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Abstract

We establish some C%% and C!¢ regularity estimates for a class of weighted parabolic
problems in divergence form. The main novelty is that the weights may vanish or explode
on a characteristic hyperplane ¥ as a power a > —1 of the distance to X. The estimates
we obtain are sharp with respect to the assumptions on coefficients and data. Our methods
rely on a regularization of the equation and some uniform regularity estimates combined
with a Liouville theorem and an approximation argument. As a corollary of our main result,
we obtain similar C1'¢ estimates when the degeneracy/singularity of the weight occurs on a
regular hypersurface of cylindrical type.

Mathematics Subject Classification 35B65 - 58J35 - 35B44 - 35B53

1 Introduction

In this paper we prove some Holder and Schauder regularity estimates for solutions to a special
class of weighted parabolic equations: the weights appearing in the equations degenerate or
explode on a characteristic hyperplane X as dist(-, X£)“, where a > —1 is a fixed parameter.
More precisely, we establish some local regularity estimates “up to” X for weak solutions to
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the problem
you —div(y?AVu) = y* f + div(y*F) in QF,
lim y*(AVu+ F) - eni1 =0 on 9007 (1.1
y—

Here N > 1, (z,1) = (x,y,1) € RN x Rx R, ¥ = {y = 0} and dist(P, )¢ = y*
is locally integrable whenever ¢ > —1. By C RM*! denotes the unit ball with center
at 0 and Bf := By N {y > 0} the unit upper-half ball. Similar, if I} := (—1, 1), then
Q1 := Bj x I is the unit parabolic cylinder, QT = BIJr x I1 is the unit upper-half
cylinder, while 3° Q7 = Q1 N {y = 0}. The operators V and div denote the gradient and the
divergence w.r.t. the spatial variable z, respectively. Furthermore, A : er — RN+LNHTL g
a symmetric (N + 1)-dimensional matrix satisfying the following ellipticity condition: there
exist 0 < A < A < +o0 such that

MEIR < Az, 0)E - & < AE%, (1.2)

forall & € RV*landae. (z,¢) € QF, while the forcing terms in the r.h.s. f : Ql+ — R and
F: QT — RN*! are given functions belonging to some suitable functional spaces.

In the simplest case where A = [ and f = |F| = 0, problem (1.1) (posed in the whole
space) is nothing more than the gradient flow of the energy

/ Y |\VulPdz, ve H'RYT! ).
R{XJH

So, as one may imagine, the natural functional setting involves the weighted Sobolev
spaces involving time. Precisely, we say that u is a weak solution to (1.1) if u €
L2(I;; HY(BT, y*) N L®(I;; L*(B7, y%)) and satisfies

/+ y'(—udp+ AVu - Vo)dzdt = /+ y'(f¢ — F - Vo)dzdt,
Q] Ql

forevery test function ¢ € C°(Q1) (cf. Definition 2.15). Notice that weak solutions formally
satisfy the conormal boundary condition

lim y*(AVu+ F)-eyy1 =0 onZ, (1.3)
y—0t

appearing in (1.1): as standard in Neumann-type problems, one can easily check this inte-
grating by parts and use the fact that the test functions ¢ need not to vanish on X. Actually, as
a consequence of our main theorem (see (1.8)), we will obtain that, under suitable regularity
assumptions on the data, weak solutions satisfy

(AVu+F)-eyy1 =0 on X,

which is stronger than (1.3) (at least when a > 0) and, when A = [ and |F| = 0, reduces to
the classical Neumann boundary condition.

The regularity theory for uniformly parabolic equations is nowadays classical, see for
instance [24, 25]. By uniformly parabolic we mean that the second order leading term of the
equation possesses uniformly elliptic coefficients in the sense of (1.2). Then, many efforts
have been made to prove regularity results for non-uniformly parabolic equations; that is,
whenever at least one of the two bounds in (1.2) fails. Among all the papers on this topic,
we quote the pioneering works [16] for the elliptic case and then [12] for the parabolic
counterpart. In these papers the authors established some Harnack inequalities and Holder
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estimates for weak solutions to a family of second order equations with degenerate or singular
weights, in which the uniform ellipticity condition fails: the weights may vanish or explode
somewhere. Such results cover the case of weights w, either coming from quasiconformal
mapping or belonging to the A>-Muckenhoupt class, that is,

sup (i/ a)> (i/ a)_1> <C, (1.4)
B \IBlJg |B| JB -

where the supremum is taken over every ball B C RN+ (see also [19] and the more recent [2,
4, 6]). The weight term |y|* we are considering here is Ay-Muckenhoupt when a € (—1, 1)
only and thus, in this range, part of our theory falls into [12, 16]: in particular, the Holder
continuity of solutions is already available at least for some implicit Holder exponent.

However, the peculiar geometry of the degeneracy/singularity set of our weight - the
characteristic hyperplane X - allows us to get more information compared to the general
theory quoted above. In fact, as already done in [33, 36] in the elliptic setting, the approach
we follow in this paper allows us to cover the full range a > —1 and eventually will allow us
to show Schauder Cf,’a estimates for any k € N (we treat the case k > 2 in the subsequent
paper [3]). It is important to remark here that the regularity we obtain strongly relies on the
natural conormal boundary condition (1.3) we impose on the characteristic hyperplane X.
As one may imagine, different boundary conditions lead to different regularity estimates:
for instance, v = y!' = weakly solves div(y?Vv) = 0 in Bfr with homogeneous Dirichlet
boundary condition at £ whenever a < 1, but it is no more than Cl!=@-1—a=11=a] regy]ar.

On the other hand, the study of weighted problems like (1.1) is strongly related to the
theory of edge operators [27, 28], nonlocal operators and nonlocal diffusion. The latter is the
major motivation for the parabolic theory we develop here: it relies in the connection between
a class of fractional heat operators like (d; — A) 5t possibly with variable coefficients - and
their extension theories [6, 30, 35], which represent the parabolic counterpart of [10]. Such
kind of operators have been widely investigated in the last years, in many different contexts:
we quote [8] for reaction-diffusion equations with nonlocal diffusion, [1, 5, 13] for obstacle
type problems, [4] for the nodal set analysis of sign-changing solutions, and [21] where a new
nonlocal harmonic maps flow was recently introduced. A special mention goes to [7], where
the authors proved some Schauder estimates for solutions to fractional parabolic equations
involving (9; — divy (A(x)Vx))l%a: respect to our notation, this corresponds to estimates in
the (x, t)-variableson ¥ and a € (—1, 1).

We also mention [14, 15] where the authors deal with parabolic weighted equations in
divergence form as in (1.1) (and in non divergence form as well). They require weaker
assumptions on coefficients, and obtain estimates for solutions in weighted Sobolev W14
spaces. This kind of result is comparable to our CIO,’“ regularity theory when ¢ is large but not
with the higher C ,l,"" regularity we obtain. However, as we will explain in a moment, we need
to establish some Holder regularity estimates which are stable with respect to a perturbation
of the weight term, and this does not follow from [15]. The stability is crucial in order to
establish the higher order estimates with blow-up techniques.

Main results
The main goal of the paper is to prove some local Cg’“ and C 11,‘“ regularity estimates - up to

the characteristic hyperplane ¥ - for weak solutions to (1.1) (see Sect. 2.2 for the definitions
of the Holder space of parabolic type), under suitable assumptions on the matrix A and the
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right hand sides. As already mentioned, the higher regularity of solutions, which is quite
different from its elliptic counterpart [33, 36], is treated in the subsequent paper [3].

The main idea is to extend to the parabolic framework the regularization argument used
in [33, 34] in the elliptic one: for ¢ € (0, 1), we introduce the family of smooth weights

Pl = (e + )2,
and we consider weak solutions to

pldu — div(p? AVu) = pl f + div(p?F) in Qf
lim p*(AVi + F) - eny1 =0 on 3907, (1.5)
y—0t
which corresponds to the problem associated to the regularized weight (notice that by con-
struction pg (y) — y“ almost everywhere as ¢ — 01). Since pg is (locally) bounded and
bounded away from zero, problem (1.5) is uniformly parabolic. Consequently, the classical
Schauder regularity theory applies (see for instance [24, 25]) and one obtains Cg’“ and C 11,’“
regularity estimates with constants possibly depending on e. The main result of the paper
shows that such estimates are uniform in ¢ € (0, 1) and pass to the limit as ¢ — 0. We refer
to this property as e-stability of the estimates. The latter, together with a fine approximation
procedure (see Sect.4) yields our main result:

Theorem 1.1 Let a > —1 and u be a weak solution to (1.1), in the sense of Definition 2.15.
Then

(i) If A is a continuous matrix satisfying (1.2), f € LP(Q7, y*) with p > %W, F e

L9(QF . yYN withq > N+3+a*,a € (0. )N (0,2— V432" (g, | — Vadsa'y,
then there exists a constant C > 0, depending on N, a, A, A, p, q and o such that

”u”C?,'“(Q'l*'/z) = C(”””U(Qlﬁya) + ||f||Lp(QT7yu) + ”F”L‘I(er,ya))' (1.6)

(i) If A, F € CY*(QT), with A satisfying (1.2), f € LP(QF, y*) with p > N +3 +a*,
ae(0,)NO,1-— %W], then there exists a constant C > 0, depending on N, a,
A A, p, @ and ”A”Cg'“(QT) such that
llegegr,) < C(Mliaop yoy + 1 Iinop yoy + IFlctegpy)- (D
In addition, u satisfies the conormal boundary condition
(AVu+ F)-eny1 =0 on 30Q1+/2. (1.8)

Moreover, the estimates (1.6) and (1.7) are e-stable in the sense of Theorems 6.1 and 7.1.

As a first comment, we would like to remark that the e-stability of the CI/E’“ estimates with
respect to the regularization described above cannot be valid when k > 2, see [33, Remark
54].

Secondly, the integrability and regularity conditions required on the data A, f, F are the
standard ones (see [33, 34] in the elliptic setting), in terms of the natural scaling of the
problem (one can also recover the regularity results for uniformly parabolic equations, that is
without weight terms, by taking a = 0). Actually, the Cg’o‘ estimate could also be obtained
by extending the De Giorgi-Nash-Moser theory in [12] (range a € (—1, 1)) to any power
a > —1 with a non-explicit Holder exponent. Moreover, let us stress again the fact that the
(o g,a regularity above is comparable to the regularity theory in [15] but, respect to this, our
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approach for the C 11,’“ regularity requires the e-stability of the Cg’a estimate: to the best of
our knowledge, this is completely new in the parabolic setting. Regarding the C 11,’“ regularity,
other approaches, such as the Campanato method, may also work, see for instance [7] (range
a € (—1, 1), trace regularity) and [22] (elliptic setting). In contrast, we opt for a different
strategy: the proof of our main theorem is based on a contradiction argument combined with
a blow-up procedure (in the spirit of the classic paper by Simon [32]), which crucially exploit
the following Liouville-type theorem for entire solutions having a certain growth-control at
infinity.

Theorem 1.2 Leta > —1, ¢ € [0, 1), y € [0, 2) and let u be an entire solution to

pedu —div(pdVu) =0 inRYT! x R 19)
poyu =0 on aRY T x R. '
Assume that
u(z, )] < C(L+ (21> + 11D")'/? forae. (z,1) e RY T x R. (1.10)

Then u is a linear function depending only on x. Moreover, if y € [0, 1), then u is constant.

The proof of the Liouville theorem above is obtained with an iteration of a (parabolic)
Caccioppoli-type inequality (3.2), in the spirit of [36] and by a duality principle between u
and its weighted derivative pg d,u which solve respectively equations with weights p¢ and
pg ¢ asin [9].

Finally, as a consequence of our main theorem, we can treat more general equations with
weights behaving as distance functions to a C'* hypersurface I' ¢ RN*! (curved charac-
teristic manifolds) that we introduce below. Such equations are set in cylindrical domains
QFx(—1, 1) of RN*2 which “live” on one side of I'x (—1, 1). Specifically, up to rotations and
dilations, 0 € I' and there exist a spacial direction y and a function ¢ € C Lepn{y =0}
with ¢(0) = 0 and V,¢(0) = 0 such that

QTNB; ={y > ¢x)}NB, I'NBr ={y=¢kx)}NBy. (1.11)

Then, the family of weights § = §(z) we consider behave as a distance function to I in the
sense that § € C*(Q+ N By), and

§>0 inQt N B
V8| > co>0 in QT N B (1.12)
§=0 on "N By,

and we consider weighted equations of the form

899u — div(8 AVu) = 84 f +div(8*F) in (T N By) x (=1, 1),

(1.13)
3(AVu+F)-v=0 on (I'N By) x (—1, 1),

where v is the unit outward normal vector to QT on I'. The precise definition of solutions to
(1.13) will be given later in Sect.7.1, see Definition 7.2.

Corollary 1.3 Let a > —1 and u be a weak solution to (1.13), in the sense of Definition 7.2.

Letp € CH*(B1N{y = 0}) be the parametrization defined in (1.11) and § € C**(QT N By)
satisfying (1.12).
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Let A, F € Cg""((Q+ N By) x (=1, 1)), with A satisfying (1.2), f € LP((QT N By) x
(—1,1), 8% withp > N+3+at,ae(0,1)N0,1-— W]. Then, there exists a con-

stant C > 0, depending on N, a, A, A, p, «, co, ”A”C?,"’((Q+mBl)x(—1,1))’ ||<p||cl,a(3m{y=0})

and |8 cre(q+np,) such that

”M ”C;’a((9+ﬂ31/2)><(71/2,1/2)) = C(”M ||L2((Q+ﬂ31)><(—1,]),8")

+ I fllLr@+rnBy)x(=1,1),60) + ||F||Cg-a((g+mgl)x(_1’1)))~
(1.14)

In addition, u satisfies the conormal boundary condition
(AVu+F)-v=0 on(I'NBy) x (—1,1), (1.15)
where v is the unit outward normal vector to QT on T.

Structure of the paper

The paper is organized as follows: in Sect.2 we set up the problem introducing the energy
spaces and the definition of weak solutions to (1.1). In Sect.3 we prove some uniform esti-
mates, namely the Caccioppoli’s inequality and the L° bounds, by using the De Giorgi’s
iterative technique. Section4 is devoted to the proof of the approximation results, that is,
the convergence (in suitable energy spaces) of the regularized solutions to weak solutions to
(1.1). In Sect. 5, we prove the Liouville Theorem 1.2. Finally, in Sects. 6 and 7, we show the
e-stability of C 2’0’ and C ,l,’a regularity estimates mentioned above. This, together with the
approximation argument in Sect. 4, will prove our main Theorem 1.1 and Corollary 1.3.

2 Functional setting

The present section is mostly devoted to the functional setting of the problem.

2.1 Functional spaces
2.1.1 ¥ spaces

Letk € Nand r > 0. We set

ck (B, \X):={uce ck (B, \ ) : D%u is uniformly continuous on every U C B,
with dist(U, £) > 0, for every multiindex |«| < k},
CK(B,\ %) :={ueC¥B,\ %) :sptu cc B, \ T},

CX(B\ %) :=[)CEB,\ %)
k=1
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2.1.2 Sobolev spaces
Leta e R,e €[0,1)and r > 0. For p > 1, we set

L? (B, p) := {u : B — R measurable: / pelulPdz < 400},

r

1/p
el s, ps) = (/ pg|u|sz> .
Br

LP(B,, p")N T .= (U : B, - R measurable: / p2|U|Pdz < +oo},

r

equipped with the norm

For fields, we define

normed by ||U||LP(B,,pg)N+' = MU LrB,.p2)-
The space H L(B,, pg) is defined as the completion of C (B, w.r.t. the norm

1/2
1Vl 1B, po) = </ pg’vzdz-l—/ pg|Vv|2dz> , 2.1)
B, B,
while the space HO1 (B, p2) is the completion of C2°(B,) w.r.t. the seminorm
172
ol g3 B, o) = (/B P?|Vv|2d2> . (2.2)

When ¢ = 0, we write H'(B,, |y|) and H]}(B.,|y|%), instead of H!(B,,p}) and
Hol(Br, 0§), respectively. The symbol H -1(B,, pg) denotes the topological dual space of
HY (B, p2).

As observed in [33], when & = 0, the nature of such spaces is intrinsically related to the
degeneracy/singularity of the weight |y|*. Heuristically, when a < —1 the weight |y| is not
locally integrable and thus the functions in H LB,, |y]%) are forced to have zero trace on X.
Conversely, when a > 1, the weight has a strong degeneracy and the traces on ¥ of functions
in H'(B,, |y|*) have no sense in general (this is due to the zero HY'(B,, |y|%)-capacity of
).

These observations suggest to introduce the space Hl (B, pg), defined as the completion
of C* (B, \ £) w.rt. (2.1) and similarly flol (B, p¢) as the completion of CZ°(B, \ X) w.r.t.
(2.2). As above, when ¢ = 0, we set H!(B,, [yl]?) = H(B,, pg) and I:I(; (By, |y|*) =
Hy (By, p§).

When a € (—1, 1), as we have previously remarked in the introduction, the weight |y|*
belongs to the Ay Muckenhoupt class; that is, (1.4) holds true.

The following proposition characterizes the space H' (B, |y|%).

Proposition 2.1 ([23, Theorem 2.5] and [33, Proposition 2.2]) Ifa € (—1, 1), then:
H'(B, |y|*) = Wh2(B,, |y,
where
Wh2(B, 1y[*) i= {u € L*(By, |y|*) : Vu € L*(B,, [y|)N*1},

and Vu denotes the weak gradient of u.
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Ifa € (—oo, —1]U[1, +00), then:
H'(B;. |y|") = H' (B, |y|),
Hg (By, |y|) = Hy (B, 1yI);
in particular, CSO(E,\E) isdensein H' (B, |y|%) and C2°(B,\X) is dense in HOl (Br, [¥|%).

The spaces introduced above enjoy interesting Sobolev embedding properties, depending
on the value of the parameter a.

Theorem 2.2 ([20, Theorem 6] and [33, Theorem 2.4]) Let ¢ € [0,1) and r € [1/2, 1].
Assume eithera > —1 and N > 2, ora > 0and N = 1. Then there exists C > 0 depending
only on N and a such that

2/2;
([ p§|u|2adz) §C</ pguzdz+/ pg|vu|2dz),
B B, B,

foreveryu € HY(B,, p2), where
_ 2(N +1+at)
@7 N4at—1

Further, if N = 1 and a € (—1, 0], the above inequality holds with 2, replaced with any
p € [1, 400) and a constant C > 0 depending only on N, a and p.

Theorem 2.3 ([33, Theorem 2.5] and [34, Lemma B.5]) Leta < —1, N > 2, ¢ € [0, 1) and
r € [1/2, 1]. Then there exists a constant C > O depending only on N and a such that

2/2*
( f (o) Plul? dz) < c( / plutdz + / p§|w|2dz>, (2.3)
B, . By

foreveryu € I:Il(Br, ), where

C2(N+1)
=1

2%

Moreover, the inequality (2.3) implies that

2/2
<f o ul? dz) <C (/ pguzdz—F/ p?IVu|2dz>.

Further, when N = 1, the above inequalities hold with 2* replaced by any p € [1, +00) and
a constant C > 0 depending only on N, a, p.

Remark 2.4 1t is worth mentioning that the theorem above (range a < —1) follows as a
consequence of a fine analysis of the isometry

TS : H'(B,, pe) — H'(B)) u—v:= plu, 2.4)

where H'! (By) is the completion of CZ° (B, \ ) w.r.t. the norm

dy p¢ 2 dy p¢ 0y pd
Qs(v)Z/ |Vv|2+/ (2’;) +ay<2>; vz—/ PR
B, ; P P 9B, 2P

which turns out to be equivalent to the classical H 1(B,)-norm, uniformly in ¢ € [0, 1) (see
[34, Lemma B.4]). This fact allows to apply the classical Sobolev inequality to v = T;*u and
recover (2.3) in terms of u.
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Remark 2.5 Notice that the definitions and theorems above hold true replacing the ball with
any open bounded domain €2, including the case of the half balls B;'.

Remark 2.6 Let @ c RV*! pe an open bounded set such that @ CC RN+ \ ¥ and, for
every ¢ € [0, 1), let HO1 (2, p¢) be the completion of C2°(€2) w.r.t. the seminorm

1/2
Il .50 = ( | pffIWIZdZ> :

Then, for every ¢ € [0, 1),
Hy (2, pf) = Hy (). (2.5)

Indeed, dist(€2, ¥) > § for some § > 0 depending only on €2, and thus § < pf < 8 lin
RY*! uniformly in e, up to taking § smaller. This shows that || - |1 (q e ~ Il Il ()

which, in turn, readily implies (2.5) by the definition of HO1 (R2) and HO1 (2, pf).
2.1.3 Sobolev spaces involving time

LetaeR,ee€[0,1),r >0,1, = (—r2, r2) and p, g € (1, 400). We define
Li(1.; L?(By, p))

:=A{u: I, — LP (B, p7) strongly measurable: /1 ||u(t)||[£,,(3r’pg)dt < 400},
equipped with the norm

1/q
Nl Loty e, p0) = (/1 ||M(f)||%p(3,,pg)dl> :

The special case p = g is the most relevant for the paper. In such case, we set L”(Q,, pf) :=
LP(1.; LP(By, py)) and

1/p
lullLe(Q,.poy == NullLe(r,;Lr (B, .p0) = (/ Pglulpdzdf) :
Qr

Similarly, for fields we define
LY(I; LP (B, pHNTh

dt < +o0},

={U: I, > LP(B,, pg)N+1 strongly measurable: / ||U(t)||‘]ip(B payN+1
Ir Pe

normed by

1/q
WU a1, L0 (B, p0)N+1) = (/1 ||U(Z)||ip(Br’pg)N+ldt> .

As above, when p = g, we set LP(Q,, p@)NT! := LP(I,; LP(B,, p®)N*!) and

1/p
1N Lr o, poyvt = WU NLo iy Lo (B, pey¥+1) = </ pé’IUlpdzdt) :
) ) Qr

We set
L%(1; L¥(By, p))
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:={u: I, > LP (B, pg) strongly measurable: ess sup lu(@)llLr (s, pa) < +00},
tel, '

equipped with the norm

lullLoor,;Lp (B, pay) = esssup |u(®) || Lr(s,.ps)
rel,

and

C,: LP(By, p8)) :={u : I, — LP(B,, p) continuous: max ||u(t)||Lr(s,,pe) < +00},
tel, )

normed by

”””C(T,;LP(B,,,og)) = m%x ||”([)||LI’(B,.,pg)-
tel,

The space L%(1.; HY(B,, p2)) is defined as the completion of C”(@,) w.r.t. the norm
172
”u”LZ(Ir;Hl(Br,pg)) = (/ ”u(t)“i(l(Bhpa)dz)
I, e

1/2
=< / plu’dzdr + / pg|W|2dzdr> , (2.6)
o) o

while L2(1,; HOl (Br, pg)) is the completion of C2°(Q,) w.r.t. the seminorm

1/2 1/2
Nl 2t 18 3y ey = (/1 ||u(r)||§1&(3hpg)dt> :</Q pg|vu|2dzdr> .

Notice that by the Riesz’s representation theorem, the topological dual space of L?(I,; HO1
(B, pd)) satisfies

L*(Iy; Hy (By, p))* = L*(I.; H' (B, pf)).
Remark 2.7 Later on in the paper we will use the following classical fact, see [26, Proposition
2.1, Theorem 3.1]: there exists C > 0 depending only on r, such that
||”||C(1',;L2(B,,pg)) = C(||”||L2<7,;H0'(B,,pg)) + ”at””Lz(lr:H“(Br,pg‘)))’
where d;u denotes the weak time derivative of u. That is, if u € L2(I,; H(} (B, pf)) and
duu € L2(,s H™(By, p®). then u € C(I,; L2(By. p2).

Exploiting the Sobolev inequalities above, one can prove their “parabolic versions” (see
for instance [12], or the more recent [2]).

Theorem 2.8 Let e € [0, 1) and r € [1/2, 1]. Assume eithera > —1 and N > 2, ora > 0
and N = 1. Then there exists C > 0 depending only on N and a such that

y—1
/ pg|u|2}’dzdt <C (/ ol (u2 + |Vu|2) dzdt) €ss sup (/ pg’uzdzdt> , (2.7)
Or Or Or

tel,
for everyu € L3(1.; H (B,, pL)), where

2% —1
y =2 “2* .

a

Further, if N = 1 and a € (—1, 0], the above inequality holds with y replaced with any
p €11, 2) and a constant C > 0 depending only on N, a and p.
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The same isometry in (2.4) can be easily extended to the parabolic setting as a map
Ty : L*(Iy; H' By, pe)) —> L H'(By)  u— v = /pfu. (2.8)

Notice that T’ is still an isometry if L2(I,; H'(B,)) is normed by

1/2
”U”LZ(I,;I:II(B,)) = (/] Q&‘(v(t))d[> 5

and L2(1,; ﬁl(Br, Ps)) stands for the completion of C2° (0, \ ) w.rt. (2.6). Working as
in the stationary (time-independent) framework, one can see that such a norm is equivalent
to the standard L2(I,; H'(B,))-norm, uniformly in ¢ € [0, 1). As a consequence, we obtain
the following Sobolev embeddings whena < —1.

Theorem2.9 Leta < —1, N > 2, ¢ € [0,1), r € [1/2,1]. Then there exists C > 0
depending only on N and a such that

y—1
/ ol u|?Y dzdt < C (/ ol (u? + |Vul?) dzdt) ess sup (/ pfu2dzdt) ,
Or Or 1ely r

for everyu € L*(I,; H' (B, p2)), where
2% —1
TR
Further, if N = 1, the above inequality holds with y replaced with any p € [1,2) and a
constant C > 0 depending only on N, a and p.

y =2

Remark 2.10 As explained in Rerrlark 2.5, one can define the spaces L9(1,; L”(Br*, o),
Li(I,; LP(BF, p9)N*Y) and C(I,; LP(B;, p%)), and the Sobolev spaces L2(I,; H'
(B}, pf)) and L2(I,; H' (B}, o).

r

2.2 Parabolic Holder spaces

In this section we recall the definitions of the Holder spaces of parabolic type we use later
on in the paper. We follow [25, Chapter 4] (see also [24, Chapter 1]).

Let @ ¢ R¥*! x R be an open subset and u : & — R. The parabolic distance dy :
Q x 2 — Ris defined by

dy((z,1), (&, ) i= (2 — ¢1P + 1t — '/, 2.9)

for all (z,1), (¢, T) € 2, where z,¢ € RN+L ¢ 7 € R. Notice that d), is parabolically
1-homogeneous, in the sense that

dp((rz.7?), (rg. 7210) = rdp((2.1). (£, 7)), Vr € R.
For o € (0, 1], we define the seminorms

VN ) B (a1
Oy e (2= ¢ >+ 1t —pe/?’

(z,H)#(.7)
[u] . sup luz, 1) —u(z, )|
Ccr(Q) = _
e (z,1),(z,7)€R [t —|*
t#T
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and
N+1

[u]C}).a(Q) = z;[ai“]c%“(m + [u]qHTu @
=
We also define the norms
”u”szD‘(Q) = ”u”LOO(Q) + [M]C?,'“(Q)’
lullcre gy = lulloe@) + IVUllLo@) + (Ul cLag),
and the spaces
Cr* Q) =u:Q—>R: lul o gy < +o0}
C})ya(Q) ={u:Q—>R: ||u||C[17,D,(Q) < +o0}.

More generally, if § € NV is a multi-index, o € (0, 1]and k > 2, we define the seminorm

- B/ Bo/
Wt = D 100/ ulcveg + D [0 e
1Bl+2)=k B+ 2j=k~1 r

the norm

- Bol
lllcheg) = D suplafdjul + [ulcse ),
1Bl+2j<k

and the space

Cﬁ»a(Q) ={u:Q—->R: IIMIIC;E.Q(Q) < 400}

2.3 Weak solutions

The energy spaces introduced above allow us to give the notion of weak solutions for our
class of problems. Before that, we introduce the space of test functions we will use in the
definitions below: such space takes into account the integrability/non-integrability of the
weight [y|¢ when ¢ = 0.

Definition 2.11 Leta e R, N > 1,r > O and ¢ € [0, 1). We define

CX(Qr) if eithere € (0,1), ore =0anda € (—1, 1)

7 (Qr) = CX(0,\®) ife=0anda e (—oo, —1]U[l,+00).

Notice that, in light of Proposition 2.1, 22°(Q,) is dense in L2(I,: HO1 (Br, pg)) for every
e €[0,1).

Definition2.12 Leta € R, N > 1,7 > 0, ¢ € [0,1) and f € L*(Q,,p%), F €
L*(Q,, p:f)N"'l. We say that u is a weak solution to

peou — div(pf AVu) = pl f +div(p! F) in Q,, (2.10)
ifu e L>(I,; H'(B,, p%)) N L®(I,; L*(B,, p%)) and satisfies

—/ pguaﬂpdzdt—i-/ pgAvu.qudzdt:/ po(f$p — F - V)dzdr, (2.11)
r Qr

Or
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for every ¢ € Z2°(Q,). We say that u is an entire solution to
pedu — div(p AVu) = pf f + div(pd F) in RNt X R,
if, for every r > 0, u is a weak solution to (2.10).

Definition2.13 Leta € R, N > I,r > 0, ¢ € [0,1) and f € L*(Q,,p%), F €
L3(Or, pg)N"'l, uog € L*(B,, pg). We say that u is a weak solution to

pLou —div(pl AVu) = pf f +div(pd F) in Q,
u=20 inoB, x I, (2.12)

U= ug in B, x {—r2},

if u € L2(I; H} (B, p2)) N L®(I,; L*(By, p?)), satisfies (2.11) for every ¢ € 22°(Q,)
and u(—r?) = ug in L*(B,, p2).

Remark 2.14 Let ¢ € [0, 1) and let u be a weak solution to (2.12). Then, by the Holder

inequality, (1.2) and the Poincaré inequality (for the degenerate/singular case we refer to [22,
Lemma 3.2], [34, Lemma B.5] and [16, Theorem 1.3]), we have

—/ pludipdzdt = C(Mull 2,y a,. o0 + 1/ 220,00
Qr ' )

HIF 20, pov+ BN 21110 (8,00

for every ¢ € 22°(Q,), for some C > 0 depending on N, a and . Consequently, a standard
density argument, shows that the distribution

. 9) == [ ptudgdzdi, 9 € L2 1B p))
Or

is well-defined and 8,u € L*(I,; H (B, ). In particular, u € C(,; L*(B,, pd)) by
Remark 2.7 and thus the equation u(—r?) = ug in L*(By, pg) makes sense.

Definition2.15 Leta > —1, N > 1I,r > 0,& € [0,1) and f € LZ(Qf,pg), F e
L2(Q;), p)N*1. We say that u is a weak solution to

{pg(’)zu —div(p? AVu) = p f +div(p?F) in Q) (2.13)

0 (AVu+F) -enty1 =0 in3°0;,

ifu e L>(I,; HY(B, p%)) N L®(I,; L*(B;, p)) and satisfies

r r
—/ peudipdzdt +/ peAVu - Vdzdt = / pe(fo — F - Ve)dzdt,
of of of
for every ¢ € C2°(Q,). We say that u is an entire solution to

p2du — div(pd AVu) = pf f +div(p? F) inRYT! xR
Pl (AVu + F) -eni1 =0 in 9RY T x R,

if, for every r > 0, u is a weak solution to (2.13).
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Remark 2.16 A key tool in the study of weak solutions are the Steklov averages, defined as

1 t+h 1 t
up(z, t) = Z/ u(z, s)ds, u_p(z,1):= Z/ u(z, s)ds,
t t—h

where 7 > 0 and u is a given function. It is well-known that if ¢ € (0,1), u €
L%(1,; H(B,, pg)) and § > 0, then

up — u, Vup — Vu in L*(B, x (=r,r* = 8), p%),

as h — 0 (see for instance [25, Lemma 3.2 and Lemma 3.3]). Furthermore, if u is a weak
solution to (2.10), then uy, satisfies

/ pg(a,uh¢+(Avu)h-v¢)dzdr=/ P2 (frd — Fy - V)dzdt,  (2.14)

r Or

for every ¢ € C°(B, x (—=r2, 72 — h)): the proof is a standard adaptation of the classical
framework (see for instance [25, Theorem 6.1]). Similar for the case ¢ = 0 and for weak
solutions to (2.12) or (2.13). We quote [24, 25] and the more recent [11] for further properties
of Steklov averages.

3 Local boundedness of weak solutions

In this section we prove a local L? — L™ estimate for weak solutions to (2.10) using a De
Giorgi-Nash-Moser iteration. Analogous statements have been previously obtained in [2, 6,
12,29, 37]. However, our setting is slightly more general and, even though the proof is quite
standard, we present it for completeness.

Proposition3.1 Lera € R, N > 1,6 € [0,1), p > ¥44™53 4 > N 4 at +3 and A
satisfying (1.2). Let f € LP(Q1, p¢) and F € L1(Q1, ,og)N+1 and let u be a weak solution
to (2.10). Then there exists C > 0 depending only on N, a, A, A, p and q such that

el = € (llli2gy.pp) + 1 lLrcimm + I FllLocorm ) -

The proof of Proposition 3.1 will be obtained in a couple of steps. The first one is a
Cacciopoli-type inequality.

Lemma3.2 Leta € R, N > 1, ¢ € [0,1), p,q > 2 and A satisfying (1.2). Let f €
LP(Q1,pd) and F € L1(Q1, ,og)N'H and let u be a weak solution to (2.10). Then there
exists C > 0 depending only on N, a, . and A such that for every % <r' <r <1 there
holds

€ss sup / p;’uz—i—/ ,02’|Vu|2
te(—r2,r'2)J B 0,
3.1
| (3.1

scl— [ o o Wliom + [ AP0 .
— |:(r_r/)2 /Qr Pt +||f||Lp(Q,,)05)”u”L11 (Qr,ﬂg)—'_ 0 ps' | {lu|>0}
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Moreover, for every k € R and for functions of the form v := (u — k)4 = max{u —k, 0} and
v:= (u — k) = max{—u + k, 0}, the following inequality holds

ess sup / ,ogv2 + / ,0;‘|Vv|2
te(irfz’r/z) Bi/ Qr’ (32)
a,? a 2
= [(r — )2 /Q, Pt e er )Wl g, e + /Q, el X{DO}} '
Proof To simplify the notation, let p = pg. As in [6], we may work with the Steklov average
uj, of u and later take the limit as 7 — 0: equivalently, we may assume that d;u € LZ(Q 1, 0)
and directly work with # which is what we do next.

Fix % < r’ <r < 1. We test the equation of u with n”u, where 7 is a smooth cut-off
function we will define later. Then:

1
/ p(iat(uznz) + nzAVu . Vu)
(]

1
= / p(iuzat(nz) —2nuAVu -Vn + fnzu — nzF -Vu —2nuF - Vn).
(]

By (1.2), the Holder’s and the Young’s inequalities, we get

1
f/ paz(u2n2)+?»/ pn*|Vul?
01 01

2
1 172 12
55/ puzaz(n2)+2A(/ P Vul?) (f pu?| V%)
01 01 01

+ ||7]f||LF(Q1,,o)||77”||L/”(Q1,p)

12 12
+(/ )0772|F|2X{|u\>0}) (/ ;0772|VM|2)
01 [
12 12
w2 [ prirxen) ([ pilivar)
01 01

1 A
< 5/ puzat<n2)+§/ o Vul?
01 0

3A? 21vp12
+ o IVl + I fllrnplnull Ly g, )

1 21 12
— F|“X
+ 2% o, PNIE "X (ju>0)

A
+5 [ orrvur s [ oEPx 0+ [ Vo,
[ 0 01

Hence, we have

1 1
5/ pa,<u2n2)+5xf on?|Vul?
01 01

1 2 2 3A2 2 2
< E/Q, pudr(n )+<T+1)/Q, pu? IV + I flecoum Imull g, ) (3-3)

—I—(H—i)/ PYIZIFIZX{|M\>0}.
2 0
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A standard approximation technique (see [29], [6, Theorem 5.1]) allows us to integrate over
a cylinder of the form By x (—1, ), for any 7 € (—1, 1). Now, let t* € (—r’, r’) such that

ess sup / puzg/ ou’(t"), (3.4)
B. B

te(—r2,r?) !

and take the test function n = 11 (|z|)¥2(t), where

Yy1=1inBy, 0=y <1inBy, spt(y) =58, [Vyy|= - (3.5)
r—r

Yo =1in (=%, 1*), 0<yn <lin(—1,1"),

SpLY2) = (2 1%), Al < — 30
= (=r", 1), < .

p 2 tV2 (}"—I"/)z

By (3.5) and (3.6) we have

M3 + [Vn|? < ,
t(’})+| 77| _(r_r/)z

and thus by (3.3), (3.4) and the last inequality we obtain
2 < C 1 a, 2
€ss sup ) pu = (}" _r/)z 0, P U + ”f”Lp(Qr,pg)”u”Lp’(Qr’péz)

te(—r2,r'2)J B
+/ pIFIZX{\u\>0}]~
Qr

Combining this inequality with (3.3), then (3.1) follows.
To prove (3.2), let v = (1 — k) and test the equation of u with n?v. Since ;u = d;v and
Vu = Vv on {v > 0}, we obtain

/ p (u(nPv) + Vi - VrPv) — f(Pv) + F - Vo)
[

= / p (Bv(m*v) + Vv - V(*v) — f(*v) + F - V(n*v))
01

and thus, (3.2) follows from the same argument above. The case v = (u — k)_ is analogue,
noticing that 9,y = —d;v and Vu = —V. ]

The second step is to establish a “no-spikes” estimate type.

Lemma33 Let N >1,¢€[0,1),aeR, p > M“fm, q > N +a* + 3 and A satisfying
(1.2). Then there exists a constant § € (0, 1), which dependens on N, a, A, A, p and q, such
that if

1S NLr@i.oey + 1 FLa(@y .00 < 1,

and u is a weak solution to (2.10) with
/ pg(u+)2dzdt <§,
[0
then

u<l in Q1/2.
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Proof Fix ¢ € [0, 1), set p = p?, and assume either N > 2anda > —1,or N = 1 and
a > 0 (the other cases are analogous). For every integer j > 0 define

- L 5
C] =1-277, rj =§+2 5 B] :=Br_,-7 Q] :=er-

Notice that C; 1 1,r; | % as j — +oo,andrj —rj4 = 27772 Define

Vii=u—Cj)y, Ej ::/ ,oV/-zdzdt,
Q;
and observe that, for every j > 0, E; < Ey < § by assumption. Applying the Caccioppoli
inequality (3.2) to V41, with r’ = rj11 and r = r; we have

ess sup / ,ijzH +/ pIVVj+1|2
Bjt Qj+1

2 0
1€ o)

<C 22f/
0

Consequently, by the Sobolev embedding (2.7) (with y = 1+ 351725),

1y 1y
[oowiarr) sc([ovias [ pvviap
Qj+1 Qj+1 Qj+1
(y=1/y
ess sup / ,oV/-ZH
Bjt1 ’

-2 2
1T

EC[22j/Q pvjil+||vj+1||Lp/(Q,.,p)+/Qp|F|2X{vj+]>0}]
J r

3.7

’Oij-‘rl + ||Vj+1||Lp/(Qj,p) +‘/Q 10|F|2X{Vj+1>0}:| .

J

Now, by the Holder inequality

1y 1y
Ejs1 = / PVi < / PVl / PXvia=0)] . (38)
Qj+1 Qj+1 Qj+1

N+3+a™
2

where y’ = is the conjugate exponent of y and, using the Holder inequality again,

we obtain
1/2 (p=2)/2p
NVitill » (Qj, p) < / PV,-2+1 (/ PX{V; 4 1>0)
Qj+1 Qj+1

(p=2)/2p
1/2
< Ej/ / PX(V;.1>0)
Qj+1

(3.9
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and

2/q (g—2)/q
| ertxwa = ([ ore) ([ et
Qj+1 Qj+1 Qj+1

(g=2)/q
< / PX{Vj41>0) .
Qj+1

Further, using the definition of V, it is easy to see that V; | > Oif and only if V; > 2-Ji-1
for every j and thus

(3.10)

/ PX(V;41>0} =/ PX(y2on-2j-2) < 22j+2/ ,OVj2 =E;. (3.11)
Jj+l1 Jj+1

J
Combining (3.7), (3.8), (3.9), (3.10) and (3.11), we obtain

1

1 1-1+L 1-24 4
P q
Ejq1<C' (Ej THE; T T +E T,

where C depends only on N and a. By the assumptions on p and ¢ it follows that % — % >0

and & — 2 > 0. Let us denote by 7 the minimum of such two positive numbers. Taking into
account that E£; < § for every j, we have

147
Eji1 SCH’E]» v
Eyp <6,

which implies

E, < Xy i) E(()1+;7)f' < Y X Ty g7 < (C8)1+P)

since Zj

i ) .
i=0 35y < +00. Now, take § such that C§ < 1. Then E; — 0, as j — +00

and thus, by definition of V;, E; — le/z p(u— 1)?F = 0, which yields u < 1'in Q12, as
claimed in the statement. ]

Proof of Proposition 3.1 Define

NG

- lutllz2(g,,pey + I ILrcor o0 + IFILacor00)

V+ = 9+M+, 9+ :
where § > 0 is as Lemma 3.3. The hypothesis of the Lemma 3.3 are satisfied, so

1
s le~eu < = (Nesllz2oy.ppr + 1 llLreiom + I FllLacormm) -

Repeating the same reasoning with V_ and taking into account that both the estimate (3.2)
and Lemma 3.3 hold also for the negative part of solutions, it follows

1
lu—llzeci) < 7 (llu—lle(Ql,pg) + 11 llLrc.p0) + IIFlqu(Ql,pg)) .
So, putting together these two inequalities, the thesis follows choosing C =

4
7
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4 Approximation results

The purpose of this section is to establish some approximation results, in the spirit of [33]
(elliptic framework). The main fact is that any weak solution u to (2.10) with ¢ = 0 can be
locally approximated with a family of classical solutions {u¢}cc(0,1) to (2.10) (with & > 0),
that is u; — u as € — 0, in a suitable sense (see Lemma 4.2 and Lemma 4.3). This is a key
step of our work that will play an important role in the proofs of the Holder and Schauder
estimates.

We begin with the following lemma, in the spirit of [25, Theorem 6.1].

Lemmad.l Leta € R, N > 1, ¢ € [0,1) and f € L*(Q1, pe), F € L*(Qy, pH)N*!,
ug € L%*(By, p2). Let ug be a weak solution to (2.12) in Q1. Then there exists C > 0
depending only on N, a and )\ such that

el zoo(—1.1:22By. 000 F Ntell 211510 (81,0
= CUIfllz2cq.p0) F 1F N L2¢0, po) + 0l L2(By, o) 4.1

Proof Let us set u := u, and notice that u € C([—1, 1], L?(B;, p2)) by Remark 2.14. In
what follows, we prove the existence of C > 0 depending only on a, N and A such that

T
/ pg’uQ(t)dz—i-/ / pffIVu|2dzdt <C </ ,of(f2 +|F1®)dzdt —i—f pgu(z)dz),
B -1JB 01 By
“4.2)

for every T € (—1, 1). The bound in (4.1) easily follows by the arbitrariness of 7.
So,letusfixt € (—1, 1),k € (0, 1 — 1) and consider the Steklov average u, (see Remark

2.16). Using a standard approximation procedure (see [25, Theorem 6.1]) and recalling that

22°(Qy) is dense in L3(I,; H(} (Br, p2)), we may test (2.14) with ¢ := up X[—1 ;] to deduce

T T
/ / pe@upup + (AVW)y - Vuy)dzdt = / / pe (fuun — Fp - Vuy)dzdt.
—1JB; —1JB

Now, using Fubini-Tonelli theorem and integrating w.r.t. , we obtain

T ‘l T
/ / pe dupupdzdt f/ ,og/ Bt(ui)dtdz
~1JB 2 Jp, -1
1

1
5 / pluj(t)dz — / pluj(—dz,
2 Jp, 2 Jp,

and thus, passing to the limit as 2 — 0 and recalling that u € C([—1, 1], L2(B1, ), it
follows

1 T T
f/ pguz(r)dz —I—/ / PEAVuU - Vudzdt = / / pe(fu—F - Vu)dzdt
2 B —1JBy —1JBy

1
+7/ plubdz.
2 /B,

Recalling that A is uniformly parabolic and applying both Holder’s inequality and Young’s
inequality, it turns out

1 T
3 [ ote@azn [ [ otz
2 /B, —1Jm
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1/2 T 1/2
< ”f”Lz(Ql %) (/ / pa dedt) + ”F”LZ(Q],,O?) (/ IA pg|Vu|2dZdt>
- 1

2
+ = ”u0||L2(Bl )

1 AT
— “ + al/t2+ F 2 B +7\/ / a Vuz
2||f||Lz(le) f /Bl,og T Flizoum 3 ) | [, PV

5 HMOHLZ(BI /)“)’

that is

T T
H(r)+k/ / p§|W|2dzdz§/ H@)dt + K,
—1JB —1

w2 2
where H(t) - fB (T) and K = ||f||L2(Q1 pa) ”F”LZ(Q p”) + ”uOH.LZ(B].,p‘S‘)'
Finally, since the second term in the r.h.s. is nonnegative, the Gronwall’s inequality yields
f_rl H(t)dt < K(1+¢€") < K(1 + ¢) which, in turn, proves (4.2). ]

Now, we proceed with the approximation results. In what follows, we will repeatedly use
the following elementar fact:

o8 — |y|* in L, RN\ %),
ase — 0.

Lemma4.2 Leta € R, p,q > 2, A satisfying (1.2), R > 0 and Iz = (—R%, R?). Let

{felee.1y C LP(QR, p9), {Felec,1) C LY(Qr, pH)NH! and let {us}ec(0,1) be a family of
weak solutions to

P e — div(pf AVug) = pf fe +div(pl Fe) in Q. (4.3)
Assume that there exist C > 0 independent of ¢, f € Ll’;L(QR\Z) and F € LIOC(QR\E)

such that

Nuell L2 11 (Bropgy) e ll Lo (rpiL2BR.pey) = € @4
I fellLrQr.oe) + 1Fell (g, pay+1 = Cs 4.5)
fo— f inL] (QrR\E) and F,— F inL{ (Qg\ )" (4.6)

ase — 0.Then, f € LP(Qg, |y|%), F € L1(Qg, |y|)N, and there exist a weak solution u
t0(2.10) in Q g (withe = 0) and a sequence e — 0 suchthatug, — uin lem_(IR; HILC(BR\
¥)) as k — +00. Moreover, if we assume that {u;} C L%(Ig; HOI(BR, ), then u €
L?(Ig; Hj (Bg, |y|).

Proof By scaling, we may assume R = 1 and set [ := (—1, 1).

Step 1. We have f € LP(Qq, |y|*) and F € LY(Q1, |y|*). This easily follows by Fatou’s
lemma, (4.6) and p — |y|* a.e.in Q.

Step 2. In this step we show the existence of u € L>(I; Hlloc(Bl\Z)) and a sequence
&r — 0 such that

e, — u in L*(I; L}, .(By \ X)), .7

as k — +oo. Further, for every open set w CC Bj\ X, u is a weak solution to (2.10) inw x I.
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Let 2,8 c RVl pe open sets such that QccQccB\Tandlet§ e C(R2) with
0<é&<1,&=1inQand |VE| < Cp, where Cy > OdependsonN Qand Q.
Define v, := £u,. By (4.4), we have v, € L2(I; H} (2 p¢)) N L>®(I; L*(Q; p?)) with

”vsHLZ(I;HOI(Q,pg)) + ||Ug ”LDO(I;LQ(Q,;O?)) < C, (48)

foranew C > 0 independent of ¢. Setting Q := Q x [ and fixing ¢ € C2°(Q), we compute
—/ pgvgatqbdzdt-i-/ pe AV, - Vodzdt
o o
plucds (E)dzdt + f peEAVU, - Vdzdr + / pluc AVE - Vdzdr
9] o
peugd (E@)dzdt + f P AVu, - V(EP)dzdt — / PepAVu, - VéEdzdt
9] 0]

+ | plu AVE - Vedzdr

I
| |

= / pe (fek¢p — Fe - V(EP) — pAVu, - VE +uAVE - Vo) dzdt
Q

= [ 1 (69 ~€F. V6 — 9F. V&~ 9ATu V5 +ucAVE - ) dedr,
that is,
peove — div(pd AVu,) = pf af+ div(p? F,) inQ,
in the weak sense, where we have set
fo= fok — F. -VE — AVu, -VE,  Fy:= F.6 —u,AVE.

Proceeding as in Remark 2.14, one combines the uniform estimates (4.4), (4.5) and (4.8)
with the Holder’s and Young’s inequalities, to deduce

- fQ pvetddzdt = ClBl o) @)

for some new C > 0 depending only on N, €2, Q, a and A. Notice that, respect to Remark
2.14, C is independent of &: this is because HO1 (2, pf) = HO1 (2) and we can make use of
the Poincaré inequality with constant independent of ¢, see Remark 2.6. As a consequence of
the above inequality, it follows d,v, € L*(I; H(Q, 02)) with ||8,v6||Lz(I;H71(Q’pg)) <C
and so, since H~ (S, o) = H Q) by Remark 2.6, we obtain

I|an8||L2(I H- I(Q)) < C (49)
At this point, combining (4.8), (4.9) and Remark 2.6 again, it follows

”vE”LZ([;HOI(Q)) + ||8tva||L2(];H*1(Q)) <2C,

and thus the Aubin-Lion lemma (see for instance [31, Corollary 8]) yields the existence of
ve LXI:; HO1 (2)) such that v, — v in LZ(Q), along a suitable sequence. Further, since
by (4.4) there is u € L*(I; H'()) such that ug—u in L>(1; H'(2)) (along a suitable
sequence) and & = 1 in Q, we deduce v = u in L?( x I). A standard diagonal argument
yields both u € L(I; HZUL (B1\X)) and (4.7) (take for instance Q2 = Q; := Bi\{|y| <

and Q=0 := B \lyl < ) j €N,

)
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Now, fix @ CC By \ . Combining (4.7) and us, —u in L>(I; H'(w)) and recalling that
pg’k — |y|*in L%*(w), and testing (4.3) with ¢ € C2°(w x I), we may pass to the limit as
k — 400 into (the weak formulation of) (4.3) and deduce that u is a weak solution to (2.10)
inwx 1.

Step 3. Now we prove that

Vug, — Vu in LZZ,,C((Bl \ X)) x 1), (4.10)
as k — 400, up to passing to a suitable subsequence.

Let Q CC BI\E,n € CX(Q),—1 <t <th <landh € (0,1 —1,) and let (ug, ), and
uy, be the Steklov averages of u, and u, respectively (see Remark 2.16). Similar to the proof
of Lemma 4.1, we test the equation of (i, ) With 7 X[, 1,] (e, )i to obtain

n
/ / 08 (0t Gt + AV i - V(0 )
1 Q

[5)
/ /Q 8 (3000 we ) + 02 (AVate i - Vate i + 20 (e (A Vg s - V)
1

1 2 2
E/Q,oﬁkn (ue)y

/ f P8 (e e + (Fepn - V0P (aen)),
1 Q

t=t n
+ / f o8, (A - e n + 20(te )i (AVie i - V)
t=t o JQ

(4.11)

which, rearranging terms, becomes

t=tp

? a 2 1 a 2, 2
/ / Per M (Avusk)h'v(usk)h = _5/ Per M (”5k)h
n JQ Q t=t
16}
—2/ /;Zpgkn(ugk)h(AVugk)h -Vn 4.12)
5l
e a 2 2
+ f /Q o8, (e nn? e + (Fen - V(s n) )
4

Using the properties of the Steklov averages (see Remark 2.16), we can take the limit as
h — 01in (4.12) to obtain

15 1
2 _ 2.2
/t] /ngk” AVug - Vug = _E/ngkn Ug,
1% 5 )
+/ /ngk (fskn ug, + Fe, - V(n Mek)),
3|

for every k € N. Now, by testing the equation of u;, with > X[t.o]4n and repeating the very

same argument, one shows that
1=n t
—2/ / [y|“nuAVu - Vn
1=t n JQ

15 1
/ /IylanzAVu-WZ—*f N
n Ja 2 Ja
5]
+/ / |y|“<fn2u+F-V(n2u>),
1 Q

15} 123
— 2/ / P, Mgy AVUg, - V1)
r=n nole (4.13)

(4.14)

@ Springer



Schauder estimates for parabolic equations... Page230of46 204

for a.e. #1 and 1, as above. Recalling that Vi, —Vu in L*(Q x I) and using both (4.7) and

Pg, = 1y|*in L%(Q), we find
_2/ / psknugkAVuek Vn

1
A
2/ / YAV - Vi,
151 Q

R —f/ Iyl

as k — o0, for a.e. t1 and 1, as above. On the other hand, since in addition f;, — f in
L2(Q x I)and F;, — F in L2(Q x D)NT!, it follows

123 5]
/ / Pe, (ft?knz”‘sk + Fe - v(n2”£k)) - / / [yl <f772M +F- V(UZM)),
11 Q 1 Q

as k — 400, for a.e. #; and t, as above. Consequently,

t 5]
lim / /pgknzAVugk-Vugsz /|y|“n2AVu.Vu.
k—>+o00 Jy Jo n JQ

Since p¢ is bounded and bounded away from O in € uniformly in & and u, —u in
L2(I; HY()), and A satisfies (1.2), we may let n — xgq and use the triangular inequality
to deduce Vug, — Vu in LY2(Q x (11, 1)) ask — +00. A diagonal argument as above then
shows (4.10).

Step 4. Next, we prove that u € L>(I; H'(By, |y|*)) N L®(I; L*(By, |y|Y).

By (4.4), (4.7) and Fatou’s lemma, we have that u € L*°(/; L2(By, |y|%)). Indeed, for
a.e.t € I, one has

/ Iv1“u?(z, H)dz < limkinf/ Pecty, (2. Az < llug |l poor: 1203, psn = C.
B

To show that u € L>(I; H'(By, |y|*)) we distinguish three cases, depending on the value of
a.
Assume first a > 0. Since |y|* < pZ(y) for every ¢ € (0, 1), one has

el L2 mt sy vy = el 2 m syp0) = €

by (4.4). Then, the family {u}cc0.1) is uniformly bounded in L2(I; H'(By, |y|%))
and thus u € L2(I; H'(By, [¥|*)) by weak convergence. Moreover, if {ug}ec0,1) C
L>(I; Hy (B1, pf)) C L*(I3 Hy(Bi, |y|*)), then {us)ee,1y C L*(I5 Hy (B, |y)) and
ue L*I; HOl (B1, |y|*)) by weak convergence.

Second, fix —1 < a < 0. In this case |y|* belongs to the Muckenhoupt class A> and,
since a < 0, one has |y|* > 1. Therefore,

luell 2 mr ) = el 2 mtsy.00) = C

and so ug, —u L%(I; H'(B))) and that u possesses weak gradient. Now, since u,, — u and
Vug, — Vu a.e.in Q1 by (4.7) and (4.10), we may invoke Fatou’s lemma again to conclude
u and |Vu| belong to L2(0;, [y]%). This shows our claim thanks to Proposition 2.1.

Furthermore, if {u¢}ec0,1) C L*(I5 Hy (B1, p)), then {ug}oco,1y C L*(I; Hy (B1))
and thus there exists a sequence satisfying u,, — u weakly in L>(I; HO1 (B1)). So, u €
L2(I; H'(By, 1) N L*(I5 Hy (B1).
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Now, fix § > 0 and consider ¢ € C2°(Q1) such that |ju — WIle(I;Hé(BI)) < §, where
§ € (0, 1) will be chosen in a moment. Let $ € (0, 1) small. Then

f|y|“|Vu—vw|2=/ |y|”|Vu—wf|2+/ Iy Vu — V|
01 {ly|=3} {lyl<y}
s&“f [Vu — VY +8' ) < 35+ 8 (),
01

where 8'(3) — 0 as § — 0, since the function |y|?|Vu — V|> € L'(Q}). Choosing
§ < 8'($)/9" and § such that §'($) < 8/2, we finally obtain ||u — V21l 1yl < 6
that is, u € L%(I; Hol(Bl, |y|%)) thanks to the arbitrariness of §. }

Finally, let @ < —1. In this case, we consider the isometry 7 defined in (2.8) and we
set vg 1= /pZu.. By Remark 2.4 and (4.4), the family {v¢}¢¢(0,1) i uniformly bounded in
L2(I; H'(By)) and so ve,—v weakly in L2(I; H'(B)). Further, by (4.7), we have

v¢>e/ v ¢=/ Pl u ¢H/ Iy1“?ug,
/Ql 01 . 01 o 01

forevery ¢ € C°(Q1), whichimplies v = [y|%/?u a.e.in Q1. So, noticing that u = (7_"0“)_1 v
and applying Remark 2.4 again, we conclude that u € L>(I; H'(By, |y|%)).

Moreover, if {ug}eco,1) C L*(I; Hy (B1, p¢)) then {vg}eeo.1y C L*(I; Hy(B1)). So,
vg, — v weakly in such space, which implies that u L3(I; HO1 (B1, 1y1Y)).

Step 5. In this last step we show that u satisfies (2.10) (with ¢ = 0) in the weak sense. Let
us fix a test function ¢ € 2°°(Q1), see Definition 2.11 with ¢ = 0. By (4.7) and (4.10), we
have both

P, (—Ue, 3¢ + AVug, - Vo) — |y|*(—ud ¢ + AVu - V$) ae.in Q)
and

P (fer® — Fep - V) — y|“(fp — F - V¢) ae.in Qy,

as k — +o00. Now, let E C Q1 be measurable. By (1.2), (4.4) and the Holder inequality, we
get

12
/ pgk! —Ug, 0t + AV, - fo” =< C||“s||L2(1;H1(B|,pg ))||Vx,t¢||L°O(Q|)(/ ,ng>
E k ENspt(¢)

= 8(E),

where §(E) > O satisfies §(E) — 0 as |E| — 0. Indeed, when a < —1, we have pgk
[y|* € L®(E Nspt(¢)), by the definition of Z2°(Q1). Instead, whena > —1, one has P,
Clymn©-@) ¢ L1(By). In particular, it follows that the family —p ue, &6 + p& AVug, - V¢
is uniformly integrable and the Vitali’s theorem yields

=
=

/ Pl (—e ¢ + AVug, - Vo) — f 91 (~udp + AV - V),
01 01
as k — 4-o00. With a very similar argument, we obtain

/P?k(fw—stW)%/ DI (f§ — F V).
[ 01

as k — 400, and our statement follows. O
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Lemma4.3 Leta € R, p,q > 2, A satisfying (1.2), R > 0 and Iz = (—R?, R?). Let
f e LP(Qg,|y|%), F € L1(Qg, Y|V and let u be a weak solution to
|y1“8u — div(|y|*AVu) = [y|* f +div(ly|*F) in Qg. (4.15)

Then, for every r € (0, R), there exist {ugc}ee(0,1), {felee(0,1) and {Felee(0,1) satisfying the
assumptions of Lemma 4.2 in Q,. Moreover, there exists ey — 0 such that ug, — u in
L} (I:; H} (B\X)) as k — +oo.
Proof By scaling, we may assume R = 1 and set / := (—1, 1).

Step 1. Letus fixr € (0,1)andset B:=B,, Q ;=B xI,B: =By, and Q := B x I.

=
Consider a cut-off function £ € C2°(By) such that

spt§) C B, £=1inB, 0<&<linB;, |V&|<Co,

for some Cy > 0 depending on N and r, and define & := £u. Now, given ¢ € 2°(Q), the
same computations of Lemma 4.2 show that

/Q |y|“( — i3 + AVi - v¢)

= [ b1(756 — 67 V9~ 6F -V —9AV. VE +uVE -Vg).

and thus, setting
f=f& F:=Ff §g:=—F-VE—AVu-VE, G:=—uAVE,
we obtain that # is a weak solution to
|y18cit — div(|y|* AVid) = |y|*(f + &) +div(Iy|"(F + G)) in Q,

where we have used that i € L2(I; H& (B, |y|*)) N L, L%(B, [¥|4)) by construction.
Moreover, since u € L>(I; H'(By, |y|*)) by definition and p, ¢ > 2,then f € LP(Q, |y|?),
F e L1(Q, |yHN*t g € L2(Q, |y|*) and G € L*(Q, |y|*)N*!. Therefore, by Remark
2.14, it follows that & € C(I; L3(B,|y|*)). In particular, g = u,__, = fu,__, €
L%(B, |y|%) is well-defined and 7 is a weak solution to

I8, — div(|y|*AViD) = |y|*(f + &) + div(|y|*(F + G)) in Q,
u=0 ondBxI, (4.16)

Uy =Uo on B.

Step 2. In this step, we construct a family of smooth approximations u. of i, as in the
statement. We distinguish between two cases, depending on the value of a.
First, let a > 0. We define

Y M N
fe = ( ,0,? f7 g = ,Og F, 8e 1= ,Og 8,
)2 v\
Gg = ( 7 G, ups:= 7 i,
Pe Pe

and consider the family of weak solutions {u}sc(0,1) to

Pgatus - diV(PSAVue) = pg(fa + &)+ diV(,Oé‘(Fa +Gg)) inQ
ug =0 ondBxI, 4.17)

Ug|,—_y = U0, on B.
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By construction, we have

I fellLro.p0) + NI8ell2(0,pay + I Fellacg.oe) + 1GellL2 (0, pay + Nu0,ellL2(B,p0) < C.
(4.18)

for some C > 0 independent of ¢ and f, — f, F. > F, g — & G, — G ae.in Q and
uoge — Up a.e. in B. Furthermore, since a > 0, we may apply the Lebesgue’s dominated

convergence theorem to deduce that
fe—f inL], (B\ ) x DN,

ge—§ inL2 (B\Z)xI), G¢—G inL} (B\Z)x Nt

loc

(B\Z)xI), F.—F inL]_

(4.19)

and up . — ilp in LIZOC(B\E) ase — 0.

The case a < 0 is easier: we set
fei=f, F.:=F, g =g, G.:=G, upe:=1Io.

Since pf < |y|¢, we immediately deduce (4.18), while (4.19) is obvious by definition.

Step 3. Combining Lemma 4.1 and (4.18), we deduce that the family {u;}¢c(0,1) 1S uni-
formly bounded in L2(I; HO1 (B, pd)) N L>®(; L?(B, 0g)). Consequently, by (4.18) again
and (4.19), {ug}ec0, 1), { fe+8eec0,1) and { Fe+G }oe(0,1) satisfy the assumptions of Lemma
4.2 in Q and so there exist e — O and @ € L?(I; H} (B, |y|*)) N C(I; L*(B, |y|%)) (see
Remark 2.14) such that u,, — i in L} (I; H} (B\X)). Since ug, — iig in L} (B\X),
fi|;——1 = i in L3(B, |y|*) and therefore i is a weak solution to (4.16).

As consequence, we obtain # = # a.e. in Q by uniqueness of # (uniqueness of weak
solutions to (4.16) follows by the classical theory of the Cauchy-Dirichlet problem in abstract
Hilbert spaces, see [26]) and our statement follows since i = u a.e. in Q by definition. O

Remark4.4 Leta > —1 and R > r > 0. Then, Lemmas 4.2 and 4.3 hold for weak solutions
to (2.13) in Q;. That is, if {u¢}ec(0,1) 18 a family of weak solutions to (2.13), such that
ug, fe, Fe and A satisfy the same assumptions of Lemma 4.2 in Q+, then u; — u in the
sense of Lemma 4.2 and u is a weak solution to (2.13) in Q}f with ¢ = 0. Further, if u is a
weak solution (2.13) in Q; with ¢ = 0, we can construct families {u¢}sc(0,1), { fe}ec(0,1),
{Fe)ec(0.1) such that the assumptions of Lemma 4.2 in Q" and u, — u in the sense of
Lemma 4.3.

Indeed, given ¢ € [0, 1), let us consider a solution u, to (2.13) in Q; andlet¢ € C°(Q1)
be a test function. Let us define

0
feoy 0= for, =y, 1), Folx,y,0) o= =Fe(x, =y, 1), $(x, y,0) i= p(x, =y, 1),
for (x, y, 1) € Q. By changing variables,

I . _
J = ( . _01), A, y, 1) = JAW, =y, 0J, i (x, p,1) 1= ue(x, =y, 1),

/Q+P§'(—M£¢>z+AVM£~V¢—fa¢+Fs'V¢)
R

= / pi(—iiedy + AViig -V — fop + Fp - V), (4.20)

O
where O := Qr N {y < 0}. Hence, if we define

o e in Q% 114 in Q% P fe in Q% P in Q%
7 g, inQy’ T lA mop F ¢ f

fe inQg’ ©|Fe inQR’
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we have that A is a simmetric matrix satisfying (1.2) and, by the conormal boundary condition
in (2.13), u, is a weak solution to

P dyite — div(pf AViig) = pf fe +div(pg Fe),  in Qr.

Then, Lemmas 4.2 and 4.3 apply to i, in Qg and, by definition of i, are valid for weak
solutions to (2.13) in Q;g.

5 Liouville theorems

The goal of this section is to prove the Liouville type Theorem 1.2, for entire solutions to
(1.9). These results will be obtained using Caccioppoli inequality and the characterization
of the entire even solutions of the associated elliptic problem satisfying certain growth con-
ditions, extending the Liouville theorems established in [4] (see [33, 34, 36] for the elliptic
counterpart).

We begin with the following standard lemma.

Lemma5.1 Leta € R, ¢ € [0, 1) and let u be an entire solution to
oo —div(piVu) =0 in RV x R,
Then, for everyi =1, ..., N, the function dy,u is an entire solution to the same problem.

The proof combines difference quotients in x and energy estimates, similar to the elliptic
setting, see [36, Corollary 4.2]. The next lemma was established in [6, 35] fora € (—1, 1)
and ¢ = 0. We extend it for all values of a € R and ¢ € (0, 1), with an independent proof.

Lemma5.2 Leta € R, ¢ € [0, 1) and let u be an entire solution to
ol — div(p?Vu) =0 in RV x R, (5.1)
Then the function v = pg dyu is an entire solution to
P 8v —div(p, Vo) =0 inRVT! x R. (5.2)

Proof Thecasee € (0, 1) follows by explicit computations, since weak solutions are smooth.

When ¢ = 0, we proceed by approximation as follows. Fix R > 0 and let I :=
(—RZ%, R?). By Lemma 4.3, there exist a family of solutions {u,}cc(0,1) to (4.3) in Q3r
(with f = 0 and F, = 0), uniformly bounded in L2(12R; H'(Bag, pg)), and a sequence
er — 0 such that

e, — u in L3, (Lg; HY.(Bog \ X)), (5.3)

as k — +00. Now, since g; > 0, the function vy := pgk Oylg, is a solution to (4.3) in Oog
(with f; = 0 and Fy; = 0), with weight pgk". Further, since {u¢}ee(0,1) is uniformly bounded
in L2(Iog; H'(Bag, pf)), we have

/ PVt = / L (Byute)* < f pL | Vug |* < C,
O2r O2r Oor

for some C > 0 independent of ¢ and thus, using the Caccioppoli inequality (3.1), it follows

||Uk||L°°(IR;L2(BR,pg;a)) + ”vkaLZ(QR,p;ka) <C,
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for some new C > 0 independent of . As a consequence, the family {vi }ren satisfies the
assumptions of Lemma 4.2 which, in turn, allows us to conclude that, up to a subsequence,
vk — vin L? (Ig; HlloC(BR \ X)), for some weak solution v to (2.10) in Qg (with ¢ = 0,

loc
f =0and F = 0). By (5.3), we deduce v = |y|“d,u and, since R > 0 is arbitrary, our
statement follows. O

Proof of Theorem 1.2 First, we point out that it is enough to prove that u is linear and depends
only on x. Then the second part of the statement automatically follows combining (1.10)
with the extra-assumption y € [0, 1).

Step 1. By Remark 4.4, we notice that the even extension w.r.t. y of u is an entire solution
to (5.1). Therefore, it is enough to establish our statement for an entire solution u to (5.1)
which is even in y and satisfy (1.10) a.e. in R¥*! x R. Choosing ' = R and r = 2R in the
Caccioppoli inequality (3.1), we get

c
/Q pg|vu|2arzdr5F . oluldzdr, (5.4)
R 2R

for some C > 0 independent of ¢ and R. We will repeatedly use the above inequality in the
next steps.

Step 2. In this step, we show that u is linear in x. By Lemma 5.1, for every multi-index
B € NV, the function Bfu solves (1.9). Fixed R > 1, by (5.4) and (1.10), it follows

C C
[ ot [ pvups g [ gt s R,
Or Or R O2r R
foreveryi =1,..., N. So, setting
7i=at+2y +N+3, (5.5)

and iterating, it follows
/ pd(Pu)* < CRVPI,
Or

for every multi-index 8 € NV. Consequently, taking 8 such that 2|8| > 7 and passing to
the limit as R — +o00, we get 8,’? u = 0, and therefore we easily obtain that u is polynomial
in the variable x. By (1.10), it follows that # must be linear in x.

Step 3. In this step we show that u is independent of y. By Lemma 5.2, v := pgd,u is an
entire solution to (5.2) while, by Lemma 5.2 again,
(pg)

a
&

wi = pg “0yv = p; 10y (pg dyu) = dyyu + Oyu (5.6)

is an entire solution to (5.1). So, using (5.4) twice, we deduce that
C C
2 —a 2 —a,2 a 2
Pe Wy f/ Pe IV —/ P v 5—/ P4 Vu|
/QR ‘ Or ‘ R? O2r ‘ R? O2r ‘

C / 5
<— peu
R* Q4R ‘

Wjt1 = dyyw; +

IA

CR7™4. (5.7)

IA

Setting
(ng)
%aij, (5.8)

&
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and noticing that w ;11 is an entire solution to (5.1) for j € N>, we may iterate the argument

above to show the existence of k € N such that y — 4k < 0 and
/ plwy < CRV™%,
Or

Hence, taking the limit as R — 400, we obtain wy = 0, that is

ay/
£

a
&€

Oyywi—1 + dywg—1 = 0.

This ODE can be explicitly solved:

y
Wi—1 :CZk—l(x»t)/ Pg 4 ()ds + cop—2(x, 1),
0

(5.9)

where ¢p;_1(x, t) and cor_»(x, t) are unknown functions, linear in x. Now, let us define

g1(y) = [§ ps(s)ds,

2200 = [3p7%) fi pl(x)dr (5.10)
gi(y) =[5 ps() [y pL(T)gi—2(T)dT, fori € Nx3,
which are linked by the relationship
ps “0y(pgdygi) = gi—2, fori € Nx3.
An iterative argument combined with (5.9) and (5.8) shows that
2(k—j)—1
wj =c2j(x, 1)+ Z gi(y)eajyi(x, 1),
i=1
forevery j = 1,...,k — 1, and thus, by (5.6),
2k—1
w=cole,0)+ Y gyei(x, 1),
i=1
where c¢; (x, t) are unknown functions, linear in x.
We claim that c; = O foranyi = 1, ..., 2k — 1, which implies that # doesn’t depends on

y

First, since g;(y) are odd functions for odd i, one has that ¢; (x, r) = 0 for odd i, being

u an even function in y. Moreover, for every i > 1 the functions go; are asymptotically
equivalent to b; y*' for y — +oo, where b; € R. Indeed, by using twice de 1’'Hopital rule

and by observing that

Pe(y) _

P () Jo P (s)ds

lim 1,
y—>+oo y
we have that
oy L ey
lim = lim —————— = lim
y—>+oo y y—>+00 2y y—>+oo yT4
L piy) 1

= lim = .
y=+00 2(1 +a) y* 2(1 +a)

2yl+a
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By using an inductive argument and (5.10), we can prove that

;

. &y 1

lim — =b;, whereb;, = —_—.
Voo Y2 i i El 2m@2m — 1+ a)
Hence, gy; is asymptotically equivalent to b; y? for y — +oo. This immediately implies
that cp; = 0 for every i > 1, by the parabolic sub-quadratic growth condition (1.10). Then,
u does not depend on y and it is linear in x. Using the equation satisfied by u, we have that
d;u = 0, hence the thesis is proved, that is, # = u(x) is a linear function. O

Remark 5.3 Let us highlight that when @ = 0 (and therefore p¢ = 1), Theorem 1.2 remains
valid for entire solutions to the heat equation 8;,u — Au = 0 in RV*2 and the proof above
works in this setting as well, with minor changes. Furthermore, Theorem 1.2 still holds for
entire solutions u to

pldu —div(pl AVu) =0 inRYT xR,
PE(AVu) -enyy1 =0 on BRQ/H x R,

where A is a constant symmetric positive definite matrix (and u satisfies (1.10)). Under such
assumptions, ¥ must to be a linear function depending only on z. This is a standard result,
which immediately follows by a change of coordinates: since A is a symmetric positive
definite matrix, we can consider the change of variables 77 = A!/?z, which allows us to
reduce to the case A = .

6 Holder estimates

In this section we prove the following uniform Holder bounds.

Theorem6.1 Let N > 1,a > —1, p > Y4340 4 o N 4344t o € (0,1)N (0,2 —

w] Nnao,1-— M]. Let A be a continuous matrix satisfying (1.2). As ¢ — 0% let

{uc} be a family of solutions to

pldyue — div(pl AVug) = pf fo +div(p¢ Fe) in QF, 61
09 (AVus + Fe) eyt =0 on 3°07. '
Then, there exists a constant C > 0, depending on N, a, A, A, p, q and a such that
”uaHC?,’”(QT/Z) =<C (”uSHLZ(QT,p;‘) + 1 fe ||LP(Q]+,pg) + ||F6||Lq(QT,pg)> . (6.2)

Proof Without loss of generality we can assume that there exists a constant C > 0, which is
uniform in & — 07, such that

el 200t oy + 1 Fell oot gy + 1 Fellaoi py < C-

Otherwise (6.2) is trivially verified.
Step 1: Contradiction argument and blow-up sequences. Consider a cut-off function n €
CSO(QT) such that

n=1in0Qj, 0<n<I sptn) =05,
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By smoothness of 7, it immediately follows that n € Cg’l (QT); that is, there exists a constant
M > 0, which depends only on N, such that

In(P) = n(Q)| < Md,(P, Q), forevery P = (z,1), 0 = (§,7) € OF,

where d, (-, -) is the parabolic distance, which is defined in (2.9).
We argue by contradiction. Let us suppose that there exist p > %W g > N+3+at,
a e (0,1)NO0,2— %W] N, 1— W] and a sequence of solutions {u}i := {ug Jx

as gy — 07 to (6.1), such that
Li = [nug] 0 ~ sup [(nui) (P) — (nui)(O)] S oo
= P
Cp(Q)) P,Q€QT dp(P’ Q)D(
P£O

Now, by the definition of the parabolic Holder seminorm of uy, we can take two sequences
of points Py = (2, tx), Pr = &k, k) € Q;r/4 such that

(o) (P) — (o) POl _ L,
dp(Pr, P)® 2

Defining ry := d, (P, Py), one has that r; — 0 as k — +oo. Indeed, by the local uniform
boundedness of solutions, see Proposition 3.1, one has

4||77uk||L00(QTr) _

00 <« Ly < <Cr.”.

o
Tk

Let 7 := 4/5. For k large let us define the blow-up domains

BY —z  (=F* =, 7 — 1)
(k) := -~ X ,
o Ik 2.

and set Q° := limy_, oo Q(k) along an appropriate subsequence. We define two blow-up
sequences as

n(rez + zx, rt + 1)

vi(z, 1) = m (ur(rez + 2k, r;ft + 1) — uk 2k, 1)),
Lyry
(2. 1) (6.3)
n(zk, tk
wi(z, 1) == Lo (ur (rez + 2, 781 + 1) — uk (ks 1)),
k

for (z,t) € Q(k). Then, we distinguish two cases:
Case 1:

i o dp(Pr, %)
_—= — —>
Tk Tk

00,

as k — —o0. In this case we have 0 = RN+2,
Case 2:

Ve _ dy(P, %) -
Tk Tk -

C,

uniformly in k. In this case, one has f—]’(‘ — 1, up to pass to a subsequence and so O =
RN x{y =1} xR.
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Step 2: Estimate of the parabolic Holder seminorm of vi. Let us fix a compact set K C
Q. Then, K C Q(k) for any k large. For every P = (z,1), Q = (§,7) € K, P # Q, we
have
|nui) (rez + 2 gt + 1) — () (e + 2, 12T + 10|

Lkr;(x

|Uk(za [) - Uk(g, T)l S
N |k (2 8N (rkz + 2k, 12t + 1) — (k€ + 25, 12T + 1)
Lkr]?
||”k||Loc(Q;'/4)Mdp((rkZ» r,?t), (ri&, VI%T))
Lkr]‘é‘
CMr,~d,(P, Q)
Ly '

<dy(P, Q)" +

<d,(P, Q)"+

Then, as k — +00
[vr (P) — v (Q)]
dp(P, Q)

Step 3: The sequences vy and wy converge to the same limit w. Notice that v;(0) =
0 for every k. Then, by (6.4), we have that ||Uk||c(),(x is uniformly bounded for every
P

<1l+o(l). (6.4)

(K)

compact subset K C Q. By the Arzela-Ascoli theorem, we can pass to a subsequence v

satisfying vy — w uniformly in K and, taking the limit in (6.4), one has w € C?,’o‘ (K) with

||w||C0,a( K = 1. Moreover, by a countable compact exhaustion of Q°°, we have that w is
)4

globally C 2’a—c0ntinu0us in O, that is
[w]cg,a(Qoo) <1 (6.5)

Furthermore, fixed K € Q compact, for every P = (z,1) € K one has

|k ez + 2k 72t + 1) — (2, 1)) e (2 + 2ie, 12 + 1) — M2k 1))

v (P) — wi(P)| = Lir®
k

2||ug ”LOO(QIS)rkMdP(P’ 0)
& — 0.

- o
Lkrk
In other words, the sequences v, and wy have the same asymptotic behavior as k — +00 on
K C Q% and this implies that wy — w uniformly in K.

Step 4: w is not constant. First, w(0) = 0, since vx(0) = O for every k. Let us consider
the sequence of points

Sk =

(%’k _Zk7 T —zlk> c o).
'k r

k

Since d(Sk, 0) = 1 for any k, we have Sy — S, up to consider a subsequence. Then, as
k — +oo

n(P) i (P) — u (Pr))
Lkr]‘é‘

|G (Pr) — (qui) (Pe) + (i) (Pr) — n(Pr)ug ()
o Lkr]‘j‘

[k (Si) | :‘
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- (nu) (Pe) — (qug) (Pr) uk (P (n(Pe) — n(Pe))

- Lkr,‘: Lkr;{x
1 ||Mk||Lo0(Q§r/4)Mrk 1

> — —— = — 4 o(1).

-2 Lyr} 2 M

Then, as k — +00, we obtain that w(S‘) > %; that is, w is not constant.

Step 5: w is an entire solution to a homogeneous equation with constant coefficients. First,
we observe that, defining Ax(z, t) := A(rrz+ 2k, r,?t—i—tk) and (Z, 7) := limg—, 400 (2, %), by
continuity we can define A= limg s 100 Ax(z, 1) = A(Z, 1), which is a constant coefficients
simmetric matrix satisfying (1.2).

Let us consider ¢ € C2°(Q°), such that spt(¢) C Q(k) for any k large, and define
qS(z, t) = d)(%, %) IS CSO(QT). Since uy is a solution to (6.1), by explicit computa-

tions, we have

- / Pe, kY + Vi) widrd + / Pe ey + Y A Vwy - Vb
Q(k) Q(k)

(nui) (ks ) / a
=—Fa Pe, Tk + Yi)0: @
Lirg ok " '
n(zk, ) 9 - . N) N
+ Lir? ( /QT ,OSk(y)uka,(zhL/QTr o (NAVuy -V )ry
(ks )y Ve . B
= L—k/ P, N (fer® — Fe, - V)
k Q;r

2—a
N (zk, t)r
=k / Pe, (rey + Vi) fer (rez + 2k, r,ft + )¢
Ly 0(k)
1—a
n(zk, ti)r
4 et

/ P2 (rky + YO Fe (riz + 2, 1t + 1) - V.
Ly 0k

So, wy is a solution in Q (k) to
e, (ric - +yi)dwy — div(pg, (r - +yik) A Vwg)

2—«a
N (Zks )1y,

= pg, (rk - +¥k) L

fsk (r - +zk, r/? 1) (6.6)
l—«

Zk, )T,

+ 77( ks tk) k

I div(p (ri - +yi) Fe, (rk - +2k. 1 - ).

Notice that in Case 2 the function wy satisfies a conormal boundary condition on the hyper-
plane {y = f—’k‘} too.

Next, we normalize the Eq. (6.6) in the following way: let us define I'y := (&, yx, rx) and

Vg := |['k|, which is bounded from above, since ry — 0, &x — 0 and yy — y € [0, 1). Let

= I

k= — =

Ek Yk Tk
Vk

—, =, *) = (k, Yk, Tk)-

Vk Vg Vg
Since I'y = 1 for every k, up to consider a subsequence, [’y — I' = (&, ¥, 7). Denoting

B pL (ry + i) . . .
AL(y) == Vi = (& + (Fey + 90D,
k
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and
POy = 2+ Fy + )M,

we have that g — 5 a.e. in Q°°. By multiplying the equation (6.6) by v, we get that wy
solves

2—a
. s ~a N5 BT,
pidrwy — div(py Ax V) = pzT"

-«
ks L)1
n n( )"y
Li

fer (ric - 425, 17 - 412)
6.7)

div(pg Fe, (rk - 2z, 17 - +10)).

We claim that the r.h.s. of (6.7) vanishes in a distributional sense as k — +o0. Indeed, fixed
¢ € C°(Q%) with spt(¢) C Q(k) for any k large, we have the following estimate

/ Pe, (rky + Vi) fer (rez + 2k, it + t)¢ (2, 1)dzdt
spt(e)

1/p
< ||¢||L°0(RN+2)(/ " e, (rey + Yl fe, (rkz + z&, rit + tk)|”dzdt>
spt

I/p
([ oty + oz
spt(¢)

—(N+3 1/p /
< C||¢||LOC(RN+2)(/Q+(5,3 + 51%'+1)“/2|fsk(5’ I’y (N+ )dgdr) ”Z/p
1

_N#3 @ _N#3 @
PP P P
= C”fﬁk”Ll’(QT,pg)rk Ve = Cr,( Ve -

q

So, we can estimate the first member of the r.h.s. of (6.7) as follows

2—a, —a
n(zk, Ty, v

Ly

2—a¢ N3 a N+3+at at\ /P

_a 1@k, B - - 2—a— r

< Qo e T < cry ol EE) o
Ly

/ Pe, (rey + Vi) fer (rez + 2k, rit 4+ 1)¢ (2, t)dzdt‘
spt(¢)

a
Vi

sincery < vgando < 2 — %f‘ﬁ. Similarly, the second term of the r.h.s. of (6.7) vanishes
as well.
Finally, we prove that the Lh.s. of (6.7) converges in the following sense

/ro Pk (—widp + AxVuwy - V) — /Qw P4 (—wdp + AVw - Vo). (6.8)

Let us fix R > 0 such that spt(¢) C Qr N Q% and observe that 0°° = B> x R. Since
{wg} is uniformly bounded in L*°(Q2r N Q°°) one has that {wy} is uniformly bounded in
L*(Q2r N O™, A¢). Then, by using the Caccioppoli inequality (3.1), we get that {wy} is
uniformly bounded in L?(—R?, R?; H'(BRN B>, p¢))NL>®(—R?, R*; L>(BRNB™, 5{)).
Using the a.e. convergences Ay (z, 1) — A and Py — p“, we are able to apply Lemma 4.2,
with minor changes, and the convergence (6.8) holds.

This convergence, combined with the previous ones, tells us that w is an entire solution
to

549w — div(3?AVw) =0,  inRN*2, (6.9)
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in Case 1 while, in Case 2, w is an entire solution to

A4 w — div(p*AVw) =0, inRY™ xR,

. N (6.10)
PYAVw -eny1 =0 on RY x {y =1} x R.

Step 6: Liouville theorems. Summarizing, we have that w solves (6.9) or (6.10), is globally
Cg’a-continuous in O and is not constant. By the global Cg’“-continuity (6.5), it follows

that
lw(z, O] < lw(z, 1) — w0, 0)] + [w(O, 0)] < (|z* + [th*/*.
In Case 1, since )—’k‘ — 400, we have
a/2

al2 )
- 1 Tk : - 2Tk o~
=\ ef + ¢ <fy+1) =&+ 5 <fy+1 — @+ 3H?,
Vi Yk Yk

which is a positive constant. Then, by the classical Liouville theorem for the heat equation,
see Remark 5.3, and the above growth condition, the solution w must be constant and this is
a contradiction.

In Case 2, f—: < C, uniformly in k and %]: = i—: — % = . Up to consider a translation of

@

=1, we can assume y = 0 and then $%(y) = (82 4 #2y?)%/2. There are three possibilities:

e £=0,7#0, 0% =yl

e £ #£0,7=0,0%)) =1. i

e £ £0,7F#0,5%Yy) = (14 y>)*?, up to a dilation of £
In any case, we can invoke Liouville Theorem 1.2 in ]Rﬁ 1 xRand by Remark 5.3 we obtain
again a contradiction. O

7 Holder estimates for the gradient

Theorem7.1 LetN > 1,a > —1,p > N4+3+a™, o € (0, 1—%?"#).LMA € Cg’a(QT)
be a matrix satisfying (1.2). As ¢ — 0 let {u.} be a family of solutions to

pLiyue — div(p AVug) = p? f +div(pe Fy) in Q7. o
P4 (AVue + F) - ent1 =0 on 8°Q7. '
Then, there exists a constant C > 0 depending on N, a, A, A, p, @ and ||A||Co,u(Q+) such
r ()
that
HMSHCL’“(QT/Q) =C <”u5”L2(QT,p;‘) + ”fs”LP(Q‘l",pg) + ||Fs||cg.ot(Q?r)> .
Proof To simplify the notation, let 9; := 0y, fori = 1,..., N and dy41 = 9y. As in

Theorem 6.1, without loss of generality, we can assume that there exists C > 0, which is
uniform in ¢ — 07, such that

llue ||L2(Qi*"pg) + ”fS”LI’(QT.p;‘) + ”FSHC?{“(QT) <C.

Step 1: Contradiction argument and blow-up sequences. Consider a cut-off function n €
C;?O(er) such that

n=1in0Qj, 0=<n<I sptin) =05,
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By smoothness of 7, it immediately follows thatn € C 11;1 (QT); that is, there exists a constant
M > 0, which depends only on N, such that ||17||C1,1(Q+) <M.
14 1

By contradiction, let us suppose that there exist p > N +3 +at,a € (0,1 — %ﬁ”ﬁ)
and a sequence of solutions {uy} := {ug, } as &g — 07 to (7.1), such that
||77Mk||cll7ﬂ(Q;r) — +00.
Define
Ly := max {{[ai(nuk)]cg,a(Qr) =1, N+1, [nuk]COVHTD,(Qﬂ},
t 1
and distinguish two cases: first, let us suppose that there exists i € {1,...,N + 1}

h that Ly = [0; a
such that L = [8 (nui)] oo+

[nuk]C,o'HTa(QT))' Notice that it cannot be ||V(nuk)||Loc(Ql+) — +o00 and [n”k]C;“’(QT)

remains bounded, since the functions nuy are identically zero outside Q;’/ 4» for every k.

) (later we will deal with the second case, when L; =

Next, we take two sequences of points P, = (zk, ), P = &k, ™) € Q;r/4 such that

19; (nuk) (P) — 3 (nu) (Po) | J ]
dp(Py, P)® B

Lk — +00.

N

Let ry := dp(Px, Py, 2k = Rk, $x) € B;r/4 be a sequence of points which will specify
below. Let 7 := 4/5. For k large let us define

Bf — 2 (=P =, 7 — 1)
Q(k) == — X 5 .
Fk rk.

and set Q% := limg_ 1o, Q(k). We define two blow-up sequences as follows

_n(rez + 2, it + 1)

Uk (z, 1) 1= [ iTa (i (rez + 2, gt + ) — ug G, 1)),
r
: ;‘ k (7.2)
N (Zk, I A A
wi(z, 1) 1= W(”k(rkz + 2t 1) — ug G 1)),
KTy

for (z,t) € Q(k). Then, we distinguish two cases:
Case 1:

vk dp(Py, %)
Ye _ Gk =)
rk Ik

+OO,

as k — 4o0. Since yy is uniformly bounded, we have that r; — 0 and Q% = RN*2_ In this
case we set 7 = zj.
Case 2:

Ve _ dy(Py, %) -
Tk Tk -

C,

uniformly in k. We set z; = (x, 0) and we will show later that also in this case r; — O,
which implies that 0% = R_’XH x R.

Step 2: Parabolic Holder estimates. Let us fix a compact set K C Q°°. Then, K C Q(k)
for any k large. For every P = (z,1), Q0 = (§,7) € K, P # Q and for every j =
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1,..., N +1, we have

13;0k(P) — 8 ve(Q)] < |8j(nuk)(rkz+2k,r,§t+zk) —aj(nuk)(rkg_}_gk!r]gf_{_zkﬂ
Jj Uk — 0jVk =

Lkr,‘g‘
N lur Gres 1131 (rez + 2k, 12t + tx) — 3 (reé + 2k, 12T + 1)
Lkr/‘(x
[8; (i)t i dp (P @ ekl oo, i~ Mdp(P, Q)
< +
- Ly Ly
CM
<dy(P, Q)" + —,
Ly

since [0; (n”k)]cg’”(Q,*) <Lk, re <C, ||uk||Loo(Q;r/4) <Candd,(P, Q)" < CinK.By
dividing the previous inequality by d, (P, Q)% and using L; — +00, we get

|0jve(P) — v (Q)]

P.0cK d,(P, Q)*
P#Q

<1+o(D. (7.3)

as k — +4o00. On the other hand, for every P = (z,1), O = (z, 7) € K, t # 7, we have that

|(u) (rez + 2, 12t + 1) — (i) (rez + 2, 12T + 1)
LkrkHO‘

o (P) — vk (Q)| <

N |k G, NNz + 2, 12t + 1) — n(rez + xe, 12T + 1)

1—
||Mk||Loc(Q;'/4)rk C‘M|l‘ — Tl

<l -+
. ,
< I
SO
ve(z, 1) —ve(z, T
sup L&D j;ff N1 4o, (7.4)
(z.1).(z,1)eK [t —t| 2
t#T

Putting together this inequality with (7.3), we obtain the uniform boundedness of [vi] 1.« (K)’
P

noticing that these considerations are valid in both Case 1 and Case 2.
Step 3: Convergence of blow-ups. For P = (z,t) € Q(k), let us define

U (P) = v (P) = Ve (0) -z,  wi(P) := wi(P) — Vwi(0) - z. (7.5)

Notice that v (0) = 0 = wg(0) and [Vg(0)| = 0 = |Vwi (0)]. Forevery K C Q°° compact,
since [vk]C;,W(K) = [vk]C,l,’”(K)’ we have that ||Uk||cll),o¢(K) is uniformly bounded. Then, we

can apply the Arzeld-Ascoli theorem and infer that vy — vin C 11,’}’ (K),forany y < a.Now,

passing to the limit in (7.3) and in (7.4) and by a countable compact exhaustion of Q°°, we

obtain that the limit function v satisfies
[v]cll}-a(QOO) E C7

that is, v is globally C ;’a—continuous in Q%.
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Next, we want to show that the sequence {wy } converges uniformly to v on compact sets.
Letus fix K C Q°, suchthat K C Q(k) for any k large. Since Vi (0) = Vg (0), for every
P =(z,t) € K, we have

[0k (P) — wi (P)| = |vg(P) — wi (P)]

_ Iz + 2 it + 1) — 0G| g ez + 2o 1t + ) — i G 1))

a Lkr]i—i_a

_ Cridp(P,0) - Mritdy(P, 0)* CMd,(P,0)!+ 0

= = — 0,
Lkr]}_HX Ly

as k — +00, by the properties of 1 and the Theorem 6.1, which ensures local uniform bound
of uy in Cg’a-space. This implies that w; — v uniformly in K.
Step 4: Vv is not constant. Let us define two sequences of points as

Ec—Zk Tk — Itk - Tk — 2k
Si = (, — ] Sk = ,0) € k).
Ik rk Ik

In Case 1, one has Z; = zx, then Sy — § € Q°, up to consider a subsequence, and Sy =0.
Leti € {I,..., N + 1} be the one that realizes the maximum of L;. We can compute, as
k — +oo

10 Uk (Sk) — 3 0k (Si)| = 18; v (Sk) — 3 vk (0)]

19 ) (Pe) — 0 (uui) (Pr) — ug (P) (0im (Pr) — 0in(Py))|
- Lkr,f

11—«
1 il poc ot M1y
S 1 Q%)
2 L
Then, as k — 400, we obtain that |9;v(S) — 9;v(0)| > % which implies that Vv is not
constant.
Instead, in Case 2, we have S; = f—]’(‘enH, which converge to a point S, up to consider a

subsequence, by the fact that ;—: < C uniformly in k. The sequence Si can be written as

&k —zk i — Yk
Sk=\—7—5 + —enNt1,
rk rk r/(

and still converges, up to a subsequence, to a point S € Q. So, also in this case, we have

— _ 5 1
100k (Si) = 00k (Si)] = 100k (Sk) = 0w (O)] = 5 + o(D),

which allows us to conclude that v has non constant gradient exactly as in Case 1.
Step 5: rry — 0 in Case 2. By contradiction, let us suppose that, up to consider a subse-
quence, ry — 7 > 0 in Case 2. Then, if K C Q* is a fixed compact set, we have

||n||LOC(QI+) lluek ”Loo(Q;rM)

sup |vg(P)| <2
PeK Lkr;-’_a

as k — 400, which means that vy — 0 uniformly on compact sets of Q°°. For every
P = (z,t) € K, by using the convergence vy — v obtained in Step 3, one has

v(P) = lim Vuvi(0)-z.
k—+00
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We claim that the sequence {Vvg (0) } is bounded. Indeed, assume by contradiction that there
exists j € {1,..., N + 1} such that {0;v(0)} is unbounded. Fix R > O sufficiently small
such that Q;F is contained in Q°. Then

[5(Re;)| = R lim [Vup(0) - ;| = R|d;vi(0)] — +o0,
k— 400

which is in contradiction to the fact v € C },’0‘ (Q;g) and hence bounded in Q;g. Hence, up to
consider a subsequence, we have that Vg (0) — v € RN+ and 9(z, 1) = v - z, which is in
contradiction to the fact that v has non constant gradient. So, we have shown that ry — 0
also in Case 2, which implies thatQ™ = RY ™! x R.
Step 6: v is an entire solution to a homogeneous equation with constant coefficients. First,
we look at the equation satisfied by wy in Q(k). As in Theorem 6.1, let us define vy =
5 5wy — (& Sk Tk ; ;

|(8k~, y/f, r:k)l and (.ek, Vs Tk) = (ﬂ’ % E)’ which converges, up to consider a subsequence,
to (&, y, 7). Defining

. P ey + 36, X 2al2

PO == = @+ Gy + 30D,

k

and
) = (B + Fy + HHY?,

we have that pf — ¢ a.e.in Q.
Let us fix ¢ € C°(Q>), with spt(¢) C Q(k) for any k large. Then,

/ ﬁg(y)(—u_1k3;¢+A(rkZ+2k,r]3t+tk)Vu_)k Vd))
spt(¢)
0, s v

/ pgk(rky+)A’k)f£k(rk2+2k,rlgt—|—tk)¢
Lk SpL(@)

Nk v

e [ bty 50 (Fey ke Bt 10 = FeGro)) - V9
KTk spt(¢)

NGk, v ¢ . . . .
- Li"‘k / PL (rpy + yk)<A(rkz A+ ) — AGy, tk))Vuk(zk, 7 -V
kg spt(e)
NGk vy . . . .
Liak / e, (rey + Yk)<A(Zk, ) Vg g, tr) + Fey (k. tk)) “Vo.
kg spt(¢)

(7.6)

Next, we show that the r.h.s. of (7.6) vanishes in a distributional sense as k — +o0. The
first member can be estimate exactly as in Theorem 6.1, and by the hypothesis on p and «,
we obtain the desired convergence to zero. The second can be bounded as follows

NG, vy “

: f o8 i + 50 (Fey iz + 26, rt + 1) = Fig Gao 1) - V)
Lyry SpL(¢)

—a \Y4 00 ( ()OO
<% (VP Loo(oo)

C
0% (rey + 90Cre (2] + 11]VH < — >0,
Lyry /sptw» o k L

as k — 4o00. In the previous inequalities, we have used the uniform boundedness of F;, in
0,a . ~a
C " -space and the estimate fspt( ) Pk <C.
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Next, we show that the fourth member vanishes. First, we can rewrite it as

0k, t)vy “

P [ p o+ 0(AGk 0V Ga ) + FuGro)) - V9
Ling Jspuo)

G v ”

= / diV(,O?k ey + Y (AGk, ) Vur Cr, tr) + Fe, Z, lk))¢)
Lyry Spi(@)

Nk, v “ . . . .
Liotk/ Ay (g, (rky + I0)(AGk, 1) Vg G ) + Fep Gio 1) - ens19.
kg spt(e)
(7.7

By using the divergence theorem, we can rewrite the first member in (7.7) as

/ div <,Ofk (rry + Y (AGr, 1) Vug Gr, i) + Fe Zks tk))¢>dzdf
spt(¢)

= / (Pfk (rey + 9K (AGrk, tk) Vur GCr, tx) + Fe, G, tk))cb)dcr,
a{spt(¢)}

and observe that this is equal to zero. In fact, in Case 1 we have 0 = RV*2 and ¢ has
compact support. Instead, in Case 2, since Zj lies on the flat boundary, the term vanishes by
the conormal boundary condition satisfied by uy.

The second term in the r.h.s. of (7.7) vanishes too. In Case 2 it is identically zero since
(AVug + Fg, ) Zk, tx) = 0 by the conormal boundary condition. Let us consider Case 1 and
recall that y; = y; and :—’]‘( — 0 as k = +oo. Then, on compact subsets of RN*2 one has
the following estimate

TEy + Y ‘

v, 49, [p% (riy + =‘v_“ar < (rey + yp) —————————
v oy Log (rey + yl| = |vg “arepf (rey yk)8]%+(rky+yk)2

Ik 1
~ Tk yky+ Tk
sap,‘:(y)ﬂ P SC;.

Next, let (&k, 1) = (xk, 0, #;) be the projection of (Zx, tx) = (zk, tx) on the hyperplane {y =
0}. By the conormal boundary condition, we have that [(AVuy + Fg,)1(Ck. t) - en+1 =0,
S0

Zks )y ¢ . .
NGk 1V / ay (g, (rey + 30 ) (AVug + Fo) Gr. tx) - en119 (2, dzdt
spt(#)

Lkr;(x
v, ¢ . .
= Lk P / Ay (0f, (rky + 90) [M(AVur + Fe) | Gr. tx) - en 1 (2, dzdt
kKl Jspt()
v, ¢ R
- f Ay (g, (rky + 90) [1(AV UL + Fo) |Gk ) - ens19 (2. 1dzdt.
Liri Jspug)

We can estimate
1AV + Fo) ]G ) = [(AVa + Fop)] Gk )|
< |AV G G, 1) = AV ) @ 10| + 1 AV G 1) — 1 AV, 1)

|1y G 1) = 1Fey G 10|
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< Cka]?.

We remark here that in order to estimate the second term above we have used the uniform
Cg’y regularity of uys for some chosen y > «. Finally, we obtain that

0k, tiv *
o
Lkrk

l—a
Tk
<C (—) — 0.
Yk

So, also in Case 1 we obtain that the fourth member of the r.h.s. of (7.6) vanishes.
To conclude, we prove that the third member of (7.6) goes to zero as k — +oo. Notice
that

f 0y (0%, (riy + $0) (AV ik + Fe)Gi 1) - en 416z, 1dadt
spt(¢)

InGro 10 (AGkz + 2 1t + 1) — Ak 1)) Vi G, 10)|
= | (AGkz + 21 71 + 1) = AGh, 10) VO G, 1)
— (A(rkz + 2k, rlgt + 1) — AGr, 1))V Gr, tiuk G, tk)‘
< IV OOl gt ) + NVl o ekl ot < Crif L

where we have used the following parabolic Holder interpolation inequality, see [25, Propo-
sition 4.2]

IVl (03, < C (Il ot + e gz ) < €A+ Li).

Then, in order to make vanish the full term we need to reason in two steps: first, one proves
a uniform C!# estimate with a given suboptimal 8 € (0, «). In fact, in this case the third
term vanishes as follows

nCr. vy . . N .
‘7,3" | ot 50 (A0 + et 40 = A0 Vi G ) - V9 . ndzdr
Lirf o)

o

< / DIVl (goeydzdt < Cri~F — 0,
Spt(¢)

as k — 4-00. Then one can procede with the suboptimal exponent 8 up to the end of the
present proof. This provides uniform boundedness of the sequence Vuy. Then, restarting the
proof with the optimal « and the additional information above, in the previous computation
we get

0, v © . . . .

T [ oty 504Gz 4 10 = AGko10) Vi Ga ) - VG 1z
Lyr spt(¢)
c

=< L7k Hvuk”Loo(Q;/A‘)’

which converges to zero. Putting together all previous information, we have proved that the
r.h.s. in (7.6) vanishes as k — +o0.

Let (Z,7) = limg_ 400 (Zk, %) and A 1= limg_, 100 A(rez + 2k, r,ft + f). Arguing as in
Theorem 6.1, we can prove the convergence of the Lh.s. of (7.6) in the following sense

/ A (— wkdrp + A(rez + 2, it + ) Vg - V)
spt(@)
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— p%(— 009 + AV - V),
spt(¢)
and obtain that v is an entire solution to
30 —div(AVD) =0 in RV*2, (7.8)

in Case 1 and v is an entire solution to
{ﬁ“atﬁ — div(p9AVD) =0 inRY* xR,

o " (7.9)
P4AVU eyt =0 on RY x {0} x R,

in Case 2.
Step 7: Liouville theorems. Since v is globally C ;’a-continuous in O, it follows that

2v(z, )] < |2v(z, 1) — v(0,1) — Vv(0,1) - z — v(z, 0)[ + [0(0, )| + [V(0, 1) - z| + [v(z, 0)]
<|v(z,t) = 0v(0,1) = Vv(0,1) - z| + [v(z, 1) — v(z,0)| + C + Clz| + C

1+a
< Clzl™ |3+ +|2)
2 IHa
<CAA+(zI+1th) 2,

The estimate above exploit a first-order expansion in the spacial variable z for ¢ fixed. How-
ever, the constant C > 0 can be chosen independently from the point (z, t).

Hence, as in Theorem 6.1, by the growth condition above, we can apply the Liouville
Theorem 1.2 in both Case 1 and Case 2, keeping in mind Remark 5.3, and obtain that v is a
linear function, independent of #, in contradiction with the fact that Vv is not constant.

Step 8: The case Ly = [nui] La In this case, the argument is similar with minor
(o Q)
differences. As above, we take two sequences of points Py = (zx, tx), Pr = (2k, k) € Q;‘M,
such that

[(mur) (zk, ) — (Muk) (ks Te) | . %Lk 5 oo, (7.10)

Ita
|t — sk| 2

Defining ry := dp (P, Py = [tr — ‘L'k|1/ 3 by (7.10) and the local uniform boundedness of
solutions, see Proposition 3.1, we get ry — 0.

We define two blow-up sequences vy and wy as in (7.2), centered in the new blow-up
sequence Py, defined on the domains Q(k), which are the same as above and set Q% :=
limg— +o0 QK.

Since [9; (”“k)]cgv%Qr) < Lg, forevery j = 1,..., N + 1, we obtain that the estimates
(7.3) and (7.4) holds; that is, [Uk]cll),oz(K)
Defining v; and wy as in (7.5), we can use the Arzeld-Ascoli theorem to obtain that vy — v in

< C,uniformly in k, for every compactset K C Q°°.

Cll,’y (K),forany y € (0, a), wy — v uniformly on K and that v is globally C};“-continuous
in Q.

The crucial difference between this case and the previous one is in Step 4: in this case we
claim that v is non constant in the variable 7. Indeed, we have that

’l_)k (0’ Iy r—sz) 50, 0)’ _ ‘Uk (07 I r—2fk> ’ _ (2, ) (i 2k, T) — uk (i, 1)
3

I+a
k

Lkrk
- |(nuie) zxs T) — (i) e )| 102k @) — 12k 1)) (2 )|
- Lkr]:_'_a Lkr]:_'_a
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1—
1 Mrk a””k“LOC(Q;'M) 1

> — 1),
> It 2+0()

NS}

1 — - .

k=T s f # 0, up to consider a subsequence, we can take the
p

k

limit as k — 400 in the previous computation to obtain |5(0, f) — v(0, 0)| > %; that is, v is
non constant in ¢.

With the same argument of Step 6 we can prove that v is an entire solution to (7.8) or
(7.9). Moreover, since v is globally C,l,’“-continuous in Q°, then it satisfies a parabolic
sub-quadratic growth condition. Hence by the Liouville theorem (Theorem 1.2), we get that
v should be a linear function not depending on ¢ and this is a contradiction. O

as k — +4o00. Observing that

Combining the uniform estimates obtained for the regularized problems and Lemma 4.3
in the half cylinder (see Remark 4.4), we obtain our main Theorem 1.1 as a byproduct.

Proof of Theorem 1.1 Let u be a weak solution to (1.1) in QT in the sense of Definition 2.15.
By Lemma 4.3 and Remark 4.4, we can find sequences {ug, Ji, { fo, k> {Fe }k as ex — ot,
such that every u,, is a solution to

P Ortte, — div(pg AVug ) = pf, fe, +div(pg Fe) in Q;r/4
Pey (AVug, + Fg) -ent1=0 in 80Q;/‘*’

and ug, — uin leoc(l3/4; Hlloc(B3/4\2)) as gy — 01. Furthermore, fe, and Fg, satisfy the
assumptions of Theorem 6.1 (respectively of Theorem 7.1): this implies uniform boundedness
of the Cg’“ (Q;r/z)-norm of u, (respectively of the C ;’“(QT/Q)-norm). Then, by the Arzela-
Ascoli Theorem and by the a.e. convergences u,, — u and Vu,, — Vu, we obtain that the
estimates (1.6) and (1.7) hold true.

Finally, in the C ,1,’0‘ case, the boundary condition (1.8) follows by the C 1 (QT/Z)-
convergence ug, — U. O

7.1 Weights degenerating on curved characteristic manifolds

In this last section, we show how to extend the C'* regularity estimates to weak solutions of a
class of equations having weights vanishing or exploding on curved characteristic manifolds
", asin (1.13). Let us begin with the notion of weak solutions to (1.13).

Definition7.2 Leta > —1and N > 1. Let ¢ € C%(B; N {y = 0}) be the parametrization
defined in (1.11), § € C1*(Q*+ N By) satisfying (1.12), f € L2(Q* N By) x (=1, 1), §%)

and F € L2((QT N By) x (=1, 1), 8°)N*1. We say that u is a weak solution to (1.13)
ifu e L2(I;; HY(QT N By, 8%) N L®(I; L2(Q1 N By, §%)) and satisfies

—/ 8%ud; ¢ dzdt +/ 8YAVu -V dzdt
(QFtNB)x(~1,1) (QTNB)x(—1,1)
:/ 8%(f¢ — F - Vo) dzdt,
(QFtNB)x(~1,1)

for every ¢ € C°(Q1).

Proof of Corollary 1.3 Since the proof is very similar to the one of Theorem 1.1, we just sketch
it highlighting the main differences.
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Step 1. Reducing to flat characteristic manifolds by a local diffeomorphism. Let us consider
a classical diffeomorphism which straighten the hypersurface I,

D(x,y) = (x,y + 9(x)),

which is of class C* and then C Il,’“ extending constantly in the time variable. Actually, &~
locally flattens T" to 2. In fact, there exists a small radius R > 0 such that ®(Bgr N {y >
0) € BiN{y > )}, ®©0) = ®'(0) =0and D(Br N {y =0}) € B1 N{y = p(x)}.
The Jacobian associated to & is

Il
—_

_ In |0 .
Jo(x) = ((Vgo(x)) 1) ., with | det Jo|

Up to a dilation, one has that iz := u o (®(x), t) is a weak solution to
8480t — div(5AVii) = 8 f +div(§*F), in QF,
lim+ga(A~Vﬁ +F)-eny1 =0 on 3°07.
y—0
where § = 80 ®, f = fo(®(x),)and F = Jg'F o (®(x), 1) and A = (Jg') (Ao
@), NUgH"
By [36, Lemma 2.3], 6 € Cl’“(Bf') and satisfies

- - - 8
§>0in B, §=00n3"8;", 8,6 >00nd"Bf", — e COB)),
y

Zu>0in§,

< | on

where the last nondegeneracy condition is a consequence of the assumption |V§| > ¢g > 0.
Now, noticing that i is a weak solution to

s\ a — — —
ya (g) i — div(y*AVii) = y¢ f + div(y“F), in OF,
- - 7.11
lim y*(AVii + F) - en41 =0 on Q7. .11
y—0
where A = AG/y)* € C;(Q1). [ = f6/»)" € LP(Qf.y") and F = F(3/y)" €
C 2’“ ( Q1+), we are taken back to an equation with the standard degenerate or singular weight
y® as in (1.1), but with a new nondegenerate term (§/y)® in front of the time derivative.

Step 2. Regularity for flat characteristic manifolds with an extra term in front of the time
derivative. In what follows we show that our regularity theory applies with minor changes to
weak solutions to (7.11); that is, where an extra term b appears in front of the time derivative
in the parabolic equation. The term needs to be uniformly continuous in B]"' and bounded
away from zero b > pu > 0. In the present case b(z) := (S(z)/y)“, which is even Holder
continuous.

First, the energy results obtained in Sects.2, 3, 4 can be easily extended just using the
fact that the positive term b is bounded and bounded away from zero. These bounds ensure
invariance of the norms involved in the functional setting.

Let us focus on the only difference, respect to the proof of Theorem 7.1; that is, the C ;’0‘
e-stable regularity of solutions with regularized weights p¢ (the proof of Theorem 6.1, the
e-stability for the Cg’a estimate, is analogous): in order to prove that the blow-up sequence
{wy} (see (7.5)) converges to an entire solution with constant coefficients, one considers the
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limit in the equation (7.6) satisfied by wy with the necessary modifications for the present
case. The Lh.s. converges in the following sense: by using the same considerations of Lemma
4.2 we have that

/ Y ﬁ;;(y)( — b(rez + 20 Wk dd + A(rez + 2 2t + 1) Vi - v¢)
spt

N p%(— bvd¢ + AVi - Vo),
spt()

where b = limg—s 400 b(rxz + Zx) is a positive constant and A= limg—s 100 A(rkz + 2k, r,ft +
t;) is a constant coefficient matrix. Therefore, the contradiction argument ends up again with
the use of the Liouville Theorem 1.2. Finally, by Lemma 4.2, with the same considerations
done in the proof of Theorem 1.1, the statement follows. ]
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