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Abstract: Today, optical transport and data center networks extensively utilize photonic
integrated systems due to their large bandwidth and a high degree of reconfigurability. In addition
to these properties, photonic integrated-based systems can deliver an overall low fabrication
cost, a small footprint, and low power consumption. In this perspective, we present a modular
photonic integrated multi-band Wavelength Selective Switch (WSS) capable of managing a wide
spectrum, covering the three S+C+L bands, and potentially scalable to larger numbers of output
fibers and routed channels. We propose a complete description of the device starting from the
physical level, commenting on the device’s internal structure and design-related issues. Then,
we move to the transmission level, providing a complete abstraction of the proposed WSS in
the context of software-defined optical networks by providing a deterministic model to evaluate
the routing controls, thermal spectral tunability, and the quality of transmission degradation.
Finally, a transmission scenario operating on 400ZR standards and a network case study are also
demonstrated to evaluate the performance of the proposed WSS in a single or multistage cascade
setup.

© 2023 Optica Publishing Group

1. Introduction

The traffic analysis of telecommunication networks shows an annual increase in bandwidth
between 20% and 60% during the last decade [1]. This growth trend will be further enhanced
due to the commercialization of 5G and the increasing application of the Internet of Things (IoT)
framework. Forecasts indicate that this rapid increase will soon push state-of-the-art transparent
optical networks towards saturation as we enter the Zettabyte era [2]. To accommodate this,
service providers must increase capacity by implementing cost-effective, scalable, and flexible
solutions. In this interest, they always aim to take advantage of the residual capacity of the
already deployed network infrastructure to maximize CAPEX returns.

Today, state-of-the-art optical transport is mainly operated by transparent propagation of
Wavelength Division Multiplexing (WDM) channels that exploit dual-polarization coherent
optical technologies over the entire C-band, in a spectral window of 4.8 THz with a maximum
transmission capacity of about 10 Tbps per fiber [3]. Additional capacity can be achieved by
adopting modern transceivers (TRXs) that can flexibly adapt the transmission rate corresponding
to the available Quality-of-Transmission (QoT) on the given transparent optical path. In the same
way, WDM optical transport can be enhanced from a fixed grid to a flex grid to optimize spectral
usage. Unfortunately, the margin for capacity increase based on these approaches is quite limited
as they already operate close to their theoretical limits.

Multi-Band Transmission (MBT) is a potential solution to add additional capacity to an already
deployed network infrastructure, targeting the transmission of WDM channels over the entire
low-loss optical spectrum. Most of the state-of-the-art optical networks are based on standard
step-index single-mode fibers without water absorption peak (ITU-T G.652D fibers) where the



low-loss region extends from the O- to the L-band (1260 nm to 1625 nm) delivering a potentially
available spectrum exceeding 50 THz [4]. Along with this, different amplifier prototypes are now
functional to operate on new spectral bandwidths [5]. Therefore, exploiting additional spectrum
for MBT is generally the most economical solution to enhance capacity, as it does not need
capital expenditure to deploy new fiber infrastructure.

Apart from multi-band amplifiers, the deployment of MBT also requires the availability of
filtering and switching modules to enable transparent wavelength routing. A key elementin WDM
switching architecture is the Wavelength Selective Switch (WSS), which enables independent
control and routing of each input WDM channel toward one of the fiber outputs. Traditionally,
WSSs are implemented through Micro-Electro-Mechanical Mirrors (MEMS) and Liquid Crystal
on Silicon (LCoS), resulting in devices that are usually bulky, expensive, and complex in
manufacturing, implementation, and maintenance [6]. In contrast, WSS implementation using
the fast emerging technology of Photonic Integrated Circuits (PICs) can offer a cost-effective
solution with a small footprint and massive production capabilities [7].

Effective wavelength switching is a main element for implementing the software-defined
network (SDN) down to the physical layer, since it enables dynamic and efficient management of
the massive bandwidth in the MBT framework. Applications of the SDN paradigm down to the
WDM optical transport layer enable the complete virtualization of WDM optical transport using
a standard Application Programming Interface (API). In this application, both network elements
and transmission functionalities must be abstracted to allow evaluation of QoI impairments and
control prediction. This approach enables the autonomous management of each network element
using standard APIs in the control plane [8—10]. In this context, proper modeling is required
for the control and the evaluation of QoT impairment, as it has a significant role in accurately
estimating the Optical Signal-to-Noise Ratio (OSNR) of transparent lightpaths (LPs). This is an
enabler in achieving the maximization of deployed capacity.

In this work, we take advantage of the integration allowed by silicon photonics technology by
proposing a novel integrated device working as a multi-band WSS. It supports WDM MBT using
a modular architecture and can be operated in a wide range of the optical spectrum, covering the
S+C+L bands. To this end we aim to provide a comprehensive vertical study, ranging from the
design strategy at the device level, up to the extraction and characterization of the transmission
level penalties and impairments. The architectural design of the novel modular WSS, described
in Section II, is easily scalable to account for more output fibers and a larger number of channels
with a smaller footprint than traditional MEMS-based implementations. Furthermore, in addition
to the analysis of the design step, in Section III, we perform a complete characterization and
abstraction of the proposed WSS in the context of the SDN paradigm. The APIs running on
the SDN controller are utilized for control and take advantage of the QoT degradation model
to implement the SDN applications down to WDM transport. The proposed control and QoT
penalty evaluation model enable complete control of the proposed multi-band modular WSS by a
centralized network controller. Finally, Section IV presents a case study of the WSS device in a
realistic networking scenario, followed by a conclusion in Section V.

2. Design of the Wavelength Selective Switch

The proposed device is a PIC that enables wavelength switching in a multi-band scenario. It has
been designed to operate in the S+C+L optical telecommunication bands, allowing independent
routing of every channel of the input WDM comb to a target output fiber. In the proposed
implementation scenario, the module has been designed with three target output fibers, allowing
the switching operation for M=8 channels centered in each of the considered bands, with a total
of 24 independently controlled channels. The filtering elements are optimized for the target
frequencies in the S+C+L bands, with a channel separation of 100 GHz. The underlying structure
is modular and expandable, allowing for scalability of the proposed implementation for a higher
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Fig. 1. General structure of the proposed 1x3 WSS.

number of channels and/or target output fibers.

The model of the proposed circuit is depicted in Fig. 1, which highlights the general structure
with the different stages allowing the WSS operation. The device can be divided into three main
sections, handling the demultiplexing, switching, and multiplexing operation. The first section is
tasked with separating each individual channel of the WDM comb, minimizing loss and channel
interference, while the second section is responsible for routing each of the separate channels to
the required output fiber. The third section, tasked with multiplexing the signals onto the output
fibers, mirrors the first section, recreating the WDM combs and multiplexing each band onto a
common waveguide. Each stage is described in the following sections. We describe all physical
components and the design strategies we followed in the proposed implementation. Moreover,
we also discuss the general expansion of the device. The internal structure of the stages can be
seen in Fig. 2, which depicts the generalized structure of the channel filtering cascade, as well as
the arbitrary sized 1xN switching network topology. In the case analyzed, the filtering cascade
is designed for the 8 target channels in each band, while the switching network is a simpler 1x3
structure; as depicted, the multiplexing structure mirrors the demux stage, using the same number
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Fig. 3. Contra-DC coupler filter.

of add-drop elements for each target output fiber.

With respect to the waveguide geometry used in the simulations, we assume Silicon Photonics
waveguides with width W = 0.55 pm and height H = 0.22 pm: ideal tapered structures are
assumed when changes in the waveguide widths are required.

2.1.  Filtering section

The main objective of the filtering section, as described before, is to separate each individual
channel, while keeping losses and crosstalk to a minimum. Our approach to this problem is
based on multiple stages of filtering. The first stage is tasked with separating the S+C+L bands to
avoid inter-band interference, while the second stage selects individually each channel; at the
same time, splitting the filtering structure into multiple parallel sections helps reduce the losses,
reducing the overall length of the add/drop filters cascade.

The fundamental component that is used for this device implementation is the Grating-Assisted
Contra-Directional Coupler (GACDC) add-drop filter, more simply referred to as Contra-
Directional Coupler (CDC). CDCs are extremely flexible integrated devices that can be designed
to cover a wide range of add-drop applications, ranging from high Extinction Ratio (ER) narrow
filters to ultra-wideband applications. These four-port devices are based on wavelength-selective
coupling between the forward mode of one waveguide and the backward-propagating mode of the
second one: by proper design of the periodic index perturbations in the waveguides, the overall
add-drop response can be precisely tailored to the required scenario. In our analysis, we model
the devices based on well-known Coupled-Mode Theory (CMT) models [11], which have a high
degree of accuracy with respect to the experimental devices.

The general structure and response of a CDC add/drop is depicted in Fig. 3: while the devices
are characterized by their waveguides and gratings geometries, their behavior can be simulated
based on simplified coefficients and variables, such as coupling (x11, K12, k22), length (L), grating
pitch (A), and waveguide effective indices. The gap between the two waveguides G, is modeled
through the contra-directional coupling «j2, which have been designed to achieve the target
response while accounting for experimental-backed results available in the literature, as described
in the following design optimizations steps.

As shown in the figure, in their straightforward implementation they exhibit a non-ideal ER as
well as a high backward reflection peak, which is incompatible with the desired DWDM target
implementation: to improve the response of the filters, more advanced design strategies have been
considered, which will be discussed for both the band filtering and channel filtering elements.
As previously stated, the first stage of the demultiplexer is tasked with separating the bands of
operation, allowing the reduction of the losses and limiting inter-band interference. This operation
requires a flat-top wide-band response, which can be achieved through a precise variation of
the perturbation period along the device [12], also known as pitch chirping (AA): by gradually



S-band | C-band | L-band K11 = k22 (cm™ 1) 10
A (nm) 275 293 302 K12,max (cm™1) 115
AA (nm) 20 9 18 Hyperbolic tangent apodization
L (mm) 15 038 1.4 kia (z) (em ™) | e [1 + tanh (b (1 -2|F -3 a))]
W1 (nm) 570 a=3,b=2
AW1 (nm) 100 Loss @ (dBcm 1) 1.8
W2 (nm) 430
AW?2 (nm) 60
Table 1. Band Contra-DC filters design parameters.
S-band | C-band | L-band L (mm) 0.940
Aj (nm) | 284.2 298.9 312.6 K11 = k2o (cm™ 1) 10
A, (nm) | 2840 | 298.7 | 3124 K12.max (cm™ 1) 35
A3z (nm) 283.8 298.5 312.1 Gaussian apodization
As(nm) | 2836 | 2982 | 3119 12(z) (em™1) K12.max €XP (_a (% - %)2)
As (nm) 283.4 298.0 311.6 a=6
Ag (nm) | 283.2 297.8 311.4 Loss @ (@Bem 1) 18
A7 (nm) | 2830 | 297.6 | 311.0
Ag (nm) 282.8 297.3 310.9

Table 2. Channel filters parameters and main model parameters

increasing the pitch (A) the band can be extended while maintaining the same flatness and limited
insertion losses. The response of the three main filters is depicted in Fig. 4a, while the simulation
parameters are reported in Table 1. Furthermore, to improve the Side-Lobe Suppression Ratio
(SLSR) the grating profile is apodized, smoothing the transition between the standard unperturbed
waveguide and the high-coupling region. By avoiding abrupt coupling changes along the device,
the side lobes are reduced, limiting cross-talk and interference: two of the most used apodization
profiles are the gaussian and the hyperbolic tangent; while the gaussian profile can achieve larger
side-lobe suppression, it also can affect the flatness of the pass band, especially in pitch-chirped
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design. As such the trade-off is considered valid for the channel filter cases, while the band filter
employ the hyperbolic tangent profile, which ensure the channel band and flatness. Finally, to
suppress the backward reflection of the input waveguide, another technique is considered, which
consists of using out-of-phase gratings that minimize the unwanted reflection peak [13].

After this initial band separation stage, the WDM combs are demultiplexed by parallel cascades
of smaller CDCs, which are designed and simulated considering similar optimization strategies,
although targeting a smaller bandwidth of operation. In the proposed case, considering channels
with Free Spectral Range FSR= 100 GHz the resulting pitch A of each filtering element and their
general simulation parameters are reported in Table 2, while their frequency response is depicted
for the C-band subsection in Fig. 4b. From a design standpoint, channel filters differ from band
filters due to the absence of pitch chirping, while also being optimized for a narrow drop band,
which is typically difficult to achieve with CDCs structures [14]. The general design strategy
for narrow-band implementations consist of trying to achieve low coupling coefficient and long
coupling lengths, which can be further helped by the previously described gaussian apodization
Considering the same geometrical parameters for the waveguides, the frequency response for
the elements can be obtained by considering weaker coupling structures, which can be designed
for the target FRS: while the simulation model allows direct control over the « parameters, in
reality this can be achieved through a larger gap G or different corrugation geometry AW. As a
reference, the required coupling values of ki, for the channel and band filters can be obtained
with waveguide gaps G¢n, = 300 nm and Gpang = 200 nm, respectively.

2.2.  Switching section and multiplexing

After the filtering section, each individual channel is routed through a separate switching network,
which allows targeting any of the output fibers. As already depicted in Fig. 2, this operation
is achieved by cascading a series of 1x2 controllable Optical Switching Elements (OSE). The
proposed switching network can be designed for any number of target output fiber N and is
composed of N —1 OSE arranged in log, (V) stages. The OSE implemented in these sub-networks
consists of a Mach-Zehnder Interferometer (MZI) switch.

Unlike MRR-based OSE, MZI devices can easily achieve a large flat response, which makes
them preferable in MBT applications because of their almost frequency-independent switching
operation [15-17].

The MZI general structure is shown in Fig. 5a, which highlights the main physical design
parameters together with the switching control section. By increasing the temperature of the
highlighted arm of the MZI through a suitable electrical control signal, the device is driven
between the two possible routing states (UP or DOWN). The electrical control and pads are
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designed to meet the required switching performance and technological process [18]. As an
example, considering the C-band, the frequency response for the off state (UP) is depicted in
Fig. 5b, highlighting the region occupied by the target 8 channels: the device shows a remarkable
flat response in the center of the design frequency, enabling the required frequency-independent
switching operation. Similar performances are also achieved in the L- and S- bands.

The remaining stage of the device is the crossing and multiplexing stage: each of the outputs
of the previous switching network must be properly connected and added to the egress waveguide
of each output port. This dense interconnect region cannot be ignored as the transmission
penalties are not negligible, while also introducing path-dependent degradation. Each individual
waveguide crossing has been modeled to introduce 0.04 dB of insertion loss in the whole spectrum.
State-of-the-art crossing technologies have been shown to yield even better performances [19-21],
and therefore the flat value has been chosen to also account for the non-idealities of the actual
implementation. As shown in Fig. 6 the proposed layout solution to reduce the number of
crossings consists of a two-stage topology: by multiplexing the output of the switching network
for each individual band, it is possible to confine the denser part of the crossing stage right after
the switches, avoiding large-scale overlap of the output interconnects, while maintaining the
same number of add/drop elements for the MUX operation.

It is evident how without any grouping strategy the overall complexity will increase. Taking
into account the generic device with N output fibers and M channels per band, the highest
number of crossings without any topology optimization is equal to Neross = (3M — 1)(N — 1).
By grouping the connections into a middle stage, dividing the total number of channels into K
arbitrary groups, the general trend can be reduced to Ngoss = (% -D(N-D+(K-1)(N-1).

The number of crossings is minimized when K qp = [V3M]. This approach allows for a drastic
reduction of the amount of crossing encountered by the propagating signal and results in the
trend shown in the graph. It is important to note that this behavior represents the worst routing
case, which applies only to a small number of routing instances with respect to the total number
of routing states available, as will be shown in the later sections. Nevertheless, even considering
the small effect of an individual waveguide crossing, it is clear how considerable differences in
the resulting insertion and power loss may be expected between the nonoptimized and optimized
cases, especially for large-scale implementations.

The current model does not include losses pertaining to the fiber-to-waveguide coupling at the
ingress and egress stages of the device: the penalty model aims to characterize the operational
elements of the internal architecture, such as filters and switches, as well as the path-dependent
elements like the waveguide crossings. The effect of the different optical paths follows a similar
assumption: while the waveguide crossings cannot be removed through topology changes while
maintaining the architecture, the waveguide paths can be designed to minimize their effect on the
channel comb, making them negligible with respect to the other passive elements.

The wavelength combiners tasked with multiplexing the signals onto the common waveguides
have instead been modeled and simulated symmetrically with respect to the DEMUX region,
described in detail in the previous section.

2.3. Insertion losses and layout

Before analyzing the path-dependant effects on the QOT and the transmission level penalties, the
Insertion Losses (IL) and spectral characteristics of the device were evaluated.

This analysis is carried out considering a broadband flat input signal that covers the entire operating
bandwidth (S+C+L), and measuring the output signal considering a single reference output
port, as depicted in Fig. 7a. This representation takes into account the cascaded configuration
of all filtering and switching elements, while the path-dependent effect of the crossing is not
considered, as will be discussed and evaluated in detail in the QoT analysis. The reference IL
of each component is reported in Fig. 7b. These values have been considered based on results
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available in the literature for the 1 X 2 MZIs used for switching [22] and the experimental literature
of CDC used to optimize their design.

The insertion loss is almost flat between the channels due to the symmetric nature of the
MUX/DEMUX blocks, which leads to each channel encountering the same number of CDCs
elements: the first channel that is filtered out in the first stage is also the first to be multiplexed
to the egress waveguide, as such propagation and cascading losses can be equalized between
the channels. The three bands show a similar flat insertion loss, with a reference value of
IL=4.17dB.

Overall this estimation of the insertion losses leads to compatible values with respect
to other integrated solutions that take advantage of loopback AWG-based multiplexing and
demultiplexing [23]. In this analysis, we have not considered the losses and path asymmetries due
to the possible layout of an experimental implementation: It is assumed that the ideal placement
of the device on the die can equalize this effect, making it negligible with respect to the effect of
the main components. However, an estimate of the device footprint is provided in Table 3: for this
evaluation, standard buffer spaces are considered around each component to avoid interference.
The total footprint represents a reference value for the die space occupied by the sum of all
components, although the waveguide bends and connecting segments would increase the actual
size: despite this, the components footprint is shown to be manageable on standard-size chips.

MZI | Band CDC | Channel CDC | Crossings
W (um) 500 1500 900 20
H (um) 6 6 6 20
# of elements 48 12 96 93
Footprint (mm?) | 0.144 0.108 0.5184 0.0372
Total (mm?) 0.808

Table 3. Estimated footprint for each component.



S N 3 A
-10 ¢
=207
)
Z.307
@
2401 Component Through port | Drop port
o
-50 1 Crossing (dB) 0.04 -
60" MZI (dB) 0.35 -
70 i 1 ﬂ{ CDC (dB) 0.18 0.60
1.49 1492  1.494 149 1.498 1.5
Wavelength (zm) (b)

(@)

Fig. 7. (a) Broadband measured spectrum after propagation through the 1 x 3 WSS
(S-band). (b) Individual insertion losses for each component.

Control Plane || Multi-band Control Unit

A4

Photonic
Fabric

—

Fig. 8. Control abstraction of the optical switch for the proposed SDN-controlled
transmission system.

Having characterized the spectral response of the main components and their losses for the
envisioned S+C+L WSS, the next section will present an application of the Software-Defined
Networking (SDN) paradigm to abstract the physical layer properties of this device.

3. Software-defined network application to the WDM transport layer

SDN is based on a network controller that manages transmission and switching elements to
optimize performance, that is, maximize transmission capacity (Fig. 8). Generally, in the SDN
framework, an open interface for the control and a model for its transmission impairments
are required for each transmission element. For physical channels, the SDN implementation
requires the capability to summarize the QOJT of physical layer links using a proper metric, so we
need the availability of a QoT-estimator (QoI-E). The introduction of optical fiber transmission
systems of coherent TRXs based on dual-polarization multilevel modulation formats simplified
the application of SDN to WDM optical transport. Exploiting such transmission technology
empowers modeling a transparent LP within the photonic transmission system as an Additive
White Gaussian Noise (AWGN) channel whose Q0T is fully characterized by the LP OSNR.
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Such propagation modeling of transparent LP also enables simple TRXs modeling that can be
characterized in the back-to-back configuration to define the requested minimum OSNR for LP
feasibility. This approach enables the virtualization of the optical transport by using a QOT-E that
computes the LP OSNR and compares it to the minimum OSNR requested by the TRX. Using
coherent TRXSs, a transparent LP can be dynamically set from the source to destination within the
photonic transmission system by correctly setting the optical switches. To properly deploy LPs,
the network controller must evaluate QoT degradation effectively across the entire path of the
selected LP. Models are needed to evaluate the QoT degradation of each crossed transmission and
switching element. In addition to QoT degradation, the SDN controller also needs algorithms to
define the optimal operating point that minimizes QoI degradation.

In this direction, the following section focuses on the control and QoT degradation model for
the proposed WSS architecture. The control section is manipulated through two distinct parts:
switching control and fine-frequency thermal tuning of the filtering elements. At the same time, a
deterministic technique is used to evaluate QoT and is tested on a system that operates on 400ZR
standards.

3.1. Control and filter alignment

In order to implement the SDN paradigm, the network operator must be able to deploy and manage
the required LPs. As described in Section 2.2, the target routing of each channel is achieved by
driving the underlying switching sub-networks. The controller must have a virtualized model
of the WSS device to evaluate the required control signals. For the proposed implementation
scenario, with three possible output fibers, each switching sub-network is composed of two OSE,
thus allowing four separate control configurations. The possible routing states of the networks
are depicted in Fig. 9, together with the logical table describing the achievable states. Due to
the limited number of output fibers, the switching circuit is quite elementary, but highlights the
general model for routing evaluation. The topology of this structure can be modeled as a binary
tree, which represents a well-known class of data structures. The control states of the OSE can
be obtained directly from the target output fiber.

By representing the output fibers in binary, each bit represents the propagation direction at each
encountered node, under the convention 1 = DOWN and 0 = UP. Therefore, the total number of
output fibers N and the label of the target output port are enough to evaluate the control states for
the given request using a fast and low-cost deterministic algorithm. The proposed path-finding
algorithm is rigorously defined for N = 2*, x € N, although it can be easily generalized: in the
configuration table for the 1 X 3 network, both "10" and "11" are considered valid routing tags for
output fiber 3, as the signal encounters only a single OSE, thus not requiring any control status
for the last stage.

In addition to routing control of the OSE, the proposed device grants an additional degree of
freedom with respect to fixed-frequency WSS structures. Although each CDC add/drop element
is tailored for a precise central operating frequency and bandwidth, the working frequencies of
these elements can be fine-tuned through thermal control to allow calibration and compensation
of manufacturing uncertainty, as well as different transmission scenarios with respect to the one
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assumed in the original design. Although thermal control applied to MZI structures represents
a binary control of the switching path, thermo-optical effects can be used to align the central
response of the CDC to the target frequency and some control of the channel bandwidth [24]. In
this analysis, the band-flexible capabilities of these devices are not considered; as such, the main
focus rests on channel alignment.

As shown in Fig. 10 this effect cannot be exploited to operate the device in a distant frequency
band, although it can be used to align the filtering elements with different WDM combs, which
is compatible with the tunability of other PIC implementations, such as the ones using Array
Waveguide Gratings (AWG) [25]. However, thermal tuning represents an expensive solution
from a power consumption point of view; as such, filter elements should also be manufactured
and designed following methods that minimize the effect of fabrication tolerances [26].

3.2. QoT evaluation

The WSS penalty has been characterized by simulating the device in a coherent transmission
scenario in the OptSim® PIC design and simulation environment. Transmission parameters have
been chosen to conform to the 400ZR standard [27], using dual-polarization 16QAM modulation
and a symbol rate Rg=60 GBaud, with a channel spacing of FSR=100 GHz. The WDM combs of
each of the bands are placed in their respective centers, with the channel occupancy highlighted
in the response of the components shown in the previous sections. This provides a reasonable
and realistic benchmark to evaluate the performance of the proposed device.

Transmission impairments have been characterized as Optical Signal-to-Noise Ratio penalty
(AOSNR), bench-marking link performances to the unfiltered case in back-to-back conditions.
This metric was extracted by simulating the Bit-Error Rate (BER) as a function of the receiver-
added noise. It has been evaluated for all possible configurations of the device, using a
reference bit-error-rate threshold BERy, = 1073. Given the relatively flat response of all internal
components of the proposed WSS and the previously discussed MUX/DEMUX symmetry, the
path-dependent penalty is primarily related to the number of waveguide crossings encountered.
Due to the device interconnect symmetry, the same distribution is seen for links targeting the
first and last output fibers. On the contrary, the central output fiber shows the same number
of crossings encountered, independently of the channel origin. This behavior is evident when
observing the crossing topology described in the previous section, see Fig. 6: every channel
Ch; , i € [1 : 8] of each band targeting the central fiber output needs to cross all the links of
the previous channels (Ch;.;_;) targeting the third output, and also all the ones of the following
channels (Ch;,.g) targeting the first output fiber, which always balance to the same number of
encountered elements.
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Fig. 11. Architecture penalty model, highlighting the encountered crossing distribution
(a) and the calculated transmission penalty AOSNR (b).

This allows the characterization of the device configuration in terms of the number of encountered
crossings, thanks to the intrinsic bijective routing nature of the device. In traditional multistage
switching architectures, multiple routing paths may exist between the same input-output pair,
while in the proposed topology, only one link exists for each possible input-output combination.

The observed OSNR penalties are shown in Fig. 11 as a function of the number of crossings,
highlighting consistent performances with respect to alternative solutions present in the liter-
ature [28]. The relationship clearly shows a linear dependence, confirming the critical role of
the waveguide interconnects in determining the configuration penalty with respect to the flat
degradation introduced by the filtering and switching elements, which can be observed in the
zero-crossing case. This behavior of the model is not surprising because of the responses of
each individual element, which introduces flat frequency-independent losses in the bandwidth
of interest. The important concept showcased by these results is the possibility of reducing the
complexity of device characterization by analyzing the unique topological structure rather than all
configurations of the device. Taking into account the proposed case study, with 24 independent
channels and 3 output fibers, a complete study of control states and penalties would require the
analysis of 3% (~ 3 x 10'") cases which are clearly unfeasible. By exploiting the known topology
as well as the virtualized model of the device, the required number of needed simulations is
drastically reduced, with only 72 cases that need to be tested to get the penalty of all channels,
considering the independent routing of each of them, as well as the limited component crosstalk.
These compact data sets can be used to characterize transmission impairment for each channel
in any possible switching configuration, allowing the SDN operator to quickly estimate and
predict the expected AOSNR penalties. Furthermore, the linear relationship between the crossing
number and penalty can be used to quickly estimate the penalty margin for any given channel for
scaled devices: given the modularity of the architecture, increasing channels and ports number
lead to a unique crossing topology and distribution, which can be quickly assessed.

In the proposed simulation, each component behaves exactly as designed, with no significant
differences between multiple instances. In reality, due to manufacturing uncertainty, the penalty
introduced by nominally identical elements could be different, which could drastically alter the
linear relationship showcased in the simulations. Even in this scenario, though the proposed
control and evaluation scheme is effective, since the required data set using a look-up table
strategy grows identically to the size of the device, with a linear relationship O (N M), which does
not pose any scalability issue from the controller point of view with respect to more traditional
multi-stage switching devices [29, 30].
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Fig. 12. Proposed arbitrary-size WSS cascade used as testbed for the characterization

of the system OSNR.
S-band | C-band | L-band
Amplifier type TDFA EDFA EDFA
Loss a (dB/km) 0.20 0.19 0.18
Gain G (dB) 15.0 14.3 13.5
Noise Figure NF (dB) 6.50 4.25 4.68

Table 4. OLS parameters used in the proposed network simulation.

4. Networking scenario case-study

After analyzing the proposed WSS device from the physical level (Section I) and its behavior
from a transmission-level point of view (Section II), we offer a simple case study to contextualize
the element in a networking scenario. In this study, we can account for the cascade of multiple
instances of the proposed WSS device. The simulation testbed is shown in Fig. 12. To simplify
the analysis, the system is considered a point-to-point network with an arbitrary number of WSS
stages Niages» allowing the characterization of the WSS performance for a variable number of
hops. The system presents a single start and end point, with the receiver side collecting the
data for all possible paths that each channel can traverse. At each stage, any given channel
can be routed to three different target WSS devices of the following stages, allowing a total
number of configurations of Neonfig = 3Nsuges for each individual channel. Optical Line Systems
(OLSs) connecting each stage are characterized for each of the S+C+L bands with the same
fiber but different amplifier types based on the band of operation. The commercially available
Erbium-Doped Fiber Amplifiers (EDFAs) are considered for channels in the C- and L- bands.
In the S-band, the amplifier with a benchtop Thulium-Doped Fiber Amplifier (TDFA) with the
characteristics reported in [31] is considered.

The proposed simulation scenario only considers the standard fiber losses and the linear part
of the impairments, i.e., the Amplified Spontaneous Emission (ASE) noise. Parameters for the
OLSs in each operating band are reported in Table 4 [32]. The cumulative LP OSNR at each
given stage can be evaluated as:

1 P
OSNR= ———  with OSNR, = —&

ZNstages 1 PASE
i=]  OSNR; '

)]
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Fig. 13. Calculated OSNR at the receiver for different number of network hops.
The performances of the three considered bands are highlighted separately.

where PRy is the power of the channel at the receiver, Pasg is the power of the accumulated
ASE noise in a reference noise bandwidth of 12.5 GHz, for the considered channel. The Noise
Figure (NF) and Gain (G) are selected based on the band of interest, as shown already in Table 4
(for more details see [32]), considering a reference span length of L =75km. The proposed
simulation has been conducted assuming span (and OLS) transparency; as such, the power loss
introduced by the fiber lines is fully compensated by the amplifier so that at the ingress of each
stage Pi, = Pp=0dBm. The OSNR is calculated at the receiver. The penalty introduced by the
WSS devices has been evaluated using data from the transmission-level simulation, introducing
the cascaded penalty obtained for the specific channel under the requested routing in the network.
The simulation was carried out for every possible channel path from the source node to the
destination node.

The simulated OSNR distribution in three operating bands on the receiver side is shown in
Fig. 13 for three different network scenarios, corresponding to a 3, 6 and 9 stage WSS cascade,
respectively. The overall QoT in Fig. 13 exhibits a strong frequency dependency, although this is
mainly due to the different OLS parameters used in the S-, C-, and L-bands. The WSS-added
penalty (Fig. 14a) after 3 hops clearly shows a slight asymmetry in the penalty distribution of
the three bands, albeit confined in the same region, with misaligned distribution peaks. Similar
behavior is also demonstrated for larger network scenarios with 6 and 9 network hops, as depicted
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in Fig. 14b. Aside from the increase in the OSNR penalty and the broadening of the range,
which is expected, the penalty distribution begins to exhibit bimodal behavior. The bimodality
primarily emerges due to the previously highlighted band asymmetry, but even after 9 networks
hops the effect is still reasonably weak, especially compared to the OLS effects, which are the
main elements responsible for the band separation. Overall, the resulting behavior of this network
case study validates the assumption of the control data set proposed in Section 3: the slight
asymmetry between QoT in the three transmission bands is limited even when multiple instances
are cascaded in the same network, as such the proposed average value control strategy could yield
faster yet practical results. Taking into account the 72-data-point approach, which takes into
account the difference between the penalty distributions in each band and each routing case, the
full characterization of the device highlights the applicability of the architecture to the multi-band
scenario.

The device has been shown to maintain its low-loss, low-penalty behavior, and flat multi-band
performance even in a multi-stage cascade.

5. Conclusion

We proposed a novel integrated photonic multi-band WSS, which can support a broad range of the
optical spectrum, including the S+C+L bands, which can act as a fundamental building block in
modern optical networking. The design of such a device was presented in detail, discussing both
the first filtering section and the following routing section. A software abstraction of the designed
WSS was obtained by its full characterization using a deterministic model, which can potentially
estimate the routing controls and the expected QoT degradation of the proposed multi-band
WSS architecture. In addition to this, a network case study was also performed to evaluate the
performance of the proposed WSS in a single and cascade operation. The results demonstrate
that the proposed device offers low-loss and frequency-flat behavior for the considered bands
of operation in a single or cascade implementation. The fully integrated architecture designed
can achieve its operation as envisioned, resulting in compatible performances with respect to
alternative solutions while offering increased modularity and high customizability for multiple
dense WDM applications.
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