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Abstract—Non-Terrestrial Networks (NTNs) have recently seen
a surge in interest from both the industry and consumers,
attracted by the promise of a global coverage with drastically
increased performance. Such coverage is achieved through the use
of satellite mega-constellations which field of view can span from
a few tens to hundreds of kilometers within each beam. Usually,
the performance of NTN systems is assessed assuming uniformly
distributed users. This approach, which has been extremely
effective in the past when the satellite user densities were limited,
neglects the human tendency to settle in clusters. Thus, a strong
approximation on the real distribution of users is introduced
when the subscriber density starts approaching the terrestrial
one. This leads to results that do not reflect the actual system
performance and, hence, might lead to suboptimal designs. In
this paper, we therefore propose a Cluster-Process-based non-
uniform distribution that better reflects the actual user density
on ground, thus providing an improved tool for the design of NTN
systems. To this aim, we propose a general procedure to extract
statistics from population count datasets and tailor the user
distribution model to the coverage area. To show the effectiveness
and importance of considering non-uniform distributions, we
empirically analyze the user scheduling performance in a B5G
Low Earth Orbit High Throughput Satellite system. The per-
cluster sum-rate capacity and user throughput achieved under
non-uniform and uniform distribution are compared, highlighting
the inaccuracies that the uniform assumption can introduce.

Index Terms—Non-uniform user distribution, Cluster process,
Non-Terrestrial Networks, User scheduling

I. INTRODUCTION

Non-Terrestrial Networks (NTNs) have rapidly grown in
popularity within the telecommunications sector, with more
and more satellite-based services being launched every year.
From text messages on handheld devices to broadband internet
access on small User Terminals (UTs), revenues from con-
sumer satellite services amounted to $93B in 2022, approx-
imately one-fourth of the global space economy revenues in
the same year [1]. It is worth mentioning that NTN is also a
key technology for IoT applications in remote or wide areas,
such as smart agriculture and freight localization. Indeed,
moving the Base Stations (BSs) away from the coverage area,
with satellites acting as relay nodes or even BSs themselves,
removes the need to deploy a dense net of gateways where it
would not be economically or physically possible. Reflecting
the needs of both consumers and industry, the 3rd Generation
Partnership Project (3GPP) has recently integrated satellite-

based communications within their studies, with NTN-related
technical specifications being included since Release 17 [2].

By and large, the success of NTN services can be attributed
to their capability of providing coverage extension and service
continuity through satellite constellations consisting of a few
to thousands of spacecrafts [3], each covering a portion of
the Earth’s surface. However, the design of such systems re-
quires in-depth analyses based on realistic parameters. Indeed,
the satellite communications (SatCom)-related literature has
flourished in recent years, with several novel algorithms tai-
lored to NTN being proposed for telecommunication systems
procedures (e.g., handover management, and user scheduling).
However, the evaluation of such algorithms has often been
carried out assuming uniformly distributed users, potentially
overlooking effects caused by the real distribution of users.
While the assumption has been fairly accurate for the past
decades, the rise in number of subscribers has been pushing
the distribution of users farther from uniformity and closer
to the real inhabitants’ distribution. As a consequence, the
clustered nature of the population can hardly be neglected
anymore when assessing the performance of telecommunica-
tions procedures in NTN. Nonetheless, the NTN literature that
models the user distribution as non-uniform is limited. In this
framework, the authors in [4] proposed a non-uniform traffic
model based on the inverse sampling transform technique
applied to traffic density databases. In [5], the authors de-
veloped a traffic simulator extracting data from Fixed Satellite
Services, aeronautical and maritime traffic datasets. In both
works, the algorithms tend to geographically replicate with
high fidelity the input database, leading to the evaluation of
NTN procedures on the specific coverage area rather than on
a model that statistically represents the characteristics of the
UT distribution. In [6], the well-known mega-constellations
from Starlink and OneWeb are compared assuming bivariate-
Gaussian-distributed users. Although non-uniform, such dis-
tribution tends to concentrate most of the users towards a
single center, making the model far from realistic when large
coverage areas are considered. On the terrestrial side, the
authors in [7] proposed to model the number of users in a
terrestrial cellular network through a homogeneous Poisson
Point Process (PPP); then, the geographical position of the
users with respect to the serving BS is either uniform, circular
symmetric Gaussian with zero mean (i.e., high user density



close to the BS) or its inverse. This model assumes a perfect
hexagonal tessellation, requiring the user aggregation points
to be evenly spaced. Thus, the proposed distribution is not
suitable for NTN, where the distribution of clusters of users
(i.e., towns and cities) may be affected by geographic features
such as valleys and rivers. Improving on this, [8] assesses the
cell load considering two Poisson Cluster Processes (PCPs),
namely the Thomas and Matérn Cluster Processes (MCP and
TCP). It must be noted that Poisson distributions may not be
suitable for NTNs, where the number of clusters per unit area
corresponds to the density of inhabited centers.

Indeed, the literature analysis shows the need for a non-
uniform distribution tailored to NTN that can represent the
geographical distribution of the population. In this paper, we
propose a Cluster Process (CP)-based non-uniform user dis-
tribution model, named Non-Terrestrial CP (NTCP), suitable
for the assessment of NTN procedures. To obtain the statistics
used in the model, we present a procedure to process a global
population count dataset. While real satellite users’ data would
lead to more accurate statistics, such information is typically
confidential and of scarce availability. On the other hand,
data on population distribution is freely accessible and, if
appropriately processed, can be assumed to be representative
of satellite users’ data. To exemplify the shortcomings of
the uniformity assumption on NTN procedures, we apply the
NTCP to the use case of user scheduling in multi-beam B5G
LEO High Throughput Satellite (HTS) systems. Overall, three
main sources of novelty can be identified in our work:

• we consider a Bivariate Normal Distribution (BND) to
generate users’ positions within each cluster, allowing for
more realistic non-circular clusters;

• we present a procedure to extract statistics from popula-
tion distribution datasets;

• we represent the number of clusters with an empirical
distribution, leading to a CP tailored to the service area.

II. NON-UNIFORM USER DISTRIBUTION

As mentioned in Section I, there is a strong connection
between the user distribution in NTN and the real population
distribution, making the uniform users assumption unrealistic.
When a clustering behavior can be identified in the coverage
area, the correlation between the coordinates of different users
inside each cluster cannot be neglected, making CPs a more
accurate model than Point Processes to distribute users in
heterogeneous networks [9]. A CP is a two-step process in
which parent points independently generate offspring points
around them. In PCPs, first introduced in [10], both the
number of parent points and offspring points follow a Poisson
distribution with intensity parameter λp and λo, respectively.
Then, the parent points are distributed in the considered area
and the respective offspring points are scattered around them,
typically following either a uniform or normal distribution.
From the SatCom point of view, parent points represent centers
of high inhabitants density, i.e., towns and cities, while their
offspring points are active users inside them. Naming λoc

the average user activity in the inhabited center c, it is fair

to assume the number of offspring points of parent c to be
generated through a PPP of average λoc . Furthermore, to
reflect the decrease in user density as the distance from the
inhabited center increases, the offspring points can be assumed
to be distributed around the parent point as a BND. Hence,
denoting with Ωc the set of users belonging to cluster c, we
can express the Probability Mass Function (PMF) of |Ωc| (i.e.,
the cardinality of Ωc) as:

f|Ωc|(k;λoc) = Pr(|Ωc| = k) =
λk
oce

−λoc

k!
, (1)

while the joint Probability Density Function (PDF) of the
coordinates of user u ∈ Ωc is represented by the BND PDF:

pc(xu, yu) =
1

2πσxcσyc

√
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exp
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]
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2

σ2
yc

,

(2)

with (xc, yc) being the coordinates of cluster c’s center,
σxc and σyc representing the spatial size of cluster c over
the x and y coordinates, respectively, ρc accounting for the
rotation of the cluster and z being a support variable to
improve readability. Considering all the clusters, the overall
user distribution is a Gaussian Mixture Model (GMM) with
|Π| components, where Π is the set of parent points. The joint
PDF of a user’s coordinates can then be written as:

q(xu, yu) =

|Π|∑
c=1

wcpc(xu, yu), (3)

where wc is a weight that represents the number of offspring
points generated by parent point c, i.e.:

wc =
|Ωc|∑|Π|
j=1|Ωk|

. (4)

If |Π| was also generated from a PPP, the overall CP would be
a TCP as in [8]. However, there is no indication that this model
would truthfully represent the distribution of inhabited centers.
For this reason, a more suitable approach is to determine the
empirical distribution of |Π| from a population density dataset.
Furthermore, the mentioned data can also be used to determine
the statistics of the model parameters (e.g., σxc

and σyc
) over

a specific coverage area.

III. DERIVATION OF POPULATION STATISTICS

We here present a procedure to extract statistical distribu-
tions for the proposed model from a population density dataset.
It must be mentioned that using such dataset may lead to
traffic underestimation when serving UTs with mobility in
underpopulated areas, e.g., for aeronautical or maritime use
cases. Hence, further development may be needed to target
such services, too. Furthermore, the proposed procedure can
be adapted to process different data, e.g., spatial traffic distri-
butions. Nonetheless, the accuracy of the extracted distribution
with respect to the real user/traffic distribution depends on the



Algorithm 1 Dataset processing
Input: Geographical raster tile T, number of sub-tiles NST

Output: Set of number of components per ST N , set of covariance
matrices per component S, set of weights per component V

1: Use case pre-processing
2: Generate STs for s = 1, . . . , NST s.t.

⋃NST
s=1 STs = T and

|STs| = |T|/NST for s = 1, . . . , NST

3: Initialize N = ∅, S = ∅, V = ∅
4: for s := 1 to NST do
5: if Count(’xpop < 0’, xpop ∈ STs) ≤ 0.1 · |STs| then
6: Duplicate STs entries by their population count
7: Ls = HDBSCAN(STs)
8: [ws,Σs] = GMM(STs, Ls)
9: vs ← ws · |STs|

10: N ← N
⋃

Unique(Ls), S ← S
⋃

Σs, V ← V
⋃

vs

11: end if
12: end for

quality of the dataset. As a data source, we opted for the open
database Global Human Settlement Layer (GHSL) by the Joint
Research Centre of the European Commission (EC), mainly
focusing on the GHS population grid multi-temporal dataset
(GHS-POP R2023A) [11]. This dataset contains a geographi-
cal raster of the estimated population count in different periods
and spatial resolutions. For this work, the year 2020 dataset
with 100m resolution was used. Algorithm 1 describes
the extraction of population distribution features. Focusing
the study on central Europe, we applied the procedure on
tile T = "R4_C19", a sub-raster of 10000x10000 elements.
A pre-processing step adapts the data to the considered use
case; without loss of generality, we first assume that the NTN
users’ distribution is similar to that of the population and skip
this step. The algorithm splits T into NST = 2500 sub-tiles
(STs), dropping those that contain water bodies for more than
10% of their surface (represented by a negative population
count in each element). Each ST is then clustered using
Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN), exploiting its ability to obtain an
unspecified number of clusters with varying density [15]. From
the generated labels, the algorithm produces the set of the
number of clusters N . The clustered data is then fed to a
GMM clustering algorithm, obtaining the covariance matrix
Σ (related to the cluster’s geographical size) and weight w
(related to the cluster’s population count) of each bivariate
Gaussian component. Merging data from different STs to-
gether, the algorithm outputs the set of covariance matrices S
and the set of weights V . The statistics of the number of parent
points |Π| (i.e., the number of clusters) and of the weights are
obtained through Kernel Density Estimation (KDE) using the
Epanechnikov Kernel Function. The dip in the second PDF,
reported in Figure 1, suggests that two classes of clusters may
be present. Hence, defining a proper weights threshold vth,
we partition S and V into two subsets: clusters with vs < vth
are said to be "small" (SS , VS), while the rest are called
"large" (SL, VL). Hence, the distribution of the elements in VS

Fig. 1. PDF of the GMM components’ weights.

and VL is separately assessed, obtaining gvS (v) and gvL(v),
respectively. Each element of S can be expressed as:

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
, (5)

where σx and σy represent the coordinates’ standard deviation
in the cluster over the x axis and y axis and ρ is the
correlation between the two coordinates. A statistic of the
clusters’ geographical size can be obtained using KDE jointly
on σ2

x and σ2
y (i.e., irrespectively of the coordinate) for small

and large clusters, resulting in gσ2
S
(σ2) and gσ2

L
(σ2). Then,

the eccentricity of each cluster can be taken into account by
computing the parameter e as follows:

e =
min(σ2

x, σ
2
y)

max(σ2
x, σ

2
y)
, (6)

such that 0 ≤ e ≤ 1. As for the weights and the variances, the
distributions geS (e) and geL(e) can be obtained. Finally, as the
correlation term ρ represents the cluster’s rotation, its PDF is
assumed to be uniform in [-1, 1] without loss of generality.

In this paper, we focus on users who are underserved or
completely unserved by terrestrial networks, i.e., on suburban
and rural areas. Thus, the use case pre-processing step aims
at setting zero population in GHS-POP cells corresponding
to high-density clusters. These centers were identified pro-
cessing the GHS-POP, GHS-BUILT-S [12] and GHS-LAND
[13] datasets using the Degree of Urbanization definition:
"contiguous grid cells of 1 km2 with a density of at least 1500
inhabitants per km2 and a minimum population of 50000"
[14]. Figure 2 shows the empirical PMF of |Π|, g|Π|(|Π|), in
the considered area, compared with a Poisson distribution with
same average. As hypothesized in Section II, the goodness of
fit is visibly poor, justifying the rejection of TCP as a model
for the NTN users’ distribution. As in the complete dataset,
a dip in the GMM components’ weights PDF was observed,
leading to setting vth = 370. Due to space constraints, we
here report only the clusters’ variance PDF gσ2(σ2) for small
and large clusters (Figure 3). It must be mentioned that every
plot shows different statistics for small and large clusters. In
Figure 3, one can spot a higher probability density for small
variances in small clusters than in large clusters. This suggests
that some level of correlation between the clusters’ variance
and the clusters’ weight is taken into account through the
definition of small and large classes.



Fig. 2. Comparison between the empirical distribution of the number of
clusters (blue line) and a Poisson distribution with equal mean (orange line).

Fig. 3. Estimated PDFs of the clusters’ variance.

With this data, the non-uniform distribution is fully de-
scribed. To simulate users, a specific area delimited by [xmin,
xmax] and [ymin, ymax] over the x and y coordinates is first
fixed, naming its size Acov and its average UT activity per
inhabitant λUT . Then, the NTCP model parameters can be
generated as in Table I. It must be noted that, in order to take
into account the different area size with respect to the area of
the STs AST , |Π| has to be multiplied by the scaling factor
Acov

AST
. Finally, the NTCP can be obtained using Equations 3

and 2. A detail of a generated user distribution is reported in
Figure 4.

IV. APPLICATION OF NTCP TO USER SCHEDULING

To exemplify the shortcomings of the uniformity assump-
tion, we present an empirical analysis of user scheduling
algorithms in NTN HTS systems. The results of the evaluation
are reported in Section V.

User scheduling is the technique through which a BS can
allocate resources to UTs. Two main categories of scheduling
algorithms can be identified: user selection and user grouping.
Schedulers of the first type select a single user group that, if
scheduled, would optimize a chosen metric, e.g., the SR. How-
ever, the propagation channel in NTN is mostly characterized
by slow fading effects due to atmospheric events, e.g., rain
and clouds; hence, a user selection algorithm would tend to
always schedule the same set of UTs. While this may indeed
maximize the SR of the system, it would leave the majority of
the users unserved. Instead, user grouping algorithms generate
multiple user groups such that every UT is part of at least one
group. Then, each user group is scheduled for a specific time
frame over a scheduling window, ensuring fairness.

TABLE I
NTCP MODEL PARAMETERS

Parameter Source Distribution or formula
|Π| Empirical distribution |Π| ∼ g|Π|(|Π|)
xc Theoretical distribution xc ∼ Uniform (xmin, xmax)

yc Theoretical distribution yc ∼ Uniform (ymin, ymax)

vc Empirical distribution vc ∼ {gvS (v), gvL (v)}
|Ωc| Theoretical distribution |Ωc| ∼ Poisson (λUT · vc)
σ2
xc

Empirical distribution σ2
xc

∼ {gσ2
S
(σ2), gσ2

L
(σ2)}

ec Empirical distribution ec ∼ {geS (e), geL (e)}
σ2
yc

Analytical formula σ2
yc

= σ2
xc

· ec
ρc Theoretical distribution ρc ∼ Uniform (−1, 1)

Fig. 4. Detail of a generated user distribution (each dot represents one UT).

A. System Model

The system model we here consider is adopted from the
work we already presented in [16]. For the sake of brevity, we
will only report the most relevant information. For this analy-
sis, we consider a multi-beam LEO satellite equipped with a
Uniform Planar Array (UPA) made of NF feeds, capable of
forming beams through feed space digital beamforming (BF)
techniques. The satellite provides downlink connectivity to a
total of KT users, each communicating through a Very-Small-
Aperture Terminal. Given KT≫NF , the scheduler identifies
P disjoint groups of UTs, with Kp denoting group p’s size.
Then, the scheduling window is split into P frames, and the
symbols belonging to users in the same group are transmitted
during the corresponding time frame using Spatial Division
Multiplexing (SDM). Hence, each UT in the scheduled group
can receive its symbols during the same time frame, over the
same subcarrier, and using the same polarization. To achieve
this, the gNB uses the most recent channel coefficients to
compute the group’s minimum mean square error BF matrix
Wp with Sum Power Constraint (SPC) normalization. The
vector of channel coefficients between UT i and the UPA can
be expressed as:

hi = G
(rx)
i

λ

4πdi

√
Li

κBTi
e−j 2π

λ dia(ϑi, φi), (7)

where G
(rx)
i is the i-th UT’s reception gain, λ is the carrier

wavelength, B is the channel bandwidth, di represents the
slant range, Li includes additional losses as in [16], Ti is the
receiver’s noise temperature, and a(ϑi, φi) is the array factor



of the UPA in the direction of the i-th user. It is worth stressing
that the channel coefficients are normalized with respect to
the noise power. The Signal to Interference plus Noise Ratio
(SINR) experienced by the i-th UT in group p can then be
written as:

SINR(p)
i =

∥∥∥hiw
(p)
i

∥∥∥2
1 +

∑Kp

k=1,k ̸=i

∥∥∥hkw
(p)
i

∥∥∥2 . (8)

where w
(p)
i is user i’s vector of BF coefficients. Finally, we

can define the SR in group p as:

Γp = B

Kp∑
i=1

log2(1 + SINR(p)
i ), (9)

and the throughput experienced by the i-th user in group p as:

R
(p)
i =

B

P
log2(1 + SINR(p)

i ). (10)

B. Scheduling Algorithms

In this work, two state-of-the-art schedulers are considered.
For both of the algorithms, a Coefficient of Correlation (CoC)
matrix Ψ is computed as:

[Ψ]i,j =

∣∣hih
H
j

∣∣
∥hi∥ ∥hj∥

. (11)

Then, each scheduler involves different processing:
1) Graph-based Max Clique Scheduler [16]: A graph is

constructed from Ψ, where vertices represent users and
edges are based on the dissimilarity between the corre-
sponding users’ channels. The user clustering strategy
is based on a greedy procedure in which the graph is
iteratively searched for its maximum clique and pruned
with a constant threshold. The version assessed in this
work is an improved algorithm proposed in [18], which
automatically optimizes the pruning threshold at each
iteration to reach a target graph density ϵG. In order to
maximize the system performance, a heuristic optimiza-
tion of ϵG is performed.

2) MADOC Scheduler [17]: The Multiple Antennas Down-
link Orthogonal Clustering (MADOC) algorithm uses
the CoC matrix as a metric to find ϵ-orthogonal user
groups, i.e., groups of users in which the CoC does
not exceed a predefined threshold ϵM . As for the first
scheduler, the value of this parameter is optimized to
maximize the overall system capacity.

V. RESULTS

In this section, we analyze the scheduling performance of
an NTN LEO satellite serving NTCP-distributed users and
compare the results with the system performance under the
uniform distribution assumption. The assessment was carried
out by means of Montecarlo simulation on MATLAB with 105

iterations. The set of parameters was chosen as in [16], except
for the carrier frequency and channel bandwidth, which are
here set to 20 GHz (λ ≃ 1.5cm) and 400 MHz, respectively.

TABLE II
SCHEDULERS’ OPTIMAL PARAMETERS AND RESULTS

Scheduler Uniform NTCP
Optimal
ϵ

Max Clique 0.945 0.950
MADOC 0.480 0.855

TP
(10%-ile)

Max Clique 42.42 Mbps 16.72 Mbps
MADOC 43.61 Mbps 25.53 Mbps

SR
(10%-ile)

Max Clique 112.22 Gbps 11.67 Gbps
MADOC 131.38 Gbps 51.01 Gbps

Fig. 5. CDF of the user throughput, comparing the proposed model (solid
line) with the uniform distribution (dashed line).

We considered a coverage area with an average UT density
of 0.05 UTs/km2. The propagation model was based on the
Line of Sight model reported in 3GPP TR 38.811 [19].

First, we determined the values of the schedulers’ ϵ pa-
rameters that maximize the SR (Table II). One can notice
that MADOC’s optimal parameter for the uniform distribution
would not be suitable in a real deployment. Specifically, ϵM
in NTCP is significantly higher than its uniform counterpart,
suggesting that more users need to be scheduled in the same
group to maximize the SR in NTCP. However, this also
suggests that more interference is to be expected, leading to
users with low SINR and TP.

Figure 5 reports the TP CDFs. The graph shows that 10%
of the non-uniformly distributed UTs can expect a maximum
perceived throughput of 25.53 Mbps with MADOC. However,
when users are assumed to be deployed uniformly, the same
fraction of UTs experience a TP of at most 43.61 Mbps.
Similarly, the low 10%-ile of the NTCP Max Clique CDF
is 16.72 Mbps, compared to 42.42 Mbps under uniform distri-
bution. It must be noted that, despite the large overestimation
of the TP 10%-iles that comes with the uniformity assumption
(70% with MADOC and 154% with Max Clique), the NTCP
reveals that the number of UTs with high throughput (TP >
70 Mbps) scheduled using Max Clique is underestimated. In
general, it is clear that tests on uniformly distributed UTs lead
to an overestimation of the system fairness. Figure 6 shows an
even worse trend for the SR. Specifically, while the uniform
distribution promises a sum-rate capacity with MADOC of at
most 131.38 Gbps in 10% of the clusters, the figure drops
to 51.01 Gbps in NTCP. The worst performance difference
is with Max Clique, an overestimation of the 10%-iles of
SR of 862%, from 112.22 Gbps to just 11.67 Gbps. Table II



Fig. 6. CDF of the per-cluster sum-rate capacity, comparing the proposed
model (solid line) with the uniform distribution (dashed line).

reports the mentioned 10%-iles for a direct comparison. The
results prove that the uniform assumption is far from being
reliable for the evaluation of scheduling in NTN and, more in
general, of SatCom procedures, when the user density is large
enough to reveal the UTs’ clustered nature. This is due to
the large correlation that non-uniform distributions introduce
between users’ channel vectors. With high correlations and
large optimal ϵ parameters, the amount of interference strongly
limits the system performance. Furthermore, while one may
consider the uniform distribution as a benchmark to evaluate
algorithms for NTN procedures, it must be noted that their
relative performance may not necessarily be representative of
the real-world difference. Indeed, Figure 5 shows that the two
schedulers could be considered equivalent in terms of TP if
assessed under uniform distribution, but the NTCP reveals a
clear advantage in using MADOC to improve the TP 10%-
iles and the fairness. Finally, this study motivates the need for
algorithms to tackle challenging UT distributions.

VI. CONCLUSIONS

In this work, we presented a procedure to simulate user
distributions in NTN systems based on CPs. The model
represents more accurately the real population distribution
for a considered use case, overcoming the approximations
introduced with the more often used uniform distribution.
To tailor the model to the statistics of the coverage area,
we extracted population statistics by means of clustering
over population count datasets. Empirical results show that
the uniform assumption may severely overestimate critical
NTN KPIs. In the case of user scheduling, the SR 10%-
iles may be more than an order of magnitude smaller than
what is estimated assuming uniformly distributed users. Hence,
we conclude that it is of primary importance to assess the
performance of NTN algorithms under NTCPs. Future works
may further extend the analysis to several SatCom procedures,
such as Random Access and interference management in NTN,
and propose novel algorithms tailored for NTCPs.
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