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Optimal Seeding in Large-Scale Super-Modular Network Games

Sebastiano Messina, Leonardo Cianfanelli, Giacomo Como, and Fabio Fagnani

Abstract— We study optimal seeding problems for binary
super-modular network games. The system planner’s objective
is to design a minimal cost seeding guaranteeing that at least
a predefined fraction of the players adopt a certain action in
every Nash equilibrium. Since the problem is known to be NP-
hard and its exact solution would require full knowledge of
the network structure, we focus on approximate solutions for
large-scale networks with given statistics. In particular, we build
on a local mean-field approximation of the linear threshold
dynamics that is known to hold true on large-scale locally tree-
like random networks. We first reduce the optimal intervention
design problem to a linear program with an infinite set of
constraints. We then show how to approximate the solution
of the latter by standard linear programs with finitely many
constraints. Our solutions are then numerically validated.

I. INTRODUCTION

Designing interventions by a central planner in order to
modify the outcomes of a network game and steer them to-
wards a socially desirable objective is a fundamental problem
in many multi-agent systems. Applications in socio-technical
systems are countless, ranging from pricing and toll design
in transportation and energy networks to viral marketing in
social networks. The optimal intervention design problem
for network games is known to be challenging since an
intervention on a single individual or on a group of them
has direct and indirect effects on all the others. Such spill-
over effects depend both on the geometry of the network and
on the type of influence mechanisms that individuals’ actions
have on their neighbors’ utilities (e.g., strategic complements
vs strategic substitutes) [1]–[3]. Especially over the past
two decades, a large body of literature has in particular
highlighted the role of network centrality measures in order
to determine the network nodes that the intervention should
target in order to optimize its effect [4]–[6].

Particularly when dealing with large-scale network games,
a central planner faces two key challenges in designing
interventions. First, optimal intervention strategies do not
scale well with the network size: e.g., many formulations
of optimal seeding problems are NP-hard, so that one is led
to seeking approximating algorithms for their sub-optimal
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solution [7]–[10]. Second, full information on the network
structure is often not available to the planner as it is either too
expansive to collect or severely constrained by proprietary
and privacy issues. In these cases, the central planner might
rely on a (random) network model that matches the available
information (e.g., some statistics) on the network and use this
to design the intervention, see, e.g., [11].

In this paper, we focus on optimal seeding in large-
scale super-modular network games with binary action sets
[9] and on the related linear-threshold dynamics [12], that
have received a large amount of attention, since the seminal
work [7]. Specifically, we study the problem of finding a
minimal cost seeding that guarantees that at least a predefined
fraction of the players adopt a certain action in every Nash
equilibrium. Building on the local mean-field approximation
of the linear threshold dynamics on the configuration model
random graph [13], we set up an optimization problem that
depends only on the network statistics. We show that such
optimization problem turns out to be a linear program with an
infinite set of constraints. We then show how to approximate
the solution by standard linear programs with finitely many
constraints. Our solutions are then validated on both random
and deterministic networks.

The paper is organized as follows. Section II formulates
the optimal seeding problem. In Section III, we formulate
an approximated problem for large-scale networks. Section
IV illustrates how to reduce the optimization problem to a
linear problem with finite number of constraints. Section V
presents some numerical experiments.

Notation The all-one and all-zero vectors are denoted by
1 and 0, respectively. Inequalities between vectors are meant
to hold entry-wise.

II. OPTIMAL SEEDING PROBLEM

We model networks as finite directed multi-graphs N =
(V, E , θ, λ), where V is the node set, E is the set of directed
links, and θ : E → V and λ : E → V are the maps associating
to each link its tail and head node, respectively. Let n =
|V| be the network order, and A in RV×V be the adjacency
matrix, with entries Aij = |{e ∈ E : θ(e) = i, λ(e) = j}|.
Let κ = A1 and δ = A′1 denote the out- and in-degree
vectors, respectively. We assume that N contains no self-
loops, i.e., θ(e) 6= λ(e) for every e in E .

Given a network N = (V, E , θ, λ), we consider binary-
action semi-anonymous (BASA) games G on N [14]–[16],
i.e., strategic games with player set V , whereby every player
i in V has action set A = {0, 1} and utility function

ui(xi, x−i) = fi

(
xi,
∑

j
Aijxj

)
, ∀x ∈ X , (1)



where fi : A×Z+ → R and X = AV is the strategy profile
space. We shall further assume that the function

gi : Z→ R , gi(s) = fi (1, s)− fi (0, s) , (2)

returning the net utility gain of a player i, when unilaterally
switching from action 0 to action 1, is non-decreasing in
the number s =

∑
j Aijxj of her out-neighbors that are

playing action 1. For BASA games, this is equivalent to the
so-called increasing difference property, hence to their super-
modularity [9]. Thus, we refer to BASA games such that
gi(s) defined in (2) is non-decreasing as BASASM games.

We shall consider interventions consisting in the choice of
a seeding, i.e., a subset of nodes S ⊆ V that are forced to
play action 1 regardless of the action of the other players.
Formally, for S ⊆ V , we consider the seeded game GS where
players j in S have utility function uj(xj , x−j) = xj and
the rest of the players i in V \ S have utility function as in
(1). A Nash equilibrium for the seeded game GS is a strategy
profile x∗ in X such that

x∗j = 1, ∀j ∈ S, ui(x
∗
i , x
∗
−i) ≥ ui(1−x∗i , x∗−i), ∀i ∈ V\S.

The set of Nash equilibria of the seeded game GS is denoted
by X ∗S . The following result states that the best response
correspondence admits a threshold structure, and that a
minimal Nash equilibrium of GS exists for every S ⊆ V .

Lemma 1: For a BASASM game G on a network N , let

ρi=

{
−1 if gi(0)>0

max{s∈{0, . . . , κi} : gi(s) ≤ 0} if gi(0)≤0
(3)

for every player i in V . Then:
(i) the utility of a player i in V sastisfies

ui(1, x−i) > ui(0, x−i) , (4)

if and only if ∑
j
Aijxj > ρi ; (5)

(ii) for every seeding S ⊆ V there exists a minimal Nash
equilibrium of GS , i.e., xS in X ∗S such that xS ≤ x∗

for every other Nash equilibrium x∗ in X ∗S .
Proof: (i) It is immediate from (1) and (2) that (4) is

equivalent to gi(
∑
j Aijxj) > 0. Since gi is non-decreasing,

this is in turn equivalent to (5).
(ii) That gi(s) is non-decreasing for every i in V implies

super-modularity of the seeded game GS , for every S ⊆ V .
Existence of a minimal Nash equilibrium xS then follows
from standard results for super-modular games [9], [17].

Remark 1: Lemma 1 implies that the minimal Nash equi-
librium xS of the seeded game GS only depends on the
network N , the threshold vector ρ, and the seeding S.
Clearly, if ρ = −1, then x∅ = 1. Notice that including a
player i in the seeding S effectively amounts to replacing its
threshold ρi with a new value ρi = −1 and that xV = 1.

We can now formulate our optimal seeding problem. Let
γi ≥ 0 be the cost associated to including a player i in the
seeding S. Without loss of generality (c.f., Remark 1), we
assume that γi = 0 for every i such that ρi = −1. For a

given tolerance value ε in [0, 1], we seek a seeding S of
minimal aggregate cost guaranteeing that

1

n

∑
i∈V

xSi ≥ 1− ε , (6)

i.e., that the minimal Nash equilibrium of the seeded game
GS has all but at most a fraction ε of players playing action 1.
Hence, we are interested in following optimization problem

min
∑
i∈S

γi : S ⊆ V s.t. (6) . (7)

Observe that (7) is always feasible since xV = 1 (c.f. Remark
1), so that (6) is always satisfied by S = V .

Observe that an instance of the optimal seeding problem
(7) is fully specified by the choice of the tolerance value
ε and the triple (N , ρ, γ) of the network N , the threshold
vector ρ, and the cost vector γ. It will prove convenient to
associate to every player i a type ωi that uniquely determines
its in-degree δi, out-degree κi, threshold ρi, and associated
cost γi. Let Ω be a countable universe of types and let
d, k, r, c in RΩ be such that

dωi
= δi , kωi

= κi , rωi
= ρi , cωi

= γi , ∀i ∈ V .

We shall refer to the empirical distribution of types, i.e., the
probability distribution p on Ω with

pw = |{i ∈ V : ωi = w}|/n , ∀w ∈ Ω , (8)

as the statistics of the problem.

A. Optimal seeding in network coordination games

In this subsection, we focus on network coordination
games [18], [19] showing how they fit in our setting as
a special case. Given a network N with node set V and
adjacency matrix A, and a vector b in RV , the coordination
game on N with bias b is the strategic game with player set
V , binary action set A = {0, 1}, and utility function

ui(xi, x−i) =
∑
j∈V

Aij (xixj + (1− xi)(1− xj)) + bixi ,

for every player i in V . Observe that the utility function
above can be rewritten in the form (1) with

fi(1, s) = s+ bi , fi(0, s) = κi − s .

Clearly, we have that

gi(s) = fi (1, s)− fi (0, s) = 2s+ bi − κi

is increasing in s and the threshold values are given by

ρi = min{max{−1, b(κi − bi)/2c}, κi} ,

for every player i in V .
Example 1: Consider the network coordination game G on

the network N displayed in left of Figure 1(a) with bias b =
0. The in- and out-degree vectors are δ = (2, 2, 2, 5, 3, 3, 2)
and κ = (1, 3, 3, 4, 3, 3, 2), respectively, while the threshold
vector is ρ = (0, 1, 1, 2, 1, 1, 1). Let the cost vector be γ =
(2, 1, 1, 4, 1, 1, 2) and set the tolerance value ε in [0, 1/7).
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Fig. 1. The network of Example 1.

Then, S∗ = {2, 3, 5} (see Figure 1(b)) can be shown to
be an optimal seeding with aggregate cost 3 (also {2, 3, 6},
{2, 5, 6}, and {3, 5, 6} are optimal seedings). On the other
hand, S = {4} (see Figure 1(c)) satisfies (6), however its cost
is 4, hence it is not an optimal seeding. Finally, notice that
nodes can be grouped into five different types by defining
Ω = {A,B,C, . . . }, d = (2, 2, 5, 3, 2), k = (1, 3, 4, 3, 2),
r = (0, 1, 2, 1, 1), and c = (2, 1, 4, 1, 2). The type vector is
then ω = (A,B,B,C,D,D,E) and the problem statistics
are p = (1, 2, 1, 2, 1)/7.

III. OPTIMAL SEEDING IN LARGE-SCALE NETWORKS

Exactly solving the optimal seeding problem (7) is known
to be NP-hard [7], [9]. Our approach consists in first provid-
ing an equivalent dynamical representation of the constraint
(6), then approximating such dynamics by local mean-field
techniques, in the spirit of [13], and finally re-formulating
the optimization in this framework. Besides simplifying the
analysis, the main advantage of our approach is to allow the
design of optimal interventions for families of large-scale
networks with given statistics, without requiring full network
knowledge.

A. Equivalence with seeded linear threshold dynamics

Given a BASASM game on a network N and a seeding
S ⊆ V , consider the following discrete-time seeded linear
threshold dynamics on the strategy profile space X :

x(t+ 1) = ΦS(x(t)) , t ≥ 0 , (9)

where ΦS : X → X is the map defined by

(ΦS(x))i =

{
1 if i ∈ S or

∑
j Aijxj > ρi

0 if i /∈ S and
∑
j Aijxj ≤ ρi ,

and ρi are the threshold values defined in (3), for every i in
V . Then, we have the following result.

Proposition 1: Given a BASASM game on a network N
and a seeding S ⊆ V , equation (6) holds true if and only if
the seeded linear threshold dynamics (9) is such that

1

n

∑
i∈V

xi(t) ≥ 1− ε , ∀ t ≥ n , (10)

for every x(0) in X .
Proof: (6)⇒(10) Since ΦS : X → X is monotone non-

decreasing and ΦS(0) ≥ 0, an induction argument shows
that, if x(0) = 0, then x(t + 1) ≥ x(t) for every t ≥ 0.
Hence, if x(0) = 0, then x(t) converges to a fixed point
x∗ = ΦS(x∗) in at most n steps. Now, notice that every
fixed point x∗ = ΦS(x∗) is a Nash equilibrium of GS , so

that x∗ ≥ xS . Hence, (6) implies that (10) holds true when
x(0) = 0. Since ΦS : X → X is monotone non-decreasing,
(10) holds true for all x(0) in X .

(10)⇒(6) Observe that ΦS(x∗) ≤ x∗ for every x∗ in X ∗S .
Hence, ΦS(xS) ≤ xS . Since ΦS : X → X is monotone
non-decreasing, an induction argument shows that, if x(0) =
xS , then x(t + 1) ≤ x(t) for all t ≥ 0. Hence, if x(0) =
xS , then x(t) converges in at most n steps to a fixed point
x∗ = ΦS(x∗) ≤ xS . Then, (10) with x(0) = x∗ implies that
1
n

∑
i x
S
i ≥ 1

n

∑
i x
∗
i ≥ 1− ε , so that (6) holds true.

Proposition 1 states that a seeding S ⊆ V is such that
in the minimal Nash equilibrium of the seeded game GS at
most a fraction ε of players play action 0, if and only if the
state x(t) of the seeded linear threshold dynamics (9) has at
most a fraction ε of entries equal to 0 for every initial state
x(0) in X and time t ≥ n.

B. Mean-field approximation of linear threshold dynamics

In order to sample uniformly from the set of problems
with the same statistics we introduce the following notions.
For a probability distribution p on Ω and f in RΩ

+, let

〈p, f〉 =
∑
w∈Ω

pwfw ∈ [0,+∞] .

be the expected value of f with respect to p.
Now, notice that, for a given probability distribution p on

Ω and finite set V of cardinality n = |V|, a type vector ω in
ΩV whose empirical distribution is p exists if and only if

npw ∈ Z+ ∀w ∈ Ω . (11)

Moreover, for a network N to exist with node set V and in-
and out-degrees δi = dωi

and κi = kωi
for all i in V , it is

necessary and sufficient that

〈p, d〉 = 〈p, k〉 , (12)

dw + kw ≤ n〈p, d〉 , ∀w ∈ Ω : pw > 0 . (13)

In fact, (12) guarantees that the total out-degree equals the
total in-degree, whereas (13) ensures that a wiring exists that
does not create any self-loops. We shall refer to the pair
(p, n) of a probability distribution p on Ω and a positive
integer n as compatible if conditions (11)–(13) are satisfied.

For a consistent pair (p, n), the following definition for-
malizes the idea of sampling uniformly from the set of
problems with statistics p and order n.

Definition 1: Let V = {1, . . . , n} and let ω in ΩV have
empirical distribution p. Let l = n〈p, d〉 and E = {1, . . . , l}.
Define θ : E → V by letting θ(e) in V be the unique value
such that

∑θ(e)−1
i=1 wi < e ≤

∑θ(e)
i=1 wi, for all e in E . Let

λ : E → V , λ(e) = θ(π(e)) for e in E , where π is sampled
uniformly from the set of permutations of E such that

θ(e) 6= θ(π(e)) , ∀e ∈ E . (14)

Then, the (resampled) configuration model Cn,p is the triple
(N , ρ, γ) of the random network N = (V, E , θ, λ), the
threshold vector ρ, and the cost vector γ with entries ρi =
rwi

and γi = cwi
, respectively, for all i in V .



We shall now prove that, with high probability, a random
problem sampled from the configuration model Cn,p can be
well approximated by a deterministic linear program. Let

ϕkr(z) =

k∑
u=r+1

(
k

u

)
zu(1− z)k−u, ∀ − 1 ≤ r ≤ k .

Then, define the maps ψp, φp : [0, 1]→ [0, 1] as

ψp(z) =
∑
w∈Ω

pwϕkwrw(z) ,

φp(z) =
1

〈p, d〉
∑
w∈Ω

pwdwϕkwrw(z) .

We can now formalize the following result.
Theorem 1: Let p be a probability distribution on Ω whose

moments 〈p, d〉, 〈p, k〉, 〈p, d2〉, and 〈p, k2〉 are all finite. Let
(pn, n) be a sequence of compatible pairs such that

pnw
n→+∞−→ pw , ∀w ∈ Ω , 〈pn, d〉 n→+∞−→ 〈p, d〉 ,

〈pn, d2〉 n→+∞−→ 〈p, d2〉 , 〈pn, k2〉 n→+∞−→ 〈p, k2〉 .

If
φp(z) > z, ∀z ∈ [0, ψ−1

p (1− ε)] , (15)

then, for every ε > 0, (6) holds true on the resampled
configuration model Cpn,n with probability converging to 1
as n grows large.

Proof: Let ν = 〈p, dk〉/〈p, d〉 − 1. Finiteness of the
first and second moments of p implies that 0 ≤ ν < +∞.
An argument analogous to [20, Theorem 7.2] implies that
the probability that a uniform random permutation π satisfies
(14) converges to e−ν/2 as n→ +∞. Let S = {i : ρi = −1}
and let Y (t) = 1

n

∑
i xi(t) and Z(t) = 1

l

∑
i(δixi(t)) denote

the fraction of action-1 players and the fraction of links
pointing to action-1 players in the seeded linear threshold
dynamics (9). Define z(t) and y(t) recursively by putting
y(0) = z(0) = 0 and, for t ≥ 0,

y(t+ 1) = ψp(z(t)) , z(t+ 1) = φp(z(t)) . (16)

(Figure 2 illustrates the evolution of z(t).) Then, [13, Theo-
rem 1] implies that Z(t) and Y (t) are arbitrarily close to z(t)
and y(t), respectively, on all but an asymptotically vanishing
fraction of networksN = (V, E , θ, λ), where λ(e) = θ(π(e))
for a uniform random permutation π of E . Since π satisfies
(14) with probability bounded away from 0 asymptotically,
this implies that Z(t) and Y (t) are arbitrarily close to z(t)
and y(t), respectively, on the configuration model Cn,pn with
probability approaching 1 as n grows large. Observe that
(15) and the second equation in (16) imply that there exists
a finite time τ such that z(t) ≥ ψ−1

p (1 − ε) for all t ≥ τ .
The first equation in (16) then implies that y(t) ≥ 1− ε for
t > τ . This implies that, with probability converging to 1 as
n grows large 1

n

∑
i xi(t) = Y (t) ≥ 1 − ε for t > τ , i.e.,

(10) holds true. By Proposition 1, (10) is equivalent to (6),
thus completing the proof.

Fig. 2. Plot of the recursion function representing the evolution of the
fraction of links pointing to state-1 agents in the mean field approximation.

C. Problem reformulation

In this section we reformulate the optimal seeding problem
using the mean-field approximation described in the previ-
ous section. The intervention in this framework consists in
selecting the fraction of agents of each type that are included
in the seeding. This results in a new statistics p̄ such that
p̄w ≤ pw, ∀w ∈ Ω : rw > −1 ,

p̄w = pw +
∑

w′∈Ω:
dw′=dw,
kw′=kw,
rw′>−1,
cw′=cw

(pw′ − p̄w) ∀w ∈ Ω : rw = −1.

(17)
Theorem 1 provides us with a sufficient condition for con-
vergence of the threshold dynamics to a configuration with
at least a predefined fraction of agents with state 1 for all
but a vanishing fraction of networks sampled from C(n, p̄)
for large n. Therefore we can reformulate the optimization
problem as

inf
{p̄ : (17)}

C(p̄) s.t. φp̄(z) > z ∀z ∈ [0, ψ−1
p̄ (1− ε)], (18)

where C(p̄) = 〈p − p̄, c〉 denotes the cost for steering
the networks statistics from p to p̄. Observe that (18) is a
linear program, since both the objective function and the
constraint are linear in p̄. Nonetheless, the problem is very
challenging as it is an infinite programming problem, with
infinite number of constraints parametrized by z. In the next
section we discuss how to solve the problem.

IV. PROBLEM SOLUTIONS

In this section we propose a numerical method to solve
(18) for a tolerance value ε > 0. One of the technical
challenges of (18) is that the domain where the constraint
φp̄(z) > z must be satisfied depends on p̄. To avoid this
issue, we define

inf
{p̄ : (17)}

C(p̄) s.t. φp̄(z) > z ∀z ∈ [0, 1− αε], (19)

where dmin = mini∈V δi and αε = εdmin/〈p, d〉. The next
result establishes a relation between the two problems.

Proposition 2: Let Pε denote the set of admissible p̄ for
(18) and Pαε

denote the set of admissible p̄ for (19). Then:
i) Pαε ⊆ Pε.

ii) limε→0 Pε \ Pαε = ∅.



Proof: Following the same steps of Theorem 1, the
constraint in (19) implies that with high probability the
dynamics converges to a configuration with at most a fraction
αε of links pointing to agents with state 0. This implies
that the fraction of agents with state 0 is upper bounded
by αε〈p, d〉/dmin = ε. This in turn proves (c.f. proof of
Theorem 1 and [13]) that ψp̄(z) ≥ 1 − ε, so that z ≥
ψ

(−1)
p̄ (1− ε) and the constraint in (18) is satisfied. To prove

ii), notice that ψ−1
p̄ (1) = 1 for all p̄. By continuity of ψp̄ and

by definition of αε, ψ−1
p̄ (1− ε) ε→0+

−→ 1 and 1− αε
ε→0+

−→ 1,
so that the set of admissible interventions for (18) and (19)
get arbitrarily close in the limit of small ε.

Proposition 2 states that (19) is a restriction of (18), as the
set of admissible statistics for the former problem is a subset
of the set of admissible statistics for the latter one. Moreover,
the two sets converge one to the other one as ε vanishes. For
this reason, in the rest of the paper we shall focus on (19),
which is easier to solve. To handle the infinite number of
constraints of the problem, we use the following approach.
We discretize the interval [0, 1−αε] in N+1 equally spaced
points zi = (1 − αε)i/N with i = 0, 1, · · · , N , and impose
that the constraint in (19) is satisfied for each zi up to a
tolerance error ∆N . The regularity of φp then guarantees
that the solution of the discretized problem is feasible for
the original problem, if ∆N is properly chosen. Given N in
N, the discretized problem that we consider is

min
{p̄ : (17)}

C(p̄) s.t. φp̄(zi)− zi ≥ ∆N , 0 ≤ i ≤ N, (20)

where

∆N =
1− αε

2N

(
dmax2kmax+1kmax

〈p, d〉
+ 1

)
. (21)

and kmax = maxi∈V κi, dmax = maxi∈V δi. Let p̄N be
the solution of (20) for a given N . The next theorem states
that p̄N is admissible and arbitrarily close to optimal for the
original problem (18) as N grows large.

Theorem 2: Let p̄∗ be the solution of (18). Then,
i) p̄N is admissible for (18) for every N .

ii) C(p̄N )
N→+∞−→ C(p̄∗).

Proof: i) Since p̄N is solution of (20), it holds
φp̄N (zi) − zi ≥ ∆N for every i = 0, · · · , N . Since
zi+1 − zi = (1− αε)/N , by standard properties of the first
derivative we establish that for every z in [0, 1− αε]

φp̄N (z)− z > ∆N −
(1− αε)

2N

∣∣∣∣ ddz (φp̄N (z)− z
)∣∣∣∣ . (22)

Now, direct algebraic manipulation implies that∣∣∣∣ ddz (φp̄N (z)− z)
∣∣∣∣ ≤ dmax2kmax+1kmax

〈p, d〉
+ 1. (23)

From (21) and plugging (23) into (22), it follows that
φp̄N (z)−z > 0, so that p̄N is admissible for (19). Proposition
2(i) implies that it is also admissible for (18).

ii) Notice that for all p̄ satisfying (17), one can write

φp̄(z) = φp(z) +
∑
w∈Ω

aw(z) · (pw − p̄w), (24)

Fig. 3. The recursion functions for the problem presented in Section V.

with aw(z) = dw (1− ϕkw,rw(z))/〈p, d〉 ≥ 0. Let p be the
solution of (19) and notice that ε > 0 implies αε > 0. This
implies the existence of some agents whose threshold is not
−1 under statistics p, namely, there exists a type q in Ω such
that rq > −1 and p

q
> 0. Let ξN = ∆N/minζ aq(ζ) and

notice that ξN
N→+∞−→ 0 since ∆N

N→+∞−→ 0. Hence, there
always exists a sufficiently large N such that p̂, defined as

p̂w =


p
w
− ξN , if w = q

p
w

+ ξN if (dw, kw, cw) = (dq, kq, cq), rw = −1

p
w

otherwise
(25)

satisfies p̂q ≥ 0 and is therefore a statistics. Moreover, (24)
implies that, for every z in [0, 1− αε],

φp̂(z) = φp(z)+aq(z) ·ξN ≥ φp(z)+∆N > z+∆N , (26)

where the last inequality follows from that p is admissible
for (19) (in fact, it is the solution). Eq. (26) implies that p̂
is admissible for (20), whose solution is p̄N . Moreover, p̄N

is admissible for (19), whose solution is p. Therefore,

C(p̂) ≥ C(p̄N ) ≥ C(p). (27)

We now prove that C(p̄N )
N→+∞−→ C(p). To prove this,

we show that C(p̂)
N→+∞−→ C(p). This follows from (25),

which implies C(p̂) = C(p) + cqξN
N→+∞−→ C(p). That

C(p̄N )
N→+∞−→ C(p̄∗) follows from Proposition 2(ii).

Observe that (20) is a linear program with finitely many
constraints, therefore much easier to solve than (19). Theo-
rem 2 guarantees that its solution p̄N is arbitrarily close to
optimal as N grows large.

V. NUMERICAL SIMULATIONS

In this section we present numerical simulations to validate
the solutions proposed in Section IV. To this end, we use the
topology of the social network Epinions.com1. The network
contains n = 26.588 nodes and 100.120 undirected links, so
that κi = δi for every i in V . It is assumed that every node i
has unitary cost γi = 1 and threshold ρi = bΘiκic− 1, with
Θi i.i.d. random variables drawn with uniform probability
from {0.25, 0.5, 0.75}. This defines a triple (N , ρ, γ). We
then find the solution p̄N of the discretized problem (20)

1Retrieved from https://networkrepository.com



Fig. 4. The TM dynamics on the Epinions.com network (right) and on
the Configuration model with same statistics (left). The plot illustrates the
fraction of state-1 adopters Y (t) for the original and the seeded statistics
p, p̄N , compared with the outputs y(t) of the recursion (16).

Fig. 5. C(p̄N ) as a function of N for the statistics p′ in Section V.

with N = 10000 and ε = 0.1 for the statistics p extracted
from (N , ρ, γ). Figure 3 illustrates the recursion functions
φp and φp̄N for the original statistics p and for the seeded
statistics p̄N . Note that φp̄N (z) > z for all z in [0, 1], so that
the dynamics for a game sampled from C(n, p̄N ) is expected
to converge to x = +1 for every initial condition.

To validate this, we generate two instances drawn from
C(n, p) and C(n, p̄N ) respectively, and simulate the linear
threshold dynamics with initial condition x(0) = 0. Figure 4
(left) illustrates the dynamical behaviour of the average state
Y (t) and the one predicted by the recursion (16), denoted
y(t), with initial conditions Y (0) = y(0) = 0. As expected,
since the order of the network is large, the two are very
close to each other. Moreover, the average state converges
to 1 under statistics p̄N , as predicted by Figure 3. We then
apply a seeding consistent with p̄N to the Epinions network.
Despite the lack of theoretical guarantees for this network,
the right panel of Figure 4 shows that the dynamics converges
to a configuration with almost all ones. This suggests that
designing the optimal seeding based on the problem statistics
is a valid approach even for real networks that are not
generated from a configuration model ensemble.

Finally, to investigate the sensitivity of p̄N with respect to
N , we solve (20) with ε = 0.1 for different values of N for
a given statistics p′2,3,0,1 = p′2,3,1,1 = p′4,3,0,1 = p′4,3,1,1 =
1/12, p′2,3,2,1 = p′4,3,2,1 = 1/3. Figure 5 illustrates the total
cost of p̄N as a function of N . However, notice that N , and
therefore the complexity of (20), does not scale with n.

VI. CONCLUSION

We have studied optimal seeding in large-scale super-
modular network games with binary action sets ensuring that
all but a small fraction of players chose a certain action
in every Nash equilibrium. We have built on local mean-
field techniques to approximate the dynamics, formulated
a seeding problem in this framework, and proposed an
algorithm to transform the resulting infinite programming
into a linear program with finitely many constraints. We
have then validated the proposed procedure on the Epinions
network. Future research includes more general intervention
problems where the players’ thresholds can be modified.
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