features. However, these measures fail to capture the rich complexities of
beat-to-beat variations. As our understanding of the heart as a nonlinear oscillator grew, concepts
of nonlinearity and chaos emerged as robust HRV measures [3]. Both linear and nonlinear features
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equip us with a plethora of methods to represent the information extracted from heart rate signals.
This opens up opportunities to create systems which detect and track diverse diseases by analyzing
HRV for clinical applications in diverse diseases. The basic premise is that a disease will induce a
specific pattern of feature values, and the task remains therefore to identify disease-specific signatures
in the feature continuum. Automating this process creates computer-aided diagnosis systems that
can potentially improve healthcare delivery.

Progress in computing power and algorithm development are potent drivers of advances in HRV
analytic methodology. Feature engineering plays a central role in information extraction and repre-
sentation. At its simplest, statistical tests like Student’s t-test and Analysis Of Variance (ANOVA)
[4] are used to steer feature selection, feature combination, and decision border setting for specific
problems, but that process can be prone to error. Initially, researchers mitigated the problem by
developing machine learning algorithms [5] to establish both the feature importance and decision
borders. While providing some level of automation, machine learning still requires subjective de-
sign decisions related to feature specification and selection. Deep learning approaches circumvent
this requirement through objective data-driven feature engineering that fully automates the process
while preserving classification performance [6]. Both machine learning and deep learning algorithms
require training and testing based on curated ECG heart rate data samples labeled by human an-
notators. The scarcity of quality datasets poses a challenge to the data-centric development and
growth of existing and future HRV analysis systems. The choice of method crucially hinges on data
access and size as deep learning demands significantly more training data than classical machine
learning. Further, inherent data biases, as well as intra- and inter-observer variabilities, can dampen
the discriminative utility of medical decision support models for clinical diagnosis, monitoring, and
prognostication.

In this work, we aimed to conduct a systematic review of healthcare applications for HRV anal-
ysis systems, their methods and performance as well as the specific clinical domains. To this end,
713 scientific papers were screened and 130 were selected for in depth review. The selected papers
were categorized into 15 di↵erent application areas: cardiology, mental health, sleep health, lifestyle,
Intensive Care Unit (ICU) settings, blood pressure, remote monitoring, comorbid conditions, on-
cology, brain health, addiction, and drug abuse, diabetes, respiratory, epilepsy, and infant health.
All studies incorporated Artificial Intelligence (AI), with newer studies espousing deep learning as
opposed to older ones based on classical machine learning. With this review, we consolidate and in
some specific areas extend existing knowledge on HRV analysis for medical decision support systems.
The following list substantiates that claim:

• To the best of our knowledge this is the first review that focuses on HRV based medical decision
support for automated healthcare systems.

• Our goal was to create a resource for researchers which encourages future work on HRV appli-
cations.

• We indicate the best machine learning techniques for specific application areas. That can be a
starting point for new investigations, and it can provide a frame of reference that can be used
during the assessment of new results.

• Similarly, we indicate the best deep learning methods for specific application areas.

• We highlight shortcomings of current HRV based medical decision support and propose possible
solutions.

• We have also discussed future directions of advanced HRV based healthcare systems. Outlining
the future directions went beyond just addressing current shortcomings.
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The remainder of the manuscript is structured as follows. In Section 2, the background to heart
rate physiology and measurement techniques is explained. Our search methodology is detailed in
Section 3; and findings are presented and discussed in Sections 4 and 5 respectively. Section 6
concludes our review.

2. Background

Under normal circumstances, the cardiac sinoatrial node controls the heart rhythm. That process
takes input from both the parasympathetic and sympathetic divisions of the autonomic nervous
system [7]. In response to that input, the heart rhythm can be modulated over a wide frequency
band [8]. The aim of regulating the heart rhythm is to maintain homeostasis and thereby stabilize the
internal physiological state [9]. That e↵ort can be observed by recording the beat-to-beat interval of
the human heart and HRV analysis allows us to extract information which can be used as biomarkers
and for medical decision support.

The way in which we acquire and analyze beat-to-beat variability is shaped by measurement
technology and signal processing methods. The text below describes two measurement methods
followed by a discussion on the analysis of beat-to-beat interval variations.

2.1. Electrocardiography

Electrodes are placed on the skin of the chest wall and limbs to record over time the surface
electrical potentials that emanate from cyclical electrical signal conduction between muscle tissues of
the various heart chambers. Analogue ECG potentials are sampled and quantized to digital sample
streams. Typical sampling frequency and quantization resolution are 250 Hz and 12 bits, respectively,
which yield an ECG data rate of 3000 bits/s. This modest data rate, coupled with the non-invasive
ECG recording setup, render ECG acquisition highly accessible in both ambulatory and hospital
settings.

2.2. Photoplethysmography

Photoplethysmogram (PPG) signals depict blood volume fluctuations in a superficial body loca-
tion and reflect pulsatile blood pressure changes during each heart cycle. The signals can be measured
with low-cost optical sensors placed on the skin of an area with su�cient circulation, e.g., finger-
tip. Beat-to-beat intervals can be extracted from PPG using software algorithms. Ease of sensor
placement, its non-invasive nature, and low-cost render PPG feasible for heart rate measurements.
The peak amplitudes of the PPG signal may become attenuated by hemodynamic perturbations,
e.g., impaired perfusion from systemic hypotension or local blood vessel blockage, which impairs the
detection. Also, the optical sensor may lose contact with the skin, resulting in signal loss and reduced
monitoring e�cacy.

2.3. Beat-to-beat interval

The QRS complex on the ECG represents the start of heart muscle depolarization; and the
time duration from one R wave peak to the next R wave peak constitutes the beat-to-beat interval
(RR interval) or time elapsed between two consecutive heartbeats. The latter can be recorded as a
simple one-dimensional vector where each entry represents an ECG RR interval. Similarly, the time
duration from one peak of the blood volume curve to the next peak on the PPG signal represents
the beat-to-beat interval. RR interval signals have an average data rate of about 12 bits/s. That
data rate is significantly lower when compared to typical ECG data rate. That makes RR interval
signals more suited for bandwidth critical applications, such as wireless sensing and data transfer
over digital mobile networks [10, 11]. The quality of the medical decision support system provided
by a classification algorithm is crucially dependent on the fidelity of beat-to-beat interval detection.
In general, the PPG signal peak is less pronounced compared with the ECG R wave, which may
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Table 1: Boolean search strings

Database [Title] AND [Full text and Metadata] No. of studies

PubMed

Heart Rate
Variability,
RR
interval

“Machine Learning”
“Artificial intelligence”

“Deep learning”
“Neural Network”

98

Google Scholar

“Machine Learning”
“Artificial intelligence”

“Deep learning”
“Neural Network”

“Prediction”

258

IEEE

“Machine Learning”
“Artificial intelligence”

“Deep learning”
“Neural Network”

254

Science Direct

“Machine Learning”
“Artificial intelligence”

“Deep learning”
“Neural Network”

103

undermine detection accuracy and render it more susceptible to noise. On the other hand, it may
be di�cult to discern the QRS complex consistently from other ECG waves, e.g., prominent P and
T waves, in certain pathologies, resulting in inaccurate beat-to-beat interval determination.

Medical decision support based on HRV analysis operates in the landscape created by medical
need, technological capability, and health economics. It is important to know both the individual
application area and the wider trends in HRV analysis to construct a credible argument for specific
medical decision support systems. The next section introduces the individual application areas for
HRV analysis, and the technology used for medical decision support. Together with the objective
review results, presented in Section 4, that might provide both depth and breadth needed to make
commercial as well as research decisions.

3. Article search and selection methods

We performed a systematic search of all entries in four databases within the period between
2010 and 2021. These databases were: ScienceDirect, PubMed, IEEE Xplore, and Google Scholar.
Pre-specified Boolean search strings (Table 1) were used to query the databases. We chose this
period because lots of forward-looking work on AI has been done during that time, which is not
surprising due to increasing computing power, a critical mass of talent, and the snowballing impact
of innovations. Through the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method, we excluded duplicate items, review articles, conference papers, non-English
publications, Master’s research, works unrelated to AI, and manuscripts without Accuracy (ACC)
results (Figure 1).

3.1. Article analysis

From an in-depth review of the 130 eligible articles (Figure 1), we identified 15 distinct application
areas and broad technical categories. This led to a review framework for scientific studies on HRV
based healthcare systems.
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Figure 1: Flow chart of the PRISMA model for article selection.

3.2. Application areas

Automated HRV analysis can enable medical decision support systems for a wide range of ap-
plication areas. These systems address specific medical needs by providing objective information
derived from the beat-to-beat variability of the heart. To be specific, application area-specific AI
models extract objective information and this information is put to use in medical decision support
systems.

To select appropriate application areas, we balanced intra-group commonality with inter-group
distinctiveness, and also limited the variance resulting from the number of papers mapped to a
specific application area.

3.2.1. Cardiology
Unsurprisingly, cardiology attracted most studies on HRV analysis as diverse cardiological con-

ditions are known to exert strong influences on the heart rhythm [12, 13]. As such, cardiology
is a diverse field with numerous specialisations. To reflect this diversity, we have introduced nine
subcategories. These subcategories were: congestive heart failure, atrial fibrillation, cardiovascu-
lar, arrhythmia, heart failure, ventricular tachyarrhythmia, sudden cardiac death, cardiomyopathy,
various cardiac pathologies ventricular fibrillation.
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3.2.2. Mental Health
Di↵erent mental health conditions can induce changes in HRV due to crosstalk between the

central nervous and cardiovascular systems that are mediated by the autonomic nervous system [14].
To tease out the HRV signature pattern, associated with specific mental disorders, is challenging
due to the diverse clinical presentations that may evolve. To address that challenge will require
large datasets and longitudinal studies with long follow-ups. On the positive side, ECG-based HRV
analysis for mental health is more expedient and cheaper than Electroencephalogram (EEG), which
makes it more accessible, including for ambulatory and longer duration data acquisition. These
important advantages have motivated researchers to work in this application area.

3.2.3. Sleep Health
Closely linked to mental health, sleep health can similarly be assessed via sleep EEG recordings

in specialized laboratories, which is the reference standard. The inconvenience and high cost limit its
use, which may incentivize the use of HRV-based diagnosis. While heart rhythm is physiologically
linked to sleep-related brain processes through the autonomic nervous system, it is di�cult to recog-
nize sleep-related HRV changes because sleep is a highly individualized activity with high diversity in
observable signal patterns. Despite these di�culties, we found 15 publications that addressed sleep
health by providing medical decision support based on HRV analysis. The majority of work (seven
studies) focused on sleep apnea detection. As such, sleep apnea is a condition where a patient stops
and starts breathing during sleep. The absence of oxygen supply to the body is likely to trigger
perturbations that cause the autonomic nervous system to regulate the HRV [15].

3.2.4. Lifestyle
HRV is a physiological indicator of human health and fitness [16], although the link is vaguely

defined with ample scope for interpretation. In general, lifestyle interventions pose low or minimal
risk and there can be little or no ethical objection to implement physiological monitoring to guide the
choice and dose of beneficial lifestyle intervention, e.g., type and intensity of exercise training. Unlike
conventional medical care, lifestyle applications are generally unregulated and the use of adjunctive
HRV monitoring becomes a personal choice based on individual perception of cost and benefits.

3.2.5. Intensive care unit settings
Continuous heart rate monitoring is routine in ICUs. While instantaneous pulse rates may dictate

the need for emergency action, automated HRV analysis of pulse data acquired over a longer time
window o↵ers an additional dimension that may be more useful for contextualizing future or imminent
risks to critical cases in intensive care [17, 18].

3.2.6. Blood Pressure
High blood pressure typically develops over years and a patient may be largely asymptomatic.

Early detection is important for lifestyle changes and long-term medication to be e↵ective in averting
complications. Blood pressure is in part controlled by, and some anti-hypertensive drugs target
the autonomic nervous system. Accordingly, HRV analysis may be used alongside blood pressure
measurements for early detection and management of diseases, such as central hypovolemia [19],
hypertension [20, 21].

3.2.7. Monitoring
The low data rate of single-channel ECG facilitates remote wireless cloud-based heart rate mon-

itoring and automatic real-time HRV analysis [22]. The use case is strengthened by the ability of
HRV analysis to monitor a wide range of conditions, not all of which are mutually exclusive, e.g., it
is possible to monitor sleep and detect atrial fibrillation concurrently.
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3.2.8. Comorbid
The impact of a specific medical intervention is di�cult to predict in a patient with comorbid

conditions. Continuous real-time HRV analysis may be used to calibrate specific interventions in such
patients to preempt hemodynamic perturbations [23, 24]. In general, the individual’s comorbidity
and the e↵ect on HRV cannot be directly extrapolated from prior knowledge or other studies. As
such, there needs to be a level of individualization established through trend analysis.

3.2.9. Oncology
While HRV analysis is not a primary cancer detection tool, it can play an important role during

rehabilitation and in disease progression prediction [25, 26, 27]. For the former, continuous HRV
analysis facilitates the monitoring of known complications, such as pain and stress. The latter is
technically more challenging, and might involve multimodal approaches that fuse imaging with HRV
analysis.

3.2.10. Brain
As mentioned, there is a strong link between the brain and heart mediated by the autonomic

nervous system. While not a primary diagnosis tool for organic brain diseases and injuries, HRV
analysis can provide additional accessible real-time information for disease progression monitoring,
therapeutic response, and prognostication.

3.2.11. Addiction and Drug Abuse
Substance abuse can impact the autonomous nervous system profoundly [28, 29]. HRV analysis

may unveil the e↵ects of addictive behavior on heart health. In a rehabilitation setting, HRV analysis
may be used for progress tracking and outcome assessment.

3.2.12. Diabetes
Diabetes neuropathy can directly impair the autonomic nervous system, which blunts HRV [30].

In addition, treatment-induced hypoglycemia may stimulate the sympathetic nervous system [31].
As such, HRV analysis can be used to monitor the physiological state of diabetes. Further, HRV
analysis may be helpful for monitoring salutary lifestyle intervention (Section 3.2.4) in diabetes.

3.2.13. Respiratory
The cardiovascular and respiratory systems are vital for ensuring adequate perfusion of oxy-

genated blood to all organs in the body, and pathophysiology in either system often exert collateral
influence on the other as well [32, 33]. While it is not a primary diagnostic tool for respiratory disease,
HRV analysis can be useful for tracking the severity of respiratory disease involvement longitudinally.

3.2.14. Epilepsy
EEG is the reference standard for establishing epilepsy diagnosis and monitoring treatment re-

sponse. However, data acquisition requires onerous instrumentation, and a training phase to tune
the signal processing algorithms to the measurement setup might be necessary. Further, it is not
possible to perform EEG on a continuous ambulatory basis. Due to the heart-brain connection me-
diated by the autonomic nervous system, HRV may manifest subtle changes in the presence of or
even before epileptic seizure even though it may not be pathognomonic in itself [34, 35]. HRV’s
low-cost, convenience, and capability for prolonged remote may observation hold the key to its ap-
plication as a long-term surveillance monitor in the suspected epileptic patient for predicting rather
than diagnosing seizure episodes.
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3.2.15. Infants
Due to the ease of setup, the use of HRV as a physiologic monitor in infants, who have limited

ability to vocalize symptoms, holds promise for applications in baby care and pediatric critical care
[36, 37]. In the former, remote continuous HRV monitoring showing results within physiological
limits will give parents psychological peace of mind. In the latter, real-time HRV analysis can be
used to support the constant monitoring of vulnerable infants.

3.3. Medical decision support

Medical decision support can improve healthcare processes by providing objective information
about individual patients and it can be used to shift the analytic work from humans to computers.
This has cost and reliability advantages as computer-based algorithms are scalable and not subject to
intra- and inter-observer variability. Conceptually, HRV-based medical decision support can be de-
livered in three ways (Figure 2). First, features extracted from heart rate signals can be used directly
for tracking the health of a patient. Pulse rate is an example of such a feature which is an important
component of established early warning scores [38]. Second, the extracted feature or multiple features
can be combined with machine learning algorithms. By increasing the information input, multiple
features can enhance the decision quality. The machine learning algorithm discovers feature weight
(importance) and decision borders that, once established, allows the model to e�ciently label fresh
unseen heart rate signal samples for medical decision support. Third, deep learning can perform
automatic labeling of heart rate signal samples without explicit feature engineering. That opens up
a direct and independent information pathway for decision support from the patient to the physician.
The following subsections provide details of the individual medical decision support methods.

Features Classical
Machine
Learning

Deep
Learn-
ing

Patient Physician

Figure 2: Information pathways for medical decision support.

3.3.1. Feature engineering and classical machine learning
Feature engineering demands a deep understanding of the problem and expert knowledge of in-

formation extraction methods [39]. The human designer has to decide on which features to extract
as well as the selection criteria, these processes are usually guided by statistical feature analysis.
The selected features are then fed into a machine classification algorithm to train the medical deci-
sion support model using samples that have been previously labeled by experts. Once trained and
validated, machine classification algorithms can be used to establish specific inference results, e.g.,
detecting a specific disease, without the need for fresh medical experts to track multiple features.

Selecting the machine classification algorithm is a subjective activity. To address that issue,
most authors train and test a range of methods and, once all performance results are established,
select the algorithm which optimally addresses the problem. The following machine classifiers were
used to provide medical decision support based on HRV features: Support Vector Machine (SVM),
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Multilayer Perceptron (MLP), Classification And Regression Tree (CART), Extreme Learning Ma-
chine (ELM), Logistic Regression (LR), Recurrent Neural Network (RTF), Artificial Neural Net-
work (ANN), Random Forest (RF), Gradient Boosting (GB), Decision Tree (DT), K-Nearest Neigh-
bor (KNN), Probabilistic Neural Network (PNN), AdaBoost, Gaussian Process Classification (GPC),
Partial Least Squares Discriminant Analysis (PLS-DA), Statistical Classifier (SC), Auto-regressive
Moving Average with Exogenous Inputs (ARMAX), Adaptive Network-based Fuzzy Inference Sys-
tem (ANFIS), Linear Discriminant Analysis (LDA), Autoencoder (AE).

3.3.2. Deep learning
Deep learning incorporates feature engineering as part of the algorithm. Features are automati-

cally adjusted to optimize the classification results. Compared with machine learning, deep learning
requires larger amounts of data samples, the model quality improves as the number of data samples
increases. Where there is insu�cient labeled data, deep learning algorithms risk overfitting, i.e.,
learning from the data itself rather than the knowledge contained in the data. Among many di↵er-
ent options, two deep learning model classes have been widely used for HRV analysis: Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN).

CNN has been designed to mimic the human visual perception system and was originally purposed
for two-dimensional data in application domains, such as medical image analysis. Due to good
performance, CNN can be adapted to analyze one-dimensional signals like HRV in two distinct ways.
First, the HRV signal is transformed into a two-dimensional image to input to the CNN. The second
approach is to use a CNN subclass to process the signals before they are fed to the fully connected
layers of the CNN for classification. The main drawback of using CNN for HRV analysis is that
the input images contain only spatial but not temporal information. The temporal aspect of HRV
analysis is patently important because disease symptoms may not be present all the time and even
if present, may induce nonlinear rhythm variations that can only be detected with good knowledge
about the temporal unfolding of the signals. RNN can overcome the shortcoming of CNN. The main
structural di↵erence between RNN and CNN is that RNN incorporates internal feedback loops that
generate an infinite impulse response, whereas CNN is only capable of producing a finite impulse
response [40]. Systems with an infinite impulse response are more sensitive to temporal changes in
a signal. This e↵ect is augmented when the memory, within the algorithm, is controlled via learned
parameters, such as in the widely used Long Short-Term Memory (LSTM) networks.

4. Results

From 2010 to October 2021, there has been a firm increase in the number of published papers
that meet our search criteria, described in Section 3, with 40 articles being published in 2021 alone
(Figure 3). Analyzing the information pathways used by the reviewed studies reveals that deep
learning methods were introduced in 2018. Since then, the number of articles on that topic is
steadily increasing. Figure 4 shows the 130 studies on HRV analysis mapped onto the 15 application
areas introduced in Section 3.2. The average number of papers in each application area is 8.67 ±
12.61. The large standard deviation of 12.61 indicates a strong concentration of papers for certain
application areas. Indeed, cardiology and mental health were the subjects for more than 50% of the
reviewed papers. Figure 5 shows the mapping of reviewed papers onto the cardiology sub-categories.
The mapping reveals that HRV analysis is most often used for arrhythmia detection. This was
expected because the main symptom of arrhythmia is abnormal heart rhythm. For mental health,
the number of published articles was also mapped onto subcategories (Figure 6): 6 mental illness, 4
stress, 3 emotion, 3 driver’s mental state (a safety-related concern with wider social and commercial
implications), 2 cognitive tasks, 1 emotional eating, and 1 music.

Among the reviewed papers, there were 21 AI (18 machine learning and 3 deep learning) algo-
rithms that were used in common for medical decision support (Figure 7). The bar graph in Figure
8 shows that machine learning with SVM is the most popular with 31 studies in total. The deep
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Figure 3: Number of HRV studies within one year over a time period from 2010 to 2021.

Figure 4: Mapping studies to application areas.

learning methods CNN and RNN were used 6 and 5 times, respectively. Details of individual study
methods and accuracy rates are provided in Tables A.2 to A.16.

The radar plot in Figure 9 indicates that RF yields the highest ACC when compared to all
other machine learning algorithms. The graph also indicates that all discovered machine learning
algorithms yield an ACC of over 90%.

The radar plot in Figure 10 indicates that CNN achieves the highest ACC when compared to
RNN and hybrid. Indeed, the classification accuracy stayed above 99.4% for the considered deep
learning methods.

Figure 11 shows the maximum ACC achieved for each of the application areas. Oncology studies
achieved the highest ACC score. However, that result might not reflect a general trend, because the
statistic was based on only three oncological studies. In comparison, cardiology applications show
excellent accuracy with small variance in a large number of studies (52), which lends support to the
use of HRV analysis for decision support in this clinical domain. The lowest mean accuracy and
highest variance are seen in the addiction/drug abuse and mental health areas, respectively. This
suggests that more confirmatory studies are needed before HRV analysis can be used for medical
decision support in these application areas.

The radar diagram shown in Figure 5 details the max ACC for the cardiology subcategories.
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Figure 5: Distribution of studies for the cardiology sub-categories.

Figure 6: Distribution of studies for the mental health sub-categories.

The radar diagram shown in Figure 13 details the max ACC for the mental health subcategories.

5. Discussion

In this review, we have surveyed the contemporary knowledge base on HRV analysis and its appli-
cation in the medical domain. Development in HRV analysis is deeply intertwined with technological
progress. Current measurement technology support is in a mature state of development whereas
computational advances in signal analysis, through feature engineering, are accelerating. Modern
computing technology allows us to use the accrued knowledge to create systems that automate anal-
ysis tasks to provide decision support more e�ciently and accurately.

Traditional machine learning methods facilitate the tracking of multiple features to provide ob-
jective decision support [6]. Since 2018, there is a shift from machine to deep learning that is driven
by the need for more transferable knowledge and the availability of more training data. All the
reviewed papers share a vision about a future where automatic HRV analysis can play an important
role for disease detection, which is enabled by medical decision support systems that can mimic ex-
pert human knowledge. The next step will be to create systems that can learn data patterns before a

11



Figure 7: Mindmap of medical decision support algorithms.

Figure 8: Number of specific medical decision support algorithms found in the reviewed studies.

disease develops, allowing us to transit from diagnosis support to disease prediction. Many disease-
induced HRV changes may be subtle and are devoid of symptoms. The ability to predict diseases has
significant clinical impact because early detection and indeed disease prediction will reduce the need
for invasive intervention. In the best case, all the interventions that will be needed are beneficial
lifestyle changes that can improve outcomes in patients.

With our expert review framework, we established that cardiology is by far the most prevalent
application area of HRV analysis. This is hardly surprising given the fact that HRV describes the
beat-to-beat interval of the human heart which is correlated to the pumping of the heart. Mental
health and sleep health are the second and third most often researched application areas. As such,
this was not immediately expected, because HRV is a secondary measure for these conditions [14].
However, these application areas benefit from the fact that it is possible to use HRV instead of EEG,
which has both cost and patient comfort benefits. The same holds true for the epilepsy application
area and to some extent for addiction / drug abuse. For sleep apnea, which is defined as stop and start
breathing during sleep, the respiratory application area overlaps with sleep health [15]. But there
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Figure 9: Maximum ACC of classical machine learning models across all application areas.

Figure 10: Maximum ACC of deep learning models across all application areas.

are respiratory related application areas outside sleep. Lifestyle, which is the fourth most researched
application area, might be supported by the most advanced and holistic healthcare philosophy [41].
Suggesting lifestyle choices is the least invasive form of intervention, therefore a patient stands to gain
the most from such support. However, suggesting lifestyle choices in an end-of-life situation is clearly
nonsense, therefore even lifestyle choice support is not universally applicable. In most cases, end-of-
life considerations concern older patients with multiple conditions and diseases. In such a situation,
HRV analysis can o↵er objective healthcare support [42]. To be specific, in a comorbid situation
the focus widens from an individual disease to the general health of a patient. An intervention for
a specific disease might have side e↵ects that make other conditions worse which results in negative
outcomes for patients. HRV analysis can play a positive role in providing a holistic health assessment.
Moving to the opposite side of the age spectrum by discussing the infant application area reveals
an important property of HRV analysis. Namely, the beat-to-beat variations are age-related [43].
Hence, it is necessary to train and test medical decision support algorithms with infant data for that
application area.

HRV analysis is likely to play an important role when it comes to extending the remit of ICU
care. This extension is accomplished in terms of both location and time. Extending ICU care to more
locations is a cost factor and HRV analysis together with automated medical decision support might
be a way of accomplishing a higher level of care with the same resources. The second point about
extending ICU care over time is an attempt to improve ICU care itself. Monitoring a patient over
time allows us to establish a trend that can be instrumental when it comes to intervention decisions
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Figure 11: Box plot of achieved accuracy for the individual application areas.

[17, 18]. Indeed, this is where extending ICU care in time becomes intertwined with extending it
in terms of location. For example, it might be possible to monitor heart rate in an ambulance and
through wireless and cloud technology establish the patient condition which can be monitored at the
hospital. From a more abstract perspective, it is the low data rate that makes heart rate signals
very easy to communicate, process, and store. In this case, very easy implies cost and convenience
benefits. These are certainly the drivers behind the monitoring application area.

Having three studies dedicated to diabetes detection indicates that there is a strong link between
this disease and HRV analysis [30]. This link is less pronounced for oncology applications, which
is expressed by the relatively small number of studies that were dedicated to that application area.
Similarly, for the brain application area, the number of studies found was also only three, which
indicates that it is di�cult to exploit the link between brain processes and HRV.

Each application area has specific limitations. The reviewed scientific studies contribute by
proposing application area-specific decision support. Thereby, they overcome or at least reduce some
of the specific limitations. These individual improvements have the potential to create progress for
the entire field of HRV analysis. However, general limitations exist, and addressing them might
require a concerted e↵ort. The next section introduces these general limitations.

5.1. Limitations

HRV reflects the health of a person, hence having a normal heart rate signal implies perfect
health. As the body ages, this becomes harder to achieve because some physiological processes
might operate outside normal parameters, due to impending age-related diseases. The task for
computer-aided diagnosis systems is to determine the cause of the HRV changes and thereby provide
medically relevant information. The situation gets even more complex when more than one condition
is present. In such comorbid cases, the HRV changes caused by one disease might overshadow the
changes caused by another. Even if this is not the case, there is currently limited knowledge on how
to discriminate the HRV changes from two or more diseases.

The transition from classical machine learning to deep learning has profound technical and eth-
ical implications. The absence of feature engineering allows deep learning methods to extract more
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Figure 12: Medical decision support algorithm and maximum accuracy achieved for cardiology sub-categories.

Figure 13: Maximum accuracy achieved for the mental health sub-categories.

transferable knowledge from a given dataset. However, machine learning techniques are more ex-
plainable when compared to deep learning techniques. The lack of explainability implies that the
decision might not make sense to a human observer. This creates an ethical problem, especially
for medical applications because diagnosis support systems should be accountable for the provided
service. Traditionally, accountability is established through the explainability of actions. Following
that logic, less explainability leads to less accountability. This is a considerable hurdle to the future
development of deep learning models, notwithstanding the burgeoning research interest and good
classification performance.

There are several barriers when it comes to building learning HRV analysis systems. During
the design phase, it is di�cult to assess the progress of a learning system. Currently, AI systems
are assessed by comparing disease detection results from an AI algorithm with the detection results
from human experts, which is not always perfect. So long as human diagnosis remains the reference
standard, AI cannot transcend the limits of human knowledge and expertise in medical decision
support systems.

Another limitation for learning systems arises from the practicalities of working with big data.
Our working hypothesis is that there exist patterns in the HRV signals from a large number of
patients that can reveal insights into disease development, disease risk stratification, and disease
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prediction. In truth, the emergence of a specific pattern in big data is likely chaotic, implying a
threshold, say the number of patients, where a specific pattern is not visible. This is an additional
unknown that renders specific study setups vague and unclear. In short, such studies will encounter
di�culties to explain what they are looking for and where they are looking for it. Therefore, we
envision that learning systems will emerge as a side product of working with large quantities of heart
rate data. As an analogy, the closest systems that are currently implemented are customer profiling
algorithms from social media companies. The customer-facing application enables these companies
to accrue learning systems for customer analysis. If this notion that big data analytics is a side
product that is best enabled by another fronting application is accurate, this will pose a significant
barrier to big data research on HRV. Namely, the availability, processability, and real-time nature
of the data. Companies and institutions that collect large volumes of heart rate data are most likely
not willing to share or are constrained from sharing these data. Hence, actively designing learning
systems might only be possible in a commercial setting with explicit consumer consent on the terms
of use, including commercialization, which is not always possible in the healthcare setting.

5.2. Future work

Future work should go beyond merely addressing the limitations of current systems with refine-
ment of technologies or methods. We must build a bridge that leads into a future where heart rate
is routinely measured in an unobtrusive way convenient for patients and healthy people alike. We
believe that data gathered from heart rate measurements can benefit a wide range of individuals.
Indeed, we predict that pervasive use of physiological measurements, chief among them heart rate
capturing, will blur the distinctions of what it means to be healthy and diseased, with actionable
thresholds for preventive interventions along the feature continuum.

In our review, we have identified 15 application areas where HRV analysis can help to address
specific medical needs. Looking beyond the individual areas and indeed beyond the individual prob-
lem solutions, we recognize that the signal acquisition step is common to all these applications. The
algorithms, incorporated for medical decision support, are distinct for individual application areas.
Having common and distinct functionalities are the hallmarks of product and indeed service plat-
forms. In the future, such platforms will allow us to repurpose common functionalities, especially
those that establish signal acquisition, communication, and storage, for new and innovative services
at scale. By o↵ering multiple services with a common infrastructure, we can exploit the economies
of scale to bring down the cost of individual services. We envision that there will be low-hanging
fruits with proven clinical value, such as ambulatory detection of atrial fibrillation detection, that will
help to solidify the base of the common infrastructure. Once that infrastructure is in place and the
number of users grows, there will be opportunities for more innovative service o↵erings to capitalize
on the network e↵ect where more users will spark more services, which in turn brings down the cost
for the individual services, thus creating a virtuous cycle.

The service design principle might also unlock the problem of analyzing HRV from comorbid
patients because it allows us to individualize the service functionality. Having cost-e�cient signal
acquisition, communication, storage, and processing allows us to monitor such patients over long-
time durations. That means each patient has a heart health record that holds significant information
for individualized health assessment and prognosis. Based on this individualized assessment it might
be possible to optimize interventions that improve outcomes for comorbid patients.

Collecting large volumes of heart rate data with unobtrusive measurements opens up the oppor-
tunity to learn from data itself. Currently, our HRV-based medical decision support methods merely
reflect the knowledge of human experts. To be specific, we train and test AI algorithms with data
that have been labelled by human experts. In the future, it might be possible to mine knowledge
from the data itself. This will automate the knowledge creation process. Automated knowledge cre-
ation might fill the gaps in our understanding of the relationship between HRV and the physiological
processes that influence heart rhythm. Having such a holistic approach can potentially enhance the
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power of disease prediction and long-term prognostication.

6. Conclusion

HRV is a good predictor of human health. During our review, we found strong support for
this statement. With a structured literature search, on the four most common scientific paper
databases, we curated 130 manuscripts. These papers formed the basis of our expert review on HRV
for healthcare systems. During this step, the main achievement was to identify 15 distinct application
areas for HRV. Identifying both information pathways from the patient to the physician and decision
support technologies used was a corollary activity. Having that understanding of application areas
and the technologies used in the studies, enabled us to create a framework with which we could
categorize the papers.

In this review, we show that HRV analysis continues to attract and indeed fascinate a wide
range of researchers. This continued interest might be sparked by the fact that HRV analysis seems
rather unpretentious and explainable – it reflects the pumping activity of the heart. However, as
the research progresses boundaries of understanding emerge, and more knowledge is needed to cross
them. Indeed, the need to create more knowledge is another significant driver for the continued
interest in HRV for healthcare systems. This knowledge creation is intricately intertwined with
technological progress. Our current understanding is that big data and AI algorithms will result in
breakthroughs for HRV-based healthcare technology. Initially, these breakthroughs might be rather
theoretical, but HRV analysis is a very practical topic and new knowledge will inevitably lead to new
healthcare systems. This practicality results in part from the signal intelligibility and the low data
but high information rate. It can be noted from this review, in the future there will be more studies
using HRV as a base signal to improve the quality of life.

7. Acronyms

ACC Accuracy
AE Autoencoder
ANFIS Adaptive Network-based Fuzzy Inference System
ANN Artificial Neural Network
ANOVA Analysis Of Variance
AI Artificial Intelligence
ARMAX Auto-regressive Moving Average with Exogenous Inputs
CART Classification And Regression Tree
CNN Convolutional Neural Network
DT Decision Tree
ECG Electrocardiogram
EEG Electroencephalogram
ELM Extreme Learning Machine
GB Gradient Boosting
GPC Gaussian Process Classification
HRV Heart Rate Variability
ICU Intensive Care Unit
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
LR Logistic Regression
MLP Multilayer Perceptron
PLS-DA Partial Least Squares Discriminant Analysis
PNN Probabilistic Neural Network
PPG Photoplethysmogram
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RF Random Forest
RNN Recurrent Neural Network
RTF Recurrent Neural Network
SC Statistical Classifier
SVM Support Vector Machine
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Appendix A. Mapping research studies onto application areas

Table A.2: Cardiology related studies.

Author, Year Objective Approach Dataset ACC
(%)

Pecchia et al.,
2010 [44]

Chronic heart failure
detection

CART 83 subjects 96.40

Jovic et al., 2011
[45]

Patient type
classification

RF 100
subjects

99.70

Joo et al., 2012
[46]

Ventricular
tachyarrhythmia

prediction

ANN 258 records 92.20

Mohebbi et al.,
2012 [47]

Atrial fibrillation
prediction

SVM 106
segments

92.86

Melillo et al.,
2013 [48]

Congestive heart failure
detection

CART 41 partici-
pants

85.40
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Liu et al., 2014
[49]

Premature heartbeat
detection

ANN 134
recordings

98.90

Poddar et al.,
2015 [50]

Coronary artery disease
detection

SVM 124
subjects

91.67

Fujita et al., 2016
[51]

Sudden cardiac death
prediction

SVM 41 subjects 94.70

Raj et al., 2016
[52]

Arrhythmia detection SVM 47 subjects 99.18

Faust et al., 2018
[53]

Atrial fibrillation
detection

RNN 47 subjects 99.77

Singh et al., 2019
[54]

Arrhythmia detection ANN 48 subjects 97.13

Jovic et al., 2019
[55]

Congestive heart failure
detection

RTF 108
subjects

90.70

Hu et al., 2019
[56]

Congestive heart failure
detection

SVM 83 subjects 96.70

Qu et al., 2019
[57]

Congestive heart failure
detection

SVM 29 subjects 84.00

Kong et al., 2019
[58]

Atrial fibrillation
detection

Probabilistic
SVM

1960
subjects

98.16

Wang et al., 2019
[59]

Congestive heart failure
detection

SC 156 99.85

Chen et al., 2019
[60]

Arrhythmia detection Hybrid 47 subjects 96.62

Agliari et al.,
2020 [61]

Cardiac pathology
detection

ANN 2829
patients

85.00

Zhang et al., 2020
[62]

Cardiovascular disease
prediction

Boosting 2111
subjects

75.30

Yan et al., 2020
[63]

Cardiovascular event
prediction

Boosting 2442
subjects

81.40

Silveri et al., 2020
[64]

Dilated cardiomyopathy
detection

CART 972
subjects

97.00

Shi et al., 2020
[65]

Beat classification Hybrid 47 subjects 99.26

Taye et al., 2020
[66]

Ventricular
tachyarrhythmia

prediction

CNN 261
subjects

84.60

Sanjana et al.,
2020 [67]

Tachycardia detection RNN 8642
records

96.47

Romdhane et al.,
2020 [68]

Deep learning method
for arrhythmia detection

CNN 47 subjects 98.41

Chen et al., 2020
[69]

Arrhythmia detection Hybrid 47 subjects 99.56

Rieg et al., 2020
[70]

Arrhythmia detection DT 10,646
patients

95.35

Hirsch et al., 2020
[71]

Atrial fibrillation
detection

RF 23 subjects 97.40

29



Martinez-Alamis
et al., 2020 [72]

Sudden cardiac death
risk prediction

SVM 91 patients 86.00

Sharma et al.,
2020 [73]

Arrhythmia detection RNN 47 subjects 90.07

Buscema et al.,
2020 [74]

Atrial fibrillation
detection

ANN 73 patients 95

Fujiwara et al.,
2021 [75]

Extrasystole detection AE 18 partici-
pants

96

Jeong et al., 2021
[76]

Ventricular fibrillation
prediction

ANN 118
subjects

88.64

Silva-Filho et al.,
2021 [77]

Myocardial infarction
prediction

Boosting 218
subjects

96.00

Castro et al.,
2021 [78]

Atrial fibrillation
prediction

KNN 100
subjects

93.24

Alkhodari et al.,
2021 [79]

Left ventricular ejection
fraction level detection

RF 142
subjects

70.00

Selek et al., 2021
[80]

Congestive heart failure
detection

RF 83 subjects 100.00

Parsi et al., 2021
[81]

Atrial fibrillation
prediction

SVM 75 subjects 97.70

Saiz-Vivo et al.,
2021 [82]

Atrial fibrillation
detection

SVM 74 subjects 82.00

Mandal et al.,
2021 [83]

Prediction of atrial
fibrillation

SVM 25 patients 99.11

Gan et al., 2021
[84]

Arrhythmia detection Hybrid 47 subjects 99.44

Faust et al., 2021
[85]

Arrhythmia detection CNN 10,646
patients

98.37

Pandey et al.,
2021 [86]

Heartbeat classification Hybrid 48
recordings

98.58

Ivaturi et al.,
2021 [87]

Atrial fibrillation
detection

CNN 8,528
recordings

84.93

Wang et al., 2021
[88]

automatic ECG
classification method

CNN 47 subjects 98.74

Li et al., 2021 [89] Coronary heart disease
detection

CNN 106
patients

68.15

Murawwat et al.,
2021 [90]

Arrhythmia detection ANN 7 subjects 89.80

Xu et al., 2021
[91]

Heartbeat classification ELM 47 subjects 98.61

Keidar et al.,
2021 [92]

Atrial fibrillation
detection

DT 25
recordings

97.8

Lee et al., 2021
[93]

Smart scale KNN 56 subjects 98.90

Faust et al., 2021
[94]

Arrhythmia detection CNN 10,646
patients

99.98

Gupta et al., 2021
[95]

Burnout detection SC 1615 par-
ticipants

77.00
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Dias et al., 2021
[96]

Arrhythmia detection LDA 48
recordings

93.40

Table A.3: Addiction or Drug Abuse related studies.

Author, Year Objective Approach Dataset ACC
(%)

Nayak. et al.,
2020 [28]

Cannabis consumption
e↵ects analysis

Boosting 200 participants 66.50

Pop et al., 2021
[29]

Alcohol impact on the
autonomic nervous

system

Boosting 142 participants 88.50

Table A.4: Blood pressure related studies.

Author, Year Objective Approach Dataset ACC
(%)

Tajera et al., 2011
[97]

Pregnancy type
classification

ANN 217 partici-
pants

80.00

Ji et al., 2013 [19] Hypovolemia detection SVM 87 partici-
pants

89.10

Zhang et al., 2019
[20]

Hypertension prediction RF 209 partici-
pants

86.44

Alkhodari et al.,
2020 [21]

Hypersensitivity
detection

Boosting 139
patients

97.08

Table A.5: Brain related studies.
Author, Year Objective Approach Dataset ACC

(%)

Verde et al., 2019
[98]

Carotid disorder
classification

ANN 126 partici-
pants

90.50

Megjhani et al.,
2020 [99]

Neurocardiogenic injury
detection

LR 382 partici-
pants

86.00

Odenstedt Hergès
et al., 2021 [100]

Cerebral ischemia
detection

RF 48 partici-
pants

71.00

Table A.16: Mental health related studies.

Author, Year Objective Approach Dataset ACC
(%)

Patel, 2011 [136] Driver fatigue detection ANN 12 partici-
pants

90.00

Valenza et al.,
2014 [137]

Depression
characterisation

ANN 5 partici-
pants

99.56

Bilgin, 2015 [138] Anxiety level detection ANN 90 partici-
pants

91.11
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Nardelli et al.,
2015 [139]

Emotion recognition SC 27 subjects 84.72

Liew et al., 2015
[140]

Stress detection SC 22 subjects 80.00

Goshvapour et
al., 2017 [141]

Emotion discrimination PNN 47 partici-
pants

97.45

Peláez et al., 2018
[142]

Stress identification DT 50 subjects 93.00

Posada-Quintero
et al., 2019 [143]

Cognitive task
identification

KNN 16 partici-
pants

66.00

Byun et al., 2019
[144]

Depression detection SVM 78 subjects 74.40

Byun et al., 2019
[145]

Depressive detection SVM 66 partici-
pants

70.00

Moridani et al.,
2020 [146]

Stress classification CNN 20 partici-
pants

98.00

Persson et al.,
2020 [147]

Driver alertness
detection

RF 86 subjects 85.00

Coutts, 2020 [148] Stress level detection RNN 1652 par-
ticipants

85.00

Zontone et al.,
2020 [149]

Driver stress detection SVM 14 subjects 88.40

Juarascio et al.,
2020 [150]

Emotional eating risk
detection

SVM 21 partici-
pants

77.99

Frasch et al., 2021
[151]

Autism detection Boosting 69 partici-
pants

59.00

Jin et al., 2021
[152]

Stress detection CNN 56 partici-
pants

98.20

Chung, 2021 [153] Emotion classification PLS-DA 239
subjects

65.00

Borisov et al.,
2021 [154]

Cognitive load
classification

SC 23 partici-
pants

66.00

Idrobo-Ávila,
2021 [155]

Heart stimuli analysis RF 26 subjects 93.00
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Table A.6: Comorbid related studies.
Author, Year Objective Approach Dataset ACC

(%)

Melillo et al.,
2015 [23]

Cardiovascular and
cerebrovascular event

prediction

RF 139
patients

89.00

Shao et al., 2020
[24]

Cardiovascular and
cerebrovascular event

prediction

SVM 139
patients

88.31

Alkhodari et al.,
2021 [101]

Neuropathy detection CNN 100
subjects

98.50

Table A.7: Diabetes related studies.
Author, Year Objective Approach Dataset ACC

(%)

Seyd et al., 2012
[102]

Diabetes detection ANN 135
subjects

93.08

Pachori et al.,
2016 [103]

Diabetes detection SVM 30 partici-
pants

95.63

Swapna et al.,
2018 [104]

Diabetes detection SVM 20 subjects 95.70

Rathod et al.,
2021 [105]

Diabetes detection CART 213
subjects

84.04

Shashikant et al.,
2021 [106]

Diabetes risk prediction GPC 135 partici-
pants

92.59

Table A.8: Epilepsy related studies.

Author, Year Objective Approach Dataset ACC
(%)

Sung et al., 2020
[34]

Seizures detection SVM 20 patients 82.00

Fang et al., 2021
[35]

Vagus nerve stimulation
outcome prediction

SVM 109
subjects

74.60

Table A.9: ICU-setting related studies.

Author, Year Objective Approach Dataset ACC
(%)

Liu et al., 2011
[107]

Outcome prediction SVM 100
subjects

78.32

Liu et al., 2015
[108]

Mortality prediction LR 108
patients

80.00

Nagaraj et al.,
2017 [109]

Sedation detection SVM 70 subjects 75

Oh et al., 2018
[17]

Delirium detection SVM 140
subjects

75.88

Zhan et al., 2021
[110]

Anaesthesia detection ANN 23 patients 90.10
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Table A.10: Infant related studies.
Author, Year Objective Approach Dataset ACC

(%)

Lewicke et al.,
2012 [36]

Cardiorespiratory event
prediction

SVM 1079
subjects

77.80

Herry et al., 2021
[37]

Zika virus detection SVM 21 subjects 92.00

Table A.11: Lifestyle related studies.

Author, Year Objective Approach Dataset ACC
(%)

Chiu et al., 2016
[111]

Music selection DT 30 subjects 76.67

Botsva et al.,
2017 [112]

Predictors of aging ANN 22,433 par-
ticipants

87.00

Matta et al., 2018
[113]

Activity state detection ANN 31 partici-
pants

88.70

Goshvarpour et
al., 2018 [114]

Psychological state
detection

PNN 23 subjects 100.00

Singh et al., 2018
[115]

Age detection SVM 40 subjects 99.71

Mashhadimalek et
al., 2019 [116]

Well-being level
detection

DT 31 partici-
pants

80.64

Table A.12: Monitoring related studies.

Author, Year Objective Approach Dataset ACC
(%)

Choi et al., 2011
[117]

Stress monitoring ARMAX 4 subjects 72.00

Jaros et al., 2019
[118]

Fetal hypoxia detection ANFIS 37 subjects 99.69

Boujnouni et al.,
2019 [119]

HRV prediction RNN 1 subject -

Kim et al., 2019
[120]

Biometric authentication DT 70 samples 95.00

Quintanar-Gómez
et al., 2021 [121]

Blood pressure detection ANN - -

Table A.13: Oncology related studies.

Author, Year Objective Approach Dataset ACC
(%)

Shukla et al.,
2018 [25]

Lung cancer prognosis SVM 134
subjects

100.00

Shukla et al.,
2018 [26]

Pulmonary metastases
prognosis

SVM 54 subjects 100.00

Shukla, 2018 [27] Lung cancer prognosis SVM 134
subjects

100.00
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Table A.14: Respiratory related studies.

Author, Year Objective Approach Dataset ACC
(%)

Rahman, 2019
[32]

Pulmonary assessment Boosting 131
subjects

82.00

Reljin et al., 2020
[33]

Lung fluid accumulation
detection

SVM 52 subjects 92.00

Table A.15: Sleep health related studies.

Author, Year Objective Approach Dataset ACC
(%)

Uçar et al., 2016
[122]

Sleep staging SVM 10 patients 80.00

Malik et al, 2018
[123]

Sleep-wake classification CNN 56 partici-
pants

91.90

Nakayama et al.,
2019 [124]

Apnea detection CART 61 partici-
pants

85.00

Wang et al., 2019
[125]

Rapid eye movement
detection

RF 45 partici-
pants

84.00

Bozkurt et al.,
2019 [126]

Apnea prediction SC 10 partici-
pants

93.81

Wang et al., 2019
[127]

Predict sleep apnea CNN 10 partici-
pants

94.40

Haghayegh et al.,
2020 [128]

Sleep staging CNN 1839 par-
ticipants

84.50

Fonseca et al.,
2020 [129]

Sleep staging RNN 291 partici-
pants

75.90

Chen et al., 2020
[130]

Sleep-wake detection RNN 11 subjects 96.40

Faust et al., 2020
[15]

Apnea detection RNN 35
recordings

99.80

Mart́ın-Montero
et al., 2020 [131]

Apnea detection ANN 1738 par-
ticipants

91.70

Singh et al., 2020
[132]

Apnea detection SVM 35
recordings

81.06

Shen et al., 2021
[133]

Apnea detection CNN 16988 par-
ticipants

89.40

Ye et al., 2021
[134]

Apnea detection CNN 35
recordings

99.22

Goldammer et al.,
2021 [135]

Sleep staging Hybrid 5036
subjects

88.89
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