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Abstract 
Background and objectives: Photoplethysmography (PPG) is a device that measures the amount of 
light absorbed by the blood vessel, blood, and tissues, which can, in turn, translate into various 
measurements such as the variation in blood flow volume, heart rate variability, blood pressure, 
etc. Hence, PPG signals can produce a wide variety of biological information that can be useful 
for the detection and diagnosis of various health problems. In this review, we are interested in 
the possible health disorders that can be detected using PPG signals. 
Methods: We applied PRISMA guidelines to systematically search various journal databases and 
identified 43 PPG studies that fit the criteria of this review. 
Results: Twenty-five health issues were identified from these studies that were classified into six 
categories: cardiac, blood pressure, sleep health, mental health, diabetes, and miscellaneous. 
Various routes were employed in these PPG studies to perform the diagnosis: machine learning, 
deep learning, and statistical routes. The studies were reviewed and summarized. 
Conclusions: We identified limitations such as poor standardization of sampling frequencies and 
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lack of publicly available PPG databases. We urge that future work should consider creating more 
publicly available databases so that a wide spectrum of health problems can be covered. We also 
want to promote the use of PPG signals as a potential precision medicine tool in both ambulatory 
and hospital settings. 

Keywords Photoplethysmography (PPG) · Deep learning · Machine 
learning  · PRISMA · Cardiac · Blood pressure · Sleep · Mental health · Diabetes · Computer-
aided diagnosis (CAD) 

 

1. Introduction 

A typical photoplethysmography (PPG) device consists of a light source and a photodetector to 
perform a non-invasive assessment of the blood volume changes in the microcirculation of an 
accessible body part, e.g., pulp of the fingertip. The PPG waveform, like electrocardiography 
(ECG), provides information on the heart rate. The difference between an ECG and PPG 
waveform is depicted in Fig. 1. The ECG estimates the heart rate based on the electrical signal 
conduction within the heart during the cardiac cycle. The P wave, QRS complex, and T wave 
represent depolarization of the atria (atrial systole), depolarization of the ventricles (ventricular 
systole), and repolarization of the ventricles (ventricular diastole), respectively [1]. In other words, 
depolarization and repolarization mark the start of contraction and relaxation of the heart muscle, 
respectively.  

 
Fig 1. Schematic drawing of ECG and PPG waveforms.  

In contrast, the PPG estimates the heart rate by measuring the amount of light absorbed or 
reflected by the pulsatile blood flow within the vessels [2]. As the heart contracts, the rapid 
increase of blood flow volume in the arteries, veins, and capillaries attenuates the light source of 
the PPG measuring device, allowing it to detect the changes in blood flow volume during the 
cardiac cycle. The PPG waveform consists of three main events: systolic peak, dicrotic notch, and 



 

                    Official (Closed) - Non Sensitive 

diastolic peak. The systolic and diastolic peaks indicate detection of the transmitted ventricular 
contraction and relaxation at the measurement site, while the dicrotic notch is caused by the 
closure of the aortic valve, which indicates the end of the systole phase and beginning of the 
diastole phase [3] (Fig. 1). The pulse arrival time (PAT) as indicated in Fig. 1, is the time taken for 
the pulse from the heart to reach the PPG measurement site.  

Although ECG is the gold standard for heart rate measurement, PPG offers an expedient 
alternative that the lay public can use to assess their health status immediately [4, 5]. The ECG 
procedure requires the exact placement of chest electrodes (Fig. 2), which the public is not familiar 
with [5, 6]. As a wearable device, a protruding ECG device under the shirt may be cumbersome 
and uncomfortable. This limits the uptake of portable ECG devices as wearable consumer health 
technology. On the other hand, smartphones, and smartwatches nowadays are equipped with 
PPG measuring devices (Fig. 2). It is no longer necessary for people to purchase stand-alone 
oximeters when PPG measurements can be easily obtained using ubiquitous mobile devices. 

 

 
Fig. 2. Examples of wearable ECG devices (left) and PPG devices (right). 

The PPG signals contain a wide range of physiological information that can play an important 
role in the detection of abnormal health status in both ambulatory and hospital settings [5, 7]. The 
PPG waveform comprises pulsatile (AC) and non-pulsatile (DC) components [7, 8](Fig. 3). The 
AC component provides information on volumetric changes in blood vessels, which corresponds 
to the heart rate (Fig. 1). The DC component measures light absorbed by the tissue, veins, and 
blood at the measuring site, which informs on the volume capacity in the blood vessels, such as 
changes in the venous capacity because of respiration [8].  
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Fig. 3. Schematic drawing of the AC and DC components of PPG signal. 

The abundance of physiological information offered by PPG signals prompts research into a 
diversity of health conditions. Notably, researchers have employed artificial intelligence (AI) 
techniques to learn PPG characteristics for automated detection of disease.  In this work, we 
review studies that used statistical, machine learning, and deep learning approaches to using PPG 
signals computer-aided diagnosis (Fig. 4). It may be noted  that in Fig. 4, PPG signals need to be 
preprocessed to denoise the signal via motion artifact reduction methods before it can be used. 
In the first route (statistical), coefficients are computed from extracted PPG features and 
compared to reference values, and then classified as normal or abnormal signals. In [9] a PPG-
derived apnea-hypopnea index above 15 indicated moderate disease severity among 48 subjects 
with suspected obstructive sleep apnea. In the second route (machine learning), features are 
extracted from the PPG signal (e.g., PAT, systolic peaks, blood flow volume, etc.) and significant 
ones selected to be fed to a classifier. Feature selection is a mandatory step in machine learning 
[10]. Plagued with the curse of dimensionality, machine learning classifiers cannot process high-
dimensional data like PPG signals in their raw form [11]. Feature extraction and selection reduce 
dataset dimensions, thereby preventing overfitting by classifiers [12]. Common machine learning 
classifiers include support vector machine (SVM) [13], random forest (RF) [14], logistic regression 
(LR) [15], k-nearest neighbor (KNN) [16], and artificial neural network (ANN) [17]. In deep 
learning, the PPG signal and/or extracted features are fed to a neural network classifier which 
mimics the brain’s neural connectivity [18] without the need for feature selection [10, 12]. A 
typical deep learning model comprises an input layer, multiple hidden layers, and an output 
layer. The input layer reads the PPG signal and/or extracted feature, preprocesses it, and forwards 
the processed information to a series of hidden layers. The hidden layers assess the information 
collected from the input layer or the layer before it (multiple hidden layers), recalculate the 
information, and forward it to the output layer where classification is performed. Each layer 
contains neurons (symbolized by the black dots in Fig. 4) that compute output values from the 
weights that lie in the connections between the neurons (symbolized by the black lines in Fig. 4) 
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[18]. The model learns the characteristics of the PPG signals by processing labeled training dataset 
samples repeatedly, which allows the weights of the connections between neurons to update 
iteratively. Unlike machine learning, deep learning models are capable of learning PPG signals 
in their raw form as the multiple hidden layers, which earn them the appellation "deep” [10], 
allow them to learn data of high complexities. Common deep learning models include deep 
neural network (DNN) [19], convolutional neural network (CNN) [20], recurrent neural network 
(RNN) [21], and long short-term memory (LSTM) [22]. 

 

Fig 4. Three approaches for computer-aided diagnosis using PPG signals.  

2. Methods 

We performed a literature search of studies related to AI techniques in PPG that had been 
published from Jan 2011 to October 2021 on the following databases: Institute of Electrical and 
Electronics Engineers (IEEE) Xplore Digital Library, PubMed, Science Direct, and GOOGLE 
Scholar using search terms that are listed in Table 1. 461 articles were retrieved with initial screen, 
which was reduced to 43 studies after filtering out 121 duplicate papers, 242 non-assessable 
publications (available only in a non-English language, abstract, or conference formats), and 55 
papers that failed relevancy checks. Fig. 5 depicts the PRISMA [23] workflow of the literature 
search. 

Table 1 
Boolean search string for the respective journal databases. 

Database Boolean search 
[Title] 

Boolean search  
[Title/ Abstract] 

No. of 
results 

PubMed  
“Photoplethysmography” 

"detection" AND "deep learning" 
"detection" AND "machine learning" 

"diagnosis" AND "deep learning" 
"diagnosis" AND "machine learning" 

"prediction" AND "deep learning" 

63 

IEEE 15 
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"prediction" AND "machine learning" 

Science 
direct 

"detection" OR "deep learning" 
"detection" OR "machine learning" 

"diagnosis" OR "deep learning" 
"diagnosis" OR "machine learning" 

"prediction" OR "deep learning" 
"prediction" OR "machine learning" 

115 

Google 
scholar 

"detection" OR "diagnosis" OR 
"identification" OR "prediction" OR "deep 

learning" OR "machine learning" 
268 

 

 

Fig. 5. PRISMA flow chart. 
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3. Results  

There was 25 health issues identified from the 43 studies that are eligible for this review, of which 
14, 8, 7, 6, 2, and 6 PPG studies related to cardiac, blood pressure, sleep, mental, diabetes, and 
miscellaneous health issues. Details of all these studies are listed in Table A.1. 

3.1 Cardiac 

Half of the cardiac studies were on atrial fibrillation (AF) diagnosis with PPG signals [24–30], and 
the remainder evenly split among premature ventricular contraction (PVC) [17], peripheral 
arterial disease (PAD) [31], malignant ventricular arrhythmias (MAS) [14], coronary artery 
disease (CAD) [32], aortic aneurysm [33], cardiovascular [34] risk and cardiomyopathy [35]  
detection. Among these, 4, 7, and 3 studies were based on algorithm approach [24, 27, 29, 30], 
machine learning [14, 17, 25, 32–35], and deep learning [26, 28, 31], respectively, for disease 
prediction.  

Only 12 studies provided details of one or more performance metrics (accuracy, sensitivity, and 
specificity) for comparison of model performance (Fig. 6). For AF diagnosis, the algorithm 
approach yielded the most favorable results, with reported high 97% accuracy [27, 29, 30], 
sensitivity 95.4 to 100% [24, 27, 29, 30] and specificity 96 to 99.7% [24, 27, 29, 30]. The machine 
learning studies that reported detailed performance include those that used PPG signals for 
assessment of PVC (ANN classifier) [17], MAS (RF classifier) [14], aortic aneurysm (KNN 
classifier) [33], cardiovascular risk level (Gaussian mixture model) [34], and various 
cardiomyopathies (kernel k-means classifier) [35]. Except for  [33], which reported a classification 
accuracy of 60% for detection of aortic aneurysm, the rest of the machine learning studies attained 
high performance: 97.9 to 100% accuracy [17, 34, 35], 89 to 100% sensitivity [14, 17, 25, 34, 35], and 
93.3 to 100% specificity [14, 17, 25, 34]. Among deep learning studies, two used CNNs, which are 
preferred models for recognition of high-dimensional raw PPG signal characteristics, to detect 
AF [26, 28]. One study [31] converted PPG signals into spectrograms images that were then input 
to a hybrid CRNN model (combination of CNN and RNN models), and attained high accuracy 
88.9%, sensitivity 86.6%, and specificity 90.2% for detection of PAD.  
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Fig. 6. Bar chart representation of the performance metrics provided by PPG studies in the 
cardiac category. AF – atrial fibrillation, PVC - premature ventricular contraction, MAS - 

malignant ventricular arrhythmias, and PAD - peripheral arterial disease.  
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3.2 Blood pressure 

The PPG studies of blood pressure involved detection of hypertension [20, 36, 37], hypotension 
[38, 39], both hypertension and hypertension [40], as well as specific medical emergencies like 
pregnancy-associated preeclampsia [15] and heart failure-induced mechanical alternans [41] that 
are characterized by extreme blood pressure perturbations. Among these, 1, 3, and 4 studies were 
based on statistical approach [41], machine learning [15, 38, 40], and deep learning [20, 36, 37, 39], 
respectively, for disease prediction. The performance metrics are depicted in Fig. 7. 

In [36], a deep learning model that used PPG to detect hypertension yielded 90% accuracy. For 
detecting hypotension, [38] and [39] employed machine learning and deep learning, respectively. 
The former achieved superior 94.5% accuracy, 91.7% sensitivity, and 95.8% specificity [38] using 
an AdaBoost classifier. In [40], using PPG signals fed to an SVM classifier to detect both 
hypertension and hypotension yielded poor classification accuracy of 60%. In [41],  an algorithm 
approach was used to detect mechanical alternans, i.e., alternating weak and strong heartbeats in 
succession, associated with heart failure, based on 8 heart rate variability (HRV) features 
extracted from PPG signals. Each HRV feature had its own designated threshold. For instance, 
pulse width had a threshold range of 22 to 23%; and pulse interval, 0 to 3. This proposed 
algorithm achieved an average accuracy of 98%. In [15], a machine learning-based logistic 
regression classifier was used to diagnose preeclampsia on PPG signals with promising 87.5% 
accuracy, 83.3% sensitivity, and 91.0% specificity. Preeclampsia is a rare but serious pregnancy 
complication in which the mother develops severe hypertension and organ failure. Failure to 
detect and intervene may result in maternal and fetal death [42], which underscores the use case 
for the PPG monitoring in high-risk pregnancies.  

 

Fig. 7. Bar chart representation of the performance metrics provided by PPG studies in the 
blood pressure category. 
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3.3 Sleep health 

In this review, five PPG studies involved the detection of obstructive sleep apnea (OSA) [9, 16, 21, 
43, 44]; and two, sleep stages classification [19, 22]. Among these, 1, 3, and 3 studies were based 
on statistical  approach [9], machine learning [16, 43, 44], and deep learning [19, 21, 22], 
respectively, for disease prediction. The performance metrics are depicted in Fig. 8.  

OSA occurs when the throat muscle relaxes during sleep and narrows the airway, thereby 
blocking normal airflow and causing the individual to suffer interrupted breathing during sleep. 
In [44], a machine learning-based ensemble classifier attained 95% accuracy, 93% sensitivity, and 
96% specificity for OSA diagnosis. For sleep stage classification, Radha et al. [22] used a deep 
LSTM model to classify sleep stages into sleep and wake stages with 76.4% accuracy, while Walch 
et al. [19] used a DNN model to perform more granular 4-class classification into the wake, rapid-
eye-movement, light, and deep sleep stages with 77.4% accuracy 

  

 

Fig. 8. Bar chart representation of the performance metrics provided by PPG studies in the sleep 
health category. OSA – obstructive sleep apnea. 

 

3.4 Mental health 
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PPG signals can also be used to assess the mental welfare of an individual. The PPG studies of 
mental health involved detection of mental stress [45–48], panic disorder [49], and emotional 
eating [50]. Among these, 4 and 2 studies were based on machine learning [45, 47, 49, 50], and 
deep learning [46, 48], respectively. The performance metrics are depicted in Fig. 9. 

Mental stress is a psychological response to stressors such as fear, pain, or change in the 
environment. Long-term stress can induce depression and anxiety [46], as well as sleep problems 
and cardiac disease [51]. Among PPG studies on mental stress detection, Elzeiny et al. [46] 
achieved the highest classification accuracy of 98.5% with a deep learning model. Panic disorder 
is characterized by episodes of panic attacks such as dizziness, shortness of breath, and trembling. 
In [49], the authors input PPG-derived HRV to a machine learning route LR classifier and attained 
fair 78.4% accuracy, 83.3% sensitivity, and 73.3% specificity for detection of panic disorder. In 
emotional eating, the patient eats to fill an emotional void and generate a false sense of ”fullness” 
[50], which can lead to unhealthy binge eating and bulimia [52]. In [50], PPG-derived HRV was 
input to a machine learning SVM classifier to detect emotional eating with 78% accuracy, 78.8% 
sensitivity, and 75% specificity.  

 
Fig. 9. Bar chart representation of the performance metrics provided by PPG studies in the 

mental health category.  

 

3.5 Diabetes 

In the review, there are only two studies that used PPG to detect diabetic peripheral neuropathy 
[53, 54], a complication of chronic diabetes mellitus. In diabetes, there are abnormally high blood 
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glucose levels [55] that over time damage microcirculatory blood vessels, inhibit transport of 
nutrients to the nerves, and result in nerve damage, which manifests as loss of sensation in the 
limbs, especially the feet [56]. Both studies used machine learning (Table 2). The better 
performance (outstanding 99.9% accuracy, sensitivity, and specificity) was seen with [53], in 
which Mel frequency cepstral coefficients (compact representations of the PPG signal in the 
amplitude domain) were extracted from PPG signals and input to hybrid feature selection-based 
XGBoost system.  

Table 2 
Details of PPG studies in the diabetes category. 

Author Subcategory Feature 
extracted 

Route 
(classifier) 

Accuracy Sensitivity Specificity 

Prabha et 
al. [53] 

Diabetes 
mellitus  

PPG 
waveform 

ML 
(Hybrid FS-

based 
XGBoost 
system) 

99.9% 99.9% 99.9% 

Xiao et 
al. [54] 

diabetic 
peripheral 

neuropathy 
HRV 

ML 
(Logistic 

regression) 
78.2% - - 

 

3.6 Miscellaneous  

In the review, six PPG studies involved miscellaneous conditions (Table 3). Cerebral artery 
stenosis is usually diagnosed on imaging, e.g., magnetic resonance or computer tomographic 
angiography. In [57], PPG signals from treatment and control groups were input to a machine 
learning linear discriminant analysis (LDA) classifier and yielded high classification accuracy, 
sensitivity, and specificity of 92.2%, 90.6%, and 93.8%, respectively [57]. In chronic kidney disease 
patients, arteriovenous fistulae are surgically created between veins and arteries for access during 
hemodialysis treatment. Many complications can occur at the site of arteriovenous fistulae like 
thrombosis, calcification, and inflammation, which interfere with the hemodialysis treatment [13]. 
In [13], the authors assessed the quality of arteriovenous fistulae by inputting PPG-derived blood 
flow volumes (BFV) from study participants into a machine learning SVM classifier, which 
classified the signals into negative (BFV<600mL/min) and positive classes (BFV> 600mL/min), and 
obtained 88.6% accuracy.  

There is no standard measurement for anesthesiologists to assess the anesthetic state in an 
anesthetized patient during surgery. In [58]  the authors used a deep learning CNN model to 
perform a 3-class classification of the anesthetic state (deep, okay, and light). They produced 
heatmaps from PPG and ECG signals to train their proposed CNN model and achieved an 
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accuracy of 86%. In another study,  [59], the authors used deep learning (deep belief network) to 
assess the level of pain during anesthesia but attained only modest 65.6% accuracy.  

Bourdillon et al. [60] used PPG signals to detect overreaching in athletes. This is caused by the 
imbalance between physical training and recovery and can result in declining athletic 
performance despite continual training. In their study, they adopted the statistical route to 
uncover patterns in the variance of the systolic, diastolic, and dicrotic amplitudes in the PPF 
signal. They reported that variance was larger in overreached athletes compared with non-
overreached but acutely fatigued athletes (no standard performance metric was reported). Lastly, 
Ouyang et al. [61] employed PPG signals for the detection of comorbidities, namely CAD and 
atherosclerosis. In their study, they noticed that PPG-derived pulse wave velocities were 
consistently higher for older subjects than younger subjects in the CAD, hypertensive, and 
healthy groups. Likewise, no standard performance metric was reported in their study.  

Table 3  
Details of PPG studies in the miscellaneous category. 

Author Subcategory Feature 
extracted 

Route 
(classifier) Accuracy Sensitivity Specificity 

Kang et al. 
[57] 

Cerebral artery 
stenosis 

PPG 
components 

ML 
(LDA) 

92.2% 90.6% 93.8% 

Chiang et al. 
[13] 

Arteriovenous 
fistulas 

PPG 
components 

ML  
(SVM) 

88.6% - - 

Roy 
Chowdhury 

et al. [58] 
Anesthesia 

PPG 
waveform  

DL 
(CNN) 

86.0% - - 

Lim et al. 
[59] 

Pain HRV 
DL 

(DBN) 
65.6% - - 

Bourdillon et 
al. [60] 

Sports: 
overreaching 

PPG 
waveform 

Statistical 
(statistical 
analysis) 

- - - 

Ouyang et 
al. [61] 

Comorbid: 
CAD & 

atherosclerosis 
HRV ML - - - 

 

4. Discussion  

We have surveyed six main categories of conditions in which PPG signals can be applied to detect 
various health problems. Among these, AF (cardiac), hypertension (blood pressure), OSA (sleep 
health), and stress (mental health) were the most studied health problems in the respective 
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categories. The rest of the health problems each had less than two PPG studies. One noteworthy 
PPG AF detection study is that by Bashar et al. [29], which recruited 10 AF subjects and 9 healthy 
controls. The authors adopted the statistical route and proposed a premature atrial contraction 
detection algorithm, whereby a combined coefficient was computed from two PPG-derived HRV 
features, sample entropy and root mean square of successive differences. A combined coefficient 
exceeding a threshold value of 0.94 denoted AF. Among hypertension studies, Wu et al. [36] 
obtained the highest accuracy using scalograms images of PPG signals to train their deep learning 
CNN model. Notably, they studied the public database MIMIC-III, which contains 67,830 records 
from 30,000 intensive care unit patients. Among the PPG studies for OSA diagnosis, Bozkurt et 
al. [44] obtained the best performance with machine learning ensemble classifier, which gathered 
the majority voting from various classifiers like KNN, ANN, SVM, and probabilistic neural 
network that had all been trained on 16 significant features selected from 46 frequency- and time-
domain PPG features using F-score algorithm. However, the study had a small sample size of 10 
subjects. In the study by Elzeiny et al. on stress detection [46], healthy participants wore 
wristband PPG devices while being subjected to stressful tasks, e.g., solving arithmetic problems 
within 10 minutes, preparing for a presentation in 5 minutes. The PPG signals were converted 
into 2D spatial images and input to a deep learning CNN model for classification.  

 
Fig. 10. The number of PPG studies across the years from 2015 to 2021 for the deep learning, 

machine learning, and statistical route.  

The increasing secular trend of the use of PPG for the detection of various health problems, 
especially with machine learning and deep learning, is demonstrated in Fig. 10. Among the 
different approaches, the statistical route, which is getting less popular, is closer to evidence-
based diagnosis and has high levels of explainability, which is not found in many deep learning 
models due to their black-box nature [10]. Likewise, machine learnings techniques are often 
coupled with complicated feature engineering and selection processes. The reason why certain 
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features are significant is not apparent, and their clinical relevance may therefore be in doubt [10]. 
Hence, we caution researchers who are invested in improving the interpretability of machine 
learning and deep learning not to ignore the statistical approach entirely as it has the potential to 
decrease the uncertainty in these artificial intelligence models. 

Notwithstanding the limited explainability associated with the machine and deep learning, the 
studies that adopted these routes yielded good performance for the detection of various health 
problems, with average accuracy, sensitivity, and specificity of 100%, 99.99%, and 87.30%, 
respectively (Fig. 11).  

 

Fig. 11. Radar plot of the average accuracy, sensitivity, specificity, and combined performance 
metrics gathered from PPG studies in each respective route.  

Indeed, the majority of the PPG studies in this review had used machine learning classifiers (21 
vs. 14 deep learning vs. 8 statistical routes). Fig. 12 summarizes the classifiers employed in the 
machine learning and deep learning models reviewed. Among machine learning models, SVM (4 
studies) was the most popular classifier, followed by LR (3 studies). For deep learning models, 
CNN was the most popular (6 studies), followed by the hybrid model CRNN (2 studies).  
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Fig. 12. Pie chart representation of (a) all the machine learning classifiers and (b) deep learning 
models proposed by PPG studies.  

Regarding the type of features PPG studies used to develop the models, 15 studies employed the 
raw PPG waveform, while 21 used the PPG-derived HRV and 7 used other extracted PPG 
components. In the former, PPG waveform refers to studies that had employed the whole end-
to-end PPG signals to train the model without feature extraction procedure; this is usually 
adopted by deep learning models. Next, PPG components refer to various features extracted in 
the DC components of PPG (Fig. 3), such as blood flow volume, PPG amplitude, respiration, etc. 
Lastly, HRV is the variation between peak-to-peak intervals of the PPG signal and is derived from 
the AC component of the PPG signals. Typical sampling frequencies used for the collection of 
PPG signals for each type of PPG feature in the corresponding studies are listed in Table 4. In this 
review, only two studies used PPG signals that had been sampled over 2,000 Hz. PPG signals 
with a sampling frequency of 8,000 Hz were employed by Fathieh et al. [32], while Hackstein et 
al. [33] used PPG signals sampled at 2,048 Hz. Hackstein et al. [33] detected aortic aneurysms 
using kNN classifier, and attained a classification accuracy of 60%. Fathieh et al. [32], on the other 
hand, did not report model accuracy result in their study on detection of CAD with Elastic Net. 
Hence, it is likely that PPG signals with sampling frequency exceeding 2,000 Hz are oversampled 
and unlikely to provide incremental benefit for disease detection.  

Table 4  
Details on the range of sampling frequency for each PPG feature.  

Features extracted Sampling frequency range (Hz) 

HRV 64 - 500 
PPG waveform 20 – 8,000 

PPG components  128 - 2048 
 

5. Significance aspects and limitations 

The following are the most important aspects of our review:  

 We identified 43 eligible PPG studies in this review, which concern 25 health issues that 
can be classified into six disease categories: cardiac, blood pressure, sleep health, mental 
health, diabetes, and miscellaneous.  
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 We also identified three main strategies (statistical, machine learning, and deep learning) 
that PPG studies adopted for automated detection of these health issues.  

 Under the cardiac category, eight cardiac diseases were studied: AF, PVC, PAD, MAS, 
aortic aneurysm, cardiovascular risk, and cardiomyopathy. The most studied cardiac 
disease was AF.  

 There were four health issues in the blood pressure category: hypertension, hypotension, 
preeclampsia, and mechanical alternans. The most studied health issue in this category 
was hypertension. 

 There were only two issues studied in the sleep health category: sleep stages and OSA, 
and the latter was the most studied health condition. 

 Three mental disorders were studied in the mental health category: mental stress, panic 
disorder, and emotional eating. The most studied disorder was mental stress. 

 Only two disorders were studied in the diabetes category: diabetes mellitus and diabetic 
peripheral neuropathy. 

 Lastly, there were 6 health issues studied in the miscellaneous category: cerebral artery 
stenosis, arteriovenous fistulas, anesthesia, pain, overreaching, and comorbid conditions 
(CAD + atherosclerosis). 

 These studies demonstrate the versatility of PPG signals for the detection of a variety of 
diseases with high model performance.  

Our review also has the limitations: 

 It is challenging to compare performances between various PPG studies as different 
datasets had been used. The number of subjects and data collection methods varied 
widely. 

 There was lack of standardization in the collection of PPG signals between studies; large 
variation is sampling frequency employed during data collection of PPG signals (Table 4). 
As such, the optimal sampling frequency for data acquisition is not clear. 

 The majority of the studies in this review used private datasets (34 studies out of 43 studies, 
see Table A.1) due to the dearth of large publicly available PPG databases. 

 It is challenging to determine which are the significant PPG features or best performing 
model for diagnosis as there was a diversity of health issues covered in this review and 
some of the studies did not report the model performance metrics (i.e., accuracy, 
sensitivity, and specificity). 

 For instance, in the blood pressure category, the three studies that had investigated 
hypertension are  [20, 36, 37]. Only [20] and [36] used public database (MIMIC) and [37] 
had reported model accuracy results. [37] which used private dataset reported model 
accuracy and sensitivity but have performed multiclass classification instead of binary 
classification like  [36]. 

6. Future direction 
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This review surveys the use of artificial intelligence for the analysis of PPG signals for diagnosis 
in a broad range of health disorders. Some issues need to be addressed to promote future work 
in this field. Of note, more PPG datasets should be made publicly available. In truth, the process 
of collecting PPG datasets is a low-cost, convenient, and non-invasive procedure, especially via 
smartphones and smartwatches. Further, PPG signals demand lower bandwidth, do not consume 
the battery life excessively [62], and can thus be acquired continuously, which enhances its 
applicability and optionality in the diagnosis and monitoring of various health states [4]. 

We aim in our review to promote PPG signals as a potential precision medicine tool of the future. 
Precision medicine is a tailor-made approach whereby medical treatments and interventions are 
specifically designed to suit an individual’s lifestyle, genetic make-up, and environmental 
variation [63]. The PPG signals can play a part in monitoring lifestyle factors and environmental 
influences that can affect an individual’s health [64]. For instance, a wearable device like 
smartwatches or a PPG wristband can easily track and record the PPG signal of an individual 
while he or she is under mental stress, sleeping, and exercising (Fig. 13). These wearable devices 
would also have access to the cloud where machine learning, deep learning [65–67] or statistical 
algorithms are stored, and analysis can be performed expeditiously. Individuals would receive 
alerts when an abnormality is detected, thereby urging him or her to go for medical checkup to 
confirm if a health abnormality is present. After this, medical professionals can access the 
patient’s data to confirm the diagnosis and prescribe treatment regime that best suit the patient.  

 

Fig. 13. Block diagram of a cloud-based system for application of PPG signal as precision 
medicine. 

7. Conclusion 

In this review, we have surveyed health disorders that PPG signals can be used to detect. The 
different analytical routes used in various PPG studies, namely statistical, machine learning, and 
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deep learning routes, are discussed. We want to highlight the major shortcoming of the PPG 
studies, which is the lack of accessible public PPG databases despite its low cost and ease of 
acquisition. In addition, we have also highlighted that PPG signals can be a potential precision 
medicine tool due to its low bandwidth requirement and measurement complexity, which favor 
its applicability for remote continuous monitoring and diagnosis. In the future, PPG signals could 
be an indispensable tool in clinical decision support and lifestyle monitoring in both ambulatory 
and hospital settings.  
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Appendices 

Table A.1 
List of the 43 studies included in this review after systematic filtering following the PRISMA 
guidelines.  

Author Disorder dataset Subjects Feature Class Classifier Acc Sen Spe 
 

Cardiac 

Valiaho et al. 
[24] 2019 AF 

Private 
dataset 

(Clinical 
trial) 

106 AF 
107 Sinus 

rhythm 
HRV Statistical AFEvidence  96.2 98.1 

Valiaho et al. 
[25] 2021 AF 

Private 
dataset 

(Clinical 
trial) 

169 AF 
190 Sinus 

rhythm 
HRV machine 

learning 

Linear 
logistic 

regression 
 96.4 96.3 

Chen et al. 
[14] 2021 

Malignant 
ventricular 
arrhythmias 

(Mas) 

Public 
dataset 

(SVTDB, 
VFDB, 

MITDB) 

3279 AF 
4030 V 

3800 MAs 
HRV Machine 

learning 
random 
forest  88.98 99.99 

de Moraes et 
al.[35] 2020 Cardiomyopathy Private 

dataset 

32 
cardiopathies 

10 healthy 
HRV Machine 

learning 

Kernel k-
means 

classifier/ 
SOM neural 

network 

100 100  

Fathieh et al. 
[32] 2021 CAD Private 

dataset 

408 CAD 
positive with 

stenosis 
186 with 
LVEDP 

676 healthy 

PPG 
waveform 

Machine 
Learning Elastic net    

Solosenko et 
al. [17] 2015 

premature 
ventricular 
contraction 

(PVC) 

Public 
dataset 

(MIMIC, 
MIMIC II) 

121 ICU 
records 

(MIMIC) 
32,536 subjects 

(MIMIC II) 

HRV Machine 
learning ANN 99.7 99.8 93.3 

Ramachandran 
et al.[34] 2019 

cardiovascular 
risk level 

Public 
dataset 

(capnobase) 

28 risk of CVD 
14 controls 

PPG 
waveform 

Machine 
learning 

Gaussian 
mixture 
model 

97.88 97.24 99.09 

Aschbacher et 
al. [26] 2021 AF Private 

dataset 51 AF patients PPG 
waveform 

Deep 
learning CRNN  98.5 88 
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Allen et al. 
[31] 2021 

peripheral 
arterial disease 

(PAD) 

Private 
dataset 

80 Vascular 
disease 

134 healthy 

PPG 
waveform 

Deep 
learning CNN 88.9 86.6 90.2 

Hackstein et 
al. [33] 2021 

aortic 
aneurysms 

Private 
dataset 

28 Aneurysm 
27 control 

PPG 
components 

machine 
learning kNN 60   

Fan et al. [27] 
2019 AF 

Private 
dataset 

(clinical 
trial) 

108 consecutive 
inpatients HRV Statistical statistical 

analysis 97.72 95.36 99.7 

Kwon et al. 
[28] 2020 AF 

Private 
dataset 

(clinical 
trial) 

81 persistent 
AF 

19 long 
standing 

persistent AF 

PPG 
waveform 

Deep 
learning CNN 96.9 99 94.3 

Bashar et al. 
[29] 2019 AF 

Private 
datasets 

(Umass + 
Chonlab) 

10 AF (Umass) 
9 NSR 

(Chonlab) 
HRV Statistical 

premature 
atrial 

contraction 
detection 
algorithm 

97.54 98.18 97.43 

Selder et al. 
[30] 2020 AF Private 

datasets 
60 patients 

including 6 AF HRV Statistical Extra tree 
classifier 97 100 96 

 

Blood pressure 
Euliano et al. 

[15] 2018 
preeclampsia 

(PE) 
Private 
dataset 

37 PE 
43 controls HRV Machine 

learning 
Logistic 

regression 87.5 83.3 91 

Liang et al. 
[20] 2018 hypertension 

Public 
dataset 

(MIMIC) 

121 ICU 
records 

(MIMIC) 

PPG 
waveform 

Deep 
learning CNN    

Besleaga et al. 
[41] 2019 

Mechanical 
alternans 

Private 
dataset 35 patients HRV Statistical Threshold 98   

Nafisi et al. 
[38] 2018 hypotension Private 

dataset 10 patients PPG 
components 

Machine 
learning AdaBoost 94.5 91.7 95.8 

Wu et al. [36] 
2021 Hypertension 

Public 
dataset 

(MIMIC) 

121 ICU 
records 

(MIMIC-III) 

PPG 
waveform 

Deep 
learning CNN 90   

Lee et al. [39] 
2021 hypotension 

Public 
dataset 

(VitalDB) 

3301 surgical 
patients 

PPG 
waveform 

Deep 
learning CNN  80.7 80.7 

Yen et al. [37] 
2021 Hypertension Private 

dataset 

253 
prehypertension 

120 stage 1 
hypertension 

61 stage 2 
hypertension 
240 controls 

PPG 
waveform 

Deep 
learning 

CNN-
BiLSTM 76 45  

Mejía-Mejía et 
al. [40] 2021 

Hypertension & 
hypotension 

Public 
dataset 

(MIMIC II) 

32,536 subjects 
(MIMIC II) HRV Machine 

learning 
SVM with 

RBF kernels 70 50 75 

 

Sleep 

Faßbender et 
al. [9] 2018 OSA Private 

dataset 

48 surgical 
patients with 
established or 

suspected OSA 
and scheduled 

for elective 
surgery 

PPG 
waveform Statistical Threshold  

AHI >= 15  92 77 

Walch et al. 
[19] 2018 sleep stages 

Private 
training set 

Public 
testing set 
(MESA) 

39 subjects 
(private) HRV Deep 

learning DNN 77.4 80 72 

Chen et al. 
[43] 2021 OSA Private 

dataset 30 OSA HRV machine 
learning SVM 93.47 83.79 95.91 

Radha et al. 
[22] 2021 sleep stages Public 

dataset 
292 participants 

(Siesta) HRV Deep 
learning LSTM 76.36   
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60 participants 
(Eindhoven) 

Huttunen et al. 
[21] 2021 OSA Private 

dataset 
3082 suspected 

OSA 
PPG 

waveform 
Deep 

learning CRNN 83.3   

Uçar et al. [16] 
2016 OSA Private 

dataset 10 OSA HRV Machine 
learning KNN 79.36 77 81 

Bozkurt et 
al.[44] 2019 OSA Private 

dataset 10 participants PPG 
components 

Machine 
learning 

Ensemble 
classifier 95 93 96 

 

Mental health 
Li et al. [45] 

2018 stress Private 
dataset 178 participants HRV Machine 

Learning Elastic net 91   

Juarascio et al. 
[50] 2020 emotional eating Private 

dataset 

21 adults with 
clinically 

significant 
emotional 

eating 
behaviors 

HRV machine 
learning SVM 77.99 78.75 75 

Na et al. [49] 
2021 panic disorder Private 

dataset 

60 Panic 
disorder 

61 anxiety 
HRV Machine 

learning 
Logistic 

regression 78.4 83.3 73.3 

Elzeiny et al. 
[46] 2021 Stress 

Private and 
public 
dataset 

6 private 
15 (WESAD) HRV Deep 

learning CNN 98.5   

Gurel et al. 
[47] 2019 stress Private 

dataset 
16 healthy 
subjects 

PPG 
components 

Machine 
learning 

random 
forest 85 83  

Kumar et al. 
[48] 2021 stress 

Public 
dataset 

(WESAD) 
15 participants PPG 

components 
Deep 

learning CNN 87.7   

 

Diabetes 
Xiao et al. [54] 

2021 
future peripheral 

neuropathy 
Private 
dataset 

63 non-PN 
27 PN HRV Machine 

learning 
Logistic 

regression 78.2   

Prabha et al. 
[53] 2021 

diabetes 
mellitus (DM) 

Private 
dataset 

217 
Diabetes VS 

prediabetes VS 
healthy 

PPG 
waveform 

Machine 
learning 

Hybrid FS-
based 

XGBoost 
system 

99.93 99.93 99.94 

 

Miscellaneous 

Chiang et 
al.[13] 2019 

arteriovenous 
fistulas 

Private 
dataset 

Hemodialysis 
Patients 
74 DOS 

assessment 
79 BFV 

assessment 

PPG 
components 

machine 
learning SVM 88.61   

Ouyang et al. 
[61] 2021 

coronary arterial 
disease & 

atherosclerosis 

Private 
dataset 

100 subjects 
CAD VS 

Hypertensive 
VS healthy 

HRV Statistical 
Machine 
learning 
classifier 

   

Bourdillon et 
al. [60] 2018 

Sports: 
overreaching 

Private 
dataset 15 athletes PPG 

waveform Statistical Statistical 
analysis    

Lim et al. [59] 
2019 Pain Private 

dataset 

100 patients 
scheduled for 

surgery 
HRV Deep 

learning DBN 65.57   

Roy 
Chowdhury et 
al. [58] 2021 

Anesthesia Private 
dataset 

50 patients 
during surgical 

operation 

PPG 
waveform 

Deep 
learning CNN 86   

Kang et al. 
[57] 2018 

Cerebral artery 
stenosis 

Private 
dataset 

32 treatment 
32 control 

PPG 
components 

Machine 
learning 

linear 
discriminant 

analysis 
(LDA) 

algorithm 

92.2 90.6 93.8 
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Abstract 
Background and objectives: Photoplethysmography (PPG) is a device that measures the amount of 
light absorbed by the blood vessel, blood, and tissues, which can, in turn, translate into various 
measurements such as the variation in blood flow volume, heart rate variability, blood pressure, 
etc. Hence, PPG signals can produce a wide variety of biological information that can be useful 
for the detection and diagnosis of various health problems. In this review, we are interested in 
the possible health disorders that can be detected using PPG signals. 
Methods: We applied PRISMA guidelines to systematically search various journal databases and 
identified 43 PPG studies that fit the criteria of this review. 
Results: Twenty-five health issues were identified from these studies that were classified into six 
categories: cardiac, blood pressure, sleep health, mental health, diabetes, and miscellaneous. 
Various routes were employed in these PPG studies to perform the diagnosis: machine learning, 
deep learning, and statistical routes. The studies were reviewed and summarized. 
Conclusions: We identified limitations such as poor standardization of sampling frequencies and 
lack of publicly available PPG databases. We urge that future work should consider creating more 
publicly available databases so that a wide spectrum of health problems can be covered. We also 
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want to promote the use of PPG signals as a potential precision medicine tool in both ambulatory 
and hospital settings. 

Keywords Photoplethysmography (PPG) · Deep learning · Machine 
learning  · PRISMA · Cardiac · Blood pressure · Sleep · Mental health · Diabetes · Computer-aided 
diagnosis (CAD) 

 


