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Abstract: The aim of this paper is to present a novel physics-based framework for the
identification of dynamical systems, in which the physical and structural insights are reflected
directly into a backpropagation-like learning algorithm. The main result is a method to compute
in closed form the gradient of a multi-step loss function, while enforcing physical properties and
constraints. The derived algorithm has been exploited to identify the unknown inertia matrix
of a space debris, and the results show the reliability of the method in capturing the physical
adherence of the estimated parameters.
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1. INTRODUCTION

In real-world applications, systems of interest are often not
precisely known, and physically-consistent approximating
models are challenging to identify. This is especially true in
modern problems, which often involve complex, nonlinear,
and possibly interconnected systems (Ljung et al., 2011).
Moreover, incorporating physical insights while preserving
simulation accuracy is not trivial, demanding a fusion
between theoretical understanding and computational ac-
curacy.

Recently, a new model class has become the subject of
relevant research activities, the so-called physics-informed
neural networks (PINNs) (Karniadakis et al., 2021). These
kinds of NNs are positioned between grey-box and black-
box models and allow to incorporate the available physical
information, either by introducing a physics-based loss
function (Gokhale et al., 2022), or directly modifying the
structure of the model ensuring a consistent physical corre-
lation between input and output (Di Natale et al., 2022).
PINN techniques have been gaining a large interest for
their capability of handling the main challenges posed by
modern system identification. However, in PINNs usually
the NN weights lack of physical interpretability.

Motivated by the previous considerations, in this paper
we propose a novel identification framework, which places
itself at the intersection of classical grey-box identifica-
tion, where often nonlinear phenomena are ignored or
simplified, and modern PINN methods, where a black-box
model is embedded with prior knowledge of the system’s
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physics (Nghiem et al., 2023), aiming to exploit the best
features of these approaches. The method is based on a
(possibly partial) knowledge of the physical description of
a nonlinear system, which is used for the definition of a
NN-like structure as a substitute for the system dynamical
multi-step model. However, unlike PINNs which generally
consider partial differential equations (PDEs) and a cost
function with one term for fitting the data and one for
fulfilling the PDE, in this paper we consider ordinary
differential equations (ODEs), combining the model ful-
fillment and data fitting into a single loss term.

Moreover, unlike the majority of nonlinear system iden-
tification methods, which are based on the minimization
of the one-step prediction error, the proposed approach
relies on a multi-step loss function. Indeed, the single-
step techniques used, for example, to identify Nonlinear
AutoRegressive with eXogenous inputs (NARX) models
or, in some cases, used in the framework of PINNs (e.g.,
Daw et al. (2022)), may not be accurate in multi-step
prediction or simulation, and they may also fail to capture
the relevant dynamics of the real system. On the other
hand, solutions based on the minimization of a multi-step
loss function (see e.g., Mohajerin and Waslander (2019))
provide satisfactory performance in simulation and allow
to increase the long-term prediction accuracy. This comes
at the expense of a high computational effort and involves,
in general, solution of non-convex problems, more difficult
to solve than in the one-step case.

In this paper, an efficient method for solving a multi-step-
based optimization problem is proposed. Relying on the
aforementioned model structure, we develop a gradient-
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based identification algorithm, exploiting the well-known
backpropagation method, typically used for classical NN
training. The philosophy is similar to classical backpropa-
gation, where we leverage the specific characteristics of our
problem. First, we enforce the weights to be the same at
each time step (i.e., in each layer) along the prediction
horizon, since they have the same physical interpreta-
tion and being the system time-invariant. Second, in our
proposed architecture the “activation functions” are fixed
using the physical dynamics f in each layer. Consequently,
the weights have an explainable and interpretable meaning,
representing the physical parameters of the system S to
be identified. Similarly, in (Abbasi and Andersen, 2022)
the authors introduce the concept of physical activation
functions (PAFs), where the mathematical expression of
the activation function is inherited from the physical laws
of the investigated phenomena. However, these PAFs are
applied only in one hidden layer, and combined with other
general activation functions, e.g., sigmoids.

Our formulation allows the definition of an analytical , one-
shot computation of the gradient, that exploits all the
available physics-based constraints on the system states
and parameters and, if any, the system structural infor-
mation. The generality of the underlying structure allows
us to deal with real-world situations where the system
to identify may be partly inherited from the physics and
partly unknown, and the values of some parameters may
be available, while others need to be identified. Moreover,
the proposed approach allows to reflect the physical char-
acteristics of the system behavior through the introduction
of specific penalty terms in the cost function (Zakwan
et al., 2022; Medina and White, 2023), ensuring models
adherence to fundamental physics principles.

The remainder of the paper is structured as follows. In
Section 2, we define the considered framework, introducing
the main features of the considered system dynamics and
of the estimation model. The analytic computation of the
gradient is detailed in Section 3, together with the ap-
proach used to enforce possible physics-based constraints
based on prior knowledge of the system. Simulation results
obtained with the proposed approach are discussed in
Section 4. Main conclusions are drawn in Section 5.

Notation Given a vector v, we denote by v1:T
.
= {vk}Tk=1

the set of vectors {v1, . . . , vT }. Given integers a ≤ b,
we denote by [a, b] the set of integers {a, . . . , b}. The
Jacobian matrix of αk with respect to βk is denoted

as J α/β
k ∈ Rnα×nβ , i.e., ∂αk

∂βk
. Similarly, J α/α

k ∈ Rnα×nα is

the Jacobian matrix of αk with respect to αk−1, i.e.,
∂αk

∂αk−1
.

2. FRAMEWORK DEFINITION

2.1 Problem setup

We consider a nonlinear, time-invariant dynamical system
S, possibly composed by interconnected subsystems. We
are given a physics-based description of the system, i.e.,
defined by means of discrete-time state equations captur-
ing the physical interaction between variables:

S : xk+1 = f (xk, uk, θ) ,

zk = g (xk) + dk,
(1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the
(external) input vector to S, z ∈ Rnz is the observation
vector, and d is the measurement noise. The functions
f(x, u, θ) and g(x) are known, and represent the dynamical
laws and the observation function respectively. They are
assumed to be nonlinear, time-invariant, and at least C1

differentiable. The goal is to identify both the physical
parameters θ ∈ Rnθ and the initial condition x0 ∈ Rnx ,
starting from measured input-output sequences, leading

to an estimation model Ŝ of S of the form

Ŝ : x̂k+1 = f(x̂k, uk, θ̂),

ẑk = g(x̂k),
(2)

where x̂k, and ẑk are the estimated state and output at
time k, respectively.

We assume we have available a T -step measured, input
sequence ũ0:T−1 and the corresponding T collected obser-
vations z̃0:T−1. The objective is to estimate the optimal

values of the parameters θ̂⋆ and initial condition x̂⋆
0 over

the horizon T such that Ŝ is the best approximation of S,
given its underlying physical structure and the measured
data {ũ0:T−1, z̃0:T−1} 1 .

First, given the output predictions ẑ and the true mea-
surements z̃, we define the prediction error at time k as

ek
.
= ẑk − z̃k. (3)

Note that this is a multi-step prediction error, since ẑk
is obtained through successive iterations of equations (2).
The local loss at time k is defined by the weighted norm
of the error,

L(ek, θ)
.
=

1

T
∥ek∥2Q

.
=

1

T
e⊤k Qek, (4)

with Q ⪰ 0.

In this paper, we consider a multi-step regression cost C as
a sum of local losses over the prediction horizon T as

C(ek, θ) =
T−1∑
k=0

L(ek, θ)
.
=

T−1∑
k=0

Lk. (5)

Then, we can define our nonlinear, parametric model
identification problem as

(θ̂⋆, x̂⋆
0)

.
= argmin

θ,x0

C(ek, θ), (6)

in which we want to minimize the mean squared error over
sampled measurements to obtain an estimate of θ and x0.

2.2 Multi-step dynamics propagation

Given the dynamical model S, it is possible to propagate
each state variable xi, i ∈ [1, nx] over a desired horizon T ,
simply applying the model S recursively, i.e.,

xi,k+1 = fi (xk, uk, θ) , k ∈ [0, T ]. (7)

The model can be depicted as in Fig. 1, where the recursion
is captured by the delay block. Clearly, this can also be
represented opening the output loop T steps ahead from
the initial time k = 0.

We observe that what we obtain closely resembles the
well-known structure of neural networks. Indeed, each

1 The proposed algorithm can be adapted to the case of multiple
trajectories with the same length T .
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based identification algorithm, exploiting the well-known
backpropagation method, typically used for classical NN
training. The philosophy is similar to classical backpropa-
gation, where we leverage the specific characteristics of our
problem. First, we enforce the weights to be the same at
each time step (i.e., in each layer) along the prediction
horizon, since they have the same physical interpreta-
tion and being the system time-invariant. Second, in our
proposed architecture the “activation functions” are fixed
using the physical dynamics f in each layer. Consequently,
the weights have an explainable and interpretable meaning,
representing the physical parameters of the system S to
be identified. Similarly, in (Abbasi and Andersen, 2022)
the authors introduce the concept of physical activation
functions (PAFs), where the mathematical expression of
the activation function is inherited from the physical laws
of the investigated phenomena. However, these PAFs are
applied only in one hidden layer, and combined with other
general activation functions, e.g., sigmoids.

Our formulation allows the definition of an analytical , one-
shot computation of the gradient, that exploits all the
available physics-based constraints on the system states
and parameters and, if any, the system structural infor-
mation. The generality of the underlying structure allows
us to deal with real-world situations where the system
to identify may be partly inherited from the physics and
partly unknown, and the values of some parameters may
be available, while others need to be identified. Moreover,
the proposed approach allows to reflect the physical char-
acteristics of the system behavior through the introduction
of specific penalty terms in the cost function (Zakwan
et al., 2022; Medina and White, 2023), ensuring models
adherence to fundamental physics principles.

The remainder of the paper is structured as follows. In
Section 2, we define the considered framework, introducing
the main features of the considered system dynamics and
of the estimation model. The analytic computation of the
gradient is detailed in Section 3, together with the ap-
proach used to enforce possible physics-based constraints
based on prior knowledge of the system. Simulation results
obtained with the proposed approach are discussed in
Section 4. Main conclusions are drawn in Section 5.

Notation Given a vector v, we denote by v1:T
.
= {vk}Tk=1

the set of vectors {v1, . . . , vT }. Given integers a ≤ b,
we denote by [a, b] the set of integers {a, . . . , b}. The
Jacobian matrix of αk with respect to βk is denoted

as J α/β
k ∈ Rnα×nβ , i.e., ∂αk

∂βk
. Similarly, J α/α

k ∈ Rnα×nα is

the Jacobian matrix of αk with respect to αk−1, i.e.,
∂αk

∂αk−1
.

2. FRAMEWORK DEFINITION

2.1 Problem setup
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zk = g (xk) + dk,
(1)
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(external) input vector to S, z ∈ Rnz is the observation
vector, and d is the measurement noise. The functions
f(x, u, θ) and g(x) are known, and represent the dynamical
laws and the observation function respectively. They are
assumed to be nonlinear, time-invariant, and at least C1

differentiable. The goal is to identify both the physical
parameters θ ∈ Rnθ and the initial condition x0 ∈ Rnx ,
starting from measured input-output sequences, leading

to an estimation model Ŝ of S of the form

Ŝ : x̂k+1 = f(x̂k, uk, θ̂),

ẑk = g(x̂k),
(2)

where x̂k, and ẑk are the estimated state and output at
time k, respectively.

We assume we have available a T -step measured, input
sequence ũ0:T−1 and the corresponding T collected obser-
vations z̃0:T−1. The objective is to estimate the optimal

values of the parameters θ̂⋆ and initial condition x̂⋆
0 over

the horizon T such that Ŝ is the best approximation of S,
given its underlying physical structure and the measured
data {ũ0:T−1, z̃0:T−1} 1 .

First, given the output predictions ẑ and the true mea-
surements z̃, we define the prediction error at time k as

ek
.
= ẑk − z̃k. (3)

Note that this is a multi-step prediction error, since ẑk
is obtained through successive iterations of equations (2).
The local loss at time k is defined by the weighted norm
of the error,
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=

1
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.
=
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e⊤k Qek, (4)

with Q ⪰ 0.

In this paper, we consider a multi-step regression cost C as
a sum of local losses over the prediction horizon T as

C(ek, θ) =
T−1∑
k=0

L(ek, θ)
.
=

T−1∑
k=0

Lk. (5)

Then, we can define our nonlinear, parametric model
identification problem as

(θ̂⋆, x̂⋆
0)

.
= argmin

θ,x0

C(ek, θ), (6)

in which we want to minimize the mean squared error over
sampled measurements to obtain an estimate of θ and x0.

2.2 Multi-step dynamics propagation

Given the dynamical model S, it is possible to propagate
each state variable xi, i ∈ [1, nx] over a desired horizon T ,
simply applying the model S recursively, i.e.,

xi,k+1 = fi (xk, uk, θ) , k ∈ [0, T ]. (7)

The model can be depicted as in Fig. 1, where the recursion
is captured by the delay block. Clearly, this can also be
represented opening the output loop T steps ahead from
the initial time k = 0.

We observe that what we obtain closely resembles the
well-known structure of neural networks. Indeed, each

1 The proposed algorithm can be adapted to the case of multiple
trajectories with the same length T .

Fig. 1. Recursive representation of a dynamical system.

time step k can be seen as a “layer” composed by nx

“neurons”, and the interconnection links between layers
and neurons, are activated or deactivated according to the
system dynamical structure defined in S. In particular,
if xi,k+1 does not depend on xj,k, the corresponding link
is null. This allows to envision the model S as a neural
network graph and, consequently, the “weights” of the
network are the interpretable, physical parameters of the
system.

Since the overall objective function in (6) is (in gen-
eral) non-convex, due to the nonlinearity in θ and xk

of f(xk, uk, θ) and g(xk) (1), we rely on gradient-based
algorithms (Sun et al., 2019) to address the optimization
problem, aiming to reach some (local) minima and even-
tually compute a (sub)optimal estimation of θ and x0.

We observe that, inspired by the approach typically
adopted for neural network graphs, we can exploit a clas-
sical backpropagation scheme to analytically compute the
gradient of the loss function, thanks to the structure of
the physics-based model S. However, as it will be clarified
in Section 3, differently from neural network backpropa-
gation, the proposed scheme presents the same weigths θ
and the same functions in all layers. This crucial feature
allows us to derive a useful closed form of the gradient of
C(ek, θ) with respect to θ and x0, i.e., ∇C = [∇θC, ∇x0

C].
Once these gradients are computed, it is possible to apply
a gradient-based algorithm to solve the optimization prob-
lem (5), such that the estimate of θ and x0 are updated at
each epoch ℓ. For instance, if a classical gradient descent
method is applied, we would have

θ̂(ℓ+1) = θ̂(ℓ) − ηθ∇⊤
θ C(ℓ) (8)

x̂
(ℓ+1)
0 = x̂

(ℓ)
0 − ηx0

∇⊤
x0
C(ℓ) (9)

with learning rates ηθ, ηx0
. In this paper, we select the

ADAM first-order method (Kingma and Ba, 2015) with
decay rates β1, β2.

The whole procedure is presented in Algorithm 1. At epoch

ℓ, we first propagate the system with initial conditions x̂
(ℓ)
0

and parameters θ̂(ℓ) through the network layer-by-layer
(i.e., along the horizon T ). Then, we evaluate the gradient
based on the computed predictions, and accordingly, we

update the weights, i.e., θ̂(ℓ) and x̂
(ℓ)
0 . This process repeats

over ℓ until at least one of the following conditions is
satisfied: (a) the maximum number of epochs, i.e., Emax,
is reached; (b) the structure converges to a (possibly local)
minimum of the loss function, or below a given threshold

ε; (c) the magnitude of the gradient is lower than a given
minimum step size δ.

Algorithm 1 One-shot backpropagation-based identifica-
tion
1: Given T input-output observations {ũ0:T−1, z̃0:T−1},

choose ηθ, ηx0 , β1, β2, Emax, ε, and δ.

2: Initialize ℓ = 0 and x̂
(0)
0 , θ̂

(0)
0 .

3: while ℓ ≤ Emax and C(ℓ) ≥ ε and ∥∇C(ℓ)∥2 ≥ δ do

4: Simulate (2) for k ∈ [0, T − 1] using θ̂(ℓ), x̂
(ℓ)
0 to

obtain x̂
(ℓ)
1:T , ẑ

(ℓ)
0:T−1.

5: Compute e
(ℓ)
0:T−1 (3) and C(ℓ) (5).

6: Compute ∇θC(ℓ) (17) and ∇x0
C(ℓ) (20).

7: Update the weights using ADAM, i.e.,

θ̂(ℓ+1) = ADAM(θ̂(ℓ), ηθ, β1, β2,∇θC(ℓ)),

x̂
(ℓ+1)
0 = ADAM(x̂

(ℓ)
0 , ηx0

, β1, β2,∇x0
C(ℓ)).

8: ℓ ← ℓ+ 1.
9: end while

10: Return θ̂⋆ = θ̂(ℓ) and x̂⋆
0 = x̂

(ℓ)
0

3. CLOSED-FORM GRADIENT COMPUTATION

In this section, we describe the procedure to compute the
gradient in closed form relying on the structure of S and
the available measurements. This procedure is the core of
Algorithm 1. We compute the gradient of the cost function
C with respect to θ and x0, i.e., ∇θC = dC

dθ and ∇x0C = dC
dx0

as the product of some intermediate partial derivatives
that, unlike what happens in standard neural networks,
share a common formulation and allow to compute the
gradient in a fully analytic way. Hence, at epoch ℓ, the
analytic form of the gradient can be simply evaluated at

the current value of θ̂(ℓ), x̂
(ℓ)
0 and the ensuing predictions,

that is

∇θC(ℓ) = Gθ

(
θ̂(ℓ), x̂

(ℓ)
0 , x̂

(ℓ)
1:T , ẑ

(ℓ)
0:T−1

)

∇x0C(ℓ) = Gx0

(
θ̂(ℓ), x̂

(ℓ)
0 , x̂

(ℓ)
1:T , ẑ

(ℓ)
0:T−1

)
.

The closed-form expressions of the two gradients are pre-
sented in the following sections. In the sequel, for readabil-
ity, we omit the superscript (ℓ) denoting the epochs.

3.1 Gradient with respect to parameters

In the proposed framework, we can obtain the closed-form
expression of ∇θC on the measured data {ũ0:T−1, z̃0:T−1}
by considering the effect of the (current, in terms of

epochs) estimate θ̂ for each time step k on the cost C.
The desired gradient can be obtained as

∇θC =

T−1∑
k=1

dC
dθ

∣∣∣∣
k

, (10)

where dC
dθ

∣∣
k
is the effect of θ̂ on the cost C at an arbitrary

time step k within the prediction horizon T , and for each k
we have

dC
dθ

∣∣∣∣
k

=
∂C
∂θ

∣∣∣∣
k|k

+

T−1∑
τ=k+1

dC
dθ

∣∣∣∣
τ |k

. (11)
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Indeed, this analysis takes into account both the “direct”

effect of θ̂ at time k on Lk, i.e.,
∂C
∂θ

∣∣
k|k, and the “collateral”

effects, i.e.,
∑T−1

τ=k+1
dC
dθ

∣∣
τ |k, on the subsequent local losses

Lτ for all τ ∈ [k + 1, T ], arising from the propagation of

the error originated from θ̂ to the predicted state x̂k.

For the first term in (11), we can apply the chain rule of
differentiation, as typically done in classical backpropaga-
tion, and we obtain

∂C
∂θ

∣∣∣∣
k|k

=
∂Lk

∂θ
+

∂Lk

∂ek

∂ek
∂zk

∂zk
∂xk

∂xk

∂θ

= ∇θLk +∇eLkJ e/z
k J z/x

k J x/θ
k .

(12)

Then, for the general term dC
dθ

∣∣
τ |k, we apply again the chain

rule and we have

dC
dθ

∣∣∣∣
τ |k

=
∂Lτ

∂eτ

∂eτ
∂zτ

∂zτ
∂xτ

τ−k−1∏
c=0

∂xτ−c

∂xτ−c−1

∂xk

∂θ

= ∇eLτJ e/z
τ J z/x

τ

τ−k−1∏
c=0

J x/x
τ−cJ

x/θ
k ,

(13)

where the chain multiplication of J x/x evaluated at dif-
ferent time steps is exploited to back-propagate the error
from τ to k and compute the exact desired contribution of

θ̂ to C due to the propagation of x̂k from time k to time τ .

Then, let us define the following two quantities, i.e.,

γk
.
= ∇θLk, Γk

.
= ∇eLkJ e/z

k J z/x
k , (14)

such that
∂C
∂θ

∣∣∣∣
k|k

= γk + ΓkJ x/θ
k , (15)

dC
dθ

∣∣∣∣
τ |k

= Γk

τ−k−1∏
c=0

J x/x
τ−cJ

x/θ
k , (16)

and substituting these terms in (11), we obtain the one-
shot formulation for computing ∇θC as

∇θC =

T−1∑
k=1

γk +

T−1∑
k=1

ΓkJ x/θ
k

+

T−1∑
k=1

T−1∑
τ=k+1

(
Γτ

τ−k−1∏
c=0

J x/x
τ−c

)
J x/θ
k .

(17)

Remark 1. By incorporating the model structure S di-
rectly into the network structure, the backpropagation of
errors can be efficiently computed using the chain multipli-

cation of the same Jacobian matrix J x/x
k . The parametric

computation of this Jacobian can be performed once for
all, and later evaluated at different time steps. This will
allow to reduce the number of partial derivatives to be
computed and, consequently, the computational complex-
ity of the proposed approach.

3.2 Gradient with respect to initial condition

Let us now consider the explicit formulation for the gradi-
ent with respect to the initial condition

∇x0C =

T−1∑
k=1

dC
dx0

∣∣∣∣
k|0

. (18)

The one-shot, analytical expression can be derived by
considering the effect of x0 on each subsequent prediction
x̂k and, consequently, on the cost C. In this case, there
is no “direct” effect of x̂0 on the final cost, but we must
account for the “collateral” effects of x̂0 on the subsequent
local-losses Lτ for all τ = [1, T ]. These effects arise from
the error originating from x̂0 and propagated throughout
the predictions along T . Consequently, we obtain

dC
dx0

∣∣∣∣
k|0

=
∂Lk

∂ek

∂ek
∂zk

∂zk
∂xk

k−1∏
c=0

∂xk−c

∂xk−c−1

= ∇eLkJ e/z
k J z/x

k

k−1∏
c=0

J x/x
k−c,

(19)

which in compact form can be rewritten as

∇x0C =

T−1∑
k=1

Γk

k−1∏
c=0

J x/x
k−c. (20)

3.3 Physics-based constraints

To guarantee the coherence among the physics of the
phenomena and the estimated parameters, exploiting the
physical laws as activation functions may be not sufficient.
It may be needed to reflect the specificity of the system
behavior, such as e.g. passivity, monotonicity, divergence,
symmetry of variables, stability (Medina and White, 2023;
Zakwan et al., 2022), thus ensuring that the identified
models adhere to fundamental laws and are consistent with
physical principles. This aspect can be formally embedded
into the cost C by means of penalty terms that introduce
physical constraints, of the form

h(x̂k, θ) ≤ 0, ∀k ∈ [0, T ],

with h : Rnx × Rnθ → R a time-invariant function, (at
least) C1 differentiable. Specifically, the general cost C is
modified as follows

C =

T−1∑
k=0

Lk + λh(x̂k, θ), (21)

where λ ∈ R is a Lagrange multiplier that controls the
relevance of the physical constraint h(x̂k, θ) such that the
higher is the violation of the physical properties in the
predicted states and weights, the larger is the associated
loss value.

Deterministic physical constraints exhibit themselves in
a wide range of forms from simple algebraic equations
to nonlinear integer-differential equations and inequali-
ties. Thus, it is possible to enforce a large variety of
physics-based constraints through a sharp customization
of h(x̂k, θ). For instance, one possibility is to define the
penalty term to minimize the deviation of the total energy
of the system with respect to the reference level, thus en-
forcing the principle of energy conservation for mechanical
systems. Another example may be the use of an expo-
nential barrier function as constraint to guarantee some
physical properties of the state variables. In case we need
to constrain the parameters into a specified convex set,
we can enhance the identification algorithm introducing a
projection step immediately after the parameters update,
such that in case of constraints violation, the parameters
are projected onto the desired set. Similarly, equality con-
straints may be enforced by adding a quadratic penalty
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Indeed, this analysis takes into account both the “direct”

effect of θ̂ at time k on Lk, i.e.,
∂C
∂θ

∣∣
k|k, and the “collateral”

effects, i.e.,
∑T−1

τ=k+1
dC
dθ

∣∣
τ |k, on the subsequent local losses

Lτ for all τ ∈ [k + 1, T ], arising from the propagation of

the error originated from θ̂ to the predicted state x̂k.

For the first term in (11), we can apply the chain rule of
differentiation, as typically done in classical backpropaga-
tion, and we obtain

∂C
∂θ
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k|k

=
∂Lk

∂θ
+

∂Lk

∂ek

∂ek
∂zk

∂zk
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∂xk

∂θ

= ∇θLk +∇eLkJ e/z
k J z/x

k J x/θ
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(12)

Then, for the general term dC
dθ
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τ |k, we apply again the chain

rule and we have
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dθ
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=
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∂θ

= ∇eLτJ e/z
τ J z/x

τ

τ−k−1∏
c=0

J x/x
τ−cJ

x/θ
k ,

(13)

where the chain multiplication of J x/x evaluated at dif-
ferent time steps is exploited to back-propagate the error
from τ to k and compute the exact desired contribution of

θ̂ to C due to the propagation of x̂k from time k to time τ .

Then, let us define the following two quantities, i.e.,

γk
.
= ∇θLk, Γk

.
= ∇eLkJ e/z

k J z/x
k , (14)

such that
∂C
∂θ

∣∣∣∣
k|k

= γk + ΓkJ x/θ
k , (15)

dC
dθ
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τ |k

= Γk

τ−k−1∏
c=0

J x/x
τ−cJ

x/θ
k , (16)

and substituting these terms in (11), we obtain the one-
shot formulation for computing ∇θC as

∇θC =

T−1∑
k=1

γk +

T−1∑
k=1

ΓkJ x/θ
k

+

T−1∑
k=1

T−1∑
τ=k+1

(
Γτ

τ−k−1∏
c=0

J x/x
τ−c

)
J x/θ
k .

(17)

Remark 1. By incorporating the model structure S di-
rectly into the network structure, the backpropagation of
errors can be efficiently computed using the chain multipli-

cation of the same Jacobian matrix J x/x
k . The parametric

computation of this Jacobian can be performed once for
all, and later evaluated at different time steps. This will
allow to reduce the number of partial derivatives to be
computed and, consequently, the computational complex-
ity of the proposed approach.

3.2 Gradient with respect to initial condition

Let us now consider the explicit formulation for the gradi-
ent with respect to the initial condition

∇x0C =

T−1∑
k=1

dC
dx0

∣∣∣∣
k|0

. (18)

The one-shot, analytical expression can be derived by
considering the effect of x0 on each subsequent prediction
x̂k and, consequently, on the cost C. In this case, there
is no “direct” effect of x̂0 on the final cost, but we must
account for the “collateral” effects of x̂0 on the subsequent
local-losses Lτ for all τ = [1, T ]. These effects arise from
the error originating from x̂0 and propagated throughout
the predictions along T . Consequently, we obtain

dC
dx0

∣∣∣∣
k|0

=
∂Lk

∂ek

∂ek
∂zk

∂zk
∂xk

k−1∏
c=0

∂xk−c

∂xk−c−1

= ∇eLkJ e/z
k J z/x

k

k−1∏
c=0

J x/x
k−c,

(19)

which in compact form can be rewritten as

∇x0C =

T−1∑
k=1

Γk

k−1∏
c=0

J x/x
k−c. (20)

3.3 Physics-based constraints

To guarantee the coherence among the physics of the
phenomena and the estimated parameters, exploiting the
physical laws as activation functions may be not sufficient.
It may be needed to reflect the specificity of the system
behavior, such as e.g. passivity, monotonicity, divergence,
symmetry of variables, stability (Medina and White, 2023;
Zakwan et al., 2022), thus ensuring that the identified
models adhere to fundamental laws and are consistent with
physical principles. This aspect can be formally embedded
into the cost C by means of penalty terms that introduce
physical constraints, of the form

h(x̂k, θ) ≤ 0, ∀k ∈ [0, T ],

with h : Rnx × Rnθ → R a time-invariant function, (at
least) C1 differentiable. Specifically, the general cost C is
modified as follows

C =

T−1∑
k=0

Lk + λh(x̂k, θ), (21)

where λ ∈ R is a Lagrange multiplier that controls the
relevance of the physical constraint h(x̂k, θ) such that the
higher is the violation of the physical properties in the
predicted states and weights, the larger is the associated
loss value.

Deterministic physical constraints exhibit themselves in
a wide range of forms from simple algebraic equations
to nonlinear integer-differential equations and inequali-
ties. Thus, it is possible to enforce a large variety of
physics-based constraints through a sharp customization
of h(x̂k, θ). For instance, one possibility is to define the
penalty term to minimize the deviation of the total energy
of the system with respect to the reference level, thus en-
forcing the principle of energy conservation for mechanical
systems. Another example may be the use of an expo-
nential barrier function as constraint to guarantee some
physical properties of the state variables. In case we need
to constrain the parameters into a specified convex set,
we can enhance the identification algorithm introducing a
projection step immediately after the parameters update,
such that in case of constraints violation, the parameters
are projected onto the desired set. Similarly, equality con-
straints may be enforced by adding a quadratic penalty

term in the cost. More details and examples can be found
in Donati et al. (2023).

4. NUMERICAL RESULTS

The attitude dynamics of the satellite is usually modeled
using the standard Euler equations, i.e.,

Iω̇ = M − ω × Iω, ω̃ = ω + eω, (22)

where ω = [ωx, ωy, ωz]
⊤ is the angular velocity and ω̃ the

measured output, I is the satellite inertia tensor, M is
the input torque, and eω is the measurement noise. In
the follows, we assume M ∼ N (10−5, σMd

) with σMd
=

10−7 rad
s , representing for instance solar radiation pressure,

and eω ∼ N (0, σω) with σω = 10−4rad/s. 2

Here, the objective is to estimate the optimal value for
the satellite diagonal inertia matrix (i.e., the physical

parameters θ̂ are the diagonal elements of Î) and the initial
angular velocity ω̂0 (i.e., x̂0), starting from some tentative
values (I, ω0) and given collected output samples, applying
the proposed approach. For the validation, we generated
a sequence of T = 50 data, integrating (22) with a
sampling time of 0.1 s. The true systems is initialized with
ω0 = [9.915 · 10−6,−1.102 · 10−3, 1.3179 · 10−5]⊤ and θ =
[0.0403, 0.0404, 0.0080]⊤. Moreover, physical constraints

are imposed on the diagonal elements of Î by introducing
a projection step immediately after the update phase, such
that for all i we have θi > 0.

Remark 2. While the emphasis in this section lies on θ due
to its higher significance in the considered framework, it is
important to note that the achieved results were obtained
by estimating both θ and x0.

In Fig. 2, we can observe the convergent behavior of the
loss function over the algorithm iteration epochs ℓ, rep-
resented in the estimated parameter space. This behavior
is confirmed in Fig. 3, where we depict the evolution of
the estimated parameters with respect to ℓ for different

initial conditions of θ̂ and x̂0. It is worth noting that the

Fig. 2. Evolution of C over the estimation parameter space.

computed gradient might initially move some parameters
away from their intended final values (e.g., the peak in
the second plot). This temporary shift allows focusing on
correcting more crucial parameters first, before eventually
re-adjusting the divergent parameter towards convergence.

Then, in Fig. 4 we compare the performance of the pro-
posed algorithm (red line) with respect to three different

2 The noise values, despite appearing rather small, are compatible
with the case study selected (i.e., around 10% of the state values).

Fig. 3. Comparison between estimated parameters θ̂i and
real ones θi.

approaches: (i) a gray-box (GB) model 3 (green line),
which is fed with the dynamical model in (22) and mini-
mizes a single-step prediction error; (ii) a multi-step (ms)
model (orange line) and (iii) a single-step (ss) model (pur-
ple line), both implemented using the same cost function
as our approach but different algorithms to compute the
gradient, i.e., fmincon function with a sqp setting. Given

Fig. 4. Evolution of ω̂i(t) with different approaches.

the same training dataset, we use all the aforementioned
approaches to estimate the physical parameters θ, and
then to propagate the dynamics over a longer simulation
horizon (i.e., t ∈ [0, 100]), overlapping the results with the
true measurements (black line). We can observe that both
multi-step approaches are able to properly capture the
physics of the system better than the GB and ss. However,
we need to emphasize that, due to the inherent instability
of the trajectories generated by the nonlinear system (22),
it is expected that also the trajectory estimated using our
approach could eventually diverge from the actual one.
Indeed, in this context, the goal of multi-step identification
is to identify parameters that enable the longest horizon of
accurate predictions given a training sequence of T data.

Between the two multi-step approaches the main differ-
ence resides in the gradient computation, i.e., analytically
computed in our approach and numerically approximated
for the standard multi-step approach, and how this affects
the estimation algorithm. This is highlighted in Fig. 5
where we compare three multi-step approaches, sharing
the same solver fmincon with Emax = 100, in terms of

estimation error ∥θ̂−θ∥2. We can observe that by providing

3 We exploited the MATLAB System identification Toolbox to
implement the GB method, using the nlgreyest function.
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our one-shot, analytic gradient to the fmincon solver,
we can achieve a significant improvement (one order of
magnitude) in the estimation accuracy (green diamond)
with respect to the results obtained by using numerically
approximated gradients provided by the differentiation
tool of fmincon with ipopt (red circles) or sqp (black
squares) optimization methods. Moreover, we can also
notice that by using the same one-shot, analytic gradient
fed to a different solver, i.e., Adam (yellow triangles), we
can further improve the identification performance.

Fig. 5. Comparison among four multi-step approaches: 1)
Adam with analytic gradient (triangle), 2) fmincon
with analytic gradient (diamond), 3) ipopt-fmincon
(circle), and 4) sqp-fmincon (square).

The last aspect analyzed is the correlation among the
prediction horizon T , the quality of the estimated pa-

rameters θ̂ and the computation time for the proposed
multi-step identification scheme. To compare the perfor-
mance with respect to the required time we performed
different simulations using different prediction horizons.
As shown in Fig. 6, the larger is T (i.e., the larger is
the number of data used to compute the gradient), the
higher the computation time (blue line) required to com-
plete the identification will be. Observing the estimation
performance, we can select a trade-off horizon between
performance improvement and required computation time

(T = 50, θ̂ = [0.0398, 0.0389, 0.0076]⊤).

Fig. 6. Estimated θ̂i and estimation error for different
prediction horizons T .

5. CONCLUSIONS AND FUTURE RESEARCH

In this work, we have proposed a general framework for
the identification of complex dynamical systems focusing
on multi-step prediction accuracy. We have presented
here the main technical steps, concentrating on the case

when a physical description of each subsystem is available.
However, we want to remark that the approach is general,
and it can be extended to situations where only partial
information on the structure or on the state equations
is available. This is the subject of current research. In
particular, in the case of partially known equations, the
idea is to assume that the model to estimate is given by
the sum of two contributions: a term directly modeled
according to the (underlying) physics of the system, and
another one capturing the unmodeled dynamics.
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