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Data driven statistical method for the multiscale characterization and 
modelling of fiber reinforced composites 
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Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino, Italy   
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A B S T R A C T   

Multiscale analysis of composite laminates allows for predicting the mechanical response of these materials 
avoiding cumbersome experimental campaigns. The matrix and fibre material properties and the size of the 
Representative Volume Element (RVE) are the main parameters affecting the accuracy of multiscale models. This 
paper proposes a statistical inverse method to calibrate micromechanical material parameters from macroscale 
experiments and 3D reconstruction. First, glass fiber reinforced epoxy laminates have been analysed with 
Computer Tomography (CT), then, the material 3D microstructure has been reconstructed and fibre, matrix, and 
voids were segmented. Tensile tests have been performed on the composite specimen, measuring the surface 
strains with a Digital Image Correlation (DIC) system. The reconstructed volume, converted to a voxel mesh, has 
been used to compute the homogenized response of composite by Fast Fourier Transform (FFT) analysis. By 
comparing the marginal distribution of homogenized material stiffness extracted from DIC data of tensile tests, 
with the conditioned distribution computed by varying the FFT model parameter, a Stochastic Volume Element 
(SVE) is finally calibrated. A probabilistic multiscale model based on the SVE that propagates the uncertainty 
from the microscale to the structure level is presented.   

1. Introduction 

Polymer matrix composites (PMC) reinforced with continuous fibres 
play an established role in the design of aerospace structures, and their 
application is now spreading to diverse industrial sectors such as auto-
motive [1-11] and wind energy [12-14]. The increasing interest in PMC 
is pushing the adoption of novel reinforcement and matrices, widening 
the composite material portfolio available to structural designers. Pre-
dicting the mechanical response of new composite materials with a 
conventional approach requires extensive experimental campaigns, 
which may result in unpracticable. This has led to the spread of multi-
scale models that can predict the response of any composite materials by 
individually modelling the matrix and fibres [15-21]. 

Multiscale models compute the local response of composite intro-
ducing a Representative Volume Element (RVE) [22], a lower scale 
inhomogeneous representation of the composite material, whose 
response is homogenized and transferred to the higher scale model. 
RVEs are defined as the smallest volume over which a measurement can 
be made that yields a value representative of the whole. 

Conventional approaches assume a deterministic description of the 
micromechanical properties (e.g., microstructure, matrix properties, 

fibre properties), but there is an inevitable need to establish multiscale 
statistical microstructure–constitutive property relations in materials 
design. Researchers have proposed effective methods to account for the 
stochastic nature of the composite microstructure, by defining statistical 
descriptors of random microstructures [23-25] that could be experi-
mentally characterized with microstructural images or CT re-
constructions [26-30]. [30] introduced the concept of Stochastic 
Volume Element (SVE), a statistically equivalent volume element 
introduced to account for the randomness of material microstructure on 
the composite constitutive properties. [31-34] proposed a statistical 
multiscale method to propagate the microstructural uncertainty to the 
structural level by introducing a statistical representation of the RVE. 
Recently, [35] proposed a probabilistic micromechanical-based 
approach to account for the effect of scattering sources in composite 
materials, focusing on voids, material inhomogeneity, fibre morphology, 
and other manufacturing-induced defects. 

The mentioned studies assume that the scatter in the mechanical 
response of composite materials is imputable to the microstructure 
variation. However, [36-38] provided evidence that the in-situ elastic 
modulus of the epoxy matrix within the composite spatially varies 
within the material, contributing to the scatter of the homogenized 
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response. The microscale mechanism governing the variation of the 
elastic response of thermoset polymers has been experimentally inves-
tigated with atomic force microscopy (AFM) analysis [39] which 
revealed a 30% variation of the modulus with the curing state of the 
polymer. Furthermore, to the author’s best knowledge, only a few 
studies in the literature describe an experimental procedure to deter-
mine the RVE size [40,41] and its statistical description from mechanical 
tests. 

The scope of this work is:  

• Extending the current methodologies by introducing a statistical 
representation of the in-situ matrix properties in the representative 
volume at the mesoscale level. 

Fig. 1. Multiscale framework calibrated on experimental data to model the uncertainty in composite structures.  

Fig. 2. Experimental setup of the tensile test recorded with a stereo camera system for 3D Digital Image Correlation.  

Table 1 
VGDefX algorithm parameters for void segmentation.  

Parameter Value 

Min. Volume [vox.] 1000 
Max. Diameter [vox] 3000 
Voxel count 0.3 
Compactness 0.5 
Scaled deviation 0.5 
Ignore small defect 0.7 
Sphericity 0.3  
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Fig. 3. a) VGDefX results of a porosity analysis on a composite specimen b) a pore in the composite material.  

Fig. 4. On the top the binarized porosity maps with a threshold of a) 10%, b) 50%, c) 90%, d) 99%. On the bottom, the variation of the porosity with the threshold 
value is expressed as a volume fraction. 
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• Introducing a novel approach to calibrate the SVE size (extending the 
study in [40]) from Digital Image Correlation Data of tensile tests.  

• Presenting a novel procedure to calibrate stochastic properties of the 
extended SVE with experimental results from the tensile test and 
micro-CT reconstruction. 

The presented work introduces a general probabilistic framework for 
the multiscale modelling of composite structures, calibrated on experi-
mental data (Fig. 1). 

The novelty of the proposed methodology relies on the combination 
of multiscale modelling and experimental characterization methods to 
capture the variation in the elastic response of the composite at the 
mesoscale. 

2. Materials and methods 

2.1. Materials 

The material under study is a glass fiber reinforced epoxy matrix 
manufactured by hand lay-up. The matrix is the low viscosity (70 mPas) 

epoxy resin AXSON EPOLAM 2015 with a glass temperature of 90◦, 
mixed with the EPOLAM hardener at 32% of weight fraction. The uni-
directional E-glass fabric UNIE600 (ResinTex) has a surface weight of 
661 g/m2 and a total tex of 2400. The fibre diameter spans from 14 to 17 
µm with a density of 2.60 g/cm3 and a nominal elastic modulus of 73 
GPa. Laminates are produced in the shape of 300x300 mm plates and 
successively shaped to get rectangular specimens with a Wazer waterjet 
cutting machine. The laminates had a [±45]6 stacking sequence, with 12 
layers in total, each with a nominal thickness of 0.7 mm, yielding a total 
laminate thickness of 8.55 ± 0.10 mm. Rectangular specimens are cut 
with a 25 mm width and a length of 250 mm each and visually inspected 
to ensure that the cutting process has not induced any damage or 
delamination to the specimen. 

2.2. Experiments 

2.2.1. Computer tomography analysis 
Specimens have been scanned with the Fraunhofer IKTS Computer 

Tomography scan available in Politecnico Labs with an open microfocus 
x-ray tube operating at a maximum voltage of 300 kV. The X-Ray de-
tector has a size of 400 × 400 mm with 2048x2048 pixels (200 µm 
resolution). The X-ray image resolution was 5 µm under the most 
favourable conditions (i.e., sample size, scanning speed, sample shape). 
The object-to-detector distance and source-to-detector distance were set 
to 50 mm and 545 mm, respectively, yielding a voxel-edge resolution of 
16 µm. The specimen has been placed with its main direction aligned to 
the rotation axis and scanned four times in each of the 1600 projection 
positions. The tube voltage and filament current have been set to 100 kV 
and 60 µA, respectively. To increase the accuracy of the X-ray images, an 
aluminium filter of thickness 0.2 mm has been used to cut out low- 
intensity rays. 

2.2.2. Tensile test and Digital Image Correlation 
Tensile specimens had a width of 25 mm and a total length between 

the grips of 150 mm, as suggested by the ASTM standards D3039. The 
test has been performed with the servo-hydraulic testing machine 8801 
by Instron, equipped with a load cell with a 100 kN capacity. Specimens 
have been clamped with a hydraulic system, setting a closure pressure 
low enough to minimize the stress concentration at the interface. The 
test has been performed at a fixed displacement rate of the lower 
crosshead of 2 mm/min, with an acquisition frequency of 20 Hz for both 
load and displacement. The tensile tests were recorded with a high- 

Fig. 5. Sphericity computer for all the clustered defects against its main 
diameter. Representative defects of each interval are reported. 

Fig. 6. Reconstructed mesh with main defects grouped by sphericity and dimension.  
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resolution stereo camera system by Isi Systems, with a 4096 by 2160 
pixels resolution and an acquisition frequency of 5 Hz. The experimental 
setup is shown in Fig. 2. The cameras are controlled and calibrated with 
the VIC-3D software by Correlated Solutions, later used to compute 
surface displacements and strains on the specimen using the Digital 
Image Correlation (DIC) method. 

2.3. Methods 

This paper proposes an inverse statistical methodology to calibrate a 
Stochastic Volume Element (SVE) for multiscale analysis from a 
macroscale tensile test and micro-CT scan. From the micro-CT data, the 
mesoscale structure of the laminate has been subdivided through a 
segmentation of the volume voxels into matrix, void, and tows (as will 
be described in Section 3.1). From the segmented voxel volume, the 
extracted laminate sub-regions (i.e., candidate RVEs) are converted to 
voxel mesh and transferred to a Fast Fourier Transform solver developed 
in MATLAB (as it will be described in Section 3.2). Similarly to what has 
been done for the voxel mesh, surface sub-regions of the Digital Image 
Correlation maps with the same size have been designed and an average 
stiffness has been computed from synchronous strain and load data (as it 
will be described in Section 3.4). It is assumed that DIC measurements 
are descriptive of all the uncertain variables defining the material me-
chanical response, while the reconstructed CT-scan mesh is a deter-
ministic description of the mesoscale geometry. On the base of these 
assumptions, the statistical distributions of the microscale material pa-
rameters have been optimized to best match the empirical distributions 
of the elastic modulus measured through DIC. To achieve these results, 
the cumulative distribution function (CDF) of the FFT results obtained 
by varying the material random variable has been compared with the 
DIC CDF. The loss function of the optimization scheme is defined as the 
p-value of the Kolmogorov-Smirnov [42] test, weighted on the test re-
sults (as it will be described in Section 3.5). 

2.3.1. Data segmentation and mesh reconstruction 
The X-ray image of the 1600 projections around the scanning axis has 

been imported into VGMax software to reconstruct a 3D volume of the 
specimen. The volume voxel-edge resolution is 16 μm, each voxel has a 
grey scale value between 0 and 255 that represents the absorbed power 
of the material in each position. Using a threshold algorithm on the 
greyscale distribution curve, materials have been differentiated from 
voids, assigning each voxel to one of these classes. Voids have been then 
processed with the VGDefX algorithm that clusters the void voxels and 

Fig. 7. A slice of the reconstructed mesoscale structure of the composite where 
the waviness of the bundles is indicated with a dot-dashed line. In the bottom, 
two segmented sections of the two tows with different diameters and waviness. 

Fig. 8. A) microstructures of heterogeneous volume elements reconstructed from the ct images. b) longitudinal stress on the volume element when a uniaxial strain 
of 0.01 mm/mm is applied along the y direction. The RVE size is 4.5, 5.5, 7.5, 8.5, 10, and 11 mm, from left to right. 
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estimates the probability (pp) that a cluster is a porosity (i.e. a defect), 
rather than an artefact. The probability has been weighted on the 
geometrical features of the clusters. 

Voxels labelled as “composite” are processed with the Fibre Com-
posite tool by VGMax, which interpolates the grey values of the voxels 
and converts them to a volume fraction (vf ). The volume fraction of each 

voxel can be used to differentiate between matrix (vf= 0) and fibre tows 
(vf≅ 1). Since the resolution of the scan was twice the fibre diameter, 
the algorithm could not distinguish fibre and matrix within the tows, 
therefore the volume fraction computed with VGMax had to be carefully 
treated, being limited by the CT resolution. To overcome this issue, a 
microscopic image of the tow has been taken to properly assess the fibre 

Fig. 9. Convergence study of the RVE size estimated from FFT analysis on CT reconstructed mesh.  

Fig. 10. On top, the homogenized modulus computed with FFT simulations of reconstructed microstructures, on the bottom, the standard deviation normalized to 
the mean. 
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volume fraction within it. 
The voxel discretized volume has been exported into a MATLAB 

environment in the form of vectors containing voxel class labels, 
porosity probability, volume fraction, and spatial coordinates. 

The continuous variables vf and pp have been converted into discrete 
values by defining the threshold values:  

• tp: probability threshold, voxel with a porosity probability above tp 
have been labelled as pore, the remaining voxels have been labelled 
as matrix 

• tv: volume fraction threshold, voxels with a computed volume frac-
tion above tv have been labelled as tows, and the remaining voxels 
have been labelled as matrix. 

The resultant mesh has been later divided into different layers by 
manually defining the layers’ interface positions along the thickness. 

The reconstructed mesh has been used as the seed to generate Vol-
ume Elements (VEs) by extracting a sub-volume of the mesh with a 
random position in the plane and a fixed number of layers. The size of 
the in-plane square and the number of layers then define the size and 
aspect ratio of the extracted VE. 

2.3.2. RVE size estimation from FFT on CT reconstruction 
RVE is the smallest volume over which a measurement can be made 

that yields a value representative of the whole. The RVE size is 
commonly identified by computing the homogenized mechanical 
response (e.g., tensile stiffness) of the VEs with the increasing size until 
the quantity of interest is unchanged and its standard deviation is below 
a defined threshold [43]. Therefore, multiple VE with increasing size 
have been extracted and the homogenized in-plane shear modulus G12 
has been computed with FFT simulations, until it converged to a sta-
tionary value. 

2.3.3. RVE size estimation from DIC measurements 
The DIC strain map resolution of 0.3 mm is approximately one-third 

the fibre tow width, yielding an inhomogeneous distribution of the 
surface strain. It is then possible to compute a homogenized strain value 
over a surface sub-region with Eq. (1): 

ε =
1
A

∫

Ω
ε(x, y)dS (1)  

where Ω is the surface sub-region with area A, and ε(x, y) is the strain 
field computed with the DIC. The stress σy in every point is equal to the 
applied stress that can be measured by dividing the measured force over 
the cross-sectional area. On the specimen surface, the out-of-plane stress 
is null, thus a plane stress condition is assumed, which yields to Eq. (2): 

Ey =
(1 − ν)σy

εx + νεy
(2) 

The homogenized longitudinal modulus has been computed for sub- 
regions with increasing size, i.e. Surface Representative Volume Element 
(S-RVE). Similarly, the in-plane shear modulus G12 can be computed 
from Eq.(3). 

G12 =
σy

2
(
εy − εx

) (3) 

The RVE size has been defined by analysing the convergence of the 
homogenized moduli with the increasing area. 

The proposed methodology underlies the fundamental assumption 
that the in-plane strain measured on the specimen surface is represen-
tative of the average strain through the thickness. Previous works 
[44,45] have investigated the stress concentration on the surface of the 
textile composites induced by the material microstructure. It has been 
assessed that an increase of the stress (or strain) in the woven composite 
is induced by the local unbalancing of the laminate determined by the 
woven architecture. The induced momentum can be computed as: 

ΔF
F

=

(
1
2
−

t
h

)(
N

N − 1

)

(4)  

where h is the ply thickness, and t is the distance from the unit cell 
surface and the yarn midline. In the case of the bundled unidirectional 
composite under study, t is half of the cell thickness, yielding a null 
induced momentum on the outer surface. It can be then concluded that 
in the case of the unidirectional composite under study, the surface 
stress is not altered by the material structure. 

Fig. 11. The equivalent Von Mises stress computed at each matrix voxels of the 
FFT calculations computed over different RVEs. The histogram reports all the 
voxels values, while the orange line represents the logarithmic normal distri-
bution fitted on the data. The dashed black lines and filled blue dots indicate 
the maximum Von Mises stress at each simulation, while the blue line shows the 
extreme values distribution fitted on the maximum stresses. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 12. A) centroid of the rve displayed on the strain maps at a nominal stress 
of 20 MPa. b)The homogenized stress–strain response of different RVE with 
different sizes extracted from the DIC map. 
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2.3.4. Stochastic volume Element (SVE) calibration 
The mechanical response measured with tensile test and DIC is 

representative of the glass fibre material and intrinsically contains all 
the variance associated with porosities, variable local volume fraction, 
and variable matrix properties over the specimen volume. While the 
geometrical irregularities can be measured with the CT scans, the sta-
tistical distribution of the constituents’ properties is unknown and a 
punctual measurement, e.g. with a nano-indenter, would require an 
extensive characterization campaign with additional characterization 
experiments. The objective of the proposed method is therefore to es-
timate the variation of the elastic response at the mesoscale, that is an 
average response of the nanoscale variations related to the crosslinking 
of the polymers governed by the curing kinematics[39]. This paper 
proposes an inverse method to calibrate the statistical distribution of the 
constituent properties by minimizing the difference between the CDFs of 
the homogenized properties drawn from the FFT simulations with var-
iable matrix modulus and from the DIC measurements. The empirical 
CDF is inferred from the tensile test fitting the homogenized stiffness 
distribution obtained by repeating the procedure described in Section 
2.3.4 with the computed RVE size. The CDF of the FFT model, FFFT

E , can 
be estimated from the conditioned probability FE|Em using Eq. (5): 

FFFT
E =

∫

FE|Em fEm dEm (5)  

where FE|Em is the conditional CDF of the homogenized modulus at a 
fixed Young’s modulus of the matrix, Em, and fEm is the probability 
function of Em. FE|Em is computed from the homogenized modulus of 10 
RVE simulations, with different randomly selected locations in the 
scanned volume, with a fixed Em. The conditional CDF has been 
computed at different Em, sampled within 1 GPa and 4 GPa. 

The distribution of the matrix modulus has been assumed to be 
Normal, with mean μ and standard deviation σ obtained with an opti-
mization procedure. The adopted optimizer finds the μ and σ values that 
minimize the loss function in Eq. (6): 

L = 1 − pp(1 − hh), (6)  

where pp and hh are the p-values of the Kolmogorov-Smirnov test[42], 

and the test results at a significance level of 10%, respectively. 
The test statistic is the maximum absolute value between the 

empirical cdf calculated from the DIC data and the hypothesized con-
ditional CDF: 

D* = max
(⃒
⃒
⃒
⃒F

DIC
E −

∫

FE|Em fEm (μEm, σEm )dEm

⃒
⃒
⃒
⃒

)

(7) 

The critical value for text acceptance is computed with the empirical 
formula described in [42]. 

The gradient-based optimization algorithm used for the calibration 
of the distribution of the matrix modulus is based on the interior-point 
approach to constrained minimization, able to solve optimization 
problems with inequality constraints. More details on the algorithm are 
given in [46]. 

3. Results 

This section is organized as follows: 
Section 3.1 presents the experimental results of the microstructure 

reconstruction from the CT scans and micrographic images. 
Section 3.2 introduces the FFT model calibration, and the results 

compared to the tensile test. 
In Section 3.3 the results of the RVE size estimation methods from 

both DIC and CT data are presented and compared. 
Finally, in Section 3.4 the inverse calibration method is applied, and 

the results are presented and compared to experiments. 

3.1. Microstructure reconstruction 

The parameters of the VGDefX algorithm used to detect porosity in 
the scanned region are reported in Table 1. 

The result is a pore probability map with voxel values ranging from 
0 to 100. The threshold tp used to binarize the map and identify the void 
inside the specimen that affects the porosity volume fraction as 
described in Fig. 4. 

After having analyzed the morphology of the voids at different tp, a 
threshold value of 10%, yielding a 4.6% porosity volume fraction, has 

Fig. 13. Results of the RVE size analysis from the DIC measurements during the tensile test.  
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been selected since the resultant shape and orientation correspond to 
what was observed with the microscope. The voxels labelled as pores 
have been clustered with a density-based algorithm with a scanning 
distance of 190 µm and a minimum of 10 voxels per cluster, yielding 
approximately 370 clusters representing the material defects (see 
Fig. 3). For each defect, a sphericity index Φ has been computed, being Φ 
the ratio between the surface area of an equal-volume sphere and the 
defect surface area (A) in Eq. (8): 

Φ = π1
3
(6V)

2
3

A
(8) 

Fig. 5 reports the sphericity and the main diameter of the segmented 
defects, revealing the presence of three distinguishable categories:  

• Small voids with a spherical shape, whose typical shapes are 
sketched at the top left of Fig. 5: most probably due to trapped air in 
the manufacturing stage.  

• Fibre-oriented defects with elliptical shapes, whose typical shapes 
are sketched at the top centre of Fig. 5: defects are aligned to the fibre 
direction and contiguous to the tows.  

• Interacting defects, whose typical shapes are sketched at the top right 
of Fig. 5: defects made of two distinguishable defects that merged 
into a larger one with a distorted shape. 

The categorized defects are reported in Fig. 6 and their position in-
side the specimen is highlighted to show the alignment of the defects to 
the fibre direction. 

Fig. 14. Comparison of the mean value and standard deviation of the transverse Young’s modulus E22 (a) and in-plane shear modulus G12 computed from FFT on CT 
reconstruction and DIC. 
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The irregular shape of the tows has been analysed following the same 
approach used for the void segmentation, applying the density-based 
spatial clustering technique on the voxels labelled as fibre bundles. 
The reconstructed fibre bundles present geometrical irregularities both 
in terms of alignment and size. Fig. 7a shows a slice of the reconstructed 
volume where the waviness of the fibre bundles can be observed. The 
variation of the main diameter is reported for two different tows, 1.8 mm 
and 2.2 mm respectively. 

In the proposed approach, the variation of the fibre bundle geometry 
is accounted for by directly extracting the mesh of the RVE from the 
reconstructed structure of the composite at the mesoscale level. The 
effect of the bundle waviness and size on the composite stiffness is thus 
obtained from the experimental reconstruction, following a data-driven 
fashion rather than modelling its variability into an artificially gener-
ated RVE. 

3.2. RVE size estimation 

3.2.1. RVE size estimation from FFT analysis on CT reconstructed mesh 
The RVE size estimation with FFT analysis of the reconstructed mesh 

has been conducted by investigating the variation of the laminate elastic 
modulus along the y direction. The glass fibre has been modelled as 
isotropic with Young’s modulus of 72 GPa and a Poisson’s ratio of 0.2, 

while the initial guesses for the epoxy matrix Young’s Modulus was 2 
GPa with a Poisson’s ratio of 0.35, as reported in the literature[47]. 

The initial RVE size has been set to 3.6 mm and successively 
increased until the standard deviation of the homogenized modulus 
converged to an asymptote, whose value depends on the randomness of 
the microstructure extracted from the CT data. To get a statistic of the 
homogenized moduli, five FFT simulations have been performed for 
each candidate RVE, by sampling a sub-volume of the reconstructed 
mesh (Fig. 8). 

Fig. 9 shows the results of the RVE size analysis, where it is visible the 
convergence of the E22 at a mean value of 7.6 GPa for 7 mm RVE size, 
where the standard deviation is approximately 5% of the mean value. 

The effect of defects on the RVE response has been studied by 
computing the response of reconstructed microstructures where voids 
have not been considered, and matrix material has replaced them. The 
results reported in Fig. 10 show that the defects induce a larger scatter in 
the material response since the randomness of the material micro-
structure not only depends on the fibre arrangement (bundles shape, 
bundles alignment, matrix-rich zones) but also on the presence of defects 
that significantly affect the mechanical response. More specifically, it 
can be observed that the homogenized modulus of the defect-free ma-
terial converges to a 10% higher mean value, as expected. 

Since the proposed analysis investigates the elastic response of the 

Fig. 15. A) the homogenised composite modulus extracted from the dic data is compared with the one computed with the fft model on the experimental micro-
structures. the fitted distributions of the modulus computed on volumes with size equal or higher to 7 mm (i.e., the RVE size) are indicatively reported on the right 
side of the graph, while b) shows a magnification of the normal distributions where the ± 3σ interval is reported. 

Fig. 16. A) calibrated probability density function distribution of the matrix young’s modulus. b)Cdf of empirical composite modulus measurements from DIC and of 
SVE compared. 
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composite at different scales, the absence of any plasticity at the 
mesoscale (i.e., micro-plasticity) has been verified by analysing the 
equivalent Von Mises stress computed at the matrix voxels with the FFT 
calculations. Fig. 11 shows the equivalent stress of the matrix voxel 
values of each FFT simulation computed over different RVEs. The 

histograms contain all the computed values, whose distribution has been 
fitted with a logarithmic normal pdf, with a mean of 1.03 log(MPa) and a 
deviation of 0.47 log(MPa). 

The distribution of the equivalent stress in the matrix has been 
compared with the yield stress values of the epoxy matrix, which is 

Fig. 17. Comparison between experimental curves computed from DIC maps (only upper and lower bounds are shown) and SVE results with calibrated parameters.  

Fig. 18. A) the geometry of the virtually tested structure. b) the elastic modulus map assigned to the part with the sv-ms approach.  
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between 30 MPa and 50 MPa as reported in the literature [47]. It can be 
concluded that the average matrix response in the analysed model is 
within the elastic regime. The maximum values of the equivalent stress 
of the matrix within each RVE are reported in Fig. 11. The probability of 
having micro-plasticity in the extracted RVE can be described with the 

extreme value distribution with a mean of 15 MPa and deviation of 2.5 
MPa, confirming that it is very unlikely to have plastic deformation in 
the analysed RVE at the defined strain level, except at lower scale where 
local plasticity takes place at specific inter-fibres locations. 

3.2.2. RVE size estimation from DIC measurements 
The adopted procedure for the estimation of the RVE size from the 

synchronized strain map and the load–displacement curve is presented 
in this Section 2.3.3. At each candidate size, 10 subdomains of the 
specimen surface have been extracted by randomly selecting the centre. 
Fig. 12b shows the stress–strain curve of all the extracted subdomains 
with distinct sizes, while the colourmap of Fig. 12a shows the strain 
along the y direction measured with DIC. The red dots on the specimen 
represent the centroids of candidate S-RVEs, with a higher density near 
the centreline due to the progressive reduction of the sampling sub-
domain with the RVE increasing size. The red curves are related to 
different S-RVEs. 

Applying Eqs. (1) and (2) to the extracted sub-volume, the mean and 
standard deviation of the transverse Young’s modulus E22 at each size 
have been computed (Fig. 13). 

Results show a fast convergence of the transverse Young’s modulus 
E22 to the mean value of 7.2 GPa. The standard deviation for the 10 
samples extracted from the strain maps converges to a value of 9% of the 
mean value, for an RVE size of 7 mm approximately. As it can be noticed 
in the upper diagram of Fig. 13, even with a larger area, the computed 
transverse Young’s modulus has a quite large scatter arising from the 
DIC measures, suggesting the presence of spatially inhomogeneous 
properties of the material. 

Table 2 
SV-MS algorithm.  

SV-MS algorithm 

Build the FE mesh of the part 
Divide the elements into N groups 
for each group i 

Sample a value of Em 
Sample an SVE from the reconstructed volume 
Run the FFT homogenization 
Generate the ith material card 
Assign the material card to the ith group elements 

end for  

Fig. 19. Results of SV-MS and SI-MS models of skin buckling.  

Fig. 20. Critical buckling load and structure global stiffness computed with SI-MS and SV-MS statistical models.  

Table 3 
FFT fixed-point iterative solution scheme.  

Real space Fourier space 

Initialize εi(x) = ε  
σi(x) = C(x) : εi(x)
τ(x) = σi(x) − C0 : εi(x) τ̂ i

(ξ)
ε̂i+1

(ξ) = ε̂i
− Γ̂(ξ) : τ̂ i

(ξ)
εi+1(x) ε̂i+1

(0) = ε  
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3.2.3. Comparison 
In the diagram of Fig. 14, the results from the two presented methods 

are reported for values of size up to 11 mm. It is relevant to observe that 
the mean value of the transverse Young’s modulus E22 computed with 
FFT on the reconstructed mesh converges to the homogenized value 
computed from the DIC maps equal to 7.3 GPa (Fig. 14a), while the in- 
plane shear modulus G12 converges to an average value of 2.5 GPa 
(Fig. 14b). The RVE size extracted from the DIC analysis is between 7 
and 8 mm, accordingly to what was computed with the FFT simulations. 
The standard deviation of the homogenized elastic modulus computed 
with FFT approached the asymptotic deviations of 4%, while the results 
from the DIC maps show a larger scatter with an STD that oscillates 
around 9%. 

The results show that the FFT model predicts a distribution of Ey 
with a standard deviation of 0.5 GPa, with respect to the 0.75 GPa 
observed experimentally Fig. 15. This 0.25 GPa difference in the stan-
dard deviation suggests that the model is not an accounting of all the 
stochastic phenomena that govern the elastic response of the material 
and raise the need for further investigation into the sources of 
uncertainty. 

The FFT model combined with the experimental microstructure 
reconstruction only accounts for the defects-induced spatial variability. 
Indeed, the material properties have been considered spatially invariant, 
while recent findings demonstrated[20] the variability of the matrix 
properties within composites. 

Therefore, both the adopted approaches are not completely satis-
factory. To overcome the evidenced limitation a novel procedure has 
been devised. First, it is needed to assess this properties variability in the 
composite material, to this scope, an inverse calibration method has 
been applied to quantify the uncertainty imputable to the properties 
variability and efficiently capture it in an SVE. 

3.3. SVE calibration 

The inverse calibration method introduced in Section 2, requires the 
CDF of the homogeneous modulus probability conditioned on the matrix 
Young’s modulus (Eq. (4)). To get this statistic, twenty values of Em have 
been sampled around the expected value of 1.9 GPa, and the conditional 
homogenized modulus has been computed at each value with an FFT 
analysis. Using Eq. (6), the best Normal distribution parameters have 
been found for Em that can capture the variability of the homogeneous 
modulus observed in the DIC data. It is worthy of note that the distri-
bution of the local composite modulus, as it is well visible in the diagram 
of Fig. 15b, is well described by a normal distribution. 

The optimization converged to a mean value of 1800 MPa with a 
standard deviation of 105 MPa (Fig. 16a) after 15 iterations. The loss 
function defined with Eq. (6) had a value of 0.29, yielding a p-value of 
0.7. Fig. 16b compares the cumulative distribution function of the SVE 
with the one computed from the DIC, revealing a good agreement be-
tween the experimental and numerical curves. 

Finally, the composite response has been calibrated using the cali-
brated SVE and the results with the curve extracted from the tensile test 
have been compared (Fig. 17). 

3.4. Statistical multiscale finite element analysis 

The methodology proposed in this paper wants to establish a mul-
tilength scale statistical microstructure–constitutive property relation 
for the design of composite parts. To demonstrate the relevance of the 
method, a hierarchical statistical multiscale finite element model based 
on the generated SVE has been developed to predict the buckling critical 
load of a GFRP structure. The proposed test has been virtually simulated 
to give a demonstration of the method’s capabilities and underline the 
main features of the proposed work. The analysis has been performed on 
a structure with 2 mm thickness, whose shape is described in Fig. 18. 

In the following, the results of three different models are presented:  

1. Deterministic multiscale (D-MS): the homogenized properties of the 
material are extracted from an RVE with average properties.  

2. Spatially invariant statistical multiscale (SI-MS): the homogenized 
properties are extracted from the SVE and applied uniformly over the 
domain.  

3. Spatially variable statistical multiscale (SV-MS): the homogenized 
properties of each material point in the model are extracted from the 
SVE and differ over the domain. 

To estimate the uncertainty of the statistical models, SI-MS and SV- 
MS have been run twenty times each. The SI-MS adopts the same SVE 
for every material point in the structure, with the matrix Young’s 
Modulus drawn from the calibrated distribution and the microstructure 
randomly extracted from the scanned volume. The SV-MS model is built 
by sampling twenty SVE, with Em randomly extracted from the esti-
mated Normal distribution and the microstructure randomly sampled 
from the scanned volume. 

The SV-MS procedure has been reported in Table 2. 
The homogenization step consists of three simulations, needed to 

assess the homogenized elastic constants of the orthotropic stiffness 
matrix of the shell elements. Young’s moduli along the × and y direc-
tion, together with the shear modulus and Poisson’s modulus in the xy 
plane are estimated. Fig. 18b shows the map of the assigned moduli to 
the elements of the structure. 

The diagrams in Fig. 19 report the force–displacement curves from 
the stochastic simulations. It can be observed that the stiffness of the 
structure is more variable in the SI-MS simulations, where the random 
value of the matrix modulus is globally assigned to every material point 
in the structure, leading to a larger scatter in the global response. The SV 
model predicts a variable global stiffness with a smaller deviation from 
the global stiffness computed with the D-MS. Indeed, the spatially var-
iable method preserves the statistical distribution of the material prop-
erties over the structure domain, yielding an average result close to the 
mean predicted with the deterministic model (Fig. 20). 

In Fig. 20, the critical load and global stiffness of each simulation are 
reported in a box plot. The critical load predicted with the SV-MS is 
always lower than the one predicted with the D-MS. In effect, it can be 
observed that asymmetric modes are triggered in the spatially variable 
model. The buckling response is indeed governed by local phenomena 
and more compliant SVEs concentrated in the slander regions of the 
structure lead to local buckling instabilities (as reported in Fig. 19). The 
lower critical loads are attributable to asymmetric buckling modes, that 
neither the D-MS nor the SI-MS can predict. 

It can be concluded that the SV-MS model, by streaming the uncer-
tainty from the microstructural to the macroscopic scale, allows for the 
prediction of structural behaviour triggered by the intrinsic variability 
of the composite material. 

4. Conclusions 

The article introduces novel methodologies to leverage the large data 
available from the most recent experimental technique for material 
characterization. The full field description of the microstructural ge-
ometry defined using computer tomography scans, and the full field 
strain response captured with the Digital Image Correlation technique 
feed the statistical data-driven algorithm, that links the microstructural 
variability and its intrinsic defectiveness with the uncertainty of the 
mechanical response. The inverse method allows for the estimation of 
the microstructural material parameter and their statistic without 
directly measuring them. The proposed framework makes the best out of 
the available data at different length scales and gives a probabilistic 
model for the multiscale response of composite structures. The uncer-
tainty is propagated from the microscale to the structure in a multiscale 
fashion by introducing a probabilistic multiscale model based on the 
SVE. 

The proposed method: 
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• Defines the RVE (or SVE) size from the experimentally measured 
strain maps of DIC, showing consistency with the numerical pro-
cedure based on full field homogenization (e.g., FFT),  

• Estimates the uncertainty of the material model’s parameters used in 
the microscale representation of the heterogeneous material from the 
CT reconstructions of the microstructure and strain map from DIC,  

• Defines an SVE used in a statistical multiscale model propagating the 
uncertainty from the microscale to the structural level. 

To assess the method potentials, the multiscale model has been used 
to predict the buckling response of a GFRP structure, showing it can 
predict mechanical responses originating from the statistical variability 
of the material properties over the spatial domain. Results confirm the 
importance of propagating the measured microstructural uncertainties, 
to the structure level and predicting its effect on the mechanical 
response. The presented method is limited to the elastic analysis of 
heterogeneous materials, while future development will extend the 
applicability to the plastic and damage models to assess the multiscale 
uncertainty relation behind the elastic regime. 
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Appendix A 

Homogenization method. 
A.1. Two-scale equilibrium problem. 
The macroscopic response of heterogeneous materials is governed by deformation mechanisms taking place at two different scales: the microscale 

and the macroscale. The microscale is defined but the Representative Volume Element (RVE) which has a characteristic dimension l, while the 
macroscale is defined by the scale of the analysed structure L. Under the assumption of linear elasticity, the two scales can be studied separately (l≪L), 
and the heterogeneous response of the material can be replaced by homogenized behaviour. At the macroscale, the constitutive model of the material 
is given by: 

σ = Cε, (A.1) 

With C the elastic tensor, σ and ε the average stress and strain fields that comply with the microscale equilibrium are given by: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

divσ = 0, inΩ,

ε(x) = ∇S(u*(x)) + ε, inΩ,

σ(x) = Ci : ε(x), inΩi,

∇s(u*(x) ) = 0, inΩ,

(A.2) 

where Ci is the stiffness tensor of phase i, and ∇S(u*(x)) is the fluctuating part of the strain in the RVE, whose average should vanish over the RVE. 
A.2 Fast Fourier Transform (FFT) method. 
Under the assumption of periodic boundary conditions, the microscale problem can be solved using the FFT method developed by H. Moulinec and 

P. Suquet[48]. The method proposes an auxiliary problem to A.2, introducing a reference material with a stiffness tensor C0 and a polarization stress 
field τ(x). The problem can be expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

divσ = 0, inΩ,

ε(x) = ∇S(u*(x)) + ε, inΩ,

σ(x) = C0 : ε(x) + τ(x), inΩi,

τ(x) =
(
Ci − C0) : ε(x), inΩi,

∇s(u*(x) ) = 0, inΩ.

(A.3) 

That leads to: 

∇ •
(
C0 : ε

)
+∇ •

(
C0 : ε̂

)
+∇ • (τ(x) ) = 0, (A.4) 

giving: 

∇ •
(
C0 : ε̂

)
= − ∇ • τ(x), (A.5) 

The solution to this problem can be expressed by introducing the isotropic Green’s operator Γ0 based on the reference material C0: 

ε̂(x) = − Γ0*τ(x), inΩ, (A.6) 

with * indicating the convolution product. Leading to: 

ε(x) = ε − Γ0(x)*
(
σ(x) − C0 : ε(x)

)
, (A.7) 
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Green’s function for isotropic materials with applied periodic boundary conditions in the Fourier space is given by: 

Γ̂
0
ijkl =

1
4μ0|ξ|

(
δkiξhξj + δliξlξi + δkjξkξj + δjlξjξl

)
−

λ0 + μ0

μ0( λ0 + 2μ0)
ξiξjξkξl

|ξ|4
, (A.8) 

where ξ is the coordinate in the Fourier space, μ0 and λ0 are the Lame’s constants of the reference materials. 
The problem can then be solved iteratively with a fixed-point solution scheme, as described in Table 3:The iteration is completed until the 

convergence of the strain tensor. 
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