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Abstract
Joint Transmission (JT) is the dynamic coordination of transmission and/or recep-
tion at multiple geographically separated sites to improve end-user service quality.
When user equipment receives signals from multiple sites, downstream performance
improves. An optimization problem arises in selecting the best user subset for JT
within a multiple-input–multiple-output (MIMO) system. Unfortunately, a pure brute-
force approach is not feasible due to exponential time growth with user combinations,
unsuitable for real-time selection inmobile networkswith users continuously changing
in time. This article proposes quantum-compliant heuristics using quadratic uncon-
strained binary optimization (QUBO) for JT user scheduling. QUBO handles initial
user selection, followed by brute-force exploration for the solution. Numerical results
indicate that quantum-compliant methods decrease solution time without substantial
accuracy loss compared to brute-force methods.

Keywords Joint transmission · Multiuser multiple-input–multiple-output ·
Multi-users scheduling optimization · Quadratic unconstrained binary optimization ·
Quantum computing · Hybrid quantum-classical algorithm

1 Introduction

Wireless Multiple-Input–Multiple-Output (MIMO) communication systems [1–4]
involve multiple antennas at both the transmitter and receiver to enhance data through-
put, reliability, and coverage. Different data streams are transmitted and received
simultaneously, exploiting the spatial diversity of the wireless channel.

Joint Transmission (JT), commonly named Coordinated MultiPoint (CoMP) in
themobile access network context, is amultiuserMIMOsystemwhich aims to improve
users’ service quality by pre-compensating the Inter-Cell Interference (ICI) compo-
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nents, i.e., increasing the Signal-to-Interference-and-Noise-Ratio (SINR), through
a beamforming technique. This consists of splitting information symbols among dif-
ferent base stations (BSs) to maximize the transmission rate (TR) of served users,
making the channel’s attenuation and phase-shifting effects negligible.However, atten-
uation could imply a preliminary signal amplification unsustainable by each BS, thus
necessarily requiring the definition, for each symbol associatedwith a user to be served,
of a power scaling transmission factor ps < 1, which is also responsible for TR
reduction.

An optimization problem, looking for the optimal subset of users to be served in
each time slot, can be identified to make the most of the mechanism. From a practical
perspective, it consists of finding the subset of users having the highest TR after
defining the highest ps values not exceeding the BSs maximum power. This subset
can be theoretically identified by evaluating all those possible iteratively. For each of
these, the optimal ps values for the considered users must be found (e.g., exploiting
a convex optimizer), and then the total TR can be computed. However, this brute-
force approach can be computationally expensive and becomes unfeasible for many
potential users because of subsets factorial scaling. It must be always reminded that
in JT-based systems users change in time and the optimal subset in a given time frame
must be detected in the shortest time possible. For this reason, it is important to define
strategies for the solutions space exploration characterized by a good trade-off between
the quality of the solution and the execution time.

Quantum computation [5] can offer advantages in tackling search and optimization
problems. Thanks to quantum superposition and entanglement, it virtually performs
a simultaneous evaluation of multiple possibilities, data, and combinations, thus sig-
nificantly accelerating search processes. These features hold promise for addressing
optimization problems, where quantum algorithms and procedures can find solu-
tions with higher quality or in a lower time than classical methods. Reminding that
quantum computing has already provided interesting results when solving problems
concerning wireless communications [6–9], the investigation of the potentialities of
this paradigm for users scheduling in JT-based MIMO systems can be considered
reasonable.

This work is going to propose new approaches—one based on quantum-complaint
heuristic (QUBO-assisted), the other on a simplification of the ps exploration
(Naïve)—and to compare them with the brute-force one in terms of total execution
time and quality of the obtained solution. The analysis was performed with ad-hoc
developed software prototypes, verifying the effectiveness of the proposed methods.
A longer-term perspective of this work can be the definition of a distributed comput-
ing system for monitoring the JT mechanism in a quite small time window based on
application-specific hardware.

The article is structured as follows. Sect. 2 introduces JT mechanism in wireless
MIMO systems, the fundamentals of QUBO formulation are described in Sects. 3, 4
presents the proposed quantum-compliant strategies for JT scheduling optimization,
Sect. 5 discusses results, and Sect. 6 concludes the article with some future perspec-
tives.
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2 Joint transmission theoretical foundations

In this section, the mathematical formalism and the working principles of JT systems
are introduced. It emphasizes that it follows the mathematical formalism described in
[10], which is based on a phasor-domain representation for sinusoidal signals and
normalizes electric powers to an implicit resistance (Pnormalized = |V |2).

2.1 MIMOmodel

In a wireless MIMO system with NBS base stations (BSs) (composed of a single
antenna) and S ≤ NBS receiving users, the nth BS transmits a symbol xn , which
is received by a user s as hsnxn , where hsn is a channel coefficient related to path-
loss attenuation and random phase shift of the transmitted signal. The overall signal
received by user s is given by:

ys =
NBS∑

n=1

hsnxn + θs, (1)

where θs is the intrinsic thermal noise. Therefore, the MIMO system transfer function
can be represented in matrix form as:

Y = H · X + θ , (2)

where H ∈ C
S×NBS is the channel matrix, X and Y are transmitted and received

signal vectors and θ is the intrinsic thermal noise (TN) vector. Assuming that each
BS transmits the symbol of one user, which implies NBS = S and xs = bs , the user s
receives the signal:

ys =
NBS∑

n=1

hsnxn + θs = useful
hss xs +

interference
NBS∑

n=1,n �=s

hsnxn + noise
θs . (3)

It is characterized by two unwanted components: the interference of the signals trans-
mitted by other BSs and the intrinsic thermal noise,

SINR
�= Puseful

Pinterference + Pnoise
= |hss xs |2

∑NBS
n=1,n �=s |hsnxn|2 + σ 2

θ

, (4)

where σ 2
θ is the TN power. SINR is also used to determine the transmission rate

(TR) over a fixed bandwidth B:

r
�= B log2 (1 + SINR) . (5)
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Fig. 1 Conceptual scheme of a MIMO system with Joint transmission. N BSs are exploited to transmit
S symbols to S users. The symbol bs to be transmitted to user s is associated with the base station n
according to the element wns of the beamforming matrix, while the signal of the BS n is provided to user
s according to the element hsn of the channel matrix. The received signal ys of each user depends on the
linear combination of the BS signals and on the thermal noise ns (Color figure online)

Maximizing SINR is crucial for maximizing the transmission rate because bandwidth
is typically constant.

2.2 Join transmissionmechanism

In JT-based networks, the goal is to remove interference through compensation by
distributing user symbols (bs)— equal to one in this work—to all base stations (BSs)
through a technique called beamforming (Fig. 1). Therefore, each BS transmits a
linear combination of user symbols:

xn =
S∑

s=1

wnsbs , (6)

thus making the received signals equal to:

Y = H · X + θ = H · (W · b) + θ , (7)

where W ∈ C
NBS×S is the beamforming matrix engineered to compensate for inter-

ference and H depends on the environment (H × W = Idim{S} ⇔ W = H†, where
Idim{S} is the identity matrix and H† is Moore-Penrose inverse matrix of H ).

Beamforming also implies signal amplification of the transmitted signal against
channel attenuation, potentially exceeding the maximum supported power
(
∑S

s=1 |wnsbs |2 ≥ PmaxBSn ), so a power partition factor (ps) is introduced for each
symbol. In this way, user s receives the following signal:

ys = hsswss
√
psbs + θs , (8)
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and the TR can be written, according to the Shannon–Hartley theorem, as:

r
�= B log2

(
1 + ps |bs |2

σ 2
θ

)
. (9)

For optimizing the performance of a mobile network, the goal is to maximize the
overall TR of the network:

find max
{
rSserved

} = max

{
B

∑

s∈Sserved
log2

(
1 + ps |bs |2

σ 2
θ

)}
. (10)

In practice, there are more potential users (NUE) than BSs (NBS), and finding the best
user subset involves iterating through all possible subsets and optimizing ps for each
user in each subset. Considering the increasing monotone metric in Eq.9, the optimal
ps values of a given user subset can be identified with a convex optimizer.

The hardness of the task comes from the necessity of solving Nsubset = (NUE
S

) =
NUE!

S!(NUE−S)! convex optimization problems and compare the obtained results for the
selection of the best subset of users (brute-force method). Therefore, the complex-
ity scales factorially with the number of users, thus making brute-force exploration
unfeasible.

In this article, alternativemethods are proposed to overcome this computational lim-
itation, as quickly identifying the optimal user subset is essential in JT-based systems
where users change over time.

3 Quadratic unconstrained binary optimization

QUBO modeling and quantum computational paradigms for QUBO problem solving
are briefly introduced in the following. More details are available at [11–13].

3.1 Mathematical model

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical formu-
lation capable of describing many real-world problems [11]. The term Optimization
suggests the goal of this formulation: to minimize an objective function. As the term
Binary implies, it employs unipolar binary variables (0/1). The Quadratic term refers
to the highest power applied to variables, while Unconstrained indicates that the con-
straints on variables are not introduced in a standard way. The objective function can
be written as:

Obj(c, ai , bi j , xi ) = c +
∑

i

ai · xi +
∑

i< j

bi j · xi x j , (11)
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where xi ∈ [0, 1] is a binary variable, xi x j is a coupler of two variables, ai is a single-
variable weight, bi j is a strength which controls the influence of variables i and j and
c is an offset, which can be neglected during the optimization.

In reality, QUBO formulation can take into account the variable constraints, intro-
ducing quadratic penalties to the objective function

minimize/maximize y = f (x) + λg(x) , (12)

where λ is a positive penalty parameter to be multiplied by the constraint function
g(x). This trick allows the evaluation of constraints during the solver execution, but
correctly sizing λ is critical and can affect the solution quality. In fact, a too-low value
makes the constraint function negligible, while a too-high value flattens the objective
function. According to [11], λg(x) should be a fraction (∈ [75%; 150%]) of f (x).

It is possible to prove that the objective function of a QUBO problem is equiv-
alent to the Ising Hamiltonian, used in statistical mechanics for the description of
ferromagnetism in terms of atomic spins:

H =
∑

i

hi · si +
∑

i< j

Ji j · si s j . (13)

Ising model involves bipolar binary variables (si ∈ {−1,+1}, associated with spin
orientations) instead of unipolar ones, hi is the single-spin external field, whose sign is
related to the preferred orientation of a spin with respect to that of an applied external
field, and Ji j magnitude and sign quantify the interaction between neighbor spin pairs
and their preferred alignment (ferromagnetic or anti-ferromagnetic), respectively. It
is possible to move from Ising to QUBO representation (and vice-versa) with the
following relations:

xi = 1 + si
2

,

si = 2xi − 1 .

(14)

Even though the conversion changes the values of the single-variable and two-variable
coefficients, the optimal solution does not change. A QUBO solution variable equal
to 0(1) has a corresponding Ising solution variable equal to -1(+1).

3.2 Solving QUBOmodels with quantum computers

QUBO and Ising are the currentlymost feasible formulations for exploiting quantum-
related solvers. Quantum computing is a computational paradigm which exploits
quantum mechanics for executing calculations. It is possible to define quantum algo-
rithms capable of solving specific problems with a computational complexity lower
than their corresponding classical counterparts. This is possible thanks to quantum
principles [5] like:

• Superposition, allowing the implementation of a virtual parallel computation;
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Fig. 2 Exploration capabilities and limits of quantum annealing (left) and simulated annealing (right). The
first can efficiently explore the rough part of the energy landscape, while cannot easily overcome the wide
energy barrier. On the contrary, simulated annealing exploits thermal fluctuations to overcome the wide
energy barrier but shows more difficulties with high and narrow peaks (Color figure online)

• Entanglement, an intrinsic interaction between quantum systems exploitable to
accelerate the convergence to the problem’s solution;

• Tunneling, thanks to which quantum systems and particles can pass through high
and narrow barriers instead of jumping them, as done by classic methods, such as
hill climbing and simulated annealing.

The two most consolidated quantum computation paradigms are the general-purpose
quantum circuit model and the special-purpose quantum annealing. In the first
case, operations are executed in terms of quantum gates [5], a sort of extension to
qubit (the unit of information of quantum computing) of logic gates employed in
classical computing.

In quantum annealing [14], an objective function is mapped onto the energy profile
of a quantum physical system, so its minimum-energy state can be associated with the
problem’s optimal solution. This can be achieved with quantum properties, like super-
position, tunneling, and adiabatic evolution, differently from the classical simulated
annealing, where the barrier is jumped instead of tunneled.

The barrier-overcoming mechanism is strictly related to the fact that the effective-
ness of an optimization algorithm on a specific problem is strongly related to the
characteristic of its energy profile [15]. For example, simulated annealing and other
approaches based on local search can overcome wide and smooth barriers more easily
than high and narrow ones, while, on the contrary, quantum annealing performs well
with high and narrow peaks and is expected to be less effective in exploring vast and
flat regions [16, 17].

The energy profiles associated with real-world problems are usually heteroge-
neous, as reported in Fig. 2. This implies that the probability of success of each solver
depends on the compatibility of its exploration mechanism with the problem’s energy
profile region and that the definition of alternativeQUBOmodels for the same problem
could imply so different profiles that their best solver could change.

Current quantum annealers natively encode and solve Ising problems, so a QUBO
problem can be solved by translating it into an Ising one—according to (14)—and han-
dling the partial connectivity of the backend with minor embedding techniques [18].
Moreover, these are generally affected by errors that can be associated with deco-
herence phenomena; for this reason, quantum-inspired techniques, such as digital
annealing [19], simulated quantum annealing [13] and simulated adiabatic bifurca-
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tion [20], have been proposed to emulate the quantum annealing behavior on classical
hardware, thus avoiding errors associated with qubits decoherence.

The same issues concerning qubit connectivity and decoherence are observed on
quantum computers based on the circuit model. Moreover, the currently best pro-
cedures exploiting these quantum computers to solve QUBO/Ising problems require
the assistance of classical computers [21–23]. In the context of this article, quantum
annealing is employed as quantum QUBO solver, since real hardware based on this
paradigm [24] is nowadays capable of processing more QUBO variables than the
corresponding one based on the circuit model [25].

4 Proposed solutions

This work proposes alternative approaches for reducing the computational complexity
and the time required for selecting the optimal subset of JT-served users. The first pro-
posal (Sect. 4.1), called Naïve, simplifies the ps exploration for each subset, accepting
sub-optimal solutions. The second approach performs a quantum-compliant prelim-
inary fast-approximated user selection, whichwill be examinedwith the brute-force
method. In this strategy, the user set reduction is done by exploiting a QUBO model
(Sect. 4.2).

Before discussing the two proposed solutions, it is important to clarify that they
operate at the single-BS-triplet level and in a specific sub-channel. As detailed in
Sect. 5.1, in a specific sub-channel users could receive signals from more than three
BSs belonging to different triplets. For this reason, in a specific sub-channel, users are
preliminarily separated in such a way that each of them is associated with a single BS
triplet. In particular, each user is associated with the triplet whose BSs are all capable
of providing a signal hsnxn �= 0 (Equation (1)) and the highest receivable power,
according to TIM S.p.A. MIMO simulator. If the previous condition is not satisfied,
the same procedure is applied by decreasing the highest number of BSs providing
non-null received signals.

The described procedure can be repeated for all sub-channels of the analyzedMIMO
system. Assuming that the optimization BS-triplet-level problems of each sub-channel
can be analyzed independently on those of the other sub-channels, tasks can be also
parallelized.

4.1 Naïve

The problem’s computational complexity can be reduced, assuming all the S users in
each subset have the same ps . In this way, the ps , allowing each BS to transmit at
its maximum power, can be computed independently of the others; then, the power
constraint is satisfied for all the NBS available BSs by choosing the lowest ps .
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Fig. 3 Block scheme of the proposed quantum-compliant approach, where users are reduced by solving a
QUBO problem and a classical computer evaluates all the reduced users’ set combinations, identifying the
optimal power partition factor and the best users to serve (Color figure online)

An algebraic example with three BSs and two users is reported in the following;

⎡

⎣
|w11|2 |w12|2
|w21|2 |w22|2
|w31|2 |w32|2

⎤

⎦
[
p1
p2

]
=

⎡

⎣
|w11|2 p1 + |w12|2 p2
|w21|2 p1 + |w22|2 p2
|w31|2 p1 + |w32|2 p2

⎤

⎦ =

if p1=p2=
⎡

⎣
(|w11|2 + |w12|2)p
(|w21|2 + |w22|2)p
(|w31|2 + |w32|2)p

⎤

⎦ ≤
⎡

⎣
PmaxBS
PmaxBS
PmaxBS

⎤

⎦

p = min

⎧
⎨

⎩

⎡

⎣
PmaxBS/(|w11|2 + |w12|2)
PmaxBS/(|w21|2 + |w22|2)
PmaxBS/(|w31|2 + |w32|2)

⎤

⎦

⎫
⎬

⎭ .

(15)

The total time required to find a solution is reduced because the convex optimizer
is not involved. However, the obtained solution is sub-optimal because only one
BS transmits at the maximum power, so exploiting all the antennas at their best is
impossible.

4.2 Quantum-compliant users set reduction

The second approach divides the problem into two parts:

• Reduction of the user set with a QUBO optimization problem to solve in a
quantum or classical way;

• Application of the convex classical solver for optimizing the power partition factors
on each combination of users in the reduced set, to find one with the highest total
transmission rate.

Therefore, the QUBO solver allows a first screening of the users, based on their
characteristics and the problem constraints, to analyze with the accurate but more
complex brute-force approach.

This strategy, which is graphically represented in Fig. 3, and whose pseudocode
is reported in Algorithm 1 significantly reduces the computational complexity and
the execution time, without affecting significantly the quality of the final solution.
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As shown in the aforementioned figure, a feedback mechanism could be inserted to
improve the quality of the user reduction performed by the QUBO solver.

From a theoretical point of view, a hybrid approach, where the quantum-compliant
method exploits the Naïvemethod in its second step, can be considered. However, this
is not reported in this article because it is expected to require more execution time than
the Naïve-only approach and to provide solutions with lower transmission rate than
the canonical quantum-compliant method involving the convex optimizer.

Algorithm 1 Quantum-compliant optimization method for a single BS triplet and a
specific sub-channel

Input: H , σ 2
n , PmaxBSn and NUE

Output: Sservedbest and rmax
Users reduction:
generate QUBO (H , σ 2

n , PmaxBSn ,NUE, NBS)
solve QUBO with a classical or a quantum solver
obtain the users reduced set NUEreduced from QUBO solution

Brute-force:
rmax = 0
/* For each users combination */
for all Sserved do

W ← H(Sserved)†

compute ps(W , PmaxBSn )

rSserved ← ∑
s∈Sserved B log2

(
1 + ps

σ 2
θ

)

if rSserved > rmax then
rmax ← rSserved
Sservedbest ← Sserved

end if
end for
Return: Sservedbest and rmax

4.2.1 First QUBO formulation

The data structure of the proposed QUBO formulation is fundamentally a matrix
NUE × NBS of unipolar binary variables (as shown in Fig. 4a), one for each user–BS
pair, in which rows are devoted to users, while columns to BSs. The xsn variable
assumes value one if the nth BS serves the sth user.

Considering that the optimal subset of users has to be identified such that the total
TR is maximized without exceeding the BSs maximum power, a similarity to the
well-known knapsack problem (shown in Fig. 4b) [11] can be found. Indeed, it aims
to define, for a set of objects X , each of which is labeled as xi and is characterized by a
weight wi and a preference score pi , the best subset to be put into a bag, guaranteeing
that the total weight does not exceed a threshold W (0 <

∑dim(X)
i=1 wi xi ≤ W ) while

maximizing the total preference score P = ∑dim(X)
i=1 pi xi .
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Fig. 4 Structure of the binary variables chosen, which is, fundamentally, a NUE × NBS matrix of unipolar
binary variables—xsn is equal to one (colored red) if the nth BS serves the sth user in the optimal solution,
and graphical representation of the principle of the knapsack problem exploited for the QUBO formulation
(Color figure online)

For each BS of the group employed for the JT, i.e., for each column, the problem
has to satisfy knapsack-like conditions:

• Maximization of the TR, which plays the role of the total preference scores;
• Verifying that the BS transmitted power does not exceed the maximum one, which
is equivalent to assuring that the objects’ total weight is lower than a certain
threshold.

In the QUBO formulation, for optimizing the overall TR of the network, it was
chosen to optimize the sum SNR:

find max

{ ∑

s∈Sserved

ps |bs |2
σ 2

θ

}
. (16)

This choice was made because, under the Shannon law assumption, TR has a logarith-
mic dependence fromSNR,which introduces a nonlinearity that is not compatiblewith
QUBO formulation. Optimizing the sum of SNR of the network can be a simpler and
more tractable approach.Moreover, by improving the SNR of each link in the network,
the overall quality of the communication channels is expected to be improved.

Even if optimizing the sum of SNR of a mobile network may not directly guarantee
the highest TR sum, it can be a reasonable approximation, since the optimization of
the SNR sum usually leads to the optimization of the overall system’s TR.
Moreover, since theBSs have to serve the same users, the completeQUBO formulation
requires more than the combinations of NBS parallel knapsack problems. In particular,
all variables in a row must be all equal (as shown in Fig. 5a), thus ensuring that a user
is served by all the BSs or not, and the sum of binary variables on a column must be
equal to S (as shown in Fig. 5b), so that the BSs serve a total number of users equal to
S.
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Fig. 5 Constraints (Color figure
online)

Fig. 6 Graphical representation
of the SNR optimization and a
possible final solution (Color
figure online)

To summarize, the cost function is composed of four contributions:

1. Maximize SNR:

fSNR(x) = −
∑

s

ps
σ 2

θ

∑

n

xsn , (17)

where ps is the power scaling factor of the sth user, σ 2
θ is the thermal noise power,

and theminus sign is required tomove themaximization problem to aminimization
one. This term tends to force all xsn to one. As observable in Fig. 6a, Boolean
variables belonging to the same row/user have the same ps . Moreover, different
purple intensities refer to the different ps , and consequently SNR, of users;
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2. Power constraint, i.e., the BS maximum power must be not exceeded:

fpow(x) =
∑

n

[∑

s

|wsn|2 psxsn +
∑

i∈A

αi ai − Pmax

]2
, (18)

where |wsn|2 ps is the power required to the nth BS to transmit the symbol bs to the
sth user, Pmax is the maximum power available for each base station, ai is the i th

auxiliary variable required for expressing the inequality constraint (as presented
in [11, 26] the number of auxiliary variables required depends from Pmax value),
and αi is the weight of ai ;

3. Row constraint, i.e., all BSs have to serve the same users:

frow(x) =
∑

s

[(
∑

n

xsn

)
− NBS

]2

; (19)

4. Column constraint, i.e., the number of users served by each BS has to be equal
to S:

fcolumn(x) =
∑

n

[(
∑

s

xsn

)
− S)

]2

. (20)

Therefore, the final objective function is:

f (x) = λ1

column constraint
∑

n

[(∑

s

xsn

)
− S)

]2
− λ2

maximize SNR∑

s

ps
σ 2

θ

∑

n

xsn+

+ λ3

row constraint
∑

s

[(∑

n

xsn

)
− NBS

]2
+ λ4

power
f pow(x),

(21)

where λ1···4 are the weights of the objective function terms to be properly sized, as
mentioned in Paragraph 3. The principles behind the QUBO formulation are graphi-
cally resumed in Fig. 7.

As mentioned, fpow allows the expression of the inequality contribution in QUBO,
translating them as equality constraints by adding auxiliary variables whose number
depends on the Pmax values, as explained in [11, 26]. Python libraries for QUBO
problem formulation, such as qubovert [27], can automatically do this transformation.
However, introducing the auxiliary variables could dramatically increase the QUBO
model and, consequently, the time required for its resolution, thus also reducing the
advantage of employing the proposed solution. Therefore, this is the strongest limit
of this QUBO formulation.

Unfortunately, the final solution could be similar to the one reported in Fig. 6b,
where the elements of each row have different values. A cause could be the not-perfect
sizing of penalty parameters. However, the proposed solver can activate a majority
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Fig. 7 Overview of QUBO model for users selection: graphical description of the knapsack-like problem
associated with BSmaximum power (left), QUBO variables data structure with row and column constraints
(middle), an expectedQUBO result, i.e., a subset of users, and an example of a problem cost function (right)
(Color figure online)

voting mechanism, performing a sort of error mitigation: when more than half of the
elements on a row are equal to one, the corresponding user is selected for the second
step of the algorithm.

Another problem to be managed is when the reduced subset size is smaller than S.
In this case, the solver modifies the weights λ2 and λ4 and tries to solve the QUBO
problem again. This procedure, substantially equivalent to the so-called sequential
scaling of QUBO penalty functions [28], can be repeated a couple of times, and if the
number of users is still insufficient, the Naïve approach (Sect. 4.1) is employed. It is
also involved if the convex solver in the second step gives unfeasible negative ps .

4.2.2 Normalized QUBO formulation

The rapid increase of the QUBO problem dimension due to the insertion of auxiliary
variables for representing the inequality constraints could reduce the efficiency of the
proposed method, so evaluating a strategy for reducing the auxiliary variables number
is crucial. First, it is necessary to remember that these are inserted to transform the
inequality constraint into an equality one:

∑

s

|wsn|2 psxsn + k = Pmax , (22)

where the multi-level variable k can be described by exploiting binary expansions so
that the number of inserted variables increases as Pmax increases [26].

The first proposal for solving the presented problem is to perform a normalization
of the power factors:

∑

s

|wsn|2 psxsn
Pmax

+ k = Pmax

Pmax
. (23)
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Fig. 8 Number of binary variables required as a function of the number of users for the first, normalized
and compacted QUBO formulations (Color figure online)

In order to maintain all coherence, the constraint parameters must also be scaled by
the same quantity.

The QUBO normalization significantly reduces the number of required variables
(about one order ofmagnitude, as shown inFig. 8), thus positively impacting on solving
time.

Compacted QUBO formulation In order to further reduce the QUBO complexity,
an approximation for the power constraint can be performed, taking into account that
QUBO simply performs the first selection and the ps will be optimized in the next
step, considering the power constraint again. The proposed approximation applies an
equality constraint instead of an inequality one. In particular, it is imposed that:

∑

s

|wsn|2 psxsn = c · Pmax , (24)

where c is a reduction factor, e.g., 0.8, so that a much higher quadratic penalty is
imposed on a solution that is further from the imposed value (as shown in Fig. 9).
Solutions with a lower penalty are around the forced value c · Pmax. Considering
the proportionality between the SNR and the transmitted power, solutions with a
transmitted power close to the maximum should be characterized by a higher SNR.
This approach avoids the introduction of auxiliary variables, thus obtaining a QUBO
model with only NUE × NBS variables (a reduction of two orders of magnitude with
respect to the First formulation, as shown in Fig. 8).

Other QUBO formulations analyzed
Starting from the compact QUBO version, some constraints, which seem redun-

dant considering the role played by the others, can be removed. In particular, three
alternatives were considered:
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Fig. 9 Quadratic penalty imposed by an equality constraint (Color figure online)

Fig. 10 Overall block scheme of the quantum-compliant solver for Joint transmission allocation problem,
considering a single sub-channel, 19BS triplets, and users grouped for triplet: the environment considered by
the TIM S.p.A. simulator, with a focus on a BSs collaborating triplet, for which a dedicated JT analysis can
be evaluated (left), block scheme of the proposed quantum-compliant approach, where users are reduced
by solving a QUBO problem and a classical computer evaluates all the reduced user set combinations,
identifying the optimal power partition factor and the best users to serve (middle), graphical description of
the JT MIMO system, with the found optimal users served by BSs (right) (Color figure online)

• Compacted QUBO without column constraint (QUBO NCC): the removal
of the column constraints was considered since the power limitations should be
sufficient to select a number of users close to the wanted one.

• Compacted QUBO without power constraint (QUBO NPC): considering the
observations in Sect. 4.2 and the presence of column constraints for limiting the
number of users, the removal of the maximum power constraint can be tried.

• Compacted QUBO without SNR optimization (QUBO NSNR): since the cur-
rent QUBO works with random ps values not coming from previous experience,
the objective function SNR contribution was tried to be removed.

5 Results

This section reports themost significant results for the proposed approaches for solving
the JT optimization problem.
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5.1 Setup overview

The tests conducted in this study involved the implementation of proposed strategies
using Python and the qubovert [27] library for Quadratic unconstrained binary opti-
mization (QUBO) formulation. The best power scaling (ps) values were determined
using the Splitting Conic Solver (SCS) [29] of the CVXPy [30] library. QUBO
problems were solved using different solvers, including the D-Wave Neal simulated
annealer (SA) [31],D-Wave Leap Quantum Annealer(QA) [24], accessible through
a remote connection, and digital annealer (DA) solver [19], which was obtained by
modifying from the D-Wave Neal SA code for fair comparison.

The SA tests were performed on a single-process Intel(R) Xeon(R) Gold 6134
CPU @ 3.20 GHz opta-core, Model 85, with a memory of about 103 GB [32], while
tests comparing different QUBO solvers were carried out on a single-process Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz, with a memory of 8 GB.

In all cases, independently on the employed QUBO solver, the majority-voting-
based error mitigation technique was employed for the identification of the reduced
user set for each BS triplet.

The tests exploit synthetic datasets and data from the TIM S.p.A. MATLAB-
based MIMO simulator. The first scenario considers random sub-channel matrices
for varying numbers of users (NUE), while the second sub-channel matrices from the
TIM S.p.A. simulator, which simulated a complex environment (shown in the leftmost
part of Fig. 10). with 57 base stations, 570 users, and 52 sub-channels. The system-
level simulator for mobile networks evaluates network-level performance indicators,
such as cell capacity, user throughput distribution, radio resource utilization, and inter-
ference levels, considering a multiplicity of users and BSs. The propagation channel
is computed by following the indication provided by 3GPP in the technical report TR
38.901 [33], describing the modeling of the radio channel in the radio bands used by
5G technologies. The selected scenario is UrbanMacro (UMa), composed of a hexag-
onal grid of 19 macro BS sites, with three sectors (i.e., cells) per site and an inter-site
distance (ISD) of 500m. BSs are assumed at 25m, and a given number of pedestrian
users, moving at a speed of 3km/h, are randomly dropped in each cell (10 per cell in
the considered scenario). As per TR 38.901, different propagation laws are used to
compute path-loss and shadow for Line of Sight (LOS) and Non-Line of Sight users,
with the probability of being in LOS, computed according to the technical report.
Following the clustered delay line (CDL) approach, fast fading effects are included,
considering a CDL-B channel profile.

All parameters were computed by considering each BS triplet independently from
the others, through the method for associating each user with a single BS triplet
introduced in Sect. 4.

TheH matrix of each sub-channelwas computed as the element-by-element product
of the path-lossmatrix in linear units L and the complex dephasingmatrix P associated
with the phase shift of each signal during its transmission from a BS to a user. Noise
power was always considered constant and equal to −109dBm, for staying in a worst-
case scenario.
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5.2 Figures of merit

The following figures of merit were considered to evaluate the proposed approaches’
effectiveness:

• The number of users combination to evaluate obtained as:

nc,init =
(
NUE

S

)
= NUE!

S!(NUE − S)! (25)

in the brute-force case and as:

nc =
(
NUEreduced

S

)
= NUEreduced !

S!(NUEreduced − S)! (26)

in the QUBO-assisted case;
• The percentage of selected users from the original set:

psel = NUEreduced

NUE
· 100 ; (27)

• The complexity of the obtained QUBO formulation in terms of the number of
binary variables exploited (vq );

• The relative percentage transmission rate error:

εr = Trbrute-force − TrQUBO_assisted
Trbrute-force

· 100 ; (28)

• The time required for solving the QUBO problem (tq );
• The time required for solving the QUBO problem with the digital annealer nor-
malized for the possible degree of parallelization (tqn = tq

vq
);

• The time required for the overall optimization (tt ).

The first two figures of merit (nc and psel) evaluate the effectiveness of different
QUBO formulations in reducing the user set and selecting optimal subsets. Moreover,
the comparison between nc,init and nc quantifies the reduction in the number of convex
solver calls required when employing the QUBO-assisted approach. Furthermore, the
proposed QUBO formulations were compared in terms of binary variables amount
vq and time required for their resolution (QUBO-only) tq .

Furthermore, the DA solver could be reasonably compared with the others by intro-
ducing a post-processing normalized time tqn . In fact, since this approach gives
a computational advantage only involving parallelization (on its hand achievable
with the required amount vq only with dedicated hardware and not in software), the
performed post-processing operation permits to estimate, with a software functionally-
equivalent model, the QUBO solving time expected with the desired degree of parallel
computation.

Finally, the relative percentage TR error εr and the overall execution time tt
compare the proposed approaches and the brute-force one in terms of both results
quality and quickness.
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5.3 Comparison of different strategies

Table 1 reports some results obtained with the synthetic dataset, changing the number
of involved users NUE, with the original brute-force approach and the QUBO-
assisted strategy, considering eachproposedQUBOformulation solvedwith simulated
annealing. This solver was chosen because it can be launched locally without requir-
ing time-limited accesses to remote machines and can currently handle more binary
variables than a quantum annealer, thus allowing the validation of the proposedQUBO
model. For each NUE, five different problems solved ten times were considered for
averaging the results. The QUBO-assisted approach significantly reduces execution
timewhilemaintaining an acceptable relative error (εr ). This advantage becomesmore
pronounced with an increasing number of users (as shown in Fig. 11). The variable
reduction of QUBO formulation allows an appreciable reduction of the time required
for solving it, which results in a reduction of the total execution time, even if less
evident because, in the QUBO-assisted approach, tq has a limited weight on tt .

The complexity advantage of the proposed QUBO-assisted strategy is highlighted
in Fig. 12a, reporting the number of saved convex solver calls as a function of the
number of users. Additionally, Fig. 12b compares the number of convex optimizations
required by the brute-force and the proposed QUBO-assisted approaches, varying the
number of users. It is evident that the complexity reduction increases with the problem
dimension, consistently with the time advantage demonstrated in Fig. 11.

Table 2 shows the results obtained by solving two synthetically generated prob-
lems for each NUE ten times with the original brute-force approach and with the
proposed Naïve and QUBO-assisted strategies, considering the first three formula-
tions of Sect. 4.2. It is possible to notice that theNaïve approach allows amore relevant
reduction of the execution time than the QUBO-assisted one but at the expense of the
quality of the results (Fig. 13). Moreover, it is possible to ascertain that the total exe-
cution time tt is usually increasing with the number of users for all the QUBO solvers
and that psel usually tends to decrease with higher NUE. The apparent exceptions in
psel trends are expected to be overcome by increasing the number of repetitions for
averaging the results and by improving the choice of QUBO penalty weights with
a feedback mechanism. These trends also allow one to justify the tt values obtained
for Normalized QUBO and Compacted QUBO, which are, with NUE = [35; 40],
lower than those obtained with NUE ≤ 30. In fact, the contribution of the QUBO
solving time tq in the calculation of tt is, in these cases, more negligible than in the
other QUBO-assisted strategies, so the total execution time mainly depends on the
brute-force exploration time, which is lower for NUE = [35; 40] because of a lower
nc.

Table 3 presents the results obtained with data retrieved from the TIM S.p.A. sim-
ulator with all the analyzed approaches, with QUBO problems solved with simulated
annealing. In particular, the results of the triplet of BSs 1-6-20 (NUE = 30) of Fig. 10
for different sub-channels are reported. According to the performed tests, the same
overall trends in the results can be observed for other triplets and sub-channels. Also
in this case, the Naïve approach gives the lowest execution time but the worst results,
since the obtained transmission rates are about 40% lower than those obtained with the
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Fig. 11 Graphical view of the results of Table 1 (Color figure online)

Fig. 12 Reduction of the computational complexity achieved with the proposed QUBO-assisted user selec-
tion (Color figure online)
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Fig. 13 Graphical view of the results of Table 2

Fig. 14 TIM S.p.A.
MATLAB-based MIMO
simulator data. BSs are
separated in 19 triplets and
simulations can be performed on
each of the 52 sub-channels

brute-force exploration. On the other hand, apart from NCC, QUBO models allow a
reduction of the selected users for brute-force exploration of more than 25%, thus also
reducing tt . From the transmission rate perspective, εr never exceeds 12.4%, which is
about three times lower than the value obtained with the Naïve approach. In general,
the QUBO NSNR seems to be the best approach, since it achieves the best trade-off
between low execution time (in terms of psel or tt ) and transmission rate (εr , never
exceeding 6%) (Fig. 14).

Finally, Table 4 proves how the chosen QUBO solver influences the solution time
and the quality of the results (Fig. 15). Results are associated with tests performed by
solving one synthetically generated problem for each NUE ten times. The synthetic
data were chosen because they permit to granularly change the number of users and the
application of QA also for the First QUBO formulation. It is possible to recognize the
flexibility of QUBO formulation, which can be solved by a classical optimizer (SA),
a quantum one (QA) and a quantum-inspired one (DA). In evaluating QA results,
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Fig. 15 Graphical view of the results of Table 4
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it is necessary to consider that the solving time also includes the one required for
minor embedding (which increases with the number of involved variables), for remote
connection and any waiting one spent in the execution queue (the effective annealing
time was set to 100µs). Furthermore, the First QUBO formulation was solved by
QA only until the number of users was lower than eight because current devices
cannot embed larger problems. The best solver (in terms of the quality of the results)
depends on the QUBO formulation considered. This is coherent with the expectation
because, as already discussed when Fig. 2 of Sect. 3.2 has been commented, modifying
the QUBO formulation changes the energy profile of the problem and, consequently,
the effectiveness of classical and quantum explorations [13, 15]. According to the
performed tests, SA is most frequently characterized by the lowest εr with the QUBO
formulations with all constraints. This could be traced back to the fact that the presence
of auxiliary variables or the current choice of λ values for the constraints penalty
functions imply a problem’s profile characterized by wide barriers, not necessarily
high. On the other hand, the reduction of variables obtained with normalization and
the removal of some constraints imply an overall quadratic profile with narrower
barriers, which are more suitable for QA and DA solvers. In particular, QA seems to
be the best solver for QUBO NCC formulation, while DA is the best for NPC and
NSNR formulations.

It is also interesting to observe that QA and DA achieve, for low NUE values, results
in terms of εr very close to SAwith QUBO formulations without constraints removals,
usuallywith a lower psel, thus having a smaller reduced user set and a consequent brute-
force exploration with less iterations. For this reason, in a performance-complexity
trade-off evaluation, the quantum and quantum-inspired methods can be considered
competitive with respect to a classical QUBO solver.

6 Conclusions

This work proposed new strategies for optimizing the JT mechanism, in terms of TR,
according to the potential users and the constraints on BS transmitting power. The
results show that the QUBO-assisted mechanism achieves a better trade-off between
execution time and the quality of the solution, compared to the brute-force and Naïve
approaches. Indeed, the first gives the best solution but its execution time scales facto-
rially, while the other gives the lowest solving time but gives results with poor quality.
At the same time, QUBO-assisted solvers guarantee a significant reduction of the
execution time without excessively degrading the performance. Coherently with the
expectation, the Compacted, NPC and NSNR QUBO formulations, having the lowest
number of binary variables, give the lowest execution time with performance com-
parable to First and Normalized formulations. Moreover, the performance obtained
employing SA,QA, andDA solverswas compared, showing that the best solver strictly
depends on QUBO formulation.

QUBO-assisted method can be undoutedly improved, exploiting alternative tech-
niques for λ tuning. For example, scaled-sequential scaling and binary-search
scaling [28] can be considered when the identified candidate users set is too low.
Moreover, a feedback mechanism should be implemented (green arrow in Fig. 10) for
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adjusting the penalty weights of the different contributions in the QUBO formulation,
exploiting the previous experience and performing the QUBO optimization with the
ps values computed in the previous time slot, instead of generating them randomly.
This approach can be considered reasonable assuming that the users’ spatial motion
should be limited during the time-slots of evaluation of the optimization problem,
thus not dramatically changing their contribution in the channel matrix H . Finally, it
is interesting to remind that the state of art presents some methods for a preliminary λ

estimation [34–37], thus allowing reasonable initial weights for the constraints of the
optimization problem.

The performed analysis with software prototypes lays the fundamentals, in the long
term perspective, for a distributed computing system which can optimize in a quite
small time window the JT mechanism. In particular, the idea is to have a hardware
(Field-Programmable Gate Array or an Application-Specific Integrated Circuit [38])
solver in each BS or in each group of interacting BSs, which allows the optimization
of the group of collaborating transmitting antennas. The design of a specialized archi-
tecture should guarantee the reactivity of the system, acquire information from sensors
and work in a relatively small window of time. The flexibility of QUBO allows for the
use of classical, quantum-emulated, or quantum-inspired solvers. Remote connections
to quantum annealers are also anticipated as scaling improvements are expected.

Improvements are not strictly related to the definition of the QUBOmodel, but also
concern benchmarking. In fact, attempts to compare the proposed QUBO-assisted
method with alternative optimization formulations, such as linear programming [39,
40], and the solvers with other classical approaches, such as CPLEX and Gurobi, can
be done.

The proposed final distributed optimization mechanism should significantly
improve the communication quality thanks to JT, thus guaranteeing a more com-
fortable social interaction between users of wireless mobile networks.
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