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Abstract—The combination of service virtualization and edge comput-
ing allows for low latency services, while keeping data storage and
processing local. However, given the limited resources available at the
edge, a conflict in resource usage arises when both virtualized user
applications and network functions need to be supported. Further, the
concurrent resource request by user applications and network functions
is often entangled, since the data generated by the former has to be
transferred by the latter, and vice versa. In this paper, we first show
through experimental tests the correlation between a video-based ap-
plication and a vRAN. Then, owing to the complex involved dynamics,
we develop a scalable reinforcement learning framework for resource
orchestration at the edge, which leverages a Pareto analysis for provable
fair and efficient decisions. We validate our framework, named VERA,
through a real-time proof-of-concept implementation, which we also
use to obtain datasets reporting real-world operational conditions and
performance. Using such experimental datasets, we demonstrate that
VERA meets the KPI targets for over 96% of the observation period and
performs similarly when executed in our real-time implementation, with
KPI differences below 12.4%. Further, its scaling cost is 54% lower than
a centralized framework based on deep-Q networks.

Index Terms—Virtual RAN, virtualized services, resource orchestration,
machine learning, experimental testbed

1 INTRODUCTION

N Etwork Function Virtualization (NFV) and edge com-
puting are disrupting the way mobile services can

be offered through mobile network infrastructure. Third
parties such as vertical industries and over-the-top players
can now partner up with mobile operators to reach directly
their customers and deliver a plethora of services with
substantially reduced latency and bandwidth consumption.
Video streaming, gaming, virtual reality, safety services for
connected vehicles are all services that can benefit from
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the combination of NFV and edge computing: when imple-
mented through virtual machines or containers in servers
co-located with base stations (or nearby), they can enjoy low
latency and jitter, while storing and processing data locally.

The combination of NFV, edge computing, and an effi-
cient radio interface, e.g., O-RAN [1], is therefore a pow-
erful means to offer mobile services with high quality of
experience (QoE). However, some important aspects have
been overlooked. On the one hand, user applications are
not the only ones that can be virtualized: network services
such as data radio transmission and reception are nowa-
days virtualized and implemented through Virtual Network
Functions (VNFs) as well [2], [3], [4], [5], [6]; and both types
of virtual services, user’s and network’s, may be highly
computationally intensive. On the other hand, it is a fact that
computational availability at the network edge is limited [7].
It follows that in the edge ecosystem, user applications
and network services compete for resources, hence de-
signing automated and efficient resource orchestration
mechanisms in the case of resource scarcity is critical.

Further, looking more closely at the computational de-
mand of virtualized user applications and at that of network
service VNFs, one can notice that they certainly depend
on the amount of data each service has to process, but
they are also entangled [8]. As an example, consider a
user application at the edge and (de-)modulation and (de-
)coding functions in a virtualized radio access network
(vRAN). For downlink traffic, the application bitrate deter-
mines the amount of data to be processed by the vRAN;
on the contrary, for uplink traffic, the data processed by
the vRAN is the input to the application service. A neg-
ative correlation, however, may also exist: the more data
compression is performed by a user application, the higher
its computational demand, but the smaller the amount of
data to be transmitted and the less the computing resources
required by the vRAN. In a nutshell, a correlation exists be-
tween the amount of data processed/generated by virtual
applications at the edge and network services VNFs, and
such correlation can be positive or negative depending on
the type of involved VNFs.

Related joint resource problems have been addressed
before [8] albeit ignoring the complex relationship between
all system parameters and context variables and, therefore,
making simplifying assumptions that do not work in prac-
tice [9]. Our experimental analysis in Sec. 3 indeed unveils
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such complex couplings. For instance, contextual features
of the wireless link, such as signal-to-noise-ratio (SNR),
radio policies such as the modulation order and coding
scheme (MCS) selected by the vRAN, and the computing
resources allocated to the vRAN have non-linear effects on
the resulting latency and, as a result, on the amount of
buffering required by a video-based service. These issues
impair the use of modeling techniques traditionally used
for optimal resource allocation in practical situations.

To capture such trends and relations, and withstand
the above challenges, we design a flexible and scalable
framework, called VERA (Virtualized Edge for Radio and
user Applications), leveraging a model-free reinforcement
learning (RL) approach. Other authors also use model-free
approaches to address the aforementioned complex relation-
ship across different aspects of a vRAN [10], [11]. A fairly
common solution technique is based on the use of deep-
Q networks (DQN). Several resource allocation problems in
computationally constrained environments [12], [13], [14],
[15] and other related issues like joint server selection, task
offloading, and handover [16], [17], [18], [19], [20], [21],
[22], [23] in multi-access edge computing wireless networks
have been tackled through DQNs. However, extending such
approaches to a multi-service scenario falls into serious
scalability issues. To address this problem, we adopt a
distributed multi-agent learning approach. Not surprisingly,
designing a multi-agent learning framework where the ac-
tions of individual agents must collectively satisfy the hard
capacity constraints characteristic of mobile edge platforms
is inherently hard. Inspired by [24] and other literature on
autonomous driving, we decompose the policy function into
two stages; the first stage produces greedy actions based on
the context collected from the environment while the latter
refines these actions to enforce hard constraints. Unlike pre-
vious work in other settings, however, our use case requires
some notion of fairness when enforcing these constraints.
To address this, we design a novel Pareto component that
guarantees a fair Pareto-efficient solution.

In summary, we provide the following contributions:

• First, we present experimental evidence for the above
observations, through a containerised edge and a
software-defined-radio (SDR)-based vRAN testbed,
which not only forms the basis of the design of the
proposed VERA framework, but also provides a new
perspective to the problem of deploying network
services and user applications at the edge;

• Then, given the many interplaying factors and their
complex interaction, we introduce an RL model for an
effective, joint allocation of computing resources for
user applications and vRAN at the edge;

• To aid scalability, we resort to distributed learning
agents, which we complement with a Pareto analysis
for a fair and efficient decision-making, whenever
resource utilization is constrained to a given budget;

• We show the excellent performance of the VERA
framework in terms of convergence as well as its
ability to closely meet the target KPIs of all services in
resource-constraint scenarios. Specifically, we show
that, post convergence, VERA meets the KPI targets
for more than 96% of the observation period, and
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Fig. 1. Virtualized user application and vRAN at the edge: system
scenario and reference use case

that it performs similarly when executed in our real-
time proof-of-concept implementation, with KPI dif-
ferences below 12.4%. Further, we remark that the
scaling cost of VERA is 54% lower compared to a
competitive centralized framework using DQNs.

• Finally, we validate VERA through our testbed and
show that its performance is preserved when inter-
acts with a real system in real-time.

We remark that, to our knowledge, we are the first to
address the allocation of a common pool of edge resources
to different, competing, virtualized services through dis-
tributed learning, and to tackle the non-trivial correlations
existing among the behaviors of such services in a scalable
manner. Thanks to distributed learning, VERA action space
is limited (as shown in Sec. 6) thereby providing VERA an
edge over its contemporary techniques like DQNs in terms
of scalability and quality of learning. Moreover, not only
VERA can swiftly adapt to time-varying network conditions
and application traffic, but it also controls the settings of
both user applications and vRAN, selecting at each decision
step a fair Pareto-efficient solution.

The rest of the paper is organized as follows. Sec. 2 in-
troduces the reference scenario and system architecture. Our
experimental analysis is presented in Sec. 3, highlighting the
relevant components of the environment contextual infor-
mation, the target KPIs, and the driving factors determining
the system behavior. Sec. 4 describes the VERA framework,
Sec. 5 presents our proof-of-concept and testbed. Sec. 6
shows VERA’s performance, compares it against a state-of-
the art alternative, and validates our approach by running
the complete framework on our testbed. Finally, Sec. 7 dis-
cusses related work, and Sec. 8 draws our conclusions.
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2 REFERENCE SCENARIO AND SYSTEM ARCHI-
TECTURE

The system architecture and reference scenario under study
are depicted in Fig. 1. For clarity, we focus on one type of
vertical service and one virtual base station (vBS) – labelled
as Radio Unit (RU) in the figure, – implemented within
an edge computing platform. Note that, as explained in
Sec. 4, VERA is highly scalable and can effectively handle
multiple coexisting services as well as multiple coexisting
vBSs (and/or network slices therein).

As sample use case, we consider a livecast service repre-
senting a live video recording of an event that is broadcast
to multiple mobile users located therein or in the nearby
area. The high-quality source video is processed within
an edge computing platform through a standard video
transcoding service. We remark that deploying services like
livecast at the edge entails that video traffic is produced and
consumed locally, thus saving network bandwidth. Further,
it can leverage a multi-access edge computing (MEC) plat-
form and the associated Radio Network Information Service
(RNIS) [25], which, through feedback-based multicast, al-
lows the use of estimated radio channel conditions for real-
time tuning of the video coding parameters [26]. Finally,
emerging interactive services for which video streaming is
one of the essential components, e.g., crowdcast, augmented
reality and mobile gaming, have such strict latency con-
straints that only an edge-based architecture can meet.

In addition to the livecast service (as well as, possibly,
other user services running at the edge), the edge computing
platform hosts vBS functions, central unit (CU) and/or
distributed unit (DU), which are jointly controlled by the
VERA controller. As depicted in Fig. 1, the VERA controller
is deployed in the Service Management & Orchestration
(SMO) platform, and interacts with both O-RAN intelligent
controllers (RIC) to configure the vBS functions, the edge
service controllers (in this case the livecast controller), and
the NFV virtual infrastructure manager (VIM) to configure
the CPU schedulers (see O-RAN specification [1]). In this
way, VERA’s workflows (data collection and decision mak-
ing) are fully compliant with O-RAN’s machine learning
procedures [1]. Indeed, VERA continuously monitors the
state of the vRAN and the livecast application (hereinafter
also referred to as services), as well as the overall usage of
computing resources in the edge platform. Then, it uses
such observations to compute the values of the operating
parameters for both livecast and vRAN, which, given the
available computing and networking resources, meet both
the application and vRAN KPI targets.

3 EXPERIMENTAL ANALYSIS

The system architecture in Sec. 2 has been recreated in a
smaller scale in our testbed for the development and testing
of VERA. The main components are the edge computing
platform, and the user equipments (UEs), which commu-
nicate by means of an LTE vRAN implemented using the
srsRAN suite [27]. The edge platform runs two Docker
containers implementing, respectively, the livecast and the
vRAN service, which consume the edge resource pool.

Our experimental vRAN testbed includes one srseNB
instance, i.e., the LTE vBS, and two srsUE instances, which

represent the recipients of the video content livecast by the
vBS. The livecast application consists of a live video stream-
ing transcoder, implemented with ffmpeg1, and a server,
based on ffserver2. It receives the high-quality original video
and transcodes it through the recent VP9 codec using the bit
rate and frame rate settings provided by VERA. Then, the
transcoded video is served to the UEs, each running a player
that streams, decodes, and plays the video. The radio and
livecast services are connected to VERA through a dedicated
API, used to dynamically set radio and livecast operating
parameters and retrieve performance measurements. VERA
also interacts with the edge computing platform operating
system and the Docker daemon to monitor and allocate
computing resources to the services. More details about our
testbed are provided in Sec. 5.2.

We then use our testbed to analyze empirically the trade-
offs between different actions configurable in our system,
given different contexts. To ease the analysis, we focus on a
single user, but we note that VERA supports multiple users
and we evaluate VERA with multiple users in later sections.

We start by defining a contextual feature that character-
izes the videos being delivered by the livecast service:

• Context 1: Video input bit rate, input frame-per-
second (FPS) rate, and input resolution;

and another feature that indicates the computational de-
mand required by the livecast service:

• Context 2: Video CPU throttled time. This feature
gives us an indication of the processing pressure
associated with the requested video, which is a
footprint distinguishable across videos, and hence
impacts the overall performance and the choice of
appropriate actions.

We also define three sets of actions for our livecast
service, some of which re-encode each video accordingly:

• Action 1: Video output bit rate;
• Action 2: Video output FPS rate; and
• Action 3: CPU resources allocated to livecast;

and a KPI that we can use to estimate the quality of the
video being delivered, as set forth below:

• KPI 1: Weighted Video Multimethod Assessment
Fusion (WVMAF). It is based on the VMAF, a widely
used objective metric to assess video quality, which
provides a score between 0 (worst) and 100 (best)
per video frame. The score is computed by aggregating
different components such as Visual Information Fi-
delity, Detail Loss Metric, or Mean Co-Located Pixel
Difference (the interested reader can find further
details in [28]). However, because VMAF assesses
the quality of individual video frames only, it is not
helpful to measure the smoothness of a video, which
is well known to impact the perceived quality. To
weight this in, we amplify or attenuate the measured
VMAF of each frame by the ratio between the output
frame rate and the input frame rate, and we refer to
this metric as WVMAF.

1. https://ffmpeg.org/
2. https://trac.ffmpeg.org/wiki/ffserver
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Fig. 3. Buffering threshold violation rate for different livecast service
configurations and CPU allocations

Fig. 2 shows the mean WVMAF score for a wide variety
of VP9-encoded videos with different output FPS rates
and bit rates, CPU throttle time, and (for simplicity) the
same resolution. The results are intuitive: higher-bit-rate and
higher-FPS videos have higher WVMAF. It is interesting to
observe from Fig. 2 that the increase in mean WVMAF is
100% when the output FPS changes from 10 to 30, while it
is just 60% for FPS 30 when the output bit rate increases
from 0.5 to 8 Mbps. Thus, the frame rate setting has a larger
impact on WVMAF than the target bit rate, which moreover
shows diminishing returns. This is due to the weight that
amplifies the measured VMAF, which increases the score
when higher frame rates are used.

A second relevant KPI to assess the perceived QoE of the
livecast service is:

• KPI 2: Video player buffering. Information on the
client’s buffer state, storing video frames for playout,
is a good estimator of the user’s QoE [29]: when the
buffer size gets close to zero, the user’s player may
stutter, which resorts in a low level of QoE.

To assess this KPI, we select a threshold equal to 0.5
seconds of video buffered at the client’s video player, and
report in Fig. 3 the frequency that such threshold is violated
for the same set of videos used before and for different
combinations of actions. In this case, the target bit rate and
the amount of CPU resources, measured in units of virtual
CPU (vCPU) assigned to the service, have a much larger
impact on this KPI than before (ruling ranges of this KPI
that span 2 orders of magnitude). Note the logarithmic scale
in the y-axis, which indicates a non-linear behavior.

Next, we focus on the vRAN service, and define two
more actions related to it:

• Action 4: CPU resources allocated to the radio; and
• Action 5: A Modulation and Codign Scheme (MCS)

policy. This policy follows that used in [9] and im-
poses an upper bound on the MCS eligible by the
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Fig. 4. Latency violations for different radio service configurations, con-
texts, and CPU allocations

base station, which helps to control the computa-
tional demand of the radio service;

• Action 6: Bandwidth, i.e., the aggregate amount of
radio Resource Blocks (RBs) allocated to each UE;

and three relevant contextual features:

• Context 3: Radio CPU throttled time, which is the
radio counterpart of Context 2;

• Context 4: Signal-to-noise-ratio (SNR), which is a
common feature used to estimate the quality of a
wireless channel and in turn bounds its capacity; and

• Context 5: Network load, which corresponds to the
offered load that the vBS has to process, generated
by the applications deployed at the edge (such as our
livecast service) and background data related to the
mobile network.

Concerning radio KPIs, we first define:

• KPI 3: Radio latency. This is the latency associated
with the data transmitted successfully over the air.

To analyze this KPI, Fig. 4 shows every data frame
that violates/meets a latency threshold equal to 150 ms
with red/blue colored dots when the vBS has to deliver
randomly chosen videos from our set. We present these
as functions of two of the radio contextual features (SNR
and network load) and for different combinations of ac-
tions. Correlations among context, actions, and latency are
evident. E.g., a higher MCS policy show a consistent im-
provement in latency performance, which however requires
more computing resources. We observe a similar behavior
when allocating a higher number of RBs (results omitted to
reduce clutter). We then define one last KPI associated with
the radio service:

• KPI 4: Packet loss rate, which measures the number
of unacknowledged TCP segments due to corruption
on the radio link.

Fig. 5 shows this KPI for all the videos in our set as
a function of the SNR (Context 4) and for different MCS
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policies (Action 5). In red, we mark those samples that
exceed 1% packet loss. Obviously, the sample set is highly
biased towards 0 packet loss rate. However, there are a
number of video scenes that cause packet losses, and these
are highly correlated with SNR and our MCS policy in a
non-trivial manner as shown by the plot. For instance, we
can observe that higher MCS policies yield considerably
lower packet loss rate. Note that this gain comes from the
extra wireless capacity granted by larger MCS policies and
not from the reliability of a given MCS that is selected
automatically by the radio scheduler: we simply impose a
restriction on the set of eligible MCSs. Moreover, better SNR
provides also better performance, which is intuitive. How-
ever, this relationship is non linear (note the logarithmic y
axis). Likewise, the dependency between packet loss and
the number of allocated RBs is also monotonic, i.e., high
packet losses are observed with overly low RB allocations
(like before, we omit these results to be concise).

It may be noted that we do not consider throughput,
another commonly used metric, as a radio KPI in the VERA
framework, since for delivering a real-time network load
across a vRAN, packet loss and latency are more relevant
metrics [30]. Nonetheless, it is implicit that as long as
observed packet loss and observed latency values are as
desired (which we later quantify in terms of KPI targets),
the system throughput will be maximized since no packets
are lost and all the traffic belonging to all the services is
served in due time.

To conclude our experimental analysis, we plot in Fig. 6
a livecast KPI (buffer state) as a function of SNR (radio
context) and MCS policy (radio action). Evidently, the buffer
dynamics of the client’s video player are highly correlated
with the context and the actions performed over the livecast
service. This proves that the resource orchestration problem
we endeavour into in this paper is a coupled problem and
all these edge services must be optimized jointly.

Conclusion: It is evident that the support of different
applications in the edge platform leads to complex inter-
dependencies between system parameters, context-action
variables and KPIs, thereby making optimum resource allo-
cation a challenging task. To this end, we propose the VERA
framework, which is completely data-driven, and, hence, a
good match for flexible and effective decision making in
virtualized environments, despite the system complexity.

4 THE VERA FRAMEWORK

The VERA framework is designed using a model-free RL
approach. It includes distributed learning agents, each cor-
responding to a service in the edge platform, which si-
multaneously make decisions for the allocation of radio
and computing resources as well as tune service-specific
operating parameters. This design choice is key to attain
a scalable solution. These decisions are hereafter collectively
referred to as a resource allocation policy, which consists of
two development stages:

• In the first stage, each RL agent makes decisions
based on the shared context representation to obtain
a greedy resource allocation policy;

• In the second one, greedy policies from all RL agents
are collated and further refined in view of the feasi-
bility of the chosen actions to obtain a Pareto-efficient
fair resource allocation policy.

The structure of the VERA framework is shown in Fig. 7.
Decisions are made with periodicity equal to # ≥ 1 mon-
itoring slots, i.e., an action is selected at the end of every
decision window of duration # slots, and it is applicable
to the subsequent # monitoring slots. The individual stages
are elaborated in the sequel.

4.1 Notation
R= denotes the set of =-dimensional real vectors. Vectors
(usually in column form) are written in bold font, matrices
are in upper-case, bold font, and sets are in calligraphic font.
Subscripts and superscripts denote an element in a vector
and elements in a sequence (resp.). E.g., 〈x (C) 〉 is a sequence
of vectors with x (C) = [x (C)1 , . . . , x (C)= ]> (superscript > is the
transpose operator). x (C)

8
is the 8-th component of the C-th

vector in the sequence.

4.2 Greedy analysis
Since the edge platform may have several services consum-
ing the resource pool, owing to resource sharing, the KPI
satisfaction of each is interdependent. We therefore collect
input variables pertinent to different services to form a
context vector. The context vector is processed through an
autoencoder to create a shared context representation that
captures the correlation among context variables, as well
as reduces the dimensionality of the context vector. Then,
each RL agent devises a greedy resource allocation policy
by using the same shared context representation and by
mapping it onto an action vector such that its long-term
cumulative reward from the environment is maximized.
Notice that, although the decisions are based on shared
context, greedy policies do not ensure that the sum of
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TABLE 1
Notation

Symbol Description
Context notation

1 Video input encoding bit rate
5 Video input FPS rate
E Video input resolution

CE , CA Normalized video and radio (resp.) throttled time
$ CQI value
l Livecast network load

Action notation
V Video output encoding bit rate
i Video output FPS rate
c CPU allocation
l vRAN MCS policy
1 RB allocation

KPI notation
Z WVMAF score
f Client’s buffer state
_ Latency
` Packet loss rate

{Z<> , f<> , _<> , `<> } Observed KPI values by <-th UE
{ZC , fC , _C , `C } Target KPI values

capacity-constrained resources among all the services does
not exceed their maximum capacity. To solve this issue, we
design a Pareto algorithm that allows for feasible and fair resource
sharing. The elements composing the greedy resource alloca-
tion policy are introduced below, while the notation we use
is summarized in Tab. 1.

Context space. As described in Sec. 3, the resource allo-
cation for the livecast service is governed by the following
contextual information: input bit rate (1), input video FPS
( 5 ), and input resolution (E) of the streaming video (i.e.,
Context 1 in Sec. 3). Besides, to accommodate any backlog
in video processing, the normalized CPU throttled time of
the livecast application (CE ) in the previous monitoring slot
is considered (Context 2).

Likewise, resource allocation for the vRAN is based on
normalized CPU throttled time (CA ) (Context 3), the 3GPP-
compliant Channel Quality Indicator (CQI) ($) reported
from UEs to vBS, which is representative of the SNR (Con-
text 4), and the traffic from the livecast application sent
over the radio link to the UEs (Context 5), specified by the
network load (l). Thus, the context vector observed in moni-
toring slot = (= = 1, . . . , #) can be written as x (=) ∈ X, x (=) :=
{1 (=) , 5 (=) , E (=) , CE (=) , CA (=) , W (=)1 , · · · W (=)

"
, ;
(=)
1 , · · · ; (=)

"
}.

Further, to extract the correlation between context vari-
ables, an autoencoder projects context vector x (=) ∈ X onto
its latent representation y (=) ∈ R� , y (=) := {y1

(=) , . . . , y (=)
�
}

where � < dim(X). The latent representation y (=) is shared
with each RL agent so that its decision process for a given
service is informed of the performance of others access-

ing the resource pool, thus representing a shared context
representation. The autoencoder is implemented through a
simple feed forward neural network that is activated using
rectified linear units in the hidden layers. Note that dimen-
sionality reduction is only one advantage of the autoen-
coder: indeed, it is primarily used to capture multimodal
patterns among context variables, which may not otherwise
be evident owing to the system complexity.

Action space. Since services are heterogeneous, we de-
fine action space A := {a: }, ∀: ∈ (1, . . . ,  ), comprising
action vectors each having service-specific action variables.
In our reference scenario,  = 2, and we associate : = 1, 2,
respectively, to action vectors for livecast and vRAN. Con-
sequently, a1 comprises the CPU allocated to the livecast
application (2E ), i.e., Action 3 in Sec. 3, the video output
encoding bitrate (V), i.e., Action 1, and the video output
encoding FPS (i), i.e., Action 2.

Conversely, a2 includes the CPU allocated to vRAN (2A ),
i.e,. Action 4, the MCS value (l) defined before as Action 5,
and the bandwidth allocated to each UE, 1 = {d1, d2, · · · d" }
as defined in Action 6, where " is the maximum number of
users supported in the system. Here, the CPU and the radio
(RB) resources are capacity constrained, i.e., 2E +2A ≤ �2 and
d1 + d2 + · · · d" ≤ �d, where �2 and �d are, respectively, the
total available CPU and number of RBs that can be allocated.
To avoid clutter, we replace 2E and 2A with a generic 2: that
denotes the CPU allocated to service : , and let d< be the
number of RBs allocated to UE <. Mathematically,

a: =

{
(V, i, 2: ), if : = 1,
(l, 2: , 1), if : = 2 .

(1)

Next, we discretize the quantity of capacity-constrained
resources that can be allocated, and map each feasible
combination of action variables during the =-th monitoring
slot into an action index a (=)1 := {1, 2, . . . , #V · #i · #2E } and
a (=)2 := {1, 2, . . . , #l · #2A · #1}, where #8 is the number
of elements in the discretized version of action variable
8 = {V, i, l, 2E , 2A , 1}. We remark that the action space is
a mixture of variables that are inherently continuous (e.g.,
CPU, output bitrate, output framerate) and discrete (RBs,
MCS). The primary reason for discretization of all action
variables is the ease in framework implementation, since
invoking different techniques for learning continuous and
discrete variables will increase the system complexity by
manifolds. Besides, such action definition limits the action
space to a subset of discrete positive values with low car-
dinality, and it facilitates simultaneous selection of several
resources with a single action. Instead, converting all action
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variables to take continuous values, and using a continu-
ous variable-specific learning algorithm, would introduce
rounding off errors in the final stage.

Reward. For a given service, KPIs are satisfied when the
allocated resources make the observed KPIs to meet their
respective target values. However, beside meeting the target
KPIs, it is essential to keep the observed KPIs as close as
possible to the target KPIs; failing that, the system may
perform better than required at the cost of extra resource
consumption. Consequently, the choice of a reward function
should be such that it equally accounts for all the KPIs for
a given service and its value increases as the observed KPIs
approach the corresponding thresholds and vice versa.

Let the observed values of the livecast KPIs, i.e., WV-
MAF and client buffer state, and of the vRAN KPIs, i.e.,
latency and packet loss rate for the <-th UE, be denoted
by Z<> , f<> , _<> , `<> , while the corresponding target values be
ZC , fC , _C , `C , respectively. We define the reward value for <-
th UE, A<, as the sum of the reward components pertaining
to each service-specific KPI : in the =-th monitoring slot
within the same decision window, as:

A< (y (=) , a (=)
:
) =

{
A<
Z
(y (=) , a (=)

:
) + A<f (y (=) , a

(=)
:
), if : = 1 ,

A<
_
(y (=) , a (=)

:
) + A<` (y (=) , a

(=)
:
), if : = 2 .

(2)
In the above expressions, A<

Z
(·), A<f (·) are the reward compo-

nents from WVMAF and buffer state (resp.) for the <-th UE,
given by:

A<KPI (y
(=) , a (=)

:
) =


1 − erf(KPI<> (y (=) , a

(=)
:
) − KPIC ),

if KPI is met
erf(KPI<> (y (=) , a

(=)
:
) − KPIC ), else .

(3)
The terms A<

_
(·) and A<` (·) are instead the reward com-

ponents from latency and packet loss rate (resp.), which
are given by similar expressions but with (KPIC −
KPI<> (y (=) , a

(=)
:
)) as an argument of the erf function, since

all values of latency and packet loss rate lower than their
respective target values are acceptable. Since the minimum
and maximum values of the erf function lie between −1 and
+1, we have: −2 ≤ A< (y (=) , a (=)

:
) ≤ 2. For the individual

reward components, in the positive region of operation,
i.e., when the KPI threshold is met, the reward value is
positive and it further increases to its maximum value
+1 as the observed KPI approaches its target KPI value.
Likewise, in the negative region of operation, i.e., when
the KPI threshold is not met, the value of the individual
reward components is negative, which further reduces and
saturates to the minimum value −1 as the observed KPI
moves away from the KPI threshold.

We recall that while devising the greedy resource al-
location policy, the goal of the RL agent is to maximize
the cumulative reward measured as the sum of immediate
reward and future rewards over a long time horizon. To
this end, we consider a generic decision window ℎ and,
extending the previous notation, we let 0 (ℎ−1)

:
denote the

action for the :-th service selected in decision window (ℎ−1)
and applied in decision window ℎ. We then define the
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Fig. 8. Livecast client’s buffer state inference

average reward over ℎ, considering all the UEs, as

A (y (ℎ) , a (ℎ−1)
:
) :=

1
"#

#∑
==1

"∑
<=1

A< (y (=) , a (ℎ−1)
:
), (4)

where y (ℎ) is the vector of shared contexts observed in the
# monitoring slots in decision window ℎ, while a (ℎ−1)

:
is the

action for service : selected in decision window ℎ−1 and ap-
plied in decision window ℎ. Finally, we adopt the definition
of cumulative reward for the :-th service, observed during
decision window ℎ, as the differential return M (ℎ)

:
defined in

[31] (see Appendix A in the Supplemental Material).
Estimation of user buffer states. A key challenge, how-

ever, is to estimate the actual buffer dynamics without ex-
plicit feedback from the users. Thus it is important to design
an effective online learning mechanism. To this end, we keep
track of the time status information provided by the video
encoder and the sequence number of TCP acknowledg-
ments, all information locally available. By monitoring the
amount of bytes successfully delivered, the corresponding
timestamp of the scenes been transmitted, and the encoded
video’s frame rate, we can estimate the buffer dynamics at
the client’s side using simple queuing theory. Fig. 8 shows
the evolution over time of a video player’s buffer state
(ground truth) vs. the inferred value for 3 trivially chosen
videos and system configuration parameters. In most of the
cases, our inference method is remarkably accurate. This
is the case for the first two subplots in Fig. 8. However,
we have found that there are some small number of cases
where there is a non-negligible inference error. We show an
example of this in the right-most plot of the figure, where
we have an error of almost one second. Fortunately, these
always occurs for non-critical cases, i.e., cases where the
buffer state never approaches zero (the state we want to
avoid). Since our estimator is pessimistic, the outcome are
simply more conservative decisions. We hence conclude that
our inference approach is valid to compute reward.

Action-value estimation and action selection. At the
end of the generic decision window ℎ, actions need to be
evaluated and the best one has to be selected. To this end,
we compute the mean shared context over the # monitoring
slots in ℎ as

y (ℎ) =
#∑
==1

I=y
(=)/

#∑
==1

I=, (5)

where I= > 0 and I# > I#−1 > · · · > I1 are the weights
assigned so that the latest shared context has the highest
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weight.3 We then quantify the goodness of taking an action
in response to the mean shared context using action values.
For service : , the value of a (ℎ)

:
given policy c: , which is

@c: (y
(ℎ)
, a (ℎ)
:
) (see Appendix A in the Supplemental Ma-

terial), is defined as the expected differential return condi-
tioned on y (ℎ) and a (ℎ)

:
, following policy c: , i.e.,

@c: (y, 0) = Ec: [M
(ℎ)
:
|y (ℎ) = y, a (ℎ)

:
= 0] . (6)

Since the context spaceX falls in the domain of real num-
bers, we use a practical method for action-value estimation
using function approximation in an F-dimensional space,
yielding the approximated function @̂c: (y

(ℎ)
, a (ℎ)
:
, F) =∑�

5 =1 F 5 B 5 (y
(ℎ)
, a (ℎ)
:
), where w and s(y (ℎ) , a (ℎ)

:
) denote the

�-size weight and feature vectors (resp.), with the latter
being generated using tile coding [32] (see Appendix B in
the Supplemental Material).

The estimation of the action values is followed by an n-
greedy action selection policy [31], which selects the best
action for each service so as to maximize its cumulative
reward over an infinite time horizon. We consider an n-
greedy action selection with n = 0.5 and n-decay factor
= 0.999. The n parameter decays by a factor of 0.999 in the
subsequent decision period. This favors higher exploration
while the environment is still unfamiliar; with progression
of time, instead, it allows for further exploitation of the
environment knowledge gained during the exploration, so
as to maximize the expected return.

Discussion. While single-agent RL approaches can easily
solve the above capacity constraints, they suffer from the
curse of dimensionality, even if implemented with deep
neural networks (see DQNs) [33]. Thus, the key challenge
is to provide safe (i.e., within a set of hard constraints) and
fair resource allocation with a distributed multi-agent RL
model that is amenable to scalable orchestration.

In this way, our distributed approach allows us to handle
two sets of capacity constraints:

1) Computing resources: VERA can handle multiple
vBSs (or multiple radio slices within a vBS), and
multiple edge services that are competing for the
same computing resource budget;

2) Radio resources: VERA can handle multiple users
sharing a common carrier bandwidth.

Although for the sake of clarity the above text and Fig. 7
refer to two service learning agents only, one of which is a
single vBS serving " UEs, the scalable multi-agent design of
VERA allows for as many learning agents as services, vBSs,
or slices under the above capacity constraints.

4.3 Pareto analysis
We recall that the CPU and RB allocation for (resp.) service
: and UE < are capacity-constrained resources. Hence, it
is essential that the sum of CPU (RB) allocated to different
services (UEs) does not exceed the available resource budget
and that the selected actions can be enacted. To this end, we
introduce an algorithm that works on the multi-dimensional
actions selected by the n-greedy policy in the RL framework

3. Although they can be arbitrarily set, we fix them to 1, . . . , # , in
accordance with the temporal sequence of the monitoring slots.

Algorithm 1: Fair Pareto-efficient Resource allocation
1 ( = {0̃: }: ,
{2: , d< (:) ∀< ∈ M} ← 0̃: (() , (′ = {2: , d< (:) ∀< ∈ M}, ∀: ∈ C

/* Extract capacity-constrained actions from greedy
action set {0̃: } */

2 if
∑
:∈C 2: ≤ �2 and

∑
<∈M d< (:) ≤ �d , ∀: ∈ C

/* Capacity-constraint check on the primary and
secondary resource */

3 then
4 (★ = (′

/* Output: Fair Pareto-efficient solution */
5 else if

∑
:∈C 2: ≤ �2 and

∑
<∈M d< (:) > �d , for any : ∈ C

/* Primary resource budget constraint met, secondary
resource budget constraint not met */

6 then
7 {d′< (:) ∀< ∈ M} ← ParetoBlock( {d< (:) ∀< ∈

M}) , for the considered : ∈ C
/* Revised Pareto-efficient fair secondary

resource allocation adhered to budget
constraint and allocated CPU */

8 (′′ = {2: , d′: (<) ∀< ∈ M}, ∀: ∈ C
9 (★ = (′′

/* Output: Fair Pareto-efficient solution */
10 else if

∑
:∈C 2: > �2

/* Primary resource budget constraint not met */
11 then
12 {2′

:
} ← ParetoBlock( {2: }) , ∀: ∈ C

/* Revised Pareto-efficient fair primary resource
allocation adhered to its budget constraint */

13 {d′< (:) ∀< ∈ M} ← ParetoBlock( {d< (:) ∀< ∈ M}) , ∀: ∈ C
/* Revised Pareto-efficient fair secondary

resource allocation adhering to revised Pareto
efficient fair primary resource allocation */

14 (′′ = {2′
:
, d′< (:) ∀< ∈ M}, ∀: ∈ C

15 (★ = (′′

/* Output: Fair Pareto-efficient solution */

Algorithm 2: ParetoBlock
1 Input: {2: } ∀: ∈ C s.t.

∑
:∈C 2: > �2 or

{d< (:) ∀< ∈ M} s.t.
∑
<∈M d< (:) > �d }

/* Primary or secondary resource allocation violating
the budget constraints */

2 (1 = {2: } ∀: ∈ C or (1 = {d< (:) } ∀< ∈ M, as applicable
3 S4 = {(1 , (2 , . . .}
/* Build expanded solution set */

4 SB ← {(8/ |C | }S4 or SB ← {(8/ |M |}S4 , as applicable
/* Rescale expanded solution set */

5 for ( ∈ SB do
6 ŜB ← {0̂: (() }
/* Define refined actions set wrt SB */

7 Create S3
/* Pareto dominant solution set */

8 Choose (′1
/* Fair Pareto-efficient resource allocation */

9 Return: (′1 = {2′
:
} ∀: ∈ C or (′1 = {d′< (:) } ∀< ∈ M, as applicable

introduced above, and it further refines them so that the
resulting actions (8) meet the budget constraint and (88) entail
fair Pareto-efficient resource sharing.

It is important to note here that not only the CPU alloca-
tion across the services and RB allocation across the UEs are
capacity constrained, the RB allocation is also dependent on
the CPU allocated to vRAN. Thus, CPU and RB (resp.) act as
the primary and secondary capacity constrained resources
for vRAN. Unlike vRAN, the livecast service has no asso-
ciated secondary capacity constrained resource. However,
for the sake of mathematical proofs, this observation can be
generalized as follows: the primary capacity constrained re-
source (here CPU) is distributed among  services, and each
service may in turn serve " units (UEs for vRAN, none for
livecast) using the primary resource. The secondary capacity
constrained resource is distributed among " units of the
service (if applicable). Further, the QoS satisfaction of each
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service in entirety comprises QoS satisfaction of individual
units, and depends both on primary and secondary capacity
constrained resource allocation.

To model such interdependence, we formulate the fair
Pareto-efficient allocation of CPU across the services and
RBs across the UEs in a given decision window as a con-
strained joint multi-criteria optimization problem. Further,
for notational simplicity, we assume that each decision win-
dow comprises of just one monitoring slot, i.e., # = 1. Let
C,M denote the set of services and UEs; given a set of coeffi-
cients D: ≥ 0, : ∈ C, < ∈ M, with

∑
:∈C D: = 1, it is required

to find a solution (★ = {2★
:
, d★< (:) ∀< ∈ M},∀: ∈ C, that

maximizes
∑
:∈C D:�: (() such that ( ∈ S2 ,

∑
:∈C 2: ≤ �2

and
∑
<∈M d< (:) ≤ �d. Here, 2: is the primary capacity

constrained resource allocated to :-th service, d< (:) denotes
the secondary capacity constrained resource allocated to <-
th unit of the :-th service, S2 is the set of feasible capacity
constrained resource allocations and �: (() is the criteria
function denoting the reward of the :-th service in a de-
cision period following the CPU allocation strategy (.

The flow of fair Pareto-efficient resource allocation is
summarized in Alg. 1. The key component of Alg. 1 is
ParetoBlock (Alg. 2) that solves the joint multi-criteria op-
timization problem. It is invoked whenever the sum of
allocated primary (secondary) capacity constrained resource
exceeds its specified budget. It initially considers the CPU
(RB) allocation to the services (UEs) provided by the greedy
resource allocation policy, and creates the expanded CPU
(RB) allocation solution set by considering all possible val-
ues for the 2: ’s (d< (:)’s) that are greater than those output
by the greedy policy and whose sum does not exceed |C|
(|M|) times the available budget. Such values are then scaled
by |C| (|M|), to get candidate allocation values that meet the
CPU (RB) budget. The corresponding action set, ŜB , is built
starting from such 2: ’s (d< (:)’s) and possibly refining the
actions so that their components take feasible values consid-
ering the dependence of primary and secondary resource.
Such actions, { â: (()}, S ∈ ŜB , are then used to compute the
values of �: (() to identify the Pareto-dominant solution set
through iterative search and update, S3 ← {(}, s.t. ∀( ∈ S3 ,
∀(′ ∈ ŜB , �8 (() > �8 ((′), � 9 (() ≥ � 9 ((′),∀8, 9 ∈ C(M), 8 ≠ 9 .
Finally, for the primary capacity constrained resource, the
Pareto-dominant solution that maximizes the minimum
value of criterion function, i.e., the reward value over all
the services is chosen as the fair Pareto-efficient solution.
For the secondary capacity constrained resource, we define
6(<) := ;C (<) − ;8 (<) ∀< ∈ M, where ;C (<), ;8 (<) denote
(resp.) the target traffic load and the instantaneous rate
achieved by <-th UE. Further, we choose the secondary
resource allocation {d′< (:) ∀< ∈ M} for a given fair primary
resource 2′

:
as the solution that minimizes max<∈M 6(<)

over all ( ∈ S3 .
We finally prove the following results:

• The solution (★ introduced above is Pareto-efficient
with respect to the primary (see Proposition 1), as
well as jointly Pareto-efficient with respect to primary
as well as secondary capacity constrained resources
(see Proposition 2);

• Alg. 2 converges to a Pareto-efficient solution set, at
a sub-linear rate (see Proposition 3);

• Alg. 2 converges to a solution that is fair with re-
spect to the primary capacity constrained resource
(see Proposition 4), as well as the secondary capacity
constrained resource for a given primary capacity
constrained resource allocation (see Proposition 5),
thus leading to a fair Pareto-efficient solution.

Proposition 1. Pareto-efficient allocation of the primary re-
source: Given a set of coefficients D: ≥ 0, : ∈ C, s.t.,

∑
:∈C D: = 1,

the solution (★ = {2★
:
}, : ∈ C, maximizing the multi-criteria

optimization problem
∑
:∈C D:�: ((), is Pareto-efficient.

Proof. See Appendix C in the Supplemental Material. �

Proposition 2. Pareto-efficient joint allocation of primary and
secondary resource: Given a set of coefficients D: ≥ 0, : ∈ C, such
that,

∑
:∈C D: = 1, then the solution (★ = {2★

:
, d★< (:) ∀< ∈

M},∀: ∈ C, that maximizes the multi-criteria optimization
problem

∑
:∈C D:�: ((), is Pareto-efficient.

Proof. See Appendix C. �

Proposition 3. Alg. 2 converges to a Pareto-efficient solution set
at a sub-linear rate.

Proof. See Appendix C in the Supplemental Material. �

Proposition 4. Fairness of Pareto-efficient primary resource
allocation: The solution (★ = {2★

:
, d★< (:) ∀< ∈ M},∀: ∈ C

obtained using Algorithm 2 is fair with respect to primary
resource allocation 2★

:
,∀: ∈ C.

Proof. See Appendix C in the Supplemental Material. �

Proposition 5. Fairness of Pareto-efficient secondary resource
allocation in the vRAN: For a given fair primary resource allo-
cation 2★

:
in the solution (★ = {2★

:
, d★< (:) ∀< ∈ M}, for : = 2

(denoting the vRAN service), (★ is fair with respect to secondary
resource allocation {d★

:
(<) ∀< ∈ M}.

Proof. See Appendix C in the Supplemental Material. �

We remark that two-stage solutions for resource allo-
cation via distributed RL have often been applied in the
literature, where greedy global solutions are obtained in the
first stage, and then each agent tunes its own parameters
in the second stage to ensure fairness. However, compared
to such existing schemes, our proposed VERA framework
has several unique features: (i) it jointly considers capacity-
constrained resources and service specific operating param-
eters, (ii) it accounts for the interdependence of primary and
secondary capacity-constrained resources, (iii) it envisions a
novel Pareto block design for ensuring Pareto-optimal fair
action selection for virtual services hosted at the network
edge. To the best of our knowledge, none of the existing
works have addressed these issues.

4.4 Learning algorithm

We exploit the concept of experience-based learning us-
ing sample sequences of shared context, actions, and re-
wards observed from the actual interaction of the RL agent
with the environment. SARSA, an acronym for quintuple
((C , �C , 'C , (C+1, �C+1), is an on-line policy algorithm where
learning of the RL agent at time C is governed by its current
state (C , choice of action �C , reward 'C received on taking
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action �C , state (C+1 that the RL agent enters after taking
action �C , and finally the next action �C+1 that the agent
chooses in new state (C+1 [31]. We here highlight that com-
pared to Q-learning, another commonly used learning algo-
rithm, SARSA adopts a conservative learning approach by
avoiding high-risk actions that may generate large negative
rewards from the environment. This is especially relevant
since the applicability of VERA framework may be extended
to ultra low latency and ultra reliable services wherein
ensuring radio connectivity is critical and any violation of
KPI targets would incur high costs. Although double Q-
learning, a Q-learning variant, is also conservative, it is
computationally more intensive than SARSA owing to the
requirement of computing and updating two Q-policies si-
multaneously. Further, SARSA has low per-sample variance,
which makes it less susceptible to convergence problems
[31]; hence, future extensions of the VERA framework can
be easily upgraded to deep networks if necessary.

For clarity and without loss of generality, we focus on the
learning of a single RL agent that corresponds to one of the
services, over successive decision windows. Given the mean
shared context and possible actions, the primary steps in the
learning algorithm are: (i) obtain greedy resource allocation
policy for service : through estimation of action values
@c: (H, 0), (ii) obtain a fair Pareto-efficient resource allocation
policy by collating and returning the greedy policies of all
the services, and (iii) update of the action-value estimates
for service : using differential semi-gradient SARSA [31].

4.5 Computational complexity analysis
We now discuss the complexity analysis of the VERA
framework implementation. The most complex operations
in the whole framework are given by the following steps: (i)
greedy action selection for the  services, (ii) joint Pareto-
efficient fair allocation of primary resource among  ser-
vices, and secondary resources among " units of each ser-
vice, (iii) computation of weighted mean of the context and
mean reward for  services in a decision window compris-
ing # monitoring slots, and (iv) update of the weight vector
for learning radio policy based on the KPIs observation from
the  services. Corresponding to each of these steps, the
computational complexities of taking the resource allocation
decision once in the VERA framework are given by O(|A|)
(with |A| being the cardinality of the VERA action space),
O( "), O( #"), and O( ), respectively. Hence, the over-
all complexity is O(|A|)+O( ")+O( #")+O( ) ≈ O(|A|)
since the first term is the dominant one as |A| is much larger
than  #" . Thus, computations in VERA scale linearly with
the increase in the cardinality of the action space.

5 PROOF-OF-CONCEPT IMPLEMENTATION

In this section, we first introduce our proof-of-concept im-
plementation (Sec. 5.1), and then we present the parameters
and settings we use to collect our datasets and run our
experimental tests (Sec. 5.2).

5.1 VERA implementation
As depicted in Fig. 9, we have integrated VERA in a testbed
based on srsRAN (to emulate a vRAN service), ffserver
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Fig. 9. (top) VERA system representation (details in Sec. 5.1); (bottom)
picture of the testbed (details in Sec. 5.2)

(to emulate a livecast video service), and mpv (livecast video
client deployed at each UE video player).

VERA’s learning agents receive real-time context infor-
mation directly from the vRAN, the livecast service, and
the edge computing platform, using custom-made TCP-
based interfaces. More specifically, the CQI information is
retrieved from srseNB using its enb_metrics_interface
class. The input video features (i.e., input video FPS, bitrate,
and resolution) are instead probed using ffprobe, which
is part of ffmpeg, and then sent to VERA whenever a new
video source is selected. The CPU throttling times of the
livecast and vRAN services are collected by interfacing with
Linux cgroups, using Linux’ pseudo file-system sysfs.
Finally, the network load, which corresponds to the offered
load that the vBS has to process, is derived by summing up
the bytes produced each second by the video encoder, as
reported in its output log.

Concerning the reward signal, the observed unidirec-
tional latency, the packet loss rate, the estimated video
player buffer state, and the WVMAF are sent to VERA in
real time, using additional custom TCP-based interfaces. In
more detail, the latency measurements are obtained using
LaTe4, a flexible client-server multi-protocol Latency Tester
that sends probes to the network under test and measures
the delay that the probe experiences. To this end, clock
synchronization between the Edge Platform and the UEs is
performed using Precision Time Protocol daemon (PTPd).

The packet loss rate, computed through the TCP segment
retransmission rate, and the buffer occupancy are estimated
at the edge platform by leveraging, respectively, the TCP

4. https://github.com/francescoraves483/LaMP_LaTe
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TABLE 2
Input and output video characteristics

Video characteristics Input Output
Resolution [pixels] 1920 × 1080 1280 × 720
Bit rate [Mbps] 18 0.3, 1.5, 5, 10
Frame rate [FPS] 30 10, 20, 30
Codec (container) VP9 – WebM VP9 – WebM
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Fig. 10. Time evolution of SNR in our experiments

sequence and the acknowledgment numbers obtained using
libpcap. To model the player buffer and, hence, infer its
status, VERA exploits the TCP acknowledgment numbers,
the offered load, and the output frame numbers of the
video encoder, as explained in Sec. 4. Finally, to compute
the WVMAF, we use a lookup table that maps every choice
of encoding parameters to the expected VMAF score. Calcu-
lating the VMAF score is indeed a computing-intensive task
that cannot be performed in real-time without a noticeable
performance impact. The table has been built by considering
a collection of 1080p video samples5, and by encoding
each source video using every encoding parameters com-
bination available to VERA. The VMAF score is calculated
by comparing the frames of each encoded video to the
original frames. The WVMAF score of each video sample
is obtained by multiplying its VMAF score by the ratio of
the output frame rate and the input frame rate. Then, for
every combination of the encoding parameters, the WVMAF
score is computed averaging the WVMAF scores of all video
samples encoded with the same combination of parameters.

At last, to enforce decisions made by VERA, the per-
UE RB allocation and the MCS policy are sent to the
vRAN through a custom interface, the CPU allocation is set
through Docker API (which, in turn, enforces it using Linux
cgroups), and the video encoding FPS and bit rate policies
are updated overriding the parameter settings in the livecast
service, thus allowing VERA to work in real time.

5.2 Testbed configuration
The testbed configuration used to collect the necessary
dataset and run the VERA framework in real time is based
on the architecture presented in Sec. 2.

The edge computing platform and the UEs are hosted
on GNU/Linux machines; they accommodate, respectively,
an Intel i7-7700HQ and an Intel i7-8550U CPU, with 16 GB
of DDR4 memory. The LTE network uses a 10-MHz chan-
nel in band 7, which provides a capacity of 50 RBs. The
dynamic SNR pattern, considered in our experiments to be
experienced by the UEs, is depicted in Fig. 10; the values
of SNR are then mapped into CQI by the vRAN system.
We assume a network slice dedicated to the livecast service,

5. https://media.xiph.org/video/derf/

with a capacity that may vary between 12 and 36 RBs. As
RF frontend, Ettus USRP B210 boards are used to perform
up/down-conversion, filtering, amplification, and AD/DA
conversion of the UEs and eNB LTE signals.

As mentioned above, we use ffmpeg, as this is compat-
ible with a wide set of video codecs, picture formats, con-
tainers, besides offering a number of filters to modify video
characteristics. Tab. 2 reports the characteristics of the input
and output videos in our experiments. The characteristics
of the input videos are representative of a livecast content,
as they ensure that the video can be properly played by
the client player in a wide range of network conditions and
client configurations. The output parameters have been set
so as to allow for the best video quality retention, hence a
good level of user Quality of Experience, while requiring
a reasonable consumption of network and computing re-
sources. Tab. 3 includes additional parameters settings that
we have used at the video encoder, server, and client, which
are typical of a livecast service.

Finally, we consider that decisions are made every mon-
itoring slot (# = 1), and, unless otherwise specified, we
set the available CPU budget to 3 vCPUs. We would like
to highlight that the computation cost of our solution can
be fully sustained by our small-size testbed. On average,
one iteration (i.e., metrics parsing, action selection, reward
computation and weights update) requires 16.1 ms. Over
one thousand iterations, we measured a maximum iteration
time of 25.8 ms, with a 99-th percentile below 18.6 ms. This
corresponds to an average CPU load below 5% when the
monitoring slot is 100-ms long.

6 EVALUATION AND EXPERIMENTAL VALIDATION

In this section, we first present the numerical results
(Sec. 6.1) derived using the datasets obtained through ex-
tensive experiments on the testbed described in Sec. 5; and
then, we present the performance of a real-time imple-
mentation of VERA on the testbed (Sec. 6.2). We highlight
that since the existing datasets do not consider the con-
text variables and action space of our interest, they fail
to exhibit the non-trivial correlations that we observed in
our experiments. Thus, for the following results we rely on
our self-collected datasets available at https://github.com/
corrado113/VERA.

6.1 Numerical results

The baseline scenario we consider in our numerical per-
formance evaluation includes 1 vBS, 2 UEs, and a livecast
service streaming a single video to both UEs. The CPU and
RB budgets are fixed to 2 vCPUs and 60 RBs, respectively.

Convergence evaluation. Fig. 11 depicts the time evolu-
tion of reward values for the vRAN and livecast services
in the baseline scenario. From the plots, we observe that,
despite the large heterogeneous action set and the diverse
context vector, the reward corresponding to each of the
KPIs, and hence the total reward, saturates close to the
maximum value for both the UEs, thereby highlighting the
efficient learning capability of the VERA framework. Also,
the convergence of the livecast service is relatively slower
with respect to vRAN owing to its slowly varying dynamics.
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TABLE 3
Video encoder, server and client parameters

Encoder/server param. Description Value

StartSendOnKey If set, the video is streamed starting from the first I-frame generated by
the encoder, i.e., P-frames not preceded by an I-frame are discarded Enabled

Preroll N
The video is streamed starting not from the most recent frame but from
N seconds in the past; if set, it increases buffer occupancy at the expense
of the end-to-end latency

Disabled

VP9 Threads No. of threads that decoder & encoder can use: high values increase
speed if multiple vCPUs are allocated, at the cost of a small overhead.

No. of allocated vC-
PUs

VP9 Quality Possible settings: realtime, good, or best. It controls the time that the
encoder can take to encode frames beyond their presentation time

Realtime (no
additional time
beyond presentation
timestamp)

VP9 Speed
It controls the trade-off between computational lightness and picture
quality. Possible values in [0,16], with the higher values prioritizing
encoding speed (i.e., lower CPU consumption) over picture quality

16

Client CachePauseInitial The client pauses the playback at the beginning to wait for the buffer
to fill, so as to avoid pauses while the video is playing Enabled

Client CachePauseWait
Video time that the client requires before resuming the playback when
paused. It affects the end-to-end latency, but a bigger size can better
cope with oscillations in the data transfer and encoding delays
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Fig. 11. Convergence of reward values: vRAN (a) and livecast (b)
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Fig. 12. KPI evolution with respect to iterations: (a) vRAN and (b)
livecast. Dashed dark line shows target KPI values.

KPI performance. Next, Fig. 12 presents the evolution
of the KPIs across iterations during the learning process.
Notice that the KPI satisfaction for vRAN is achieved when
its latency and packet loss do not exceed their respective
targets. On the contrary, for the livecast service, the playout
buffer and WVMAF should not fall below their target val-
ues, while keeping the KPIs observed for both the services
as close as possible to their target values. According to
the 3GPP 5G specifications [30] and acceptable QoE, the
target KPI values are set at 150 ms, 0.01, 0.5 s and 40 (resp.)
for latency, packet loss, playout buffer, and WVMAF. From
the plots, we observe that barring a few initial iterations
during which the algorithm is still learning, the choice of

actions by the VERA framework leads to KPI satisfaction
for both vRAN and livecast services. To quantify VERA’s
suboptimality, the mean KPI target violation for VERA post
convergence of the algorithm is 3.7%.

Performance under different constraints. We now eval-
uate the impact that different CPU and RB capacity con-
straints have on the performance of VERA. To this end, we
consider two additional scenarios having budgets 3 vCPUs
- 60 RBs and 2 vCPUs - 54 RBs, along with the baseline
scenario. The performance is characterized using a distance
parameter 3 %� = KPI> −KPIC , where KPI> is the KPI target
threshold and KPIC is the KPI experienced at time C, and
which basically quantifies how far away the observed KPI
value is from its target. Fig. 13 compares the average value
of 3 %� computed over both UEs for the said scenarios,
for both vRAN and livecast services. It may be noted that
a negative (positive) value of 3 %� for vRAN (livecast)
denotes KPI satisfaction, and, irrespective of the service
type, it is desirable that 3 %� is as close as possible to 0.
From the plots, we observe that when the budget constraints
are stringent, the choice of actions in order to meet the
KPI target values is limited. Consequently, the resource
allocation efficiency is slightly compromised as shown by
higher 3 %� values. Nevertheless, the KPI satisfaction is still
achieved. As more resources are made available in terms
of CPU and RBs, 3 %� values cling closer to 0, thereby
minimizing the waste of resources. Thus, VERA can success-
fully attain KPI satisfaction for both the services and UEs
under varying CPU and RB capacity constraints, however,
stringent constraints may lead to a marginal efficiency loss.

Pareto block statistics. Next, we investigate the signif-
icance of the Pareto block in the VERA framework. The
bar plot in Fig. 14 shows the statistics of the Pareto block
usage under different CPU and RB capacity constraints. We
observe that the Pareto block usage for CPU as well as RB is
the highest when budget is the most stringent, i.e., 2 vCPUs
- 54 RBs. However, on a positive note, the Pareto block
invocation substantially reduces once VERA has attained
convergence compared to its training phase. This in turn
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Fig. 13. Performance of VERA under varying CPU and RB budget constraints: (a) latency, (b) packet loss, (c) playout buffer, and (d) WVMAF
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suggests that, when a pre-trained VERA model is used, the
Pareto block will not add to the system runtime complexity.

To further emphasize this aspect, we replace the Pareto
analysis in the VERA framework by a more intuitive and
simpler uniform reduction approach, wherein an equal
proportion of any excess CPU (RB) allocated beyond the
budget is subtracted from the allocated CPU (RB) values
across the services (UEs) such that the budget constraint
is met. Fig. 15 presents the KPI (averaged over both UEs)
comparison using the Pareto block and uniform reduction
in the worst of our considered scenarios, i.e., 2 vCPUs -
54 RBs for vRAN and livecast services. From the plots we
observe that unlike the Pareto block, uniform reduction fails
to meet the target KPI values. This confirms that the Pareto
block has a crucial role in optimal resource orchestration,
especially when resources are constrained.

Comparison with other approaches. Finally, we address
the scalability of the VERA framework. To emphasize the
distributed decision making used by VERA, we compare its
performance to a data-driven centralized framework using
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DQN. The choice of DQN for comparison against the VERA
framework is motivated from the fact that an RL-based cen-
tralized solution (DQN in our case) for resource allocation
at the network edge is a very widely used approach. Thus,
it is the most relevant benchmark in the state-of-the-art.
Since a generic DQN has no provision to enforce capacity
constraints, to be fair, we consider a scenario wherein full
CPU is available to the hosted services and there is no RB
capacity constraint.

Before discussing the numerical results, we first char-
acterize the scalability of VERA and DQN as follows. We
generalize the notation of action vector for :-th service as
a: = {0:1, 0:2, · · · , 0:%}, with the generic 0: ? indicating the
?-th action variable of the :-th service, which can assume
values from a set of #0

:?
discrete elements, with % = |a

:
|.

Since DQN is a centralized framework, it handles the action
vector corresponding to different services together, conse-
quently, |A|�&# =

∏ 
:=1

∏ |a
:
|

?=1 #0:? . On the contrary, VERA
handles different services in a distributed manner by assign-
ing a separate learning agent for each service, leading to
|A|+ �'� =

∑ 
:=1

∏ |a
: |

?=1 #0:? . For simplicity, assuming that all
the services comprise the same number of action variables
|a
:
|, and each action variable assumes a value from the

set of discrete elements of the same cardinality #0
:?

, then

|A|�&# = #
|a
:
| 

0
:?

, and |A|+ �'� =  × # |a: |0
:?

. Fig. 16a shows
the variation of the total number of actions in VERA and
DQN frameworks with increasing number of services, for
#0

:?
= 4. It can be clearly observed that as the number of

services hosted in the server increases, the cardinality of the
action space for DQN rises very sharply in comparison to
that of VERA, and this difference is even more evident as
the number of action variables per service also increases.

Further, Fig. 16b shows the convergence of total reward
from vRAN as well as livecast services observed in conse-
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quence to actions chosen by VERA and DQN. The choice of
reward as a comparison metric helps to better characterize
the scalability of the system. We observe that due to the high
cardinality of the action space in DQN, it converges poorly.
With the same n-greedy action selection policy as VERA (i.e.,
n = 0.3, n-decay = 0.9999), DQN is unable to explore all the
actions while n decays down to a negligibly small value and
the learning agent gets caught up in a local optimum. Even
if the action selection parameters are improved (n = 0.8, n-
decay = 0.9999), DQN still explores the action space until
∼ 60k iterations in our experiments, whereas VERA has
shown a clean and early convergence with smaller n value.
To this end, it is worth noting that VERA exhibits a much
higher scalability in terms of cardinality of action space com-
pared to the state-of-the-art DQN-based centralized frame-
work. To quantify the scalability performance, we define the
scaling cost as the sum of reward deficit with respect to
maximum reward value at convergence and the fraction of
total iterations used for convergence. In our experiments,
we found that the scaling cost of VERA is 45% and 60%
lower compared to DQN, (resp.) for n = 0.3 and n = 0.8. We
also compare the KPI performance of VERA with respect to
DQN, which is included in the supplemental material due to
space limitations here. To summarize, unlike the centralized
DQN framework, VERA proposes an RL-based distributed
learning scenario having service-specific learning agents.
This limits the action space of each agent to the number of
actions in the particular service. Consequently, the learning
process is expedited and early convergence leads to better
KPI performance, hence higher QoS satisfaction.

6.2 Proof-of-concept results

A pre-trained version of the VERA RL agents has been gen-
erated offline using the dataset collected from our testbed,
then it has been evaluated online and in real time in two
scenarios with different RBs availability, i.e., 24 and 36 RBs,
and with CPU budget equal to 3 vCPUs. Notice that the
use of pre-trained RL agents is only to expedite the learning
curve at the inception of VERA framework in the testbed. In

a real-world scenario, VERA uses differential semi-gradient
SARSA for continuously learning from its environment over
the time horizon. In both scenarios, a single UE connects to
the vRAN and receives the livecast, using the configuration
described in Sec. 5.2. For this case, the USRPs’ transmission
gain is set to a high value, so as to ensure that the SNR on
uplink and downlink does not drop below 29 dB.

The radio latency, playout buffer and WMAF KPIs, col-
lected from both testbed and numerical experiments, are
compared in Fig. 17 (packet loss is omitted as it is equal
to 0 in all cases). All KPIs are always satisfied for both the
vRAN and the livecast service. As expected, the latency is
higher in the case of 24 RBs than for 36 RBs, on the contrary,
the playout buffer and WVMAF are less for 24 RBs than
36 RBs, owing to the lower number of radio resources being
available in the first scenario: a higher number of allocated
RBs leads to higher user throughput, which results in less
latency, higher playout buffer and higher WVMAF score.

Importantly, the relative difference between testbed and
numerical KPI values never exceeds 12.4%, with this value
being observed in the case of the playout buffer in the 36 RBs
scenario. The similarity between testbed and numerical re-
sults validates VERA performance in a real time, hardware-
in-the-loop implementation, and it shows the effectiveness
of VERA in a real-world environment.

7 RELATED WORK

Several works have addressed the VNF placement problem
at the network edge, which is related but orthogonal to the
problem we face. Recent examples include: [34], which min-
imizes latency and system cost; [35], which optimizes both
service placement and traffic routing under different re-
source constraints; and [36], which uses cooperation among
edge nodes for service caching and workload scheduling.

Other studies have focused on QoE provisioning to
mobile users through edge-assisted solutions. In particular,
[37] presents an RL framework for crowdcasting services at
the edge meeting bit rate as well as streaming and channel
switching latency requirements, while minimizing the over-
all computing and bandwidth cost. [38], instead, designs
and implements an edge network orchestrator, and a server
assignment and frame resolution selection algorithm for
best latency-accuracy trade-off in mobile augmented reality.

Relevant to our work are also existing studies on re-
source consumption by edge user applications. In particular,
[39] investigates the impact of real-time video analytics on
computing and energy resources, while [40] focuses on im-
age processing through CNNs and maximizes the learning
accuracy given the limited resources at the edge.

The above literature does not consider the inherent re-
source contention between edge services and virtualized
RANs. Related with this, [8] jointly optimizes the allocated
resources to edge services and the placement of RAN func-
tions, but uses an over-simplistic linear optimization model
that cannot adapt to quick system dynamics. Like us, some
other authors have used machine learning for practical re-
source allocation, radio parameter settings, and service KPI
support in cellular networks. Among these, [41], [42], [43],
[44], [45] aim at maximizing throughput through channel
or link-rate selection, using multi-armed bandit techniques.
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Similarly, but leveraging the contextual information from
the environment, [46] proposes an RL approach for rate
selection and resource allocation, and [11] to maximize
throughput subject to power consumption constraints. [10]
extends the latter to accommodate service KPI constraints.
However, [10] does not consider individual user dynamics
nor fairness in resource allocation. RL-based schemes can
also be found in [47], [48], [49], to minimize latency and
packet drop rate in 5G systems. The work in [9], instead,
tackles computing resource allocation in a virtualized radio
access, and introduces a deep RL approach for resource
management. Deep RL is also used to determine the suitable
MCS and transmit power level in cognitive radio networks
in [12] and [14], respectively, and to maximize the network
sum-rate in [13]. Recently, [50] proposed a data-driven O-
RAN-compliant framework that configures DUs/RUs ac-
cording to a specified spectrum access policy.

More deep RL approaches are proposed for resource
allocation in edge applications dealing with industrial IoT
and internet of medical things [16], [17]. Other related re-
source allocation problems in computationally constrained
scenarios such as joint server selection, task offloading and
handover in multi-access edge computing wireless net-
works have been tackled through DQNs as in [18], [19],
[20], [21]. Besides, solutions for other computation resource
dependent problems like content caching [23], and network
function placement in edge servers [22] have also been
proposed using DQN. However, such works are subject to
scalability issues in multi-service edge scenarios.

We underline that, unlike previous work, we address
the allocation of edge resources constrained to a limited
budget across different, competing, virtual services. Through
our testbed, we identify the non-trivial correlations existing
among the actions related to the different services, making
the VERA learning objectives very different from those of
existing works. To derive a scalable solution that can accom-
modate multiple services and vBSs (or slices of vBSs), we
resort to a multi-agent RL mode. And, inspired by [24] and
other literature on autonomous driving, we accommodate
such hard constraints as a non-learnable building block.
Different from previous work, however, we design a Pareto-
efficient block for this task, which provides fair resource
allocation across agents (vBSs and edge applications).

Finally, a preliminary version of our solution with only
one user and considering only CPU as a constrained re-
source was presented in our conference paper [51].

8 CONCLUSIONS

We considered an edge computing platform hosting virtual-
ized user applications and network services (namely, vRAN)
competing for the same resources. We first investigated
the correlations existing between the dynamics of such
services through an experimental testbed that leverages a
containerized livecast application and a containerized LTE
base station. Then we developed a distributed learning
framework, called VERA, that sets the configuration of both
types of services so that the target KPIs can be met in spite
of the limited availability of computing resources at the
edge. Importantly, VERA also exploits a Pareto analysis that
leads to fair Pareto-efficient decisions, and it can scale well

with the number of virtualized services that are hosted at
the edge platform. Our experimental results demonstrate
the feasibility of the VERA approach and the important
role of the Pareto analysis. Also, they show the excellent
performance we can obtain in the presence of capacity-
constrained resources with the KPI target violation lim-
ited to just 3.7%. Further, we show that VERA performs
similarly when executed in our real-time proof-of-concept
implementation, with KPI differences below 12.4%, thus
confirming the effectiveness of VERA also in a real-world
environment. We compare the performance of VERA to the
centralized DQN framework and found it to be 54% more
scalable, thereby establishing the efficacy of distributed over
centralized learning in such complex resource limited sce-
narios. Finally, we are working on the integration of more
user applications (e.g., robots control) with the livecast and
vRAN services in the testbed, and further analysis in this
respect is the scope of our future work.
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