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Evaluation of 6-D Reaction Integrals via Double
Application of the Divergence Theorem

J. Rivero, F. Vipiana, Senior Member, IEEE, D. R. Wilton, Life Fellow, IEEE, W. A. Johnson, Senior Member,

IEEE

Abstract—This paper addresses the problem of efficiently and

accurately evaluating the singular or near-singular double volume

(6-D) reaction integrals fundamental to the solution of volume

integral equations (VIEs) using the method of moments (MoM).

VIE techniques based on the MoM are used to obtain accurate

solutions for electromagnetic (EM) problems of all types, and the

accurate computation of the singular and near-singular reaction

integrals that occur in the resulting system matrices is crucial for

accurate EM modeling. Here we propose a scheme to treat, as

a whole, the 6-D reaction integrals appearing in the MoM. The

divergence theorem is directly applied twice in the physical space

domain, not a transformed domain, thus eliminating restrictions

to well-shaped elements. With appropriate integration reorder-

ing, the 6-D volume integrals are expressed as two radial integrals

followed by two surface integrals over source and observation

domain boundaries. We further smooth the integral by removing

the static form of the kernel and evaluating it separately using a

semi-analytical approach. The method is numerically validated

for static and dynamic kernels arising in the electric field volume

integral equations (i.e., for kernels having 1/R singularities) and

for linear basis functions.

Index Terms—integral equations, moment methods, numerical

analysis, divergence theorem, singular integrals.

I. INTRODUCTION

One of the most widespread formulations for modeling 3-D
electromagnetic problems involving inhomogeneous materials
is the volume integral equation (VIE), solved either via the
method of moments (MoM) [1], Nyström’s method [2], or
point-matching schemes [3]. VIE has been used in a number
of direct and inverse scattering applications, ranging from the
study of propagation in rain [4] to geological prospecting [5],
and from integrated circuit analysis [6] to medical applications
[7]–[9]. The VIE, unlike the finite element method (FEM),
automatically accounts for radiation conditions at infinity,
and is not limited to isotropic and piecewise homogeneous
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materials, unlike most surface integral equation (SIE) formu-
lations [10], [11]. However, the rigorous solution of radiation
and scattering problems using VIEs requires the accurate and
efficient numerical evaluation of double volume (6-D) reaction
integrals. The usual strategies for handling the singular or near-
singular volumetric integrals arising in VIE-MoM extend the
well-known techniques for surface integrals, i.e., singularity
subtraction [12] and singularity cancellation [13]. Recently,
some techniques to reduce the inner volumetric integral to
lineal integrals has been published [14]. However, these meth-
ods focus on carefully treating the inner source integral, then
numerically evaluating the outer test integral; however, the
outer test integral can still present a (low-order) singular
behavior.

Knockaert first suggested using appropriate integral the-
orems to handle both source and test integrals [15], but
simply outlined the approach as applied to 4-D problems with
scalar static and free-space kernels, and without specifically
addressing the full 6-D integration problem for both vector and
scalar potentials. More recently, Bleszynski et al. presented a
method allowing the analytical conversion of matrix element
expressions for volumetric integral equation formulations with
tensor and vector homogeneous media Green’s functions from
6-D volumetric to 4-D surface integrals with non-singular
integrands [16]. Their approach, implemented specifically for
SWG basis functions [17], was expressed in terms of surface
integrals over the various face-pair combinations associated
with a source and test tetrahedral element pair. The surface
integrals were evaluated numerically, but their convergence
properties were not investigated. Polimeridis et al. have also
presented a method based on interchanging integration order
to first perform radial integrals for the source and observation
point integrals followed by integration around element bound-
aries [18]. Their treatment was limited to self-interacting,
edge-adjacent, or vertex-adjacent elements, and to well-shaped
element pairs. More recently, Reid extended the generalized
Taylor–Duffy strategy to handle the singular volumetric inte-
gral pair arising in VIE-MoM [19].

The work here extends the authors’ approach of [20],
[21] in which the divergence theorem was applied twice to
evaluate the double surface (4-D) integrals arising in the MoM
solution of surface integral equations (SIEs). The result was
a pair of inner radial integrals that could be evaluated either
numerically or in closed form, plus a pair of contour integrals
around the boundaries of a source and test triangular element
pair. Here, however, the divergence theorem is applied to
the double volume (6-D) reaction integrals that appear in
the MoM solution of VIEs. In contrast to [20], here there
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is no need to project source domains onto test domains or
vice versa, simplifying application of the divergence theorem.
The resulting integrals consist of two radial integrals and
two surface (4-D) integrals for arbitrarily located (source
and test) volumetric element pairs. For polynomial bases and
homogeneous media Green’s functions, the radial integrals
can be evaluated in closed form; for more complex bases or
kernels (e.g., for layered or periodic media), they can also be
performed numerically. Since elements are not pre-mapped to
standardized shapes, the scheme is also quite general, i.e., not
limited to well-shaped elements nor to ad-hoc treatments for
self-, edge-, or vertex-adjacent geometries. Here we illustrate
the approach using homogeneous media Green’s functions and
SWG bases defined on tetrahedral elements, and we evaluate
the radial integrals analytically. Finally, for the static kernel
case and SWG bases, the initial 6-D integral is further reduced
by two dimensions by exact integration in 2-D, leaving only
a 2-D integral to be performed numerically; this result is also
used to accelerate the convergence of the proposed scheme for
dynamic kernels and SWG bases.

The paper is structured as follows. In Sect. II, the general
expression for the double application of the volume divergence
theorem is derived. Section III is devoted to the evaluation
of the radial integrals, while Sect. IV deals with the semi-
analytical evaluation of the static kernel with SWG bases,
used then in Sect. V to accelerate the convergence of the
integration for the dynamic kernel case. In Sect. VI several
numerical results are presented, and finally, Sect. VII discusses
conclusions and possible extensions of the approach. Prelim-
inary numerical results were recently presented in [22]–[24].

II. DOUBLE APPLICATION OF THE VOLUME DIVERGENCE
THEOREM

Let us consider the 6-D integral

IV,V 0 =

Z

V

Z

V 0
F (r, r0) dV 0dV, (1)

where F (r, r0) typically takes the form

F (r, r0) = t(r)G(r, r0)b(r0), (2)

with t(r) either a scalar or a vector component of a test
basis function, and b(r0) a similarly defined (source) basis
function. G(r, r0) is either a scalar or a component of a dyadic
Green’s function, and V and V 0 are the volumetric domains
of tetrahedral test and source basis functions, respectively.

Applying the divergence theorem to both the source and test
integrations, as in [25], the integral (1) can be written as

IV,V 0 =

I

S

I

S0

"
(n̂·R̂)(n̂0 ·R̂0)

R2

⇥
Z R

0

Z RS0

0
F (r, r0)R02dR0 dRS0

#
dS0dS. (3)

Since r and r0 in (3) vary radially along lines between
point pairs defined on the boundaries of the source and test
tetrahedra of the outer integrals in (3), it is convenient to
first define point pairs r0S0 and rS on the source and test

boundaries, resp., then parameterize the positions of r and
r0 along the line connecting them. Note that the extended

line between points r0S0 and rS on the tetrahedral boundaries
generally intersects each source and test surface twice, defining
up to four radial integration paths, each distinguished by a
different endpoint pair, but with overlapping domains. The
signs of n̂0 · R̂0 and n̂ · R̂ in (3) determine the sign of
each endpoint pair’s radial path integral contribution, and
contributions from overlapping portions of domains outside the
original tetrahedrons must necessarily cancel. For very well-
separated elements, this implies that severe cancellation errors
arising from the computation of small differences of large
numbers can result, limiting the approach’s usefulness to self-
and nearby-element interactions. We assume a unit normal n̂0

is associated with the point r0S0 on the boundary S0 of the
tetrahedral (source) volume V 0, as shown in Fig. 1; similar
definitions apply to the unprimed (test) quantities. We also
define the quantities R̂=�R̂0=(rS�r0S0)/R, R= |rS�r0S0 | ,
and r0 = r+R0 R̂0, R0 = |r0�r| , 0R0  RS0 = | r�r0S0 | ,
and r = r0S0 + RS0 R̂, 0  RS0  R. The interchange of
integration order in (3) is permitted by the independence
of the observation and source coordinate variables and their
associated domains. The resulting representation has features
in common with those of [26], with two inner radial integrals
and two outer integrals over source and test element surfaces.
For tetrahedral source and test domains, the outer surface

Fig. 1. The orientation of a pair of tetrahedral elements in space and the
definition of quantities for the computation of radial integrals associated with
a pair of interacting surface �S0 and �S for source V 0 and test V tetrahedral,
respectively.

integrals in (3) can be evaluated by considering contributions
from all the pairs of interacting source and test faces of the
tetrahedrons; hence, (3) can be evaluated as a sum of face-pair
contributions of the form

I�Si,�S0
j
=

Z

�Si

Z

�S0
j

"
(n̂·R̂)(n̂0 ·R̂0)

R2

⇥
Z R

0

Z RS0

0
F (r, r0)R02dR0 dRS0

#
dS0

j dSi,

(4)
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where �Si and �S0
j are a pair of test and source faces,

respectively. Note that interactions between coplanar face
pairs vanish since both dot products in (4), n̂ · R̂ and n̂0 · R̂0,
vanish. The inner, radial integrals in (4),

IR =

Z R

0

Z RS0

0
F (r, r0)R02dR0 dRS0 , (5)

may be evaluated in closed form for dynamic and static cases,
as well as for free space Green’s functions G and rG, with or
without the presence of polynomial vector bases, as detailed
in Sect. III.

To analyze the two outer surface integrals, we apply variable
transformations for both surfaces. Defining

F(r, r0) =
(n̂·R̂)(n̂0 ·R̂0)

R2
IR, (6)

the contribution to the boundary integral (3) of a single face
pair, �S and �S0, can be written as

I�S,�S0 =

Z

�S

Z

�S0

F(r, r0) dS0 dS

=

Z

z

Z

⇢

Z

z0

Z

⇢0
F(z, ⇢, z0, ⇢0)d⇢0dz0d⇢ dz, (7)

where the surfaces �S and �S0 are parameterized with re-
spect to a local cylindrical z-axis defined along the intersection
of the planes containing �S and �S0. The cylinder axis ẑ
is defined as ẑ = (n̂ ⇥ n̂0)/|n̂ ⇥ n̂0| and the vectors ⇢̂ and
⇢̂0 are orthogonal to the intersection line and the normals to
the planes containing the surfaces �S and �S0, respectively,
as shown in Fig. 2. The vectors ⇢̂ and ⇢̂0 are defined as
⇢̂ = (n̂ ⇥ ẑ)/|n̂ ⇥ ẑ| and ⇢̂0 = (n̂0 ⇥ ẑ)/|n̂0 ⇥ ẑ|. Due to
the independence of the observation and source coordinate
variables and their associated domains, we can reorder the
integral (7) as

I�S,�S0 =

Z zU

zL

Z z0
U

z0
L

Z ⇢U (z)

⇢L(z)

Z ⇢0
U (z0)

⇢0
L(z0)

F(z, ⇢, z0, ⇢0)d⇢0d⇢ dz0dz.

(8)

Fig. 2. Geometrical definition of the limits in (7) and the dependence of the
⇢ and ⇢0 limits on z and z0.

In this local cylindrical coordinate system, R and the dot
product terms in (6) can be written as

R =
q
⇢2 + ⇢02 � 2⇢⇢0 cos� +�z2,

n̂· bR = �⇢0 sin(�)

R
,

n̂0 · bR0 =
⇢ sin(�)

R
, (9)

where �z = z�z0, and � is the angle between the two planes
containing the observation and source surface integration do-
mains, computed as � = atan2[ ẑ·(n̂⇥n̂0), (n̂·n̂0)].

Though a given tetrahedral face-pair configuration may
appear quite different than in Fig. 2, the equations defining
axes, normals, etc. are general, and the relative positions and
orientations of the parent tetrahedral pairs are arbitrary. If two
vertices of a triangle project onto the same point along the
line of intersection of the source and test triangle planes, as
shown for the triangle at left in Fig. 3, then both the integrand
and the limits vary smoothly with z; hence the triangle may
be integrated using a single dyadic product of independent
z and ⇢ Gauss-Legendre (GL) rules. But the limits do not
vary smoothly for the more general case, shown at right in
the figure; there the projection lines subdivide the triangle
into two subtriangles, for each of which the integral must be
independently evaluated and the integrals summed to make
effective use of GL rule properties.

Fig. 3. Geometry for integrating using intersection line; left: no triangle
splitting, right: splitting the triangle according to its vertex projections.

III. ANALYTICAL RADIAL INTEGRALS

If we define r
e
i and r

f
j as the i-th vertex of test volume

element e and the j-th vertex of source volume f , we can
write the (unnormalized) SWG test and basis functions [17]
as

⇤e
i (r) = r� rei = r0S0 � rei +RS0R̂

⇤f
j (r

0) = r0 � rfj = r0S0 � rfj +RS0R̂+R0R̂0, (10)

respectively. For the homogeneous medium Green’s function,
the radial vector potential integrals are thus

Z R

0

Z RS0

0
⇤e

i (r)·⇤
f
j (r

0)
e�jkR0

4⇡R0 R02dR0 dRS0

=
1

4⇡

Z R

0

Z RS0

0
P3(RS0 , R0) e�jkR0

dR0 dRS0 , (11)

where P3(RS0 , R0) = R0⇤e
i (r) ·⇤

f
j (r

0) is the bivariate cubic
polynomial

P3(RS0 , R0) = R0 ⇥A+BRS0 +R2
S0 + (C �RS0)R0⇤ , (12)
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with

A = (r0S0 � rei )·(r0S0 � rfj ),

B = R̂·(2 r0S0 � rfj � rei ),

C = R̂0 ·(r0S0 � rei ). (13)

Integrals of polynomial and exponential products, such as
appear in (11), are easily evaluated, but the resulting expres-
sions quickly become unwieldy with increasing polynomial
order. A more compact representation for such integrals makes
use of exponential integrals of negative order. The following
definitions, recursion formulas, and identities, respectively, are
needed: Z

zne�tzdz = �zn+1E�n(tz),

E�n�1(z) =
e�z + (n+ 1)E�n(z)

z
,

Z
z`E�n(tz) dz =

z`+1

`� n
(E�n(tz)� E�`(tz)) . (14)

The first line of (14) simply notes that the indefinite integral
of zne�tz can be compactly written in terms of the expo-
nential integral function of negative order n, E�n(z). The
recursion formula of the second line allows one to generate
exponential integral functions of any negative order from
E0(z) = exp(�z)/z, which result follows either from the
defining integral or from setting n = �1 in the recursion
formula. It is also convenient to define the definite integral,

�En,`(tR) =

Z R

0
R` E�n(tR) dR

=
1

`� n

✓
R`+1E�n(tR)�R`+1E�`(tR) +

`!

t`+1

◆
,

(15)
where ` > n, and which may be proved using (14). With these
results, the radial vector potential integral (11) is straightfor-
wardly evaluated in closed form as

Z R

0

Z RS0

0
P3(RS0 , R0) e�jkR0

dR0 dRS0

= A
R� (jk)2�E1,2(jkR)

(jk)2

+B
1
2R

2 � (jk)2�E1,3(jkR)

(jk)2

+
1
3R

3 � (jk)2�E1,4(jkR)

(jk)2

+ C
2R� (jk)3�E2,3(jkR)

(jk)3

� R2 � (jk)3�E2,4(jkR)

(jk)3
. (16)

To obtain the corresponding static result, we merely set k =
!
p
µ" = 0 in the integral in (16) and evaluate it directly as
Z R

0

Z RS0

0
P3(RS0 , R0) dR0 dRS0

= R3
⇥
A
6 +

�
B
8 + C

12

�
R+ 1

30R
2
⇤
. (17)

The radial scalar potential integral corresponding to the
vector potential integral (11) is similar, but with a product
of the (constant) divergences of the vector bases replacing the
dot product of bases in (11). Taking the constant as unity, we
simply find P3 = R0 replacing (12) in the scalar potential
version of (11). I.e., we obtain the scalar potential integrand
by dropping all terms on the right hand side of (12) except
for the term with coefficient A, which, for this case, we set to
unity; doing the same in the right hand sides of (16) or (17)
yields the corresponding radial integrals for the dynamic or
static scalar potentials, respectively.

IV. SEMI-ANALYTICAL STATIC SURFACE INTEGRALS

To improve efficiency in evaluating the surface integrals
(8), we first consider in detail the static case, evaluating
analytically the four inner integrals in (⇢, ⇢0, R0, RS0 ), and
leaving only the two outer integrals over (z, z0) as a 2-D
numerical integration over rectangular domains. Here, the
kernel function of the radial integral (5) is the static form of
the scalar potential multiplied by constant unit basis functions:

F(z, ⇢, z0, ⇢0) = �⇢⇢0 sin2 �

R4

Z R

0

Z RS0

0

R02

4⇡R0 dR
0 dRS0

= �⇢⇢0 sin2 �

24⇡R
. (18)

Wolfram Mathematica [27] is able to aid in evaluating the
integrals over ⇢ and ⇢0 if we first make the change of variables

⇢ =
u0 + v0p

2
, with u0 =

⇢+ ⇢0p
2

,

⇢0 =
u0 � v0p

2
, with v0 =

⇢� ⇢0p
2

, (19)

and

u = u0
p
1� cos� = u0p2 sin(�/2),

v = v0
p

1 + cos� = u0p2 cos(�/2), (20)

thus eliminating the product term ⇢⇢0 appearing in (9), and
simplifying R to

R =
p
u2 + v2 +�z2. (21)

We note that a similar transformation has been used in [28] to
evaluate the 4-D potential interaction integrals between trian-
gular element pairs. With this transformation, (18) becomes

F(r, r0) = � (u02 � v02) sin2 �

48⇡R

= �u2(1 + cos�)� v2(1� cos�)

48⇡
p

u2 + v2 +�z2
. (22)

Substituting (22) into (8), we then obtain

I�S,�S0 = � 1

48⇡| sin�|

zUZ

zL

z0
UZ

z0
L


(1 + cos�)

Z

Duv

u2

R
dudv

� (1� cos�)

Z

Duv

v2

R
dudv

�
dz0dz, (23)
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where Duv is the transformed domain of integration shown
in Fig. 4. The inner integrals in u and v can be symbolically
integrated with the help of Mathematica. It appears that the

Fig. 4. Domain of integration for ⇢-⇢0 integrals and the equivalent domain
for the u-v transform.

remaining integrals on z and z0 must be done numerically,
but the above analysis allows us to identify transformations
that accelerate the numerical integration of face-pair surface
integrals (as detailed in Sect. V).

Note that the two inner double integrals over u and v in (23)
are essentially equivalent in the sense that the second can be
obtained from the first merely by interchanging the symbols
u and v, the order of integration, and the limit parameters.
Hence, we consider in detail only the first of the two integrals:
Z

Duv

u2

R
dudv

=
1

2

vUZ

vL

"
uR�

�
�z2+v2

�
sinh�1

 
up

v2 +�z2

!#uU (v)

uL(v)

dv.

(24)

As shown in Fig. 4, the transformed domain is a parallelogram
tilted with respect to the u- and v-axes. If we number the
vertex of the original domain ⇢-⇢0 as indicated in Fig. (4), the
vertexes can be described as

V1(⇢, ⇢
0) = (⇢L, ⇢

0
L),

V2(⇢, ⇢
0) = (⇢U , ⇢

0
L),

V3(⇢, ⇢
0) = (⇢U , ⇢

0
U ),

V4(⇢, ⇢
0) = (⇢L, ⇢

0
U ), (25)

and are mapped into the u-v domain as

V1(u, v) = ((⇢L + ⇢0L) sin�/2, (⇢L � ⇢0L) cos�/2),

V2(u, v) = ((⇢U + ⇢0L) sin�/2, (⇢U � ⇢0L) cos�/2),

V3(u, v) = ((⇢U + ⇢0U ) sin�/2, (⇢U � ⇢0U ) cos�/2),

V4(u, v) = ((⇢L + ⇢0U ) sin�/2, (⇢L � ⇢0U ) cos�/2). (26)

To complete integration of (24), the tilted domain is split into
three subdomains, as shown in Fig. 4. The appendix details the
definition of these three domains, from which the following
integral forms result:

Z

Duv

u2

R
dudv =

1

2

3X

i=1

Iiu, (27)

where Duv =
S3

i=1 D
i
uv and Di

uv is one of the subdomains
into which the tilted rectangle is subdivided. Focusing on one
of these three integrals (the other two differing only in their
integral limits) we can write,

Iiu=

Z

Di
uv

u2

R
dudv

=
1

2

Z vi
U

vi
L

"
uR�

�
�z2 + v2

�

⇥ sinh�1

✓
up

v2 +�z2

◆#ai
Uv+biU

u=ai
Lv+biL

dv

=
1

2

h
Hi

(1) +Hi
(2) +Hi

(3)

iai
U ,biU

a=ai
L,b=biL

�vi
U

v=vi
L

. (28)

From Mathematica (with u = av + b), we find the first term
Hi

(1) as

Hi
(1)(a, b, v) =

Z
(av + b)Rdv

=
1

6
R

✓
a((2a2 + 5)b2 + 2(a2 + 1)�z2)

(a2 + 1)2

+
(4a2 + 3)bv

a2 + 1
+ 2av2

◆

+
b
�
(a2 + 1)�z2 + b2

�

2(a2 + 1)5/2

⇥ sinh�1

 
v(a2 + 1) + abp
(a2 + 1)�z2 + b2

!
,

(29)

where R now takes the general form

R =
p

(a2 + 1) v2 + 2 a b v + b2 +�z2. (30)

Similarly, for the second integral, Hi
(2), we have:

Hi
(2)(a, b, v) = ��z2

Z
sinh�1

 
a v + bp
(v2 +�z2)

!
dv

= ��z2
n
Hi

(2,1) +Hi
(2,2) + 2Re

h
Hi

(2,3)

io
,

(31)
where

Hi
(2,1) = v sinh�1

✓
a v + bp
v2 +�z2

◆
,

Hi
(2,2) =

bp
a2 + 1

sinh�1

 
v
�
a2 + 1

�
+ a b

p
(a2 + 1)�z2 + b2

!
,

Hi
(2,3) =

j�z

2
log (B(v)) , (32)

with

B(v) =
Cv +D(v)

v + E
, (33)

and where

C = (a2 + 1)�z + jab,

D(v) = R(a�z + jb) + j(b2 +�z2) + ab�z.

E = j�z. (34)
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In principle, (31) can be verified by direct differentiation.
Writing the complex number B in polar form in (32), we

find

2Re(Hi
(2,3)) = ��z tan�1

✓
Im (B(v))

Re (B(v))

◆

= ��z tan�1

✓
v2ImC+vIm(D(v)+CE⇤)+Im(D(v)E⇤)

v2ReC+vRe(D(v)+CE⇤)+Re(D(v)E⇤)

◆
.

(35)

It is important to note that in evaluating (28) it is not sufficient
to merely substitute in the limits viL and viU at the path
endpoints on the RHS; we must also ensure that we remain
on the same branch of the logarithm function in (32) as v
varies from viL to viU . I.e., if B(v) crosses the branch cut
along the negative imaginary axis in the complex B-plane as
v varies along the integration path, we must account for a
jump of ± 2⇡j in the value of logB(v) that occurs there. We
employed a rudimentary scheme for this: In particular, B(v) is
sampled along the path, and if for two adjacent sample points,
v1 and v2, ReB(v1) and ReB(v2) are both negative while
ImB(v1) ? 0 and ImB(v2 ) 7 0, then we add ± 2⇡j to the
value of the arctangent in (35). We also note that R in (34)
is not constant, but varies with v, and the factor of the form
tan�1(y/x) in (35) should be evaluated using atan2 (y, x) .

For the third integral, Hi
(3), we have

Hi
(3)(a, b, v)

= �
Z

v2sinh�1

✓
a v + bp
v2 +�z2

◆
dv

= �1

6

n
Hi

(3,1) +Hi
(3,2) +Hi

(3,3) + 2Re
h
Hi

(3,4)

io
, (36)

where

Hi
(3,1) = 2v3 sinh�1

✓
a v + bp
v2 +�z2

◆
, (37)

Hi
(3,2)

=
R
�
�2a3 �z2 + a2 b v � 3 a b2 � 2 a�z2 + b v

�

(a2 + 1)2
,

(38)

Hi
(3,3) =

(2a2 � 1)b3 � 3(a2 + 1)b�z2

(a2 + 1)5/2

⇥ sinh�1

 
v
�
a2 + 1

�
+ a b

p
(a2 + 1)�z2 + b2

!
, (39)

Hi
(3,4) = �j�z3 log

✓
3

�z2
B

◆
. (40)

Again, 2Re(Hi
(3,4)) can be written as

2Re(Hi
(3,4)) = 2�z3 tan�1

✓
Im(B(v))

Re(B(v))

◆

= 2�z3 tan�1

✓
v2ImC+vIm(D(v)+CE⇤)+Im(D(v)E⇤)

v2ReC+vRe(D(v)+CE⇤)+Re(D(v)E⇤)

◆
,

(41)

where, as in (35), branch crossings of the argument of the
arctangent must be accounted for.

Turning finally to the second inner integral in (23),

Z

Duv

v2

R
dudv =

1

2

3X

i=1

Iiv, (42)

we note it has the same form as Iiu, but with u and v
interchanged and with the limit descriptors a and b replaced
by c and d as described in the Appendix. Thus we write Iiv as

Iiv=

Z

Di
uv

v2

R
dvdu

=
1

2

h
Hi

(1) +Hi
(2) +Hi

(3)

iciU ,di
U

c=ciL,d=di
L

�ui
U

u=ui
L

. (43)

Using (27) and (42) we may now write (23) as

I�S,�S0 = � 1

48⇡| sin�|

zUZ

zL

z0
UZ

z0
L

"
(1 + cos�)

2

3X

i=1

Iiu

� (1� cos�)

2

3X

i=1

Iiv

#
dz0dz. (44)

The remaining integrations over z and z0 in (44) are evaluated
numerically using GL rules.

V. ACCELERATION OF THE DYNAMIC SURFACE INTEGRALS

The static kernel results of the previous section can be used
to accelerate evaluation of the dynamic potentials by applying
the well-known method of singularity subtraction [29]. The
integrals can be expressed as a sum of two integrals, first
a smoothed-kernel difference term, in which the dominant
singular term is removed, plus a separately evaluated (semi-
analytic) term representing the singularity’s contribution to the
integral,

IV,V 0 =

I

S

I

S0

(n̂·R̂)(n̂0 ·R̂0)

R2

⇥
Z R

0

Z RS0

0
F (r, r0)R02dR0dRS0dS0dS

= Inum + Isa, (45)

where Isa is the semi-analytical evaluation of integral (23), and

Inum =

Z

z

Z

z0

Z

⇢

Z

⇢0

(n̂·R̂)(n̂0 ·R̂0)

R2
IR numd⇢

0d⇢ dz0dz, (46)

with

IR num =

Z R

0

Z RS0

0

⇤e
i (r)·⇤

f
j (r

0)e�jkR0 �A

4⇡R0 R02dR0dRS0 , (47)

and where A = limR0!0 ⇤e
i (r)·⇤

f
j (r

0) is defined in (13). The
integral (47) can be evaluated analytically using the procedure
of Sect. III.
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VI. NUMERICAL RESULTS

In this section, we examine the convergence characteristics
of both triangular face-pair and tetrahedral element-pair in-
teraction integrals that occur in volumetric integral equation
(VIE) modeling. We assess the accuracy and convergence
of a computed integral by reporting the number of correct
significant digits (SD),

SD = � log10

✓����
Iref � IN

Iref

����+ �

◆
, (48)

where IN is the computed integral value using N sample
points and Iref is the associated reference value. Reference
values are obtained using the highest order quadrature scheme
available for each case; they are computed in quad precision
and checked for convergence to at least 16 significant digits.
Adding the term � = 10�16 to the argument of the logarithm in
(48) limits quoted precision to no more than 16 digits (double
precision). If an integral is the sum of two computed integrals,
IN1
1 and IN2

2 , using N1 and N2 sample points, respectively,
(as in (45)), it is convenient to be able to independently assess
the convergence of each partial contribution by reporting

SDi = � log10

 �����
Irefi � INi

i

Iref

�����+ �

!
, i = 1, 2. (49)

Note that the normalization for each integral is with
respect to the reference value of the total integral,
Iref = Iref1 + Iref2 , ensuring that SD for the total satisfies
SD � min (SD1, SD2)� log10(2), i.e., one can say that, to
within less than a third of a significant digit, the inequality
SD � min (SD1, SD2) holds. This further suggests that
choosing N1 and N2 such that SD1 ⇡ SD2 is nearly optimal
in terms of minimizing the number of sample points for a
given SD requirement.

Two quadrature schemes, either an outer product of two 1-D
Gauss-Legendre (GL) rules or a Gauss-over-triangle (GT) rule
are used to numerically evaluate all surface (face) integrals.
Plots of SD convergence are with respect to n, the (geometric)
average number of quadrature points per dimension. I.e., if
a numerically evaluated integral is evaluated using a total
of N sample points over d dimensions, n = N1/d is the
number of points along each edge of the uniformly sampled
d-dimensional hypercube. Thus, for fully volumetric numeri-
cal integration over source and testing tetrahedral pairs (six
integration dimensions), the total number of sample points
would be n6 points, whereas for integration over face pairs or
over a tetrahedral pair reduced to surface integrals only (four
integration dimensions), the total number of sample points is
n4 points. For a sum I1+I2 of integrals of different quadrature
dimensionalities, say I1 a d1-dimensional integral of n1 and I2
a d2-dimensional integral of n2 average points per dimension,
the total number of points required is therefore nd1

1 +nd2
2 ,

with the average point density per dimension determined as
(nd1

1 +nd2
2 )1/d2 , assuming d2�d1. Reported this way, integrals

with smooth integrands should asymptotically exhibit expo-
nential convergence, i.e., SD should (asymptotically) converge
linearly with respect to the average number of sample points
per dimension.

A. Face-Pair Interactions

Since volume interaction integrals are numerically evaluated
as surface integral sums over face-pairs, the convergence rate
of the interaction integral (3) for a tetrahedral pair is limited
by the slowest converging of its face-pair integrals. Hence, it
is useful to first simply consider the evaluation of interaction
integrals between variously configured face pairs alone. Hence
we examine the convergence of (4) for the following three
possible face-pair configurations: a pair of non-touching faces,
a pair with a common vertex, and a pair sharing a common
edge, as illustrated by the row of figures near the top of Table
I. For all examples, triangle face edge lengths are around 0.1�,
and the basis functions are (unnormalized) SWG bases [17].
Each triangular face contains only three of the four vertices
defining the four SWG bases associated with a tetrahedron.
The fourth, however, can be written as a linear combination of
the other three; hence it suffices to consider just the nine SWG
basis and vector potential combinations associated with the
vertices of the source and test face pair. Since each basis has a
constant divergence, only a single independent scalar potential
is associated with a face-pair, however, and computations show
that the nine vector potential integrals differ from the single
scalar potential integral by no more than one or two significant
digits. Hence it also suffices to show only scalar potential
integral convergence.

Figures 5a, 6a, and 7a show convergence for a non-touching,
a common-vertex, and a common-edge source and test face
pair, respectively. In all three cases, the radial integrals are
evaluated analytically, and the following five scalar potential
face-pair surface integral approaches are examined:

• “S-S0”: direct integration of (4) using GT quadrature
for both source and test face (4-D) integrals with no
acceleration.

• “(z, ⇢)-(z0, ⇢0)”: direct integration of (8) using outer prod-
ucts of GL rules for both the (⇢, ⇢0) and the (z, z0) (4-D)
integrals with no acceleration.

• “(z, ⇢)-(z0, ⇢0) difference”: same as above, but integrating
the difference integral, (46) and (47), resulting from
removing the most singular (static) part of the integrand.

• “Semi-Analytical”: the semi-analytical integral (23) rep-
resenting the removed dominant singularity integrand
contribution of the case above. The (⇢, ⇢0) (2-D) integra-
tion is performed analytically; the remaining z-z0 integral
is performed by GL quadrature.

• “Difference + Semi-Analytical”: accelerated form of the
integral (4) expressed as the sum of the semi-analytical
(2-D) integral plus the (z, ⇢)-(z0, ⇢0) (4-D) difference
integral as in (45).

We note in Fig. 5a the near-linear asymptotic convergence
to full precision. All integrals there also exhibit similar con-
vergence rates with respect to sampling density. By contrast,
in Figs. 6a and 7a, in which the face pairs share a vertex or
an edge, respectively, convergence rates are not only reduced,
but, except for the difference integral, appear to stagnate with
increasing sample density, strongly suggesting the presence
of a low order singularity (e.g., a singular derivative) in
the integrand. However, the accelerated form (difference plus
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TABLE I
FACE PAIR INTERACTION TYPES FOR A TETRAHEDRAL ELEMENT PAIR

No. of non-touching No. of common No. of common No. of coplanar
face pairs vertex face pairs edge face pairs face pairs

Non-touching 16,15,14,13 0 0 0,1,2,3

Common vertex 7 9,8,7,6 0 0,1,2,3

Common edge 2 10,9 4,3,2 0,1,2,3

Common face 0 6 9,8,7 1,2,3

Self-term 0 0 12 4

semi-analytical integral) exhibits faster convergence in the
low-to-medium sampling density range, and for the common
vertex case of Fig. 6a, is able to reach machine precision
needing only a few more sampling points than the non-
touching case. For the common edge case of Fig. 7a, however,
convergence of the total integral is severely limited by the
semi-analytical integral, which is only able to reach 10 SD. It
seems reasonable to expect that proper handling of low order
singularities in the semi-analytical integral would improve the
convergence of cases involving vertex sharing, allowing one
to reach machine precision in these cases as well.

Figures 5b, 6b, and 7b show the corresponding computation
times needed to compute the integrals versus the SD accuracy
achieved. The reported times are normalized with respect to
the time required to compute the (unaccelerated) surface-
surface or (S-S’) integral using

p
166 integration points per

linear dimension. Both quantities in the ratio are computed
twenty times to average out small CPU time fluctuations.
The total time needed to evaluate the integral (3) using
the acceleration method of Sect. V is the sum of the CPU
times needed for the (z, ⇢)-(z0, ⇢0) difference integral plus that
needed for the z-z0 semi-analytical integral. With logarithmic
time axes, the total CPU time reported appears only slightly
larger than the slower of the two, as seen in Figs. 5b, 6b,
and 7b. It appears that CPU times would also benefit from
improving the convergence of the semi-analytical integral for
face pairs sharing one or more vertices.

The contour plots in Fig. 8 show the number of correct
SD for the scalar potential of a common-edge face pair for
a fixed equilateral source face whose common edge length is
�/10 and for different-shaped test faces. We examine only

the common-edge interaction case since that case exhibits the
poorest convergence, as previously noted. It is assumed that
the common edge of length �/10 is also the longest edge of
the test triangle, and the two remaining edges are allowed to
assume all possible lengths  �/10. Thus the third vertex of
the test triangle is limited to the region bounded by circular
arcs of radii �/10 centered on the vertices of the common edge
as shown in Fig. 8(a). If the third vertex, assumed to be at point
(x, y), falls at the intersection of the arcs, then both the source
and the test triangle are equilateral. Since the computations are
symmetric about the line from the midpoint of the common
edge to the intersection of the circular arcs, Figs. 8 (b) and
(c) show only one-half the region bounded by the circular
arcs. The color at each point (x, y) of the figure represents
the number of correct SD in the tested potential integral for a
test triangle with its third vertex located at that point. For all
integrals, the GL scheme with 5 points per linear dimension
is used. In Fig. 8(b), the “(z, ⇢)-(z0, ⇢0)” approach is applied,
whereas in Fig. 8(c), the reported results are obtained with the
“Difference + Semi-Analytical” method. Figures 8 (b) and (c)
illustrate that the “(z, ⇢)-(z0, ⇢0)” approach is not particularly
sensitive to shape, whereas the “Difference + Semi-Analytical”
evaluation provides higher accuracy for a fixed number of
sample points without compromising shape insensitivity.

B. Tetrahedral-Pair Interactions

Tetrahedral-pair interactions are computed as sums over
non-vanishing face-pair interactions. Face pair integrals vanish
(hence, need not be evaluated) whenever the faces are copla-
nar, since then the integrand factor (n̂ ·R̂)(n̂0 ·R̂0) vanishes
identically.
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(a)

(b)

Fig. 5. Convergence rates of proposed methods for a pair of nearby but non-
touching faces. (a) Number of correct SD versus the average number of points
per linear dimension; the total number of points is the fourth power of the
number of points per linear dimension; and (b) normalized CPU time versus
number of correct SD.

The total number of sample points for the integral (3) over a
tetrahedral element pair, evaluated as a sum of surface integrals
over their faces, may be estimated as n4Ncomb where Ncomb is
the number of non-vanishing face pair integral combinations,
and n is the number of quadrature points per linear dimension
for a face pair. For tetrahedral elements, no more than three
face pairs can be coplanar (and hence vanishing), except for
self-interaction integrals where four face pairs are coplanar.
Therefore, the number of non-vanishing face pair combina-
tions for a pair of interacting tetrahedra can vary between 12
(reduces to 6 if we also account for the face-pair ordering
independence property for self-element face interactions) and
16.

The number of possible face-pair combinations for each
connectivity type for conformal tetrahedral elements is sum-
marized in Table I. The rows of Table I correspond to
different source and test tetrahedron adjacency configurations,
while the columns correspond to possible face-pair adjacency
configurations; listed for each case is the number of face-
pairs of that type possible for the tetrahedral pair. For a given

(a)

(b)

Fig. 6. Convergence rates of proposed methods for a pair of common vertex
faces. (a) Number of correct SD versus the average number of points per linear
dimension; the total number of points is the fourth power of the number of
points per linear dimension; and (b) normalized CPU time versus number of
correct SD.

tetrahedral pair configuration, a numerical distribution of face-
pair types is possible if it results from selecting a number from
each column such that their sum is 16. For example, for a pair
of non-touching tetrahedra, no face pairs touch, and so up to
4⇥4 = 16 different face pairs integrals can contribute. But
up to three face pairs may be coplanar (hence have vanishing
integral contributions), so that the number of non-touching
face-pair integrals that must be computed is reduced by the
same number, as indicated in the “Non-touching” row of Table
I. For the “Common edge” configuration, either a common
vertex pair and/or up to two common edge pairs may be
coplanar and the number of coplanar faces can be up to three.

Figures 9–13 examine convergence for a pair of non-
touching tetrahedra, as well as for a pair with a common
vertex, a common edge, a common face, and the self-term
case using the proposed methods. For each case, convergence
plots are presented for face-pair integration schemes using GT
quadrature, dyadic product of GL rules, and the acceleration
approach of (45). The labeling for each is the same as for the
earlier face-pair analyses. With regard to using these results
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(a)

(b)

Fig. 7. Convergence rates of proposed methods for a pair of common edge
faces. (a) Number of correct SD versus the average number of points per linear
dimension; the total number of points is the fourth power of the number of
points per linear dimension; and (b) normalized CPU time versus number of
correct SD.

in VIE MoM formulations, note that we are not including
scalar potential surface integral contributions that arise due to
material boundary discontinuities.

All the figures include for comparison the (unaccelerated)
approach of [16], labelled as “BBJ scheme”. The two for-
mulations share the goal of reducing volumetric integrals to
surface integrals, but differ in several other important aspects.
In [16], for example, one first determines an auxiliary function
whose Laplacian yields the Green’s function; finding the
inverse Laplacian is equivalent to integrating twice in the
radial variable. But in our approach, the product of basis, test,
and Green’s functions are altogether integrated twice in the
radial variable. Both methods contain dot product factors that
appear in the integrand of the outer surface integrals, but they
take quite different forms: (n̂ · n̂0) in the approach of [16],
as compared to (n̂ · R̂)(n̂0 · R̂0)/R2 for our approach. At first
glance, it may appear that the latter is not only rapidly varying,
but indeed, singular as R!0. A more careful examination re-
veals, however, that the two terms cannot be considered alone,
but rather must incorporate the behavior of the radial integral

Fig. 8. SD for scalar potential versus triangle shape for an edge-adjacent
triangle pair, (a) one a fixed source equilateral triangle with vertices r01 =
(1, 0, 0), r02 = (0, 0, 0), and r03 = (1/2, 0,

p
3/2) whose edge lengths are

�/10, and the second, a test triangle placed in the plane z = 0 with vertices
at r3 = r01 and r1 = r02. The color at any point (x, y) locating vertex r2
is keyed to the colorbar which indicates the number of correct SD for that
triangle shape with (b) the “(z, ⇢)-(z0, ⇢0)” approach and (c) the “Difference
+ Semi-Analytical” method applied. The number of sample points per linear
dimension is fixed at 5 (GL quadrature rule). The plots are symmetric and
only the left half of each is shown.

Fig. 9. Convergence rate for a pair of non-touching tetrahedra for various
methods versus the average number of points per linear dimension. The total
number of points is the sixth power of the number of points per linear
dimension. Also shown (label ”BBJ”) is the approach of [16] .

factors in the integrands, which introduce multiplicative terms
of order O(R) and O(R3), respectively. With this observation,
we find the integrands of both approaches not only remain
bounded, but both actually vanish as R ! 0. There is one
striking difference between the two approaches, however; in
the approach of [16], the dot product factor always vanishes
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Fig. 10. Convergence rate for a pair of common vertex tetrahedra for various
methods versus the average number of points per linear dimension. The total
number of points is the sixth power of the number of points per linear
dimension. Also shown (label ”BBJ”) is the approach of [16].

Fig. 11. Convergence rate for a pair of common edge tetrahedra for various
methods versus the average number of points per linear dimension. The total
number of points is the sixth power of the number of points per linear
dimension. Also shown (label ”BBJ”) is the approach of [16].

for orthogonal source and test face pairs, whereas in our ap-
proach, the factor vanishes for coplanar face pairs. This latter
property may be used to considerable advantage to reduce the
total effort needed for the all-important self-term calculations,
where every source face is coincident (and hence coplanar)
with its corresponding test face. Interestingly, despite their
differences, in their unaccelerated forms, both approaches are
found to exhibit similar convergence characteristics.

As the figures show, without accelerated convergence, rates
are roughly independent of formulation or quadrature scheme
chosen, and the more vertices shared by the the two tetra-
hedrons, the slower the convergence rate. But our approach
benefits considerably from the accelerated convergence offered
by the simple singularity subtraction scheme of (45); one
might expect that the scheme of [16] would similarly benefit
from some form of acceleration. Indeed, the departure of Figs.
10–13 from the near-linear convergence of Fig. 9 strongly
suggests the presence of at least a low-order singularity in the

Fig. 12. Convergence rate for a pair of common face tetrahedra for various
methods versus the average number of points per linear dimension. The total
number of points is the sixth power of the number of points per linear
dimension. Also shown (label ”BBJ”) is the approach of [16] .

Fig. 13. Convergence rate of a self-term for various methods versus the
average number of points per linear dimension. The total number of points
is the sixth power of the number of points per linear dimension. Also shown
(label ”BBJ”) is the approach of [16].

integrand of both formulations when the source and testing
tetrahedra have at least a vertex in common.

Though it is difficult to compare directly with recent results
by Reid [19], our results exhibit similar values in terms
of number of kernel sample points per dimension, as well
as in rates of convergence. The approach of [19] required
considerable extra analytical effort as well as automatic code
generation, but it does appear capable of achieving full dou-
ble precision. Further improvement in evaluating the semi-
analytical static integral for our case likely would also improve
our ability to approach machine precision.

VII. CONCLUSION AND PERSPECTIVES

We propose a scheme based on applying the divergence
theorem twice along with an appropriate integration reorder-
ing. The volume integrals are expressed as two radial integrals
plus two surface integrals over source and observation domain
boundaries. A closed form evaluation for the radial integrals is



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 12

derived for the homogeneous medium kernel and standard lin-
ear basis and testing functions. A simple acceleration scheme
is developed based on a singularity subtraction approach using
a semi-analytic evaluation of the static form of the kernel.
The method is numerically validated, both with and without
acceleration, for both the vector and scalar potential dynamic
kernels arising in the electric field volume integral equations;
with no acceleration, convergence is found to be similar to that
of comparable existing schemes, but is considerably improved
by the simple acceleration scheme. Further improvement may
follow if accuracy limitations on computation of the static
integral can be removed.

A possible next step is to extend the approach to other
singular kernels, particularly to those with r(1/R) singulari-
ties. Moreover, the proposed approach likely can be extended
to higher-order basis functions and curvilinear tetrahedron
elements as treated in [30], [31]. These objectives hopefully
will be pursued in future work.
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APPENDIX

Once the change of variables from ⇢-⇢0 to u-v is imple-
mented, it is necessary to adapt the limits of integration to
a non-rectangular domain of integration split into three parts
(see Fig. 4). The new limits of integrations are defined by
the geometry of the two faces of the interacting pair, and the
angle between them, i.e., they depend on ⇢, ⇢0, and �. Since
the domain of integration is a parallelogram, the equation for
each edge takes the generic form u = av + b, with constants
a and b depending on the edge under consideration. For each
value of viu(vil), we have a pair of slopes aiu(ail) and intercepts,
biu, (b

i
l), defining the lines representing integration limits in u.

The parallelogram consists on 4 lines: the lines joining the
vertexes V2-V1, V4-V3, V3-V2, and V4-V1. Each one of
the lines can be expressed in slope-intercept form as

V2-V1 : u = tan
�

2
v + 2⇢0l sin

�

2

V4-V3 : u = tan
�

2
v + 2⇢0u sin

�

2

V3-V2 : u = � tan
�

2
v + 2⇢u sin

�

2

V4-V1 : u = � tan
�

2
v + 2⇢l sin

�

2
. (50)

If we consider the integral (27), where we integrated first
in u, holding v constant, then integrate on v, as

Z

Di
vu

u2

R
dudv =

Z vi
U

vi
L

Z ui
U=ai

Uv+biU

ui
L=ai

Lv+biL

u2

R
dudv, (51)

Fig. 14. Different orientation of the domains of integration for u-v integrals;
vi,l and vi,u are the lower and upper integration limits of v. Transformation of
a rectangular domain in (⇢, ⇢0) coordinates forms a parallelogram in the (u, v)
domain. Note that in (b) the ordering of the v-axis projections of vertices V1
and V3, as well as v2,l and v2,u, are reversed from that of (a). Subfigures
(c) and (d) are the mirrored design of (a) and (b) respectively when � < 0.
In these two last cases the upper and lower limit are the opposite of their
equivalents in the case that � > 0.

then for � > 0, we can define the limits in v as

v1L = (⇢L � ⇢0U ) cos
�

2
,

v1U = v2L = (min(⇢U � ⇢0U , ⇢L � ⇢0L)) cos
�

2
,

v2U = v3L = (max(⇢U � ⇢0U , ⇢L � ⇢0L)) cos
�

2
,

v3U = (⇢U � ⇢0L) cos
�

2
, (52)

and the limits in u with respect to v as

a1L = � tan�/2, a1U = tan�/2,

a2L =

(
tan�/2, if ⇢lim � ⇢0lim
� tan�/2, otherwise

a2U =

(
tan�/2, if ⇢lim � ⇢0lim
� tan�/2, otherwise

a3L = tan�/2, a3U = � tan�/2, (53)
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and

b1L = 2⇢L sin�/2, b1U = 2⇢0U sin�/2,

b2L =

(
2⇢0L sin�/2, if ⇢lim � ⇢0lim
2⇢L sin�/2, otherwise

b2U =

(
2⇢0U sin�/2, if ⇢lim � ⇢0lim
2⇢U sin�/2, otherwise

b3L = 2⇢0L sin�/2, b3U = 2⇢U sin�/2, (54)

where ⇢lim = ⇢U�⇢L, and ⇢0lim = ⇢0U�⇢0L. The ambiguities in
(53) and (54), arise because the v�axis projections of vertices
1 and 3 may switch positions depending on the triangle
geometries, as shown in Fig. 14 (a–b). On the other hand,
if � < 0, the domain of integration is mirrored with respect
to the v�axis, as can be seen in Fig. 14 (c–d). In this case
the definition of the order of integration is interchanged, i.e.,

aiL(� > 0) ) aiU (� < 0)

aiU (� > 0) ) aiL(� < 0)

biL(� > 0) ) biU (� < 0)

biU (� > 0) ) biL(� < 0), (55)

and a negative sign is included in the integration.

Fig. 15. Different orientation of the domains of integration for v-u integrals;
ui,l and ui,u are the lower and upper integration limits of on u. Transfor-
mation of a rectangular domain in (⇢, ⇢0) coordinates forms a parallelogram
in the (u, v) domain. Note that in (b) the ordering of the u-axis projections
of vertices V2 and V4, as well as u2,l and u2,u, are reversed from that of
(a). Subfigures (c) and (d) are the mirrored design of (a) and (b) respectively
when � < 0. In these two last cases the upper and lower limit are the opposite
of their equivalents in the case that � > 0.

We turn our focus next to the integral (42), where we
integrate first in v, holding u constant, then integrate on u,
as

Z

Di
vu

v2

R
dvdu =

Z ui
U

ui
L

Z vi
U=ciUu+di

U

vi
L=ciLu+di

L

v2

R
dvdu, (56)

where the limits in u for � > 0 are

u1
L = (⇢L + ⇢0L) sin�/2,

u1
U = u2

L = (min(⇢U + ⇢0L, ⇢L + ⇢0U )) sin�/2,

u2
U = u3

L = (max(⇢U + ⇢0L, ⇢L + ⇢0U )) sin�/2,

u3
U = (⇢U + ⇢0U ) sin�/2. (57)

In this case, v depends linearly on u as v = cu+d, where the
slopes and intercepts for the various boundary lines are

c1L = � cot�/2, c1U = cot�/2,

c2L =

(
cot�/2, if ⇢lim � ⇢0lim
� cot�/2, otherwise

c2U =

(
cot�/2, if ⇢lim � ⇢0lim
� cot�/2, otherwise

c3L = cot�/2, c3U = � cot�/2, (58)

and

d1L = 2⇢L cos�/2, d1U = �2⇢0L cos�/2,

d2L =

(
�2⇢0U cos�/2, if ⇢lim � ⇢0lim
2⇢L cos�/2, otherwise

d2U =

(
�2⇢0L cos�/2, if ⇢lim � ⇢0lim
2⇢U cos�/2, otherwise

d3L = �2⇢0U cos�/2, d3U = 2⇢U sin�/2. (59)

Again, the ambiguities in (58) and (59) arise from the two
possible positions of the projections vertices 2 and 4, as shown
in Fig. 15(a–b). And once again, if � < 0, the domain of
integration is mirrored respect to the v�axis, as can be seen
in Fig. 15 (c–d). In this case the definition of the order of
integration is interchanged, i.e.,

ciL(� > 0) ) ciU (� < 0)

ciU (� > 0) ) ciL(� < 0)

diL(� > 0) ) diU (� < 0)

diU (� > 0) ) diL(� < 0), (60)

and a negative sign is included in the integration.
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