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Abstract
The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows
greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent
of the classifier applied to perform the prediction using that reduced number of features. Instead, the greedy feature selection
identifies the most important feature at each step and according to the selected classifier. The benefits of such scheme are
investigated in terms of model capacity indicators, such as the Vapnik-Chervonenkis dimension or the kernel alignment. This
theoretical study proves that the iterative greedy algorithm is able to construct classifiers whose complexity capacity grows at
each step. The proposedmethod is then tested numerically on various datasets and compared to the state-of-the-art techniques.
The results show that our iterative scheme is able to truly capture only a few relevant features, and may improve, especially for
real and noisy data, the accuracy scores of other techniques. The greedy scheme is also applied to the challenging application
of predicting geo-effective manifestations of the active Sun.
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1 Introduction

Greedy algorithms are currently mainly used to iteratively
select a reduced and appropriate number of examples accord-
ing to some error indicators, and hence to produce surrogate
and sparse models (Dutta et al. 2021; De Marchi et al. 2005;
Santin and Haasdonk 2017; Wenzel et al. 2021, 2023; Wirtz
andHaasdonk 2013). The ambition of this paper is to analyze
and extend greedy methods to work in the significantly more
challenging case of feature reduction, i.e., as the computa-
tional core for feature-ranking schemes in the framework of
classification issues.

The importance of this application follows from the fact
that, as supervised learning models are usually trained on
a reduced number of features, the sparsity enhancement
is a crucial issue for statistical learning procedures. Most
popular feature reduction procedures include Lasso regres-
sion (Tibshirani 1996) or variations of the classical Lasso
(Group Lasso (Yuan et al. 2006), Adaptive Lasso (Zou
2006), Adaptive Poisson re-weighted Lasso (Guastavino and
Benvenuto 2019) to mention a few), linear Support Vector
Machine (SVM) feature ranking (Guyon et al. 2002), Fisher
score-based schemes (Duda et al. 2012), methods based on
mutual information (Peng et al. 2005), Relief and its variants
(Robnik-Åikonja andKononenko 2003). Nevertheless, given
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any classifier, which can be in principle highly non-linear as
e.g. a neural network, none of those algorithms is able to
actually capture all the corresponding most relevant features
for that classifier. For instance, in the case of Lasso and its
generalizations (Freijeiro-González et al. 2022), drawbacks
in feature selection ability are shown when there exist non-
linear dependence structures.

More in general, all the abovementionedmethods identify
an optimal subset of features based on general patterns in the
data. Among them, schemes based on fuzzy informationmay
help in taking account the correlation between features (Yin
et al. 2024, 2023). More recently, wrapper and embedded
schemes gained popularity; we refer the reader to Bommert
et al. (2020) for a general overview. The former use machine
learning algorithms to seek for the optimal subset of features
by considering all possible feature combinations (Bajer et al.
2020), while for the latter, feature selection is integrated or
built into the classifier algorithm (Zebari et al. 2020).

In this paper, we propose the so-called greedy scheme
that falls in the class of wrapper feature selection meth-
ods, but unlike the classical approaches, such as recursive
feature elimination (RFE) or recursive feature augmentation
(RFA) (Guyon et al. 2002) and forward step-wise selection
(James et al. 2023), our method is fully model-dependent
and target-based, meaning that any accuracy score can be
maximized during the iterative process. Indeed, given any
score and any classifier, the feature-based greedy methods
iteratively select the most important feature at each step in a
classifier-dependent fashion.

At a more theoretical level, this study investigates the
effectiveness of the greedy scheme in terms of the Vapnik-
Chervonenkis (VC) dimension (Vapnik and Chervonenkis
1971), which is a complexity indicator common to any clas-
sifier, such as Feed-forward Neural Networks (FNNs), and
it is related to the empirical risk (Bartlett and Mendelson
2002). As a particular instance, we further investigate how
greedy methods behave for kernel-based classifiers, such as
SVMs (Shawe-Taylor and Cristianini 2004), and in doing so
we considered a particular complexity score, known as kernel
alignment. These theoretical findings are used on both syn-
thetic and benchmark datasets, showing that with a greedy
feature selection, we are able to find a minimal set of fea-
tures without any accuracy loss. Moreover, we apply greedy
methods for a case study concerning the classification and
prediction of severe geomagnetic events triggered by solar
flares.

Solar flares (Piana et al. 2022) are the most explosive
manifestations of the active Sun and the main trigger of
space weather (Schwenn 2006). They may be followed by
coronal mass ejections (CMEs) (Kahler 1992), which, in
turn, may generate geomagnetic storms potentially impact-
ing both space and on-earth technological assets (Gonzalez
et al. 1994). Data-driven approaches forecasting these events

leverage machine learning algorithms trained against his-
torical archives containing physical features extracted from
remote-sensing data such as solar images or time series
of physical parameters acquired from in-situ instruments
(Bobra and Couvidat 2015; Camporeale et al. 2018; Flo-
rios et al. 2018; Guastavino et al. 2023; Telloni et al. 2023).
These archives systematically provide a huge amount of
descriptors and it is currentlywell-established that this redun-
dancy of information significantly hampers the prediction
performances of the classifiers (Campi et al. 2019). Our
feature-based greedy scheme is applied in this context, in
order to identify among the features the redundant ones and
hopefully to improve the classification performances.

The paper is organized as follows. Section2 introduces
our greedy feature selection scheme, whichwill bemotivated
thanks to the theoretical analysis in Subsections 2.1 and 2.2.
Section3describes the applicationof greedy feature selection
to simulated, benchmark and real datasets. Our conclusions
are offered in Sect. 4.

2 Greedy feature ranking schemes

Given a set of examples depending on several features,
greedy methods are frequently used to find an optimal subset
of examples and, for such task, since they might be target-
dependent, they have already been proved to be effective
(see e.g. Wenzel et al. (2021, 2023, 2024)). Here, instead of
focusing on the examples, we drive our attention towards the
problem of feature selection. To this aim, we considered a
binary classification problem with training examples

� = X × Y = {(x1, y1), . . . , (xn, yn)}, (1)

where xi ∈ � ⊆ R
d and yi ∈ R. For the particular case of

the binary classification setting, we fix yi ∈ {−1,+1}.
In the machine learning framework, feature reduction is

typically performed by means of linear models, and once the
features are identified, non-linear methods like neural net-
works are applied to predict the given task. However, the fact
that some specific features could be useful for some classifier
does not imply that the same feature is relevant for any clas-
sification model, and this is probably the main weakness of
current feature reductionmethods in this context. Conversely,
our feature-based greedymethod (see e.g. Temlyakov (2008)
for a general overview)will consist in iteratively selecting the
most important feature at each step and in agreement with
the considered classifier.

To reach this objective, as usually done, we split the initial
dataset � = X × Y into training and validation sets, respec-
tively denoted by X × Y and X × Y. Then, at the k − 1
greedy step X (k−1) will consists of the k − 1 features that
have already been selected (without loosing generalities the
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first k − 1). At the k-th greedy step, on X (k−1) × Y(k−1) we
train d −k modelsMp with x1, . . . , xk−1, x p, p = k, . . . , d.
Then, given an accuracy score μ (the largest the better), we
select the k-th feature as

xk = argmaxp=k,...,d μ(Mp(X
(k−1)),Y(k−1)). (2)

We point out that any model can be used in (2), and this
implies a totally target-dependent feature selection, which
also accounts for the model used to predict a given task.

In the following we investigate the effects of the proposed
scheme in terms ofVCdimension and for particular instances
of kernel learning theory, while a stopping criterion for the
algorithm is discussed later in view of the incoming analysis
and trade-off remarks.

2.1 TheVC dimension in the greedy framework

We consider the dataset (1), where we now suppose that� =
⊗d

k=1 �k with �k = [ak, bk] ⊂ R. Given a classifying
function f : � −→ Y weconsider the zero–one loss function

c(x, y, f ) = 1

2
| f (x) − y|,

which is 0 if f (x) = y and 1 otherwise. From this loss, we
can define the empirical risk

ê(�, f ) = 1

n

n∑

i=1

c(xi , yi , f ).

Assuming that� is sampled from some fixed unknown prob-
ability distribution p(x, y) on � × Y , we note that the
empirical risk is the empirical mean value of so-called gen-
eralization risk, i.e.:

e( f ) =
∫

�×Y
c(x, y, f ) dp(x, y),

i.e., it is the mean value of c averaged over all possible
test samples generated by p(x, y), and hence it represents
the misclassification probability. However, minimizing the
empirical risk does not necessarily correspond to a lowgener-
alization risk (refer, e.g., to (Schölkopf and Smola 2002, §5))
or (Vapnik 1998, §5 & §6)). Indeed, this might lead to poor
generalization capability in the sense that statistical learning
theory already proved that the generalization capacity of a
given model is somehow inversely related to the empirical
risk. Such general idea can be formalized in different ways,
such as via the VC dimension. In order to define it, we need
to introduce the concept of shattering. Let �1, . . . , �2n be
all the different datasets obtainable taking all possible con-
figurations of labels assigned to the data. A class F shatters

the set X if for every dataset �i , i = 1, . . . , 2n , there exists
a function f : � −→ Y , f ∈ F , such that ê(�i , f ) = 0.

Definition 1 The VC dimension of a class F of classifying
functions is the largest natural number s such that there exists
a set X of s examples that can be shattered by F . If such s
does not exist, then the VC dimension is ∞.

Let us consider a class F of classifying functions on �

whose VC dimension is s < n. Then, if f ∈ F and δ > 0,
the bound

e( f ) ≤ ê(�, f ) + C(s, n, δ),

holds with probability 1 − δ, where the so-called capacity
term is

C(s, n, δ) =
√
1

n

(

s

(

log
2n

s
+ 1

)

+ log
4

δ

)

.

The generalization risk (and thus the test error) is bounded by
the sum between the empirical risk (that is the training error)
and the capacity term of the class, which is monotonically
increasing with the VC dimension. If we choose a poor class,
we get a lowVCdimension but possibly a high empirical risk;
this situation is usually called underfitting. On the other hand,
by choosing a rich class we can obtain a very small empirical
risk, but the VC dimension, and thus the capacity term, is
likely to be large; this condition is called overfitting. In the
following, our purpose is to study how the VC dimension
evolves during the greedy steps. It is natural to guess that the
capacity of a classifier increases if the information contained
in an added feature is considered.

Definition 2 Let F be a class of binary classifying functions
f : � −→ Y . Letting ek be the k-th cardinal basis vector,
we define the k-blind class F (k), k ∈ {1, . . . , d}, F (k) ⊆ F
as the class of functions f (k) : � −→ Y such that

f (k)(x) = f (k)(x + δek),

for any δ ∈ R such that x + δek ∈ �.

For example, consider the class of functions

FW ,b := { f : � −→ Y | f (x) = f̃ (W x + b)},

where f̃ is the activation function, W is a r × d matrix and
b is a r × 1 vector, r ≥ 1. Many well-known classifiers
are included in FW ,b, such as, neural networks and linear
models. In this setting, classifiers inF (k)

W ,b can be constructed
by restricting to W and b such that W:,k = 0, where W:,k is
the k-th column of W , and bk = 0.

Remark 1 As F (k) ⊆ F , the fact that that VC(F (k)) ≤
VC(F), trivially follows.
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In order to formally prove that by adding a feature in the
greedy step the obtained classifier cannnot be less expres-
sive (in terms of VC dimension) than the previous one, we
introduce two maps:

• πk : � −→ ⊗d
i=1
i 	=k

�i , so that πk(x) = (x1, . . . , xk−1,

xk+1, . . . , xd), which is a projection.
• ια : πk(�) −→ �, α ∈ �k , so that ια(x) =

(x1, . . . , xk−1, α, xk+1, . . . , xd), which is injective.

Note that applying ια ◦ πk to X has the effect of setting to α

the k-th feature for all the examples.

Proposition 1 X is shattered byF (k) if and only if ια(πk(X))

is shattered by F (k).

Proof Any classifier in F (k) cannot rely on the k-th feature.
Precisely, for each xi ∈ X we can find δi ∈ R so that xi +
δi e ∈ ια(πk(X)). Hence, it is equivalent for any function in
F (k) to shatter X and ια(πk(X)). ��
For any function f (k) ∈ F (k) and α ∈ �k , we can define a
classifier g : πk(�) −→ Y such that g(x) = f (k)(ια(x)).
Denoting by G the class consisting of such functions g, we
achieve the following result.

Proposition 2 ια(πk(X)) is shattered by F (k) if and only if
πk(X) is shattered by G.

Proof Assume that there exists f (k) ∈ F (k) that shatters
ια(πk(X)). Note that the shattering does not rely on the k-th
feature, which is constant, and therefore this is equivalent
to shatter πk(ια(πk(X))) = πk(X) in a lower-dimensional
space bymeans of a classifier g so that f (k) = g◦πk . Finally,
by defining x(k) = πk(x), x ∈ ια(πk(X)), we further obtain
x = ια(x(k)), and therefore g(x(k)) = f (k)(ια(x(k))) for
x(k) ∈ πk(X), which completes the proof. ��
Corollary 1 We have that VC(G) ≤ VC(F).

Proof By putting together Propositions 1 and 2we can affirm
that X is shattered by F (k) if and only if πk(X) is shattered
by G. Note that X and πk(X) have the same cardinality, and
therefore VC(G) = VC(F (k)). We conclude the proof by
virtue of Remark 1. ��

The results inCorollary 1 formalize the idea that by adding
a feature in the greedy step the obtained classifier cannot be
less expressive than the previous one. Nevertheless, in this
greedy context we face a sort of trade-off that deals with the
VC dimension: precisely, a high VC-dimension allows the
model to fit more complex patterns but may lead to over-
fitting. Hence, we will discuss later robust stopping criteria
for the greedy iterative rule. Now, as a particular case study,
we consider SVM classifiers, which are probably the most
frequently used ones. Further, being they based on kernels,
other capability measures concerning such classifiers can be
straightforwardly studied.

2.2 SVM in the greedy framework

Following the SVM literature, we drive our attention towards
strictly positive definite kernels κ : �×� −→ R that satisfy

∫

�

κ(x, z)v(x)v(z)dxd z ≥ 0, ∀v ∈ L2(�),

for x, z ∈ �. Then, those kernels can be decomposed via
the Mercer’s Theorem as (see e.g. Theorem 2.2. Fasshauer
(2007) p. 107 or Mercer (1909)):

κ(x, z) =
∑

k≥0

λkρk(x)ρk(z), x, z ∈ �,

where {λk}k≥0 are the (non-negative) eigenvalues and {ρk}k≥0

are the (L2-orthonormal) eigenfunctions of the operator T :
L2(�) −→ L2(�), given by

T [v](x) =
∫

�

κ(x, z)v(z)d z.

Mercer’s theorem provides an easy background for intro-
ducing feature maps and spaces. Indeed, for Mercer kernels
we can interpret the series representation in terms of an inner
product in the so-called feature space F , which is a Hilbert
space. Indeed, we have that

κ(x, z) = 〈�(x),�(z)〉F , x, z ∈ �,

where � : � −→ F is a feature map. For a given kernel, the
feature map and space are not unique. A possible solution is
the one of taking the map �(x) = κ(·, x), which is linked
to the characterization of F as a reproducing kernel Hilbert
space; see Fasshauer and McCourt (2015); Shawe-Taylor
and Cristianini (2004) for further details. Both in machine
learning literature and in approximation theory, radial ker-
nels are truly common. They are kernels for whom there
exists a Radial Basis Function (RBF) ϕ : R+ −→ R, where
R+ = [0,∞), and (possibly) a shape parameter γ > 0 such
that, for all x, z ∈ �,

κ(x, z) = κγ (x, z) = ϕγ (||x − z||2) = ϕ(r),

where r = ||x − z||2. Among all radial kernels, we remark
that the Gaussian one is given by

κ(x, z) = κγ (x, z) = e−γ ‖x−z‖22 = e−γ r2 .

In the following, for simplicity,we omit the dependence onγ ,
which is also known as scale parameter in machine learning
literature.

With radial kernel as well, SVMs can be used for classi-
fication purposes and several complexity indicators, such as
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the kernel alignment, can be studied in order to have a bet-
ter understanding of the greedy strategy based on SVM, i.e.,
when the generic classifier in (2) is an SVM function. The
notion of kernel alignment was first introduced by Cristianini
et al. (2001) and later investigated in e.g. Wang et al. (2015).
Other common complexity indicators related to the align-
ment can be found in Donini and Aiolli (2017). Given two
kernels κ1 and κ2 : � × � −→ R, the empirical alignment
evaluates the similarity between the corresponding kernel
matrices. It is given by

A(X , K1, K2) = (K1, K2)F√||K1||F||K2||F ,

where K1 := K1(X) and K2 := K2(X) denote the Grammatri-
ces for the kernels κ1 and κ2 on X , respectively and

(K1, K2)F =
n∑

i, j=1

κ1(xi , x j )κ2(xi , x j ).

The alignment can be seen as a similarity score based on the
cosine of the angle. For arbitrary matrices, this score ranges
between −1 and 1.

For classification purposes we can define an ideal target
matrix as Y = y yᵀ, where y = (y1, . . . , yn)ᵀ is the vector
of labels. Then the empirical alignment between the kernel
matrix K and the target matrix Y can be written as:

A(X , K, Y) = (K, Y)F√||K||F||Y||F = (K, Y)F

n
√||K||F .

Such alignment with the target matrix is an indicator of the
classification capacity of a classifier. Indeed, to higher align-
ment scores correspond a separation of the data with a low
bound on the generalization error (Wang et al. 2015).

We now prove the following result which will be helpful
in understanding our greedy approach.

Theorem 1 Given two kernels κ1 and κ2 : � × � −→ R, if
||K2||F ≥ ||K1||F then A(X , K1, Y) ≤ A(X , K2, Y).

Proof By hypothesis we have that:

A(X , K1, Y) = (K1, Y)F

n
√||K1||F ≤ (K1, Y)F

n
√||K2||F .

Then, by adding and subtracting (K2, Y)F at the numerator,
and thanks to the linearity of the norm, we obtain:

A(X , K1, Y) ≤ (K1, Y)F

n
√||K2||F

= (K1 − K2, Y − Y)F
n
√||K2||F + (K2, Y)F

n
√||K2||F

= A(X , K2, Y).

��

Considering again Eq. (2), as a corollary of the previous
theorem, we have the following result.

Corollary 2 If κ is a non-increasing radial kernel, then

A(X (k), K(X (k)), Y) ≥ A(X (k−1), K(X (k−1)), Y).

Proof Being ϕ : R+ −→ R non-increasing, for x, z ∈ R
d ,

we obtain

ϕ (‖x − z‖2) =
= ϕ(‖(x1, x2, . . . , xk) − (z1, z2, . . . , zk)‖2) ≤
≤ ϕ(‖(x1, x2, . . . , xk−1) − (z1, z2, . . . , zk−1)‖2),

which in particular implies that

Ki j (X (k−1)) ≥ Ki j (X (k)) ≥ 0, i, j = 1, . . . , n.

Thus, we get

‖K(X (k−1))‖F ≥ ‖K(X (k))‖F,

and hence

A(X (k), K(X (k)), Y) ≥ A(X (k−1), K(X (k−1)), Y).

��
The result shown in Corollary 2 formalizes again the fact

that at each greedy step, the obtained classifier cannot be
less expressive than the previous one. Note that this kind
of feature augmentation strategy via greedy schemes shows
some similarities with the so-called Variably Scaled Kernels
(VSKs), first introduced in Bozzini et al. (2015) and recently
applied in the framework of inverse problems, see e.g. Per-
racchione et al. (2023, 2021). Indeed, both approaches are
based on adding features and both are again characterized by
a trade-off between the model capacity, which can be charac-
terized by the kernel alignment, and the model accuracy. To
achieve a good trade-off between these two factors we need
a stopping criteria for the iterative rule shown in (2).

2.3 Stopping criterion

In actual applications, the greedy iterative algorithm should
select, at first, the most relevant features, and then, if no
relevant features are available, any accuracy score should sat-
urate. Among several scores μ, a robust one is the so-called
True Skill Statistic (TSS) for its characteristic of being insen-
sitive to class imbalance (Bloomfield et al. 2012). Precisely,
letting TN, FP, FN, TP respectively the number of true neg-
atives, false positives, false negatives and true positives, the
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TSS is defined by:

TSS(TN,FP,FN,TP) = recall(TN,FP,FN,TP)

+ specificity(TN,FP,FN,TP) − 1,

where

recall(TN,FP,FN,TP) = TP

FN + TP
, (3)

and

specificity(TN,FP,FN,TP) = TN

FP + TN
. (4)

In order to introduce a stopping criterion,we need to point out
that we construct a greedy feature ranking by considering, at
each step, q splits of the dataset into training and validation
sets. Moreover, we now have to denote by {xs}s∈J the k − 1
features selected at the k-th step of the greedy algorithm,
where J is the set of integers associated to the k − 1 features
(card(J ) = k − 1). Then, at the k-th step of the greedy
algorithm, each one of the d−k datasets, composed by the k−
1 selected features and the added one x p, for each p ∈ I\J ,
being I = {1, . . . , d}, is divided into training and validation
sets.We denote such training and validation sets byX (k−1)

p,h ×
Y(k−1)

p,h and X(k−1)
p,h ×Y

(k−1)
p,h , for h = 1, . . . , q. Hence, once

the modelsMp,h , for each p ∈ I \ J and h = 1, . . . , q, have
been trained, the k-th feature is chosen so that:

x∗ = argmaxp∈I\J μ(k)
p , (5)

with

μ(k)
p = 1

q

q∑

h=1

μ(Mp,h(X
(k−1)
p,h ),Y

(k−1)
p,h ), (6)

and whereμ is the TSS score. Finally, the new set of features
will be given by {xs}s∈J , where J = J ∪ {l}, being xl = x∗.

Letting m(k) be the average of the TSS scores computed
on different folds at the k-th step and σ (k) the associated
standard deviation, we stop the greedy iteration at the k-th
step if:

r (k) = |m(k+1) − m(k)|
√

((σ (k+1))2 + (σ (k))2)
< τ, (7)

and τ is a given threshold. By doing so, we stop the greedy
algorithm when the added feature does not contribute to the
accuracy score. In order to better understand this fact, we
provide in the following a numerical experiment with syn-
thetic data. Dealing with real data, we might stop the greedy

Table 1 List of notations in the greedy algorithm

Notation Meaning

X (k−1)
p,h × Y(k−1)

p,h The h-th training fold, where p is the
index of the feature added to X (k−1)

p,h ,
p ∈ I \ J .

X
(k−1)
p,h × Y

(k−1)
p,h The h-th validation fold, where p is the

index of the feature added to X(k−1)
p,h ,

p ∈ I\J .

Mp,k The model trained on X (k−1)
p,h × Y(k−1)

p,h .

μ A given score (e.g. the TSS).

r (k) The quantity computed at each iteration as
in (7) for the stopping criterion.

iteration as shown in (7), but then select only the first k∗
features, where k∗ is

k∗ = argmax j=1,...,k m( j). (8)

We refer the reader to Algorithm 1 for the greedy pseudo-
code, while the list of symbols and notations is reported in
Table 1.

Inputs: dataset �; tolerance τ ; number of folds q; model class
M; accuracy score μ.
Outputs: vector of indices of the selected features J .
Initialization: set k = 1; r (1) = Inf; I = {1, . . . , d}; J = ∅.
while r (k) ≥ τ do
for each p ∈ I \ J do

for h = 1, . . . , q do
Train a model Mp,h with X (k−1)

p,h × Y(k−1)
p,h .

On the validation set compute
μ(Mp,h(X

(k−1)
p,h ),Y

(k−1)
p,h ) as in (6).

end
Define the new feature (xl = x∗) as in (5)–(6).
end

k = k + 1.
Compute r (k) as in (7).
Update the set of features J = J ∪ {l}.
end

Algorithm 1: Pseudo-code for the greedy feature ranking
algorithm.

3 Numerical experiments

The first numerical experiment aims to numerically show the
convergence of the greedy algorithm and the efficacy of the
stopping rule. We than test and compare, with state-of-the-
art techniques, our scheme on a benchmark dataset. Finally,
we will show an application in the context of space weather,
which aims to show how this general method is able to deal
with real data and infer on thephysical aspects of the problem.
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3.1 Experiments with a toy dataset

We first focus on the application of the non-linear SVM
greedy technique to a balanced simulated dataset constructed
as follows: we considered the set X = {xi }n

i=1 of n = 1000
random points in dimension d = 15 sampled from a uniform
distribution over [0, 1) and the set of corresponding function
values { fα,i = fα(xi )}n

i=1, where fα : [0, 1)d −→ R is
defined as

fα(x) = ex21 + ex2 + 3x3 + 2 cos (x4x5)

+ 4x26 + 10α
d∑

j=7

x j ,
(9)

and α ∈ {−8,−6,−4,−2}. Each fα,i is then labeled accord-
ing to a threshold value to obtain the set of outputs Y = {yi },
i.e., yi = 1 if fα,i is greater than the mean value attained
by fα , and yi = −1 otherwise. From (9) we note that the
first 6 features (i.e., x j for j = 1, . . . , 6) are meaningful for
classification purposes when α is lower than −4, while the
contribution of the remaining ones is negligible. The classi-
fier used in the following is a SVM model for which both
the scale parameter of the Gaussian kernel and the bounding
box are optimized via standard cross-validation. The results
of using such a classifier into the greedy scheme are reported
in Table 2. Such table contains the greedy ranking of the
features x j , j = 1, . . . , d, and the TSS values obtained at
each step by averaging over 7 different validation sets. Let-
ting τ = 9e − 2 be the threshold for the stopping criteria
in (7), the greedy algorithm selects the features reported in
Table 2, which are above the black solid line. As expected,
the algorithm selects only the first six features (the most rel-
evant ones) when α is small enough (α ≤ −6). Then, as
soon as the remaining features become more meaningful the
greedy selection takes into account more features. In this
didactic example we report all the TSS values until the end,
to emphasise the robustness of our procedure that correctly
identifies the most relevant features.

3.2 Experiments with a benchmark dataset

As a second test we consider a benchmark dataset and we
compare different feature extraction algorithms. We take the
Breast CancerWisconsin (Diagnostic) dataset (Wolberg et al.
1995) free available at the UCI repository at https://archive.
ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.
The classification task consists in predicting whereas a tumor
is malignant or benignant basing the considerations on 569
examples made of 30 features which are computed from dig-
itized images of fine needle aspirate of breast masses. Some
of the features are, e.g, radius, texture, perimeter and area of
the cancer mass.

We then compare our greedy feature selection strat-
egy with LASSO, RFE, and random forest selection, as
implemented in the Python scikit-learn package. Again, the
classifier used in the following is a SVM model for which
both the scale parameter of the Gaussian kernel and the
bounding box are optimized via standard cross-validation.
The results will show that the greedy strategy, being tailored
for the classifier, is able to find really a few relevant fea-
tures, only 6. Random forest identifies 17 relevant features,
while both RFE and LASSO select 24 features, i.e. almost
all of them. The accuracy scores returned by all the groups of
selected features on 4 test folds are reported in Table 3. Pre-
cisely, we compute the TSS as reference score, the Heidke
Skill Score (HSS) (Heidke 1926), precision, recall (see Eq.
(3)), specificity (see Eq. (4)), F1 score (which is the harmonic
mean of precision and recall), and balanced accuracy (which
is the arithmetic mean between recall and specificity). We
can observe that the SVM classifier trained with only a few
greedily selected features is able to achieve about the same
accuracy scores than the SVM trained with all, or almost all
(RFE, LASSO), features.

With these examples we already proved the ability of the
greedy schemes in eliminating the redundant information,
and hence in finding a small subset of features. In the next
section, we further consider their application to noisy and
real data. Moreover, we test the proposed strategy with other
classifiers, as neural networks.

3.3 Applications to solar physics: geo-effectiveness
prediction

Wenow focus on a significant spaceweather application, i.e.,
the prediction of severe geomagnetic events based on the
use of in-situ data. More specifically, data-driven methods
addressing this task typically utilize features acquired by in-
situ instruments at Lagrangian point L1 (i.e., the Lagrangian
point between the Sun and the Earth) to forecast a signifi-
cant decrease of the SYM-H index, i.e., the expression of the
geomagnetic disturbance at Earth (Wanliss and Showalter
2006).

3.3.1 The dataset and the models

The dataset we use consists of a collection of solar wind, geo-
magnetic and energetic indices. In particular, it is composed
by N = 7888320 examples and d = 15 features sampled
at each minute starting from (1-st January 2005) to (31-st
December 2019). Below we summarize the features we use:

1. B [nT], the magnetic field intensity, and Bx, By and Bz

[nT], its three coordinates.
2. V [Km/s], the velocity of the solar wind, and Vx, Vy and

Vz [Km/s], its three coordinates.
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Table 2 Feature ranking for the
greedy scheme on the dataset
generated as in (9)

α = −8 α = −6 α = −4 α = −2

x j TSS x j TSS x j TSS x j TSS

x6 0.495 ± 0.030 x6 0.450 ± 0.028 x6 0.462 ± 0.024 x6 0.505 ± 0.024

x3 0.715 ± 0.026 x3 0.737 ± 0.021 x3 0.743 ± 0.020 x3 0.687 ± 0.026

x1 0.791 ± 0.027 x1 0.803 ± 0.022 x1 0.798 ± 0.025 x1 0.798 ± 0.022

x2 0.939 ± 0.021 x2 0.942 ± 0.016 x2 0.938 ± 0.022 x2 0.924 ± 0.014

x4 0.933 ± 0.015 x4 0.940 ± 0.014 x4 0.942 ± 0.018 x9 0.847 ± 0.015

x5 0.955 ± 0.013 x5 0.957 ± 0.012 x5 0.955 ± 0.011 x10 0.949 ± 0.014

x12 0.952 ± 0.018 x12 0.954 ± 0.011 x12 0.954 ± 0.009 x5 0.956 ± 0.013

x13 0.951 ± 0.015 x13 0.951 ± 0.013 x9 0.947 ± 0.013 x11 0.954 ± 0.014

x9 0.950 ± 0.016 x9 0.952 ± 0.017 x11 0.941 ± 0.012 x4 0.951 ± 0.016

x14 0.917 ± 0.016 x14 0.924 ± 0.016 x8 0.921 ± 0.011 x11 0.931 ± 0.014

x10 0.909 ± 0.018 x10 0.903 ± 0.012 x13 0.903 ± 0.011 x7 0.905 ± 0.014

x8 0.904 ± 0.016 x8 0.904 ± 0.023 x14 0.906 ± 0.014 x8 0.905 ± 0.016

x7 0.871 ± 0.015 x7 0.872 ± 0.012 x15 0.886 ± 0.013 x14 0.862 ± 0.017

x11 0.862 ± 0.024 x11 0.862 ± 0.028 x7 0.862 ± 0.020 x12 0.859 ± 0.011

x15 0.883 ± 0.015 x15 0.879 ± 0.012 x10 0.873 ± 0.016 x15 0.881 ± 0.017

The selected features are identified by the bold in the table

Table 3 Average scores for the Breast Cancer dataset obtained with SVM using different subsets of features

Metric All LASSO RFE Random Forest Greedy
(30 Features) (24 Features) (24 Features) (17 Features) (6 Features)

TSS 0.904 ± 0.040 0.905 ± 0.044 0.914 ± 0.034 0.906 ± 0.032 0.922 ± 0.026

HSS 0.916 ± 0.032 0.918 ± 0.039 0.919 ± 0.026 0.908 ± 0.035 0.928 ± 0.016

Precision 0.980 ± 0.012 0.982 ± 0.009 0.961 ± 0.006 0.946 ± 0.030 0.972 ± 0.019

Recall 0.915 ± 0.044 0.915 ± 0.041 0.936 ± 0.037 0.939 ± 0.016 0.939 ± 0.036

Specificity 0.989 ± 0.007 0.990 ± 0.005 0.978 ± 0.004 0.968 ± 0.019 0.983 ± 0.012

F1 score 0.946 ± 0.021 0.947 ± 0.026 0.948 ± 0.017 0.942 ± 0.022 0.954 ± 0.011

Balanced Accuracy 0.952 ± 0.020 0.953 ± 0.022 0.957 ± 0.017 0.953 ± 0.016 0.961 ± 0.013

3. T, the proton temperature, and ρ, the proton density num-
ber [cm−3].

4. Ek, Em, Et the kinetic, magnetic and total energies.
5. Hm, the magnetic helicity.
6. SYM-H [nT], a geomagnetic activity index that quantifies

the level of geomagnetic disturbance.

The first ten features are acquired at the Lagrangian point L1
by in-situ instruments, the energies and the magnetic helic-
ity are adimensional derived quantities, and the SYM-H is
measured at Earth. The task considered in what follows con-
sists in identifying the most relevant features used to predict
whereas a geomagnetic event occurred, i.e., when the SYM-
H is less than−50 nT (label 1), or not (label -1). The dataset at
our disposal is highly unbalanced: the rate of positive events
is about 2.5%. In order to exploit our data analysis, we first
need to fix the notation. We denote by X̃ = {x̃i }N

i=1 ⊆ �,
where � ⊆ R

d , the set of input samples an by Ỹ = {ỹi }N
i=1,

with ỹi ∈ {−1, 1}, the set of associated labels. The features

denoted by x̃ j , j = 1, . . . , d, represent respectively B, Bx,
By, Bz, V, Vx, Vy, Vz, T, ρ, Ek, Em, Et, Hm and the SYM-H.

The analysis is performed with data aggregated by hours,
i.e., letting m = 60, n = N/m and

xi = (
∑i+m

k=i x̃k)

m
,

we focused on X = {xi }n
i=1 ⊆ �. Similarly, we define the

set of aggregated labels Y = {yi }n
i=1.

Given X and Y , the first step of our study consists in using
different feature selection approaches to rank the features
accordingly to their relevance (see Subsection 3.3.2). After
this step, we investigate how these results can be exploited
to improve the prediction task (see Subsection 3.3.3). In
doing so, we use both SVM and a Feed-forward Neural
Network (FNN) in order to predict whether a geo-effective
event occurs or not in the next hour. Specifically, the SVM
algorithm is trained by performing a randomized and cross-
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Table 4 Feature rankings for the greedy schemes on the dataset used
for the prediction of geomagnetic solar storms

Greedy ranking (SVM) Greedy ranking (FNN)

x j TSS x j TSS

SYM-H 0.703 ± 0.179 SYM-H 0.936 ± 0.052

Bz 0.823 ± 0.121 B 0.943 ± 0.034

V 0.804 ± 0.115 Et 0.958 ± 0.039

Et 0.825 ± 0.176 Vx 0.934 ± 0.078

Vx 0.853 ± 0.147

Em 0.804 ± 0.184

B 0.835 ± 0.115

validated search over the hyper-parameters of the model
(the regularization parameter C and the kernel coefficient
γ ) taken from uniform distributions on IC = [0.1, 1000] and
Iγ = [0.001, 0.1] respectively. Instead, the FNNarchitecture
is characterized by 7 hidden layers. TheRectified LinearUnit
(ReLU) function is used to activate the hidden layers, the sig-
moid activation function is applied to activate the output, and
the binary cross-entropy is used as loss function. The model
is trained over 200 epochs using the Adam optimizer with
learning rate equal to 0.001, with a mini-batch size of 64
examples. In order to prevent overfitting, an L2 regulariza-
tion constraint is set as 0.01 in the first two layers. Further,
we make use of an early stopping strategy to select the best
epoch with respect to the validation loss.

3.3.2 Greedy feature selection approaches

In order to apply efficiently our greedy strategy to both SVM
and FNN,we first consider a subset X p of the original dataset
X with a reduced number of examples: we take p = 3333
examples. The so-constructed ranking is compared to a state-
of-the-art method, i.e., the Lasso feature selection. Precisely,
the active set of features returned by Lasso is composed by:
Bx, By, Bz, Vy, Vz, T, ρ, Ek, Em, Et, Hm and the SYM-H.
Note that neither V and B, which are physically meaningful
for the considered task, are selected by cross-validatedLasso.

In Table 4 we report the results of the greedy feature rank-
ing scheme by using SVMandFNN. In this table, the features
are ordered accordingly to the greedy selection. In particu-
lar, the greedy iteration stops with all the features reported
in the table accordingly to (7), but the selected features are
only the ones above the bold line, as in (8). We can note
that, the features selected for both SVM and FNN are only
a few, and this is due to the fact that greedy schemes are
model-dependent and hence are able to truly capture the
most significant ones. Interestingly, the features extracted
as the most prominent ones are indeed those associated with
physical processes involved in the transfer of energy from

the CMEs to the Earth’s magnetosphere and, thus, with the
CME likelihood for inducing geomagnetic storms. Bz, i.e.,
a southward directed interplanetary magnetic field, is indeed
required for magnetic re-connection with the Earth’s mag-
netic field to occur, and thus for the energy carried by the solar
wind and/or CMEs to be transferred to the Earth system. In
addition, the bulk speed V, or equivalently the radial compo-
nent of the flow velocity vector Vx, is directly related to the
kinetic energy of the solar wind. On the one hand, it is well
known that particularly fast particle streams or solar tran-
sients can compress the magnetosphere on the sunward side.
On the other hand, high levels of magnetic energy (quadrat-
ically proportional to the magnetic field intensity) can be
converted into thermal energy that heats the Earth’s atmo-
sphere, expanding it. In both cases, it appears evident that the
transfer of energy, either kinetic or magnetic or total, enabled
by the magnetic reconnection between the interplanetary and
terrestrial magnetic fields, disrupts the magnetosphere cur-
rent system, thus causing geomagnetic disturbances. As a
conclusion, the extracted features are the physical quantities
with the higher expected predictive capability.

We further point out that in order to extract such features,
wemake use of a validation set and we do not considered any
test set. Therefore, the greedy feature extraction is coherently
based on the TSS computed on the validation set. Neverthe-
less, we are now interested in understanding how the selected
features work in the prediction (on tests sets) of the original
task and with all examples.

3.3.3 Prediction of geomagnetic solar storms events with
greedy-selected features

In order to numerically validate our greedy procedure we
compare the performances of SVM and FNN trained with
respectively: all features, the features returned by Lasso, and
the greedily selected features. The comparison is performed
by computing several scores (reported in Tables 5 and 6) and
by averaging on different splits of the test set.We can observe
that for the SVM-based prediction, when using the features
extracted with the greedy procedure, we have a remarkable
improvement of all accuracy scores. Further, although the
performances of the FNN are essentially the same, indepen-
dently of the feature selection scheme, we note that we are
able to achieve the same accuracy scores with only a few fea-
tures selected ad hoc (3 in this case). This points out again the
fact that features extracted by methods, such as Lasso, might
be redundant for the considered classifiers. This is even more
evident when using the FNN algorithm, which achieves the
same accuracy with only 3 greedily selected features. The
improvement in terms of accuracy was remarkable only for
SVM classifiers, which are known to be less robust then neu-
ral networks to noise, i.e., redundant information stored in
redundant features.
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Table 5 Average scores
obtained with SVM using
different subsets of features

Metric All LASSO selection Greedy selection
(15 features) (11 features) (5 features)

TSS 0.679 ± 0.055 0.677 ± 0.088 0.736 ± 0.051

HSS 0.731 ± 0.043 0.739 ± 0.040 0.808 ± 0.021

Precision 0.822 ± 0.117 0.840 ± 0.068 0.909 ± 0.043

Recall 0.683 ± 0.059 0.681 ± 0.090 0.738 ± 0.052

Specificity 0.995 ± 0.005 0.996 ± 0.002 0.998 ± 0.001

F1 score 0.737 ± 0.041 0.745 ± 0.039 0.812 ± 0.021

Balanced accuracy 0.839 ± 0.027 0.839 ± 0.044 0.868 ± 0.026

Table 6 Average scores
obtained with FNN using
different subsets of features

Metric All LASSO selection Greedy selection
(15 features) (11 features) (3 features)

TSS 0.913 ± 0.054 0.917 ± 0.043 0.895 ± 0.054

HSS 0.685 ± 0.105 0.638 ± 0.119 0.669 ± 0.128

Precision 0.577 ± 0.153 0.519 ± 0.159 0.571 ± 0.176

Recall 0.935 ± 0.065 0.945 ± 0.056 0.919 ± 0.068

Specificity 0.978 ± 0.014 0.972 ± 0.017 0.976 ± 0.019

F1 score 0.695 ± 0.010 0.650 ± 0.114 0.680 ± 0.122

Balanced accuracy 0.957 ± 0.027 0.959 ± 0.022 0.948 ± 0.027

4 Conclusions and future work

We introduced a novel class of feature reduction schemes,
namely greedy feature selection algorithms. Their main
advantage consists in the fact that they are able to identify
the most relevant features for any given classifier.We studied
their behavior both analytically and numerically. Analyti-
cally, we could conclude that the models constructed in such
a way cannot be less expressive than the standard ones (in
terms of VC dimension or kernel alignment). Numerically,
we showed their efficacy on a problem associated to the
prediction of geomagnetic solar storms. As the activity of
the Sun is cyclic, work in progress consists in using greedy
schemes to study which features are relevant on either high
or low activity periods. Finally, as there is a growing inter-
est in physics-informed neural networks (PINN), we should
investigate, both theoretically and numerically, which are the
challenges that greedymethods could achieve in this context.
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