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Abstract—Semantic segmentation models have reached re-
markable performance across various tasks. However, this perfor-
mance is achieved with extremely large models, using powerful
computational resources and without considering training and
inference time. Real-world applications, on the other hand,
necessitate models with minimal memory demands, efficient
inference speed, and executable with low-resources embedded
devices, such as self-driving vehicles.

In this paper, we look at the challenge of real-time semantic
segmentation across domains, and we train a model to act
appropriately on real-world data even though it was trained on
a synthetic realm. We employ a new lightweight and shallow
discriminator that was specifically created for this purpose. To the
best of our knowledge, we are the first to present a real-time ad-
versarial approach for assessing the domain adaption problem in
semantic segmentation. We tested our framework in the two stan-
dard protocol: GTA5→Cityscapes and SYNTHIA→Cityscapes.
Code is available at: https://github.com/taveraantonio/RTDA

Index Terms—Real-Time, Semantic Segmentation, Unsuper-
vised Domain Adaptation, Autonomous Driving

I. INTRODUCTION

Semantic segmentation, i.e., assigning a semantic class to
each pixel of an image, is a critical task for scene com-
prehension. It is fraught with challenges and the state-of-
the-art models proposed to tackle them usually have a huge
number of parameters. The complexity of these models not
only translates to long training and inference times but it also
makes it impractical to deploy them in a real-world scenario
due to the large amount of resources demanded. Moreover,
semantic segmentation id often required to work in real-time,
particularly for robotics applications such as geo sensing,
precision agriculture, and, most notably, autonomous driving.

Besides the complexity of the models, the process of col-
lecting and annotating real-world data [1] is time-consuming
and costly. A successful solution to tackle this issue is to use
synthetic data generated from virtual world simulators [2], [3],
[4]. Despite the much lower cost of collecting and annotating
synthetic data, this technique has one major drawback: the
domain shift between virtual and real world is substantial.
Several unsupervised domain adaptation techniques have been
proposed to address the domain gap between the synthetic
(source) and real (target) domains; however, because they are
not designed to be used in a real-world scenario and rely
on a huge number of parameters, they are still vulnerable to
resource and training time limits.

To fully solve the real-time domain adaptation problem
in semantic segmentation, we require a complete lightweight
model with few parameters and that can be deployed in
a practical situation with limited resources. To do this, we
redesigned the BiSeNet [5] model, tailoring it to the Domain
Adaptation challenge and including a novel lighter and thinner
fully convolutional domain discriminator (Light&Thin). To
summarize:
• we propose a network for real-time domain adaptation in

semantic segmentation, using a new lightweight and thin
domain discriminator.

• we propose an ablation study to compare our Light&Thin
discriminator to a standard domain discriminator and its
lightweight variant.

• we test our architecture against two synthetic-to-real
situations, GTA→Cityscapes and Synthia→Cityscapes,
proving the efficacy of our solution.

II. RELATED WORKS

A. Semantic Segmentation and real-time application

Thanks to the use of deep learning techniques, Semantic
Segmentation has exploded in popularity in recent years.
The current state-of-the-art methods are determined by the
approach employed to exploit semantic information, such as
fully convolutional networks [6], encoder-decoder architec-
tures [7], [8], dilated convolutions [9], [10], [11] or multi-
scale and pyramid networks [12]. Because the number of
parameters in semantic segmentation networks is in the order
of 109 and their real-world application is rising in popularity,
several researchers have investigated the feasibility of more
lightweight architectures. The majority of architectures can be
divided into two macro categories: (i) encoder-decoder archi-
tectures [13], [14], [15], which cost less at inference time than
dilated convolution methods, (ii) two-pathway architectures,
which address the loss of semantic information during the
encoder-decoder mechanism’s downsampling and upsampling
operations. The BiSeNet family [5], [16] is an example of this
type of architecture.

B. Domain Adaptation

The task of bridging the gap between two different distribu-
tions is referred to as Domain Adaptation. The original answer
to this problem is to employ a distance minimization algo-
rithm, such as the MMD [17], although alternative methods
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Fig. 1. Illustration of the real-time adversarial training of our framework. The adversarial loss required to align the source and target distributions is computed
by our novel lightweight and shallow discriminator.

that use generative models [18], [19] to condition one domain
into the other have also been used. The most noteworthy
solution is the adversarial training technique [20], [21], which
consists in a min-max game between the segmentation network
and a discriminator in which the former attempts to trick the
latter by making the distributions of the two domains identical.
In any case, none of the prior solutions were applicable to real-
world scenario.

III. METHOD

The proposed algorithm re-imagines BiSeNet tailored to
the Unsupervised Domain Adaptation (UDA) task (III-A). We
introduce a novel real-time adversarial domain adaption frame-
work (III-B) comprised of the BiSeNet semantic segmentation
model and an unique lightweight and thin discriminator (Fig.
1) that increases domain alignment and adaptation perfor-
mance.

A. Setting

The set of RGB images composed by I pixels is denoted
by X , and the set of semantic labels linking each pixel I
with a class c from a set of semantic classes C is denoted
by Y . We have two datasets to work with during training: the
source Xs = {(xs, ys)}, which consists of |Xs| semantically
annotated images, and the target Xt = {(xt)}, which consists
of |Xt| unlabeled images. The source and target annotation
mask belonging to the set of semantic labels Y are defined as
ys and yt. The goal of UDA is to use both the source and
target dataset Xs and Xt to learn a function f that takes as
input an image x and outputs a C-dimensional segmentation
map Ph,w,c(x).

B. Training

Due to the lack of semantic information for the target
distribution, we proceed to align the features derived from
the source and target domains in an adversarial fashion. To

do this, as well as to meet our goal of making a network
smaller, portable, and deployable on limited resource devices,
we require a different domain discriminator. This is why we
developed and tested two different types of lighter discrimi-
nators: a less expensive version (DLight) of the widely used
Fully Convolutional discriminator [22] and a shallow version
(DLight&Thin) of the latter. Both discriminators D employ
depthwise separable convolution instead of the conventional
convolution and are trained to discriminate between source
and target domains using the following loss:

LD(xs, xt) = −
∑
h,w

log D(P s
h,w,c)+log(1−D(P t

h,w,c)). (1)

More details on these two lightweight discriminators are
presented in Sec. IV.

The adversarial training is carried out using the features
extracted by the semantic segmentation model and the domain
prediction coming from a discriminator model. Both models
engage in a min-max game in which the discriminator guesses
the domain to which a feature belongs to and the segmentation
network attempts to mislead the discriminator by making
features from both domains similar. To accomplish this effect
an adversarial loss Ladv is used as follow:

Ladv(x
t) = − 1

|Xt|
∑
h,w

logD(P t
h,w,c). (2)

We jointly optimize the supervised segmentation loss Lseg

on source samples and the unsupervised entropy loss Ladv on
target samples while training the BiSeNet semantic segmen-
tation model. The following is the definition of the total loss
function:

1

|Xs|
∑

(xs,ys)∈Xs

Lseg(x
s, ys) +

1

|Xt|
∑

xt∈Xt

+λLadv(x
t), (3)
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mIoU19

Target Only 97.11 77.88 88.67 48,31 48.31 41.33 39.56 48.36 58.27 89.07 57.03 91.86 66.45 40.47 90.63 60.23 67.11 50.32 44.93 64.17
FCD 74.21 28.66 72.47 12.57 16.31 12.72 28.03 17.32 80.17 14.64 77.31 41.97 8.88 65.58 18.2 6.85 18.33 11.71 0.0 31.89
FCD-Light 83.17 33.53 68.9 11.37 7.59 13.46 25.12 14.51 79.49 30.09 74.97 41.47 13.61 67.73 19.84 7.05 4.92 14.63 0.0 32.18
FCD-LightThin 83.92 37.21 74.23 14.19 15.63 17.61 29.93 19.16 79.85 24.91 72.14 43.24 11.15 61.0 17.41 14.28 7.16 8.22 0.0 33.22

TABLE I
GTA5→CITYSCAPES UNSUPERVISED DOMAIN ADAPTATION EXPERIMENTS. FCD STANDS FOR FULLY CONVOLUTIONAL DISCRIMINATOR. FCD-LIGHT

INDICATES OUR LIGHTWEIGHT VARIANT. FCD-LIGHT&THIN INDICATES OUR THINNER AND LIGHTWEIGHT DISCRIMINATOR.
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mIoU16

Target Only 97.11 77.88 88.67 48,31 48.31 41.33 39.56 48.36 58.27 57.03 91.86 66.45 40.47 60.23 50.32 44.93 64.17
FCD 72.74 32.18 75.31 4.45 0.35 14.07 0.09 2.58 66.39 80.87 35.84 3.32 54.26 18.08 1.49 9.18 29.45
FCD-Light 68.02 33.17 74.76 8.69 0.32 16.41 6.25 4.77 56.92 80.67 37.33 4.64 50.61 17.7 3.49 16.63 30.02
FCD-LightThin 63.01 23.5 76.94 8.71 0.74 19.93 9.04 7.52 76.56 79.98 44.01 4.29 63.76 14.56 1.99 11.97 31.66

TABLE II
SYNTHIA→CITYSCAPES UNSUPERVISED DOMAIN ADAPTATION EXPERIMENTS. FCD STANDS FOR FULLY CONVOLUTIONAL DISCRIMINATOR.

FCD-LIGHT INDICATES OUR LIGHTWEIGHT VARIANT. FCD-LIGHT&THIN INDICATES OUR THINNER AND LIGHTWEIGHT DISCRIMINATOR.

where Lseg minimize the standard cross-entropy loss defined
as:

Lseg(x
s, ys) = − 1

|Xs|
∑
h,w

∑
c

ysh,w,c log(P
s
h,w,c) (4)

IV. EXPERIMENTS

A. Datasets

We test our model over the two standard synthetic-to-real
benchmarks in Domain Adaptation for Semantic Segmenta-
tion: GTA5→Cityscapes and SYNTHIA→Cityscapes.

GTA5 [2] is made up of 24966 annotated photos from the
aforementioned video-game. The standard 19-classes, which
Cityscapes shares, is used for training and evaluation.

SYNTHIA [3] is made up of 9400 annotated images from
a virtual world and belonging to the RAND-CITYSCAPES
subset. The usual 19-classes shared by Cityscapes are utilized
for training, whereas the assessment is performed on 16-
classes using the [21] protocol.

Cityscapes [1] is made up of 2975 real-world pictures
gathered from various German cities. To test our network,
we use the entire validation set of 500 photos at the original
2048x1024 resolution.

B. Implementation details

The segmentation model of our method is BiSeNet [5]
with the Context Path (see section 3.2 of [5]) initialized
with a ResNet-101 [23] pretrained on ImageNet. The standard
discriminator used for the comparison is a common Fully
Convolutional Discriminator (FCD) with 5 convolution layers
with kernel size 4x4, channel numbers {64, 128, 256, 512, 1},
padding 2 and stride 1. Its lightweight variant (FCD-Light)
is obtained by substituting each convolution operation with a
depthwise-separable convolution [24], comprises of a depth-
wise convolution done independently over each input channels,
followed by a pointwise convolution, with kernel size 1x1. Our
thinner version (FCD-Light&Thin) has only 3 depthwise sep-
arable convolution layers with channel numbers {64, 128, 1}.
Each convolution or depthwise separable convolution layer is
followed by a Leaky ReLU with negative slope 0.2.

PyTorch is used to implement our technique. The segmen-
tation model is trained with batch size 4 and SGD with an
initial learning rate of 2.5 × 10 − 4, which is then changed
at each iteration with a ”poly” learning rate decay with
power 0.9, momentum 0.9, and weight decay 0.0005. Adam
is used to train all of the discriminators, with momentum
(0.9, 0.99), learning rate 10 − 5, and the same segmentation
model scheduler. The model has undergone 30k iterations of
training. The value of λadv is set to 0.01. The training images
are shrunk to (1024, 512), whereas the evaluation is done on
the (2048, 1024) original image dimension.

We use the standard Intersection over Union metric to
measure the performance of our experiments.

C. Results

Table I and Table II show the result on the GTA→Cityscapes
and SYNTHIA→Cityscapes, respectively. By looking at Table
I, it is clear that using a typical Fully Convolutional dis-
criminator (FCD) we get performances that are approximately
half of what we would achieve if we trained directly on
the target. When each convolution in this discriminator is
replaced with its lightweight counterpart (FCD-Light), we get
comparable results with just a +0, 29% gain in accuracy.
However, as seen in Table III, the number of parameters and
FLOPS decreases significantly, as does training and inference
time. When the input resolution is 1024x512, the difference
in parameters is 2.59 million, while the FLOPS move from
30.883G to barely 2.14G. When we use our light and shallow
discriminator (Light&Thin), the reduction in parameters and
FLOPS is proportionate to an enhancement in accuracy; in-
deed, our solution improves performance by +1, 33% over the
typical FCD. Since the task is classification, using a shallow
domain discriminator like ours takes less epochs to attain
a local optima than a conventional DCGAN discriminator,
which would require more epochs and longer training time to
converge. We would want to emphasize that all of this results
were collected while training on two TESLA v100 GPUs
rather than on commercial hardware such as a Jetson Javier.
The SYNTHYA→Cityscapes experiment described in Table II
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Fig. 2. Qualitative results for the GTA→Cityscapes experiment. Starting from the left: RGB, FCD, FCD-Light, FCD-Light&Thin, Ground Truth.

FCD FCD-Light FCD-Light&Thin
Parameters 2.781M 0.191M 13.316K
FLOPS 30.883G 2.14G 1.038G
Training Time 7h:04m 6h:39m 6h:32m

TABLE III
COMPARISON BETWEEN THE NUMBER OF PARAMETERS, FLOPS AND

TRAINING TIME AMONG THE THREE DISTINCT DISCRIMINATORS USED.

shows a similar pattern. Replacing common convolutions with
depthwise separable convolutions results in a small +0.57%
improvement, but when utilizing our Light&Thin discrimina-
tor, an average boost of +2, 21% is attained. Figure 2 confirms
this tendency; as you can see, our Light&Thin model allows
for better segmentation, even for small classes like pedestrians,
poles or traffic signs. It should be noted that these results
come from models that were trained on synthetic data with a
distribution that is substantially different from the real-world
test set. There is still work to be done to improve performance
and bridge the gap between the two domains and the existing
state-of-the-art but non-real-time domain adaptation models.

V. CONCLUSION

In this paper, we look at Real Time Domain Adaptation
in Semantic Segmentation. The primary goal is to minimize
model parameters as well as training and inference time in
order to make the model feasible for real-world applications.
We present a whole lightweight framework that includes a
unique light and shallow discriminator. We evaluated our
approach using the two common synthetic-to-real protocols.
The results indicate that there is still work to be done in this
task; future research will focus on applying our discriminator
to more complex and powerful lightweight semantic segmen-
tation models, as well as enhancing the entire framework.
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