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Introduction: In recent years, hand prostheses achieved relevant improvements

in term of both motor and functional recovery. However, the rate of devices

abandonment, also due to their poor embodiment, is still high. The embodiment

defines the integration of an external object – in this case a prosthetic device

– into the body scheme of an individual. One of the limiting factors causing

lack of embodiment is the absence of a direct interaction between user and

environment. Many studies focused on the extraction of tactile information via

custom electronic skin technologies coupled with dedicated haptic feedback,

though increasing the complexity of the prosthetic system. Contrary wise, this

paper stems from the authors’ preliminary works on multi-body prosthetic hand

modeling and the identification of possible intrinsic information to assess object

sti�ness during interaction.

Methods: Based on these initial findings, this work presents the design,

implementation and clinical validation of a novel real-time sti�ness detection

strategy, without ad-hoc sensing, based on a Non-linear Logistic Regression (NLR)

classifier. This exploits the minimum grasp information available from an under-

sensorized and under-actuated myoelectric prosthetic hand, Hannes. The NLR

algorithm takes as input motor-side current, encoder position, and reference

position of the hand and provides as output a classification of the grasped object

(no-object, rigid object, and soft object). This information is then transmitted to the

user via vibratory feedback to close the loop between user control and prosthesis

interaction. This implementation was validated through a user study conducted

both on able bodied subjects and amputees.

Results: The classifier achieved excellent performance in terms of F1Score

(94.93%). Further, the able-bodied subjects and amputees were able to

successfully detect the objects’ sti�ness with a F1Score of 94.08% and

86.41%, respectively, by using our proposed feedback strategy. This strategy
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allowed amputees to quickly recognize the objects’ sti�ness (response time

of 2.82 s), indicating high intuitiveness, and it was overall appreciated as

demonstrated by the questionnaire. Furthermore, an embodiment improvement

was also obtained as highlighted by the proprioceptive drift toward the prosthesis

(0.7 cm).

KEYWORDS

closed-loop control, sti�ness recognition, vibrotactile feedback, vibromotor, Hannes

prosthetic hand, non-linear logistic regression

1. Introduction

Upper limb loss is a serious impairment due to its explicit and
direct interaction with the external world. To compensate for this
loss, prostheses have been introduced to restore the functionality of
human limbs during activities of daily living (ADLs). This necessity
led to the development of high-tech devices with multiple degrees
of freedom (Medynski and Rattray, 2011; Van Der Niet and Van
Der Sluis, 2013), capable of performing a variety of gestures and
grasps. However, the embodiment of these devices into the human
body scheme and their acceptance are also essential elements
for reconnection with the outside world (Cuberovic et al., 2019;
Castellini, 2020). The term “Embodiment” means the integration
of an external object in the internal corporal scheme as if it
was part of the body itself. In this specific context, the external
object is, precisely, the prosthesis (Longo et al., 2008). Embodiment
comprises three correlated factors, namely, ownership, localization,
and agency (Stiegelmar et al., 2020), and it has been suggested
to promote intuitive control, learning, and comfort when using
new tools, thus providing the opportunity to improve the user
interface for devices such as artificial limbs. The introduction of
direct feedback modalities can prevent amputees to rely exclusively
on sight (Biddiss et al., 2007; Pylatiuk et al., 2007), reducing
the mental effort and, therefore, facilitating the communication
between user intention and prosthesis action (Markovic et al.,
2018; Valle et al., 2018; Clemente et al., 2019). In fact, it has been
demonstrated that the introduction of haptic feedback improves the
control of the prosthesis (Mayer et al., 2020; Sensinger and Dosen,
2020; Yildiz et al., 2020; Chai et al., 2022) due to its fundamental
role during human–objects interactions (Hsiao et al., 2011; Valle
et al., 2018; Pena et al., 2019; Di Pino et al., 2020; Shehata et al.,
2020; Raspopovic et al., 2021), allowing subjects to embody the
device (Antfolk et al., 2013; Svensson et al., 2017; Raspopovic
et al., 2021), hence, improving the compliance among the user, the
prosthesis, and the grasped objects (Osborn et al., 2016). In the
literature, this interaction is mainly assessed by providing grasp
force or proprioceptive information (Stephens-Fripp et al., 2018).
Contrarily, the aim of this study is to deliver information about
the grasped object’s stiffness that in normal conditions, occurs due
to the combination of visual sensory information, proprioceptive
sensations related to shape and size, and tactile sensations related to
stiffness (Garland and Miles, 1997). Therefore, the current research
activity offers an intuitive, non-invasive, and easy-to-use prosthetic
system capable of identifying simple grasped object proprieties
when visual sensory information of the user is not available or

limited (Sensinger and Dosen, 2020). For instance, when the user
is taking an object from a bag without looking at it or when the
light in the environment is off. This situation was also treated by
the Cybathlon 2020 competition, which introduced the Haptic Box
task, considering it as a common ADL (Caserta et al., 2022).

Focusing on tactile sensations, several studies tried to
reproduce the properties of human skin endowing the device with
tactile sensing technologies that typically requires cumbersome
add-on like sensing skin with different kinds of sensors such as
piezoresistive (Osborn et al., 2018), capacitive (Cannata et al.,
2008), piezoelectric (Yi and Zhang, 2016), and also optical (Zhao
et al., 2016). The measurements acquired by these tactile sensors
are often given as input to machine learning algorithms, which
extract useful information that may be conveyed to the prosthesis
users, as described by Jamali and Sammut (2011), Liarokapis et al.
(2015), Konstantinova et al. (2017), Devaraja et al. (2020), Huang
and Rosendo (2022).

Once the tactile information has been extracted, it is necessary
to effectively provide it to the subject. The sensory substitution
process can be exploited non-invasively, involving the connection
of a certain event with specific feedback that is not the natural one,
such as tactile sensory feedback (Clemente et al., 2015; Dosen et al.,
2016; Patel et al., 2016; Štrbac et al., 2016; Sensinger and Dosen,
2020). For example, the subject can be taught to associate a certain
vibratory stimulus with the contact of the prosthesis with an object
(Antfolk et al., 2012b; Clemente et al., 2015, 2019; Dosen et al.,
2016; Štrbac et al., 2016; De Nunzio et al., 2017; Nemah et al.,
2020; Mamidanna et al., 2021). In contrast, superficial stimulation
could target portions of the missing limb’s skin that are innervated
by afferent neurons after the amputation, the so-called referred
touch, to stimulate the phantom limb and improve the embodiment
(Antfolk et al., 2013; Masteller et al., 2021), such as kinesthetic
sensory feedback.

The most common feedback restoration method is through
vibration (Masteller et al., 2021), given its compatibility with
electromyography (EMG) control and better acceptance by the
subjects with respect to electrostimulation, capable of stimulating
phantom limb sensation with electric surface charge (Shannon,
1976; Kaczmarek et al., 1991; Vargas et al., 2019). It is possible to
provide different types of information acting on the amplitude and
frequency of the vibration, as exploited in the study of Witteveen
et al. (2013), in which the magnitude of the grasp force was
transmitted using different levels of amplitude. An alternative to
this feedback is the mechanotactile, as proposed using tactors by
Meek et al. (1989), producing a one-to-one correspondence of
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touch sensation to user stimulation, or with a cuff, as proposed by
Casini et al. (2015).

However, despite the high potentiality offered by these
solutions, they are mainly bulky and heavy, and difficult to
integrate, along with high-power consumption due to high
computational burden. An example is proposed by Antfolk et al.
(2012a) who designed a touch sensory feedback via air-mediated
pressure from the hand to the forearm skin. This is a no-
power solution that has neither impact on power consumption
nor on computational burden. However, the final integration
within the prosthesis does not guarantee the anthropomorphism
of the hand device. It is also important to point out that the
quick disconnection between the socket and the hand prosthesis
is lost due to the mechanical connections running from the
fingers’ hand to the on-socket actuators. Standard devices use an
electronic slip ring combined with a quick disconnect mechanism
integrated into the prono-supinator wrist to guarantee the overall
disconnection of the hand prosthesis from the socket in case
of emergency. However, in the proposed design, this feature
is compromised. Other examples are Oddo et al. (2016) and
Shehata et al. (2018) who proposed an artificial fingertip to
improve the performance of prosthetic hands by using intraneural
stimulation. That solution can be nicely integrated into a fingertip
by maintaining the anthropomorphic characteristics. However, the
on-board electronics that record, process the tactile information,
and encode the stimulation are cumbersome. Moreover, the high-
power consumption of the FPGA-based solution does not permit
the entire system to last for an entire day and to fit into a standard
socket. Similarly, Clemente et al. (2019) developed a solution whose
electronic skin offers high sensitivity ranging from light touch
to heavy touch. However, a similar integration problem of the
dedicated board occurs. In contrast, Vargas et al. (2021) finally
proposed force and position sensors on the fingers to provide object
stiffness recognition on amputees through vibrotactile feedback.
That solution can be easily integrated; however, the performances
of such a solution are limited in comparison with our results.
Due to these issues, the lack of a suitable feedback restitution
method in the prosthetic field is still far from being solved. Two
other solutions for object stiffness recognition, without dedicated
sensors, were implemented by Balasubramanian et al. (2021) and
Wang et al. (2021). Their studies demonstrated the feasibility
of these approaches in a robotic scenario using an actuated
mechanical gripper.

Considering the advantages of providing feedback to amputees
to improve the comfort between the user and the device, in this
study, we first investigated the possibility of detecting void grasp
and object grasp. Then, we identify the softness and hardness of
the objects, therefore, permitting the user to discriminate among
“void grasp,” “rigid object,” and “soft object” without visual sensory
information. In the first preliminary study (Bruni and Bucchieri,
2021), a virtual multi-body model of Hannes was developed to
offline demonstrate, with a virtual simulation, how the motor-
side current absorption and the position measurement could be
correlated with the hand grasp force and the grasped object’s
stiffness. Subsequently, in the following study (Bruni et al., 2022),
an Ensemble Bagged Trees classifier was implemented and offline
tested with simulated data to validate an approach to distinguish
two different objects’ stiffness.

Consequently, in the present article, we exploited the previously
preliminary validated approach to develop an online (real-time)
solution to perform object stiffness recognition and sensory
feedback. The performance of this solution was assessed on
end-users, both able-bodied and amputees. A non-linear logistic
regression (NLR) classifier was used to recognize rigid or soft
objects and void grasps. We excluded embedded force sensors,
whose introduction would require facing many challenges, starting
from the choice of the right sensor with basic requirements like
high resolution, high sensitivity, and robustness, to the difficulties
of managing the wiring (Kappassov et al., 2015). Instead, we
proposed a methodology that uses intrinsic sensors (sensors and
parameters already available on the prosthesis) for the normal
functionality of the prosthesis that does not increase the cost and
complexity of the device. In particular, we exploited the following
intrinsic sensors: the motor-side current, whose relationship with
the contact stiffness has been analytically demonstrated by Deng
et al. (2020); the reference position, given as input to control the
device closure; and the position effectively measured by the encoder
(encoder position). We implemented a closed-loop vibratory
feedback, using a single vibromotor embedded in the Hannes
system, closely related to the predictions made by the classifier. In
detail, we applied the strategy of strong vibration for rigid objects
and small vibration for soft objects, which was identified in this
study as “Two Feedback (2FB) condition” (Cipriani et al., 2011;
Tejeiro et al., 2012). In the first phase, the classifier performance
and the 2FB effectiveness were evaluated with 18 able-bodied
subjects by measuring the classification accuracy through F1Score.
In the second phase, a comparison between our proposed feedback
method (2FB) and three other control feedback conditions was
carried out on five amputees. This comparison was performed
both objectively by measuring F1Score, users’ response time, and
proprioceptive drift, and subjectively through the questionnaire to
investigate the users’ appreciation of the feedback strategies and
identify the most intuitive and effective one.

2. Materials and methods

2.1. Subjects

A total of 18 able-bodied subjects aged between 24 and 50
years (28.8 ± 6.2) and 5 mono-lateral amputees (right transradial
amputees and users of active prostheses) were recruited for
this study, with the definition described in Table 1. Written
informed consent was obtained from all the subjects. The
experimental protocol was approved by the Area Vasta Emilia
Centro (AVEC) Ethics Committee (Protocol Code: CP-PPRAS1/1-
03) and performed in accordance with the guidelines of the
Declaration of Helsinki.

2.2. Experimental setup

The experimental setup that used for performing the entire
experiment (Figure 1) was composed of (A) the myoelectric
prosthesis Hannes, fixed on a rigid cone; (B) a custommaster-board
to control the hand, decode the stiffness of the grasped object, and
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TABLE 1 Population of amputees.

Amputees Age Time from
amputation

Dominant limb (before
amputation)

Amputated
limb

Etiology Level of
amputation

Type of
prosthesis

A1 53 32 years Right Right Work accident Unilateral
medial

Michelangelo
hand

A2 42 18 years Right Right Car accident Unilateral
proximal

Variplus hand

A3 58 37 years Right Right Work accident Unilateral
distal

Michelangelo
hand

A4 35 12 years Right Right Work accident Unilateral
distal

Variplus hand

A5 68 53 years Right Right Work accident Unilateral
distal

Michelangelo
hand

FIGURE 1

Experimental setup used to perform the task on healthy subjects

and amputees. It consists of: (A) socket with the Hannes prosthesis;

(B) the EMGM to control the Hannes hand, recognize the grasped

object, and provide feedback; (C) EMG sensors; (D) vibromotors; (E)

power supply; (F) elastic band to attach the EMGs and vibromotors

to the forearm; (G) the objects used to perform the task; (H) laptop

with the virtual reality; (I) keyboard to choose between rigid, soft, or

void; (J) headphones to isolate the participants during the

experiment.

communicate with the PC via Bluetooth; (C) two EMG sensors
(standard Ottobock, 13E200 = 50 AC) to close or open the hand;
(D) an eccentric rotating mass (ERM) vibromotor to convey the
feedback; (E) a power supply for the prosthetic system; (F) two
wristbands to attach the EMG sensors and the vibromotor to the
subject’s forearm; (G) three rigid objects and three soft objects with
spherical, cubic, and cylindrical shape used during the Cybathlon
2020 edition (Medynski and Rattray, 2011; Caserta et al., 2022);
(H) a laptop to choose the feedback condition and to collect the
data; (I) a keyboard, placed in front of the subject, to press the left
(rigid object) and right (soft object) arrows to indicate the guessed
stiffness of the grasped object; and (J) headphones reproducing
white noise to prevent the users from hearing the prosthesis motor.

The vibromotor was inserted into a custom silicone holder
to localize and absorb the radiating stimulation and to avoid
the possible heating of the skin due to prolonged vibration. The
vibromotor was placed vertically with respect to the skin to
produce a stronger and more focused sensation. The vibration
frequency was set to 200Hz, using a supply voltage of 2.5V

(Vybronics, 2021)1, and the amplitude was varied through pulse
width modulation (PWM).

2.2.1. The Hannes hand
Hannes is an under-actuated poly-articulated prosthetic hand

characterized by a leader-follower wire configuration used to
control the movements of fingers (Laffranchi et al., 2020). The hand
powertrain consists of a single DC motor coupled with a custom
planetary gearhead, which drives the grasping movement (refer
to Supplementary material). The actuation system is controlled
by a position reference (ϑref) synthesized from the user’s EMG
signals. A magnetic encoder measures the slow shaft position (ϑout)
of the hand drive train, therefore, controlling the desired grasp
configuration. The low-level control system is based on a series
of proportional–integrative–derivative (PID) controllers. The outer
loop is position based (where only proportional and derivative
(PD) terms are deployed), while the inner loop is current based
and concerns proportional and integrative (PI) terms only. In
particular, the error (εpos) between ϑref (hand control command)
and ϑout (outer feedback) is fed to the outer PD loop. The related
output is then multiplied by a proportional gain, resulting in a
current reference (iref) which is subtracted with the measured one
(iout, inner secondary feedback which is the current absorbed by
the DCmotor during hand movement and grasp). As consequence,
the related error (εi) is then fed to the inner PI controller, hence,
generating the control command (V) to be delivered to the motor
driver. As with many under-actuated prostheses, Hannes is under-
sensorized. Indeed, the only available measurements aremotor-side
current and position.

2.2.2. Feedback conditions
The following four different feedback conditions were assessed

in this study: (i) no FB condition (NoFB); (ii) audio FB condition
(AFB); (iii) one FB condition (1FB); and (iv) two FB conditions
(2FB). The NoFB condition was characterized by the absence of any
possible feedback. The subjects were visibly (with closed eyes) and

1 Vybronics is a datasheet of a product available in the following

link: https://www.vybronics.com/wp-content/uploads/datasheet-files/

Vybronics-VC0625B001L-Jinlong-C0625B001L-datasheet.pdf.
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FIGURE 2

Scheme representing the object sti�ness classification process. The motor-side current, the reference, and the encoder positions are acquired from

Hannes and sent as input to the classifier, which gives as output the resulting sti�ness.

auditorily (headphones with white noise) blind and without any
vibratory feedback. In the AFB condition, no vibratory feedback
was supplied to the user, but the absence of the headphones
permitted accidental auditory feedback of the moving prosthesis.
In the 1FB condition, the vibratory feedback was provided, but
the same vibration intensity (30% of PWM) was associated with
both rigid and soft objects, while no vibration was given during
void closures (refer to the table in Figure 2). The 2FB condition
provided a strong vibration for rigid objects (100% of PWM)
and a light vibration for soft objects (30% of PWM, a value
found during some previous pilot tests to be perceived sufficiently
different from the 100% used for rigid objects; refer to the table in
Figure 2). As in the 1FB condition, void closures did not provide
any kind of vibration. The no FB condition was implemented as a
baseline for validation and comparison of subjects’ performance.
In fact, in the total absence of feedback, subjects’ performance
should be close to a random guess. The audio FB condition
was introduced, since it represents a reasonable scenario of the
use of the prosthetic hand by amputees, namely with no direct
vision of the prosthesis but accidental auditory information from
the prosthesis motion. Therefore, this second condition works
as a real-case scenario ground truth for the user. The other
two conditions, i.e., 1FB and 2FB, were implemented to observe,
respectively, if additional vibratory feedback could improve the
stiffness estimation performance, and if a different degree of
vibration could further help amputees in discerning between harder
and softer objects.

2.3. Non-linear logistic regression

2.3.1. Algorithm model
The algorithm chosen for the object stiffness discrimination

task is the NLR classifier. This machine learning algorithm

was selected given the good performance shown for multiclass
classification problems, and for simplicity reasons, since the NLR
is already employed for the Hannes pattern recognition control
strategy (Marinelli et al., 2020; Di Domenico et al., 2021). It is based
on the calculation of the class membership probability through the
following formulation:

P (1|x,ϑ) =

{

g
(

ϑT · x
)

= 1

1+e−(ϑT ·x+ϑ0)

1− P(y = 0|x,ϑ)

Where ϑ and ϑ0 are the internal parameters vector of the classifier
and the bias term, respectively; x is the input feature vector,
while g(·) is the sigmoid logistic function. The class prediction is
obtained from the comparison between the distribution P(y|x) with
a decision threshold (TH) as:

hϑ (x) =

{

P (1|x, ϑ ) ≥ TH → 1
P (1|x, ϑ ) ≤ TH → 0

The TH value was obtained after an optimization phase on the
validation set. Since the NLR is a binary classifier, a One-vs-All
approach was implemented to address the multiclass classification
problem for the discrimination between rigid, soft, and void
closures. This involves the use of as many binary classifiers as the
classes for prediction, and each of them is trained to recognize
the specific class. The model parameters (ϑ) are the result of
an optimization process that involves the minimization of a cost
function called cross-entropy error J:

J (ϑ ,ϑ0) = −
1

m
·

[

m
∑

i=1

y (i) · ln(g(ϑT · x+ ϑ0))

]

−
1

m
·

[

m
∑

i=1

(1− y(i)) · ln(1− g(ϑT · x+ ϑ0))

]
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FIGURE 3

Custom-made hand dynamometer mounted on test bench used for

the classifier training. The device is composed of a base where at

maximum four strings can be inserted, and a cover which can slide

along the base when compressed by the prosthesis fingers. The test

bench consists of a custom-made system composed by movable

parallel arms and a two-cu� system acting as holder. The table

represents the di�erent spring force and levels to characterize the

sti�ness of the dynamometer.

Where m is the number of samples used to train the algorithm
and y(i) is the known class membership of the ith sample (Dellacasa
Bellingegni et al., 2017; Marinelli et al., 2020).

2.3.2. Algorithm training
To adapt the model to distinguish multiple rigidities, the

classifier required a training phase involving the repetitive closure
of the prosthesis on objects of different stiffness. To simplify this
work and to create a reproducible acquisition setup, a custom-
made object was 3D printed. This device, as shown in Figure 3,
was designed to reproduce the same shape and dimension of
the Go Direct

R©
Hand Dynamometer (Vernier, 2021), used in

the previous study (Bruni and Bucchieri, 2021), which offers
the possibility to insert springs of different stiffness, simulating
the grasping of soft and rigid objects, as shown in the table
of Figure 3.

The device was mounted in an ad-hoc designed test bench.
It was composed of movable parallel arms and a two-cuff
system acting as a holder. The prosthesis was fixed at the
base of this test bench, as shown in Figure 3, in such a
way that only the distal phalanges of the four fingers had
an impact on the upper plate of the device when performing
a closure.

Hannes was controlled through a USB GUI, which allowed the
data acquisition (motor-side current and encoder position) as well.

The NLR model generation was performed offline through
MATLAB and it required training and test datasets, both
characterized by the following four-column structure: (i) the
motor-side current, (ii) the reference position sent as input, (iii)
the encoder position measured, and (iv) the labels of the objects
(rigid, soft, and void), as it is a supervised learning algorithm. All
these measurements are fed to the classifier as analog signals; thus,
they are directly used as the input dataset. Moreover, the label zero
was associated with void closures (for motor-side currents, below
300mA), one to the rigid objects and two to the soft objects. The
dataset was created using the test bench described in Figure 3.

The choice of relying on only the motor current and the
reference and measured motor encoder position was based on
the immediate and relevant available sensor information on the
prosthesis. Specifically, the motor current is proportional to the
motor torque and, thus, to the grasp force, while the encoder
position is related to the graspingmotion of the fingers. In addition,
the difference between reference and measured encoder position
provides good information regarding the distinction between a
void closure and the actual grasping of an object (this is due
to the variation between the reference encoder positions that
continues to grow due to EMG residuals, while the actual measured
encoder position stops when encountering an object during grasp).
These three quantities (current, reference, and measured positions)
represent, according to the authors, the minimum set of variables
to properly classify the different types of grasping (refer to the
“Results” section for details on the performances). Nonetheless, it
is worth mentioning that additional sensors or derived quantities
could be beneficial for a more complex classifier structure. For
example, motor speed, if not particularly noisy or delayed, could
help in more advanced classification algorithms.

To generate the variability of the data, multiple grasps with
various stiffness were performed by the prosthesis, which was
controlled by both EMG and sinusoidal references. The hand
dynamometer was used to simulate rigid objects, while four types
of springs with distinct stiffness were used to reproduce a range
of softness/soft objects, as shown in the table of Figure 3. The
springs are placed under a bar to distribute the stiffness of their
combination to the entire grasp. The chosen combination of springs
is different for each case because the total stiffness of parallel
springs varies according to their sum, thus affecting the total
grasp behavior. In particular, several closures were performed
for each case, as described in Table 2, to collect data for the
training and validation of the NLR model. The training dataset
was split into a training set (80%), used for the model generation
(selection of the best model parameters (ϑ) by minimizing
the cost function J), and a validation set (20%) to find the
best threshold (TH). Lastly, the classifier was evaluated on the
test dataset.

2.4. Experimental protocol

The subjects were seated comfortably in front of a table (refer
to Figure 4) with EMG sensors positioned on the forearm or stump

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1078846
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bruni et al. 10.3389/fnins.2023.1078846

TABLE 2 Dataset realization for training the NLR for object sti�ness

recognition algorithm.

Number
closures

Grasped
object

Sti�ness Control
signal

10 Void Void Sinusoidal

10 Hand dynam Rigid Sinusoidal

10 Hand dynam Rigid EMG

5 4xS1 Soft Sinusoidal

5 4xS1 Soft EMG

5 2xS1 Soft Sinusoidal

5 2xS1 Soft EMG

5 4xS2 Rigid Sinusoidal

5 4xS2 Rigid EMG

5 4xS3 Rigid Sinusoidal

5 4xS3 Rigid EMG

5 2xS1–2xS4 Soft Sinusoidal

5 2xS1–2xS4 Soft EMG

FIGURE 4

Example of trial involving an amputee. Two EMGs are attached to

the stump for the dual-side control of the prosthesis with an elastic

band. The vibromotor is fixed to the upper side of the stump with a

second elastic band for the feedback restitution. The objects are

placed within Hannes hand by the experimenter while the

participant has closed eyes. The keyboard, placed in front of the

participant, is used to indicate the grasped object sti�ness by the

user using the left hand.

using an elastic band. The electrodes measured the activity of the
forearm muscles involved in the opening and closing of the hand
(Flexor Carpi Ulnaris and Extensor Carpi Ulnaris, respectively),
which were selected by manual inspection. The Hannes system
was detached from the users’ bodies (except for the two EMGs)
and fixed on the table, lying between the subjects’ arms with the
palm up, to allow the experimenter place the objects to be grasped
within the prosthetic hand. Hence, subjects were only asked to close
and open their hand, not to approach or grasp the objects. The
prosthesis was commanded in proportional-speed-control mode
through the EMG signals. To convey the vibratory feedback, the
vibromotor was positioned on the pisiform bone for able-bodied

subjects and on the lateral epicondyle for the amputees by means of
a second elastic band.

First, the minimum and maximum amplitude for the
vibromotor was determined using the method of limits (Prins,
2016), to find the minimum level of perception and avoid
discomfort. To this aim, the vibration intensity was increased
in small steps (4–5% in the normalized scale of PWM). When
the subject warned, as soon as it was perceptible, the sensing
of a small and then of a strong sensation, the respective PWM
was saved. Subsequently, 30% of the PWM range was adopted
for soft objects and 100% was adopted for rigid objects. The
vibration intensity was then modulated between these two values
to generate clearly perceivable and localized vibrations that were
not intrusive to the subject but intuitive for the encoding of the
object stiffness.

Six objects (Figure 1) were randomly presented three times to
the user by the experimenter and three void closures were also
inserted along the test, to have a total number of 21 trials. Before the
test phase, a training phase was performed to let the user become
familiar with the feedback. A total of six closures were performed,
alternating between rigid and soft objects without headphones and
with open eyes, so the user could learn to associate the proper
feedback with the right stiffness. Furthermore, the involved upper
limb side was covered with a black blanket to strengthen a possible
embodiment effect.

In the first phase to evaluate the classifier performance and
the feedback effectiveness, the able-bodied subjects underwent a
single test with a single condition. They performed the test with
the 2FB condition. The participant was asked to wear headphones
with white noise and to close the eyes (avoiding the sight of the
prosthesis and the grasped object). The subject was not required
to reach out to the object. Instead, the experimenter proceeded to
insert it directly into the prosthesis, asking the subject to perform a
full closure, and then to identify the stiffness of the squeezed object.
The answer was provided by the subject’s left hand pressing the
keyboard arrows, left for rigid objects and right for soft objects. No
button needed to be pressed when the prosthesis performed a void
closure. Finally, the subject could reopen the eyes to check if the
answer was correct.

In the second phase, a comparison between the four different
feedback conditions, discussed in the “Feedback conditions”
section, was carried out by five transradial amputees. The order of
these four sessions was randomly presented to the amputees. Each
condition had the same test protocol already described in the first
phase with able-bodied subjects, in which the experimenter places
the object inside the prosthetic hand and the amputee performs a
grasp with closed eyes and gives the answer using the keyboard.
At the end of each session, the proprioceptive drift was detected
with respect to the initial arm position (refer to the “Amputees”
section) and an ad-hoc questionnaire was administered (refer to
Supplementary material).

2.5. Data analysis

All the outcomes and the evaluation methods used in this
study were tested for normality using the Shapiro–Wilk test.
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A repeated measure one-way ANOVA or Friedman test was
conducted depending on the outcome of the normality test (for
the analysis of dataset with missing data, Skilling’s Mack was
applied in substitution of the Friedman test), while the multiple
comparison test with Bonferroni correction was used for a post-hoc
analysis. Mathworks MATLAB 2020b was used for the statistical
analysis. The average of the measures used (error and efficiency)
was computed for each subject and condition and compared across
conditions. The threshold for statistical significance was set at
p < 0.05. The results in the text are reported as mean and
standard deviation.

2.5.1. Able-bodied subjects
The primary outcome measure was the F1Score of the

classifier on detecting the grasped object’s stiffness expressed as
a percentage, which takes into account the rate of false and
true positives and false negatives (Powers, 2020). This result
demonstrates that our approach to intrinsic sensor stiffness
detection works properly. In addition, the F1Score was calculated
on users’ performance in recognizing objects’ stiffness using the
2FB approach described in the “Feedback conditions” section.
This latter was used to verify the usability and clarity of our
feedback method.

2.5.2. Amputees
The second phase involving five amputees was carried out to

compare the four feedback conditions. To validate and demonstrate
that the 2FB condition was effective and the best feedback
restoration for the recognition of objects’ stiffness, our hypothesis
involving the following four evaluation methods was used: (i)
F1Score of performance; (ii) reaction time to recognize the
stiffness of the objects; (iii) proprioceptive drift; and (iv) ad-

hoc questionnaire.
The F1Score of amputees’ performance was calculated in all

feedback conditions. Furthermore, the response time of each
trial was also recorded for the four conditions. Low response
times were considered positive results. For each amputee, the
mean response time of each feedback condition was calculated to
allow comparison.

As a quantitative measure of the embodiment, the
proprioceptive drift toward the artificial limb was detected
(Tsakiris and Haggard, 2005). Before covering the involved upper
limb side with a black blanket, the initial position of the hand
was marked with white tape. Immediately, after the experiment,
the blanket was removed and the amputees were asked to close
their eyes, raise their stump, and replace it in the perceived initial
position. The lateral distance between the initial position and the
one estimated after the trials was measured by the experimenter
with a ruler in centimeters, together with the direction of the
deviation (Barresi et al., 2021). Deviations toward the prosthesis
were considered an effect of the embodiment process.

At the end of each session, amputees also had to complete
a Likert-type 5-point questionnaire, providing a subjective
evaluation. The questionnaire (refer to Supplementary material)
aimed to assess subjectively the intuitiveness and comfortability
of the feedback (seven questions), its utility for ADLs (three

questions), and the embodiment (four questions). The possible
answers ranged between 1 (strongly disagree) and 5 (strongly
agree). Since all amputees performed the test in all conditions, the
experimental design is within-subject.

3. Results

3.1. Able-bodied subjects

The classifier’s average accuracy in identifying the object
stiffness was tested on a total of 378 grasps (21 grasps × 18
subjects). Its average F1Score resulted to be 94.93% ± 3.94. The
able-bodied subjects instead, due to the 2FB condition, reached
an average F1Score of 94.08% ± 4.0 for the object’s stiffness
discrimination task.

Figure 5A shows the F1Score obtained by able-bodied subjects
during the 2FB condition compared to the F1Score of the
classifier performance. Since these data did not present a normal
distribution, the Friedman test was applied to demonstrate that
no statistical difference was detected between the two populations
(p= 0.1).

3.2. Amputees

Figure 5B shows the boxplot of F1Score obtained by amputees
for each of the four feedback conditions. It is possible to observe
an ascending trend in the scores from the NoFB condition
to the 2FB condition. In the NoFB condition, Amputee A3
data are missing because he found it impossible to accomplish
the task without any feedback, stating that it was not possible
to understand if the prosthesis was opened or closed. In
the 1FB condition, Amputee A5 data are missing due to a
recording problem.

For the NoFB condition, the F1Score among amputees is
31.41% ± 8.57, as indicated in Figure 5B with points, which is
below the random chance probability of 33%. The statistically
significant difference is indicated by “∗” (p < 0.05). Only Amputee
A1 achieved a higher F1Score with respect to random chance
(F1Score= 44.03%). The distributions resulted to be normal, so the
statistical analysis applied was the ANOVA. As shown in Figure 5B,
the 2FB condition presents a statistically significant difference with
respect to the NoFB (p < 0.001) and AFB (p < 0.001) conditions.
Furthermore, the 1FB condition is statistically different from the
NoFB condition (p= 0.0031). The average F1Score calculated from
the five amputees’ responses during the 2FB experimental session is
86.41%± 11.6.

Figure 5C shows the average response time for amputees in
each feedback condition, in which the statistically significant
difference is indicated by “∗” (p < 0.05). All amputees, except
A1, achieved the lowest response time during the 2FB condition
(2.82 s ± 1.2), which also produced the best results in terms of
F1Scores. A statistical analysis was performed between the different
conditions. The distribution resulted to be not normal and, given
the presence of some missing data, the Skillings–Mack test was
applied. As shown in Figure 5C, there is a statistically significant

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1078846
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bruni et al. 10.3389/fnins.2023.1078846

FIGURE 5

(A) F1Scores results of classifier with respect to able-bodied subjects. First, the F1Score of the classifier is calculated (blue box). Then, the F1Score of

18 able-bodied subjects is evaluated, based on the answer of classifier, in recognizing the objects’ sti�ness while receiving the 2FB condition (red

box). A comparison between classifier’s and subjects’ F1Score was assessed and no significant di�erence was found between the two populations.

(B) F1Scores results for amputees. F1Score obtained by amputees for each feedback condition. The Box chart shows the comparison between the

distributions of the F1Scores obtained in each condition. The statistically significant di�erence is indicated by “*” (p < 0.05). (C) Response time results

for amputees. Response time obtained by amputees for each experimental condition. The Box chart shows the comparison between the

distributions of the response time obtained in each condition. The statistically significant di�erence is indicated by “*” (p < 0.05). (D) Proprioceptive

drift of amputees for the di�erent feedback conditions as a quantitative embodiment measure. The barplot shows the mean and standard deviation

of the drift over amputees for each condition, the left direction is toward Hannes hand, and the right direction indicates a movement on the opposite

side of Hannes hand. Deviations toward the prosthesis were considered an e�ect of the embodiment process.

difference between AFB and 1FB conditions (p= 0.02) and between
1FB and 2FB conditions (p= 0.04).

The mean proprioceptive drift for each feedback condition was
calculated, and it is reported in Figure 5D as bar plots with standard
deviations. On average, the five amputees estimated the position
of their right arm after the experiment as 1.8 cm ± 1.17 right (in
the opposite side of the prosthesis) during the NoFB condition
while 0.4 cm ± 0.58, 0.3 cm ± 0.4, and 0.7 cm ± 1.17 toward
left and hence Hannes during AFB, 1FB, and 2FB conditions,
respectively. The only significant difference was found between
NoFB and 2FB conditions (p = 0.017) with the Nemenyi test for
a post-hoc comparison.

According to comparisons performed through the Friedman
test (because the scales are discrete and the actual data do notmatch
the assumptions for other inferential techniques), three scales of the

questionnaire showed significant effects of the feedback conditions.
The subjective evaluations collected about the sessions show that in
the 2FB condition:

- Scale 1 made it significantly easier to perceive the difference
between soft and hard objects (p= 0.027);

- Scale 2 was significantly more intuitive for soft objects (p
= 0.015);

- Scale 3 was significantly intuitive for rigid objects (p= 0.005).

According to Scale 3 scores, the post-hoc comparisons
performed through the Nemenyi test show how the proposed
feedback condition was significantly more intuitive for rigid objects
than the NoFB condition (p = 0.025) and 1FB condition (p =

0.017). Furthermore, the Friedman test showed a significant effect
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of the 2FB condition (p = 0.019), especially considering the results
of the Nemenyi test for the post-hoc comparison between 2FB and
NoFB conditions (p= 0.017).

4. Discussion

The present study explored the possibility to recognize
objects’ stiffness with an under-sensorized prosthesis. The reference
position, the encoder position, and the motor-side current available
on Hannes were used to feed a pattern recognition algorithm,
capable of generating different vibratory feedback to allow the
subject to decode the relative objects’ stiffness.

The F1Score of the classifier during the 2FB condition tested
with able-bodied subjects (Figure 5A) was very high (94.93% ±

3.94), demonstrating that the only sensors available on Hannes
(motor-side current and encoder position) provide sufficient
information for an object stiffness discrimination task using an
NLR algorithm. However, it is necessary to consider that the
classifier, during this experiment, was only tested on six objects of
different shapes but with almost the same dimensions (chosen to
replicate the objects used during the Cybathlon race, Caserta et al.,
2022). Furthermore, the F1Score obtained by able-bodied subjects
(Figure 5A) on discriminating the object stiffness was also very
good, proving the usability and efficacy of this feedback approach
on a user case.

The positive results of the first phase allowed us to evaluate the
object stiffness recognition approach on five transradial amputees.
In this second phase, we tested four approaches of the feedback
scheme (Figure 5B). In the NoFB condition, we expected a correct
identification of the right stiffness around the random chance
probability (33%). Actually, the F1Score for the NoFB condition
was even lower than this percentage (F1Score = 31.41% ± 8.57),
as amputees stated they were forced to guess since being deprived
of any possible clue. The AFB condition presents a higher average
F1Score (48.62%± 12.56) with respect to the NoFB one, indicating
that the motor noise provides less help in this kind of task.
This is true for expert users like Amputee A1, who reached the
highest score (62.78%), while it is less evident from others like
Amputees A3 (34.85%) and A5 (36.11%), who scored almost as
random chance. Differently, in the 1FB condition, almost everyone
improved their performance (F1Score = 65.67% ± 10.34) with
respect to NoFB and AFB conditions. In this condition, the users
were clearly helped in recognizing the void closures, since those
were the only ones without vibratory feedback. Moreover, most of
the amputees declared that even if the intensity of the vibration
was the same for rigid and soft objects, they were able to perceive
a difference based on the vibration onset. Since soft objects are
more compliant, the motor-side current takes more time to rise
with respect to a rigid object. Hence, the vibration is slightly
late. For this reason, the 1FB condition resulted to be statistically
better than the NoFB one, unlike the AFB condition which has
no significant difference with respect to the NoFB condition.
Overall, the 2FB condition provided the best results (F1Score
86.41%± 11.6), demonstrating to be significantlymore helpful with
respect to the other conditions and indicating that the difference
in vibration, correspondent to the rigid and soft objects, was
sufficiently distinguishable by the users, as we expected. This proves

the advantages that this type of feedback can provide to prosthesis
users as additional information to the incidental feedback (i.e.,
auditory feedback).

The reduction in the response time (Figure 5C) in the 2FB
condition (2.82 s ± 1.2) is another proof of the efficiency of the
implemented distinct vibratory feedback, meaning the amputees
needed a short time to understand object’s stiffness and enhancing
the intuitiveness of the method. This parameter is significantly
lower in 2FB (2.82 s ± 1.2) condition with respect to the NoFB
(3.52 s ± 0.8), AFB (3.7 s ± 0.83), and 1FB (4.35 s ± 1.28) ones,
suggesting that in these latter, the amputees needed to put quite an
effort in discriminating between the objects instead.

The proprioceptive drift (Figure 5D) shows an effect of
the feedback on the embodiment, especially according to the
comparison between 2FB (0.7 cm ± 1.17 toward Hannes hand)
and NoFB (1.8 cm ± 1.17 opposite to Hannes hand) conditions.
Interestingly, the results could indicate that the presence of a source
of feedback is important for summoning the embodiment process.
Precisely, the highest impact on the proprioceptive drift was found
with the 2FB condition, suggesting that this specific vibratory
feedback was the most effective one during the embodiment
process. However, a larger sample size is necessary to check
potentially higher effects caused by the 2FB condition.

Three scales in the subjective questionnaire significantly
highlight the benefits offered by the stimulations provided in the
2FB condition as intuitive feedback, especially for rigid objects. This
indicates a possible effect of the feedback on the embodiment (refer
to Figure 5D). However, a larger sample is necessary to deepen
our understanding of the potential effects of the 2FB condition
on embodiment measures in dedicated experiments. Overall, and
regardless of the statistical significance, the results seem to point
out the superiority of the 2FB condition over all aspects of user
experience considered in this study. The qualitative observations
provided by the amputees need a larger sample to extract potential
user requirements.

5. Conclusion

This study presents the implementation of an online, i.e.,
real-time, dedicated stiffness detection strategy to provide grasp-
oriented vibratory feedback using the Hannes prosthetic hand in
a closed-loop scenario. As a further progression of our previous
studies, in which we exploited a virtual simulation to find the
intrinsic variables correlated to the grasped object’s stiffness,
this study builds upon those preliminary findings and presents
a refined and improved methodology, its implementation, and
its clinical validation. The main aim was to implement an
online strategy exploiting such measurements (motor-side current,
encoder position, and reference position) to detect the stiffness of
real objects (without increasing the system complexity with ad-hoc

force sensing) and to validate such strategy with a first preliminary
study with end-users.

The classifier was tested by 18 able-bodied subjects on six
objects and resulted to be sufficiently accurate in discriminating
between void, soft, and rigid grasps. The stiffness information
was conveyed to the users through a single vibromotor, whose
intensity changed based on the grasp type, i.e., high intensity for
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rigid objects and low intensity for soft objects in our proposed
feedback condition (2FB condition). This feedback modality was
compared to three other control conditions (NoFB, AFB, and
1FB) in a user study involving five mono-lateral amputees.
Results showed a statistically significant improvement in users’
performances both in terms of F1Score and response time for
the 2FB condition. Moreover, this condition was appreciated by
the users, as demonstrated by the subjective questionnaires, which
highlighted its intuitiveness, comfortability, and usefulness. This
result was also confirmed by the analysis of the proprioceptive drift,
which showed an improvement in the prosthesis embodiment.
Hence, we can state that our proposed feedback modality was the
best among those tested.

In the future, the classifier should be tested on a higher variety
of objects with different dimensions and stiffness, especially to
investigate the influence of the dimension on the algorithm’s
performance. Reach and grasp tasks, with active usage of prosthesis,
will be implemented to provide a more realistic validation of the
usability and effectiveness of our solution within ADL and real
scenarios. A higher number of prosthesis users will be involved
to better assess the effect of the feedback on the embodiment and
its appreciation.

The present study can have a relevant impact on the application
of intrinsic sensor detection of object stiffness, as it points out
that this object recognition strategy and vibrotactile feedback
restitution on upper limb prosthesis could be effectively used as
an intuitive and effective closed-loop daily living solution. Such a
solution could facilitate the identification of a precise and delicate
grasp rather than a strong and powerful one during different
object manipulations.
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