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Abstract—This paper deals with the automatic detection of 

Myotonia from a task based on the sudden opening of the hand. 

Data have been gathered from 44 subjects, divided into 17 

controls and 27 myotonic patients, by measuring a 2-point 

articulation of each finger thanks to a calibrated sensory glove 

equipped with a Resistive Flex Sensor (RFS). RFS gloves are 

proven to be reliable in the analysis of motion for myotonic 

patients, which is a relevant task for the monitoring of the 

disease and subsequent treatment. With the focus on a healthy 

VS pathological comparison, customized features were 

extracted, and several classifications entailing motion data from 

single fingers, single articulations and aggregations were 

prepared. The pipeline employed a Correlation-based feature 

selector followed by a SVM classifier. Results prove that it’s 

possible to detect Myotonia, with aggregated data from four 

fingers and upper/lower articulations providing the most 

promising accuracies (91.1%).  

Keywords—myotonia, SVM, hand, machine learning  

I. INTRODUCTION  

The use of classification systems in medical diagnosis is 
gradually increasing. Recent advances in artificial intelligence 
have led to the emergence of expert systems and decision 
support systems (DSS) for medical applications. Moreover, 
over the past decades, computational tools have been designed 
to improve the experiences and capabilities of doctors and 
medical specialists in making decisions about their patients. 
Undoubtedly, the evaluation of patient data and expert 
decisions are still the most important factors in diagnosis. 

However, expert systems and different Artificial Intelligence 
(AI) techniques for classification have the potential to be good 
support tools for the expert. Classification systems can help 
increase the accuracy and reliability of diagnoses and 
minimise possible errors, and the main advantage of AI-
enhanced medicine lies in its ease of deployment, its 
implementability in telemedicine solutions, its non-
invasiveness and its real-time, low-cost characteristics. As a 
result, AI is used with promising results in many applications  
of medical signal analysis, from voice analysis [1]–[5] to 
movement [6], [7].  

This study is focused on Myotonia, which is a disease of 
the muscular system characterised by an abnormal delay in the 
release of voluntary muscles after contraction, resulting in a 
variable degree of slowness and clumsiness in movement [8]. 
It affects several muscles, including phonatory and 
masticatory muscles, and especially hinders hand movement: 
the prehension movement of the hand is often followed by 
difficulty in the release (descent) mechanism. Several 
diseases, especially Steinert’s myotonic dystrophy and 
congenital Myotonia, share the same symptomatology, 
although the underlying pathogenic dynamics are different: 
macroscopically, the patient is still defined as “myotonic”. 
This creates, of course, additional difficulties in the diagnostic 
phase. Unlike some other muscle diseases, congenital 
myotonia does not cause weakness or atrophy of the muscles. 
The diagnosis of congenital myotonia is suspected on the basis 
of the child's characteristic appearance, inability to quickly 



relax the hand grip after closing it, and prolonged contraction 
when the doctor taps a muscle. To confirm the diagnosis, an 
electromyogram (an examination involving the recording of 
electrical impulses from muscles) is required. Sometimes a 
muscle biopsy is performed. Genetic tests can be performed to 
identify mutations in the gene that causes both forms. In this 
paper, we analyse data obtained from measurements taken 
from a sensory glove equipped with flex sensors on each 
finger, specifically focusing on the movement of sudden hand 
opening. In addition, comparisons are made between patients 
either by considering a single finger joint of the hand or by 
considering several joints simultaneously [9]. 

Not many attempts have been made at preliminarily 
identifying Myotonia with the aid of AI. Most notably, in 2019 
Lin et al. [10] proposed a Deep Learning-based system for 
detecting Myotonia from the squeeze of the hand; in 2022 
Bouma et al. [11] applied Machine Learning and statistics to 
a novel measurement instrument for non-invasively measure 
the clenching of the fist.    

Thus, the following work is presented as a further aid to 
the treating physician in diagnosing and defining a clinical 
scale of progress or regression of the pathology under 
investigation. Moreover, a custom dataset has been used. 
Despite numerous examinations that the physician uses for a 
correct diagnosis of the pathology, it is still difficult to define 
a non-subjective scale of objective improvement or 
effectiveness of the proposed curative treatment. 

II. MATERIALS 

A. Study Population and Tasks 

The study population for the present work consists of an 
initial number of 44 subjects, of which 27 are myotonic (M) 
and 17 are healthy controls (H). The data gathering for the M 
subjects occurred in a hospital environment, and the presence 
and severity of the disease was medically validated, with 
Myotonia ranging from mild to moderate. The total time of the 
data gathering procedure was 6 months, during which subjects 
recorded more than one entry (but never more than three) in 
different timeframes. 

 With the aid of trained personnel, the subjects were fitted 
a sensory glove equipped with an array of Resistor Flex 
Sensors (RFS) [12] placed on the three phalanges of each 
finger (thumb excluded). RFS are elastic motion sensors made 
of a simple variable resistor designed to measure the amount 
of deflection experienced when bent. The resistance is 
maximum with a 90-degree angle and minimum when flat. 
The voltage output is converted by an ADC to a 12-bit digital 
signal with sampling frequency of 40 Hz, then elaborated on 
MATLAB ® (Natick, Massachusetts: The MathWorks Inc.).   

The effectiveness of the RFS glove, in terms of 
accuracy/reliability and repeatability, have been proven in 
literature [13], [14] and specifically tested for the purpose of 
this paper under dynamic (versus quasi-static) conditions at 
various finger speed, as detailed in the study by Saggio et al. 
[15]. Test results show the RFS glove scoring an average 
accuracy range of 6.84° ± 2.77° and an intraclass correlation 
coefficient (ICC) of 0.77 ± 0.14, with the slowest speed being 
the better in terms of reliability and repeatability. The results 
obtained under dynamic conditions are comparable to those 
obtained under static or quasi-static conditions, and the RFS 
glove outperforms inertial (IMU) devices within this 
environment. 

With the glove being single-sized, a calibration procedure 
was necessary to ensure that the RFS measured the correct 
movements regardless of the physical characteristics of the 
subject. The calibration included the following tasks: the 
subject sets his fingers parallel to the surface, to set the 
minimum flex position; the subject holds a cylinder made of 
hard material with all fingers touching it snugly (two times, 
with two cylinders of diameter 6.3 and 5 cm); the subject is 
asked to form a firm fist with his hand to set the “closed 
finger” position.  

The movement task measured after calibration was as 
follows: the subject is asked to firmly close his hand in a fist 
for a minimum of 5 seconds, and then to release, completely 
opening the hand the quickest they can.  

This study is based on movement data from all fingers but 
the thumb, since its movements are too erratic, and in general 
with a different articulation than the other four fingers.  

Three articulation points were captured for each finger, 
although the last one (closest to the tip) was not used in our 
analyses since its movement data involved negligible 
amplitudes and variability rates with respect to the other two.  

After removing subjects or single records where data were 
noisy, badly recorded, or too erratic due to medical or logistic 
reasons, a final dataset of 60 instances from M subjects and 30 
instances from H subjects was built. The inclusion criteria for 
deeming an instance worthy was identified as the full 
opening/closing motion signal being clear in its high-to-low 
evolution without unnatural peaks; moreover, annotations 
during the data gathering procedures allowed to identify 
possible artifacts or adverse phenomena such as an unbearable 
tremor in the subjects’ hand or external forces hindering the 
measurement.  

III. METHODS 

Each instance consists of two superposed signals 
(articulations) for each finger, which leads to a grand total of 
8 signals per instance (2 articulations for 4 fingers). With each 
instance corresponding to a class label being either M 
(myotonic) or H (healthy), and with the grand division being 
between healthy and pathological subjects, binary 
classifications (healthy VS myotonic) were prepared at 
different levels and with different tasks:  

• Comparison of each articulation of each finger, 
leading to 8 binary classifications thus prepared. 

• Comparison of each finger, using data of both 
articulations, leading to 4 binary classifications. 

• Comparison of each articulation, using data from all 
fingers each time, leading to 2 binary classifications 
(lower or upper articulation). 

• Comparison of the whole hand, regardless of the 
finger or articulation, between M and H. This leads to 
a single binary classification task, healthy VS 
myotonic, employing the largest dataset.  

Each file was manually trimmed to remove portions from 

the beginning and the end that are not related to the motion 

of the hand. The criterion for this was to simply trim the 

signal in a point ranging 10 ms before/after the “onset” (or 

offset), which is identified as the sudden peak after/before 

noticeably “silent” portions in which only the noise floor is 



detected. This allowed each instance to start exactly at the 

moment when the subject suddenly opened his hand.  
The dataset then endured a pipeline that is comprised of 

the following steps, better detailed in the corresponding 
subsections: 

1) Feature Extraction 

2) Feature Selection 

3) Classification 
Due to the limited dataset and to the small number of 

features, although feature selection was attempted for each 
classification approach, it only brought valuable results for the 
aggregated comparisons involving instances from all fingers. 
This will be better detailed in the “Results” section.  

B. Feature Extraction  

A total of 29 different features were extracted from each 
instance with the aid of custom MATLAB routines.  

Each signal was segmented in the following sections: the 
upper part corresponding to the closed hand, the descent 
section corresponding to the opening of the hand and the final 
section after the descent, corresponding to the open hand at 
rest. We first qualified the descent part by defining for each 
patient, using the first derivative, an initial descent sample, 
hereon defined as “DS”, a sample corresponding to the first 
decrescent part of the signal, identifying the start of the 
opening of the hand (EOF1) and a end-of-descent (ES) sample 
corresponding to a fully opened hand. Two samples were 
necessary to define the whole hand opening procedure 
because of the gradual nature of it, and because some patients 
with myotonia may also have problems holding their hand 
open at rest. 

Once these samples had been defined, linear regression 
lines were fitted: one line regarding the upper part of the 
function up to the first sample before descent (R1); one 
considering the sample before descent and the first sample at 
the end of descent (R2); a line passing through 2 points 
considering the sample before descent and the first sample at 
the end of descent (R2b); a line passing through 2 points 
considering the sample before descent and the second sample 
at the end of descent (R3); and finally a line considering the 
first and the second sample at the end of descent (R4). Figure 
1 details this segmentation procedure.  

Let the reader be reminded that the “amplitude” of the 
signals is defined in terms of resistance, which in turn 
quantifies the flex of the RFS. After mathematically defining 
the three relevant sections (closed hand – descent movement 
– open hand), features were extracted. From the descent part 
(defined by the three samples DS, EOF1 and ES) the 
following features were extracted:  

• yStart: Amplitude of the descent sample (DS).  

• yPPP: Amplitude of the EOF1 sample (first sample 
after descent). 

• yEnd: Amplitude of the ES, corresponding to the 
opening of the hand. 

• Start2PPP: Length measured in number of samples 
from the DS to the EOF1.  

• Start2End: Length measured in number of samples 
from the DS to the ES. 

• PPP2End: Length measured in number of samples 
from EOF1 to ES. 

• ratioTimes: Ratio of Start2PPP to PPP2End. 

• ratioTimesRec: Ratio of PPP2End to Start2PPP. 

• ratioSNs: Equals to (yStart - yPPP) / (yPPP - yEnd). 

• m1fit: Angular coefficient of the R1 line (closed 
hand). 

• q1fit: Known term of the R1 line (closed hand). 

• m2fit: Angular coefficient of the R2 line. 

• q2fit: Known term of the R2 line. 

• m2rp2p: Angular coefficient of the R2b line. 

• q2rp2p: Known term of the R2b line. 

• m3rp2p: Angular coefficient of the R3 line. 

• q3rp2p: Known term of the R3 line. 

• m4fit: Angular coefficient of the R4 line. 

• q4fit: Known term of the R4 line. 

From the “still” traits of the signal, corrisponding to a fully 
closed hand (before descent) and a fully opened one (after 
descent), the following features were extracted:  

• flatness: Difference, in terms of amplitude, between 
the maximum and minimum value within the trait. 

• varianceOsc: Variance of the oscillations of the signal 
detected as deviation from the linear regression line. 

• averageModuleosc: Average absolute value of the 
amplitude of the oscillations.  

• ZCROsc: Crossing rate of the oscillations with the 
regression line. 

• AreaOsc: Area of the oscillations, better displayed in 
Figure 2.  

• TPPS: Distance (on the y-axis) between the last 
sample estimated by the regression line, and the DS 
sample, which corresponds to the beginning of the 
movement. This specific feature was only extracted 
for the first trait of the signal (hand closed to descent).  

All of the abovementioned features but TPPS were 
extracted from both the initial (closed) and final (open) trait, 
with the latter having features with a “2” suffix (e.g., 
“varianceOsc2”). A graphical explanation is given in Figure 
2.  



 

Fig. 1. Example of a trimmed instance and its regression lines R1, R2, R2b, 

R3 an R4 as defined in the “Feature Extraction” section.  

 

Fig. 2. Example of the first trait of the signal, from the beginning to the first 

descent sample (S1), and its oscillation above the R1 line. 

C. Correlation-based Feature Selection 

The next step after the extraction employed a feature 
selection based on Hall’s Correlation-based Feature Selector 
(CFS) [16] that takes into account the importance of each 
feature for detecting between classes, and the redundancy of a 
given subset of features, according to the following formula: 
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Where k is the number of features in a subset S, ��� 



 is the 

average correlation between features and the class label, and 
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 is the average correlation between pairs of features in the 

subset. Merit factors are computed incrementally and the best 
subset is found using a Forward Greedy Stepwise search 
method [17]. The number of features retained for each 
comparison is not predefined.  

D. Classifier: Linear SVM  

After feature selection, we trained several linear SVM 
classifiers chosen due to their performance and generalization 
power on medium-to-small datasets due to their generalization 
power. A general SVM is a binary classifier based on finding 
the optimal separation hyperplane between the two nearest 
examples of opposite classes, called “support vectors” by 
solving the the Lagrange dual formula [18]. When data are not 
linearly separable, it is possible to project on a higher 
dimension to find a suitable hyperplane; however, by 
choosing a linear kernel, the best separation hyperplane still 
lies within the dimensionality of the data, and out-of-bounds 

classification is made possible by “softening” the margins 
introducing a parameter C called “Complexity”, which 
penalizes classification errors during training according to 
their distance from the support vectors [19]. 

We used a soft-margins linear SVM, solved with Platt’s 
SMO algorithm, with the parameter C set as 1. A 10-fold 
Cross-Validation was used to produce the end results, by 
averaging. Each classifier was trained on a portion (9/10) of 
the respective dataset, in accordance with the definition of 
cross-validation. According to the list of prepared 
classifications detailed in the “Methods” section, each sub-
dataset entailed a binary classification (healthy VS myotonic) 
containing data from either a single finger with a single 
articulation, a single finger regardless of articulation, 
upper/lower articulation regardless of fingers, or all data from 
healthy subjects VS all data from myotonic subjects regardless 
of fingers or articulation. Classification and the feature 
selection algorithms were implemented on Weka® 
(University of Waikato) [20]. 

IV. RESULTS 

In this section, classification results are presented for each 
binary comparison. Each finger is referred with its name: 
Index, Ring, Anular and Pinky. The articulation may be 
abbreviated as “art.” and the two possibilities are “lower” or 
“upper”. Results are reported in terms of classification 
Accuracy (Acc), Sensitivity (Sens) and Specificity (Spec). 
Sensitivity, which is defined as the True Positive Rate, is the 
ratio between the “true” positives - M subjects correctly 
identified as such - and all of the instances identified as 
positive, i.e. the sum of true positives and false negatives (H 
subjects wrongly identified as sick). Specificity is the ratio 
between true negatives and the sum of all instances identified 
as negative (true negatives plus false positives). Table I 
displays the results of the comparisons that involve single 
fingers with single articulations.  

TABLE I.  RESULTS WITH SINGLE FINGERS AND ARTICULATIONS 

Comparison Acc (%) Sens (%) Spec (%) 

Index, art. lower 67.8 68.7 57.1 

Index, art. upper 68.5 73.1 54.5 

Middle, art. lower 78.9 78.1 82.3 

Middle, art. upper 75.6 80.7 64.3 

Ring, art. lower 76.7 75.3 84.6 

Ring, art. upper 75.6 76.4 72.2 

Pinky, art. lower 76.7 76 80 

Pinky, art. upper 74.4 76.1 68.4 

Mean 74.275  75.55 70.425 

 

Table II displays the results of the comparisons that 
involve single fingers with both articulations.  

TABLE II.  RESULTS WITH SINGLE FINGERS, ALL ARTICULATIONS 

Comparison Acc (%) Sens (%) Spec (%) 

Index, all art.  76.7 80 68 

Middle, all art. 91.1 100 78.9 

 



Ring, all art. 85.6 88.5 79.3 

Pinky, all art.  77.8 79.4 72.7 

MEAN 82.8 86.975 74.725 

 

Table III and Table IV display the results of the aggregated 
comparisons: the first two comparisons involve all fingers 
with two articulations, and the last is the fully-aggregated one. 
This is the only case in which feature selection brought 
detectable benefits, also due to the number of initial features 
being proportionally larger thanks to the aggregation. Each 
single task brings out 29 features, which leads to the grand 
total of 232 features for the fully-aggregated comparison. 
Feature selection, when applied to the other comparisons only 
brought slightly lower accuracies trying to reduce an already 
limited feature set.  

TABLE III.  AGGREGATED RESULTS, WITHOUT FEATURE SELECTION 

Comp. 

Without Feature Selection 

Acc 

(%) 
Sens (%) Spec (%) 

Number of 

Features 

All fingers, art. 

lower 
78.9 82.5 70.4 116 

All fingers, art. 

upper 
78.9 87.3 65.7 116 

All fingers, all 

art.  
85.6 89.8 77.4 232 

TABLE IV.  AGGREGATED RESULTS AFTER FEATURE SELECTION 

Comp. 

After Feature Selection 

Acc 

(%) 
Sens (%) Spec (%) 

Number of 

Features 

All fingers, art. 
lower 

82.2 83.3 79.2 11 

All fingers, art. 

upper 
67.8 71.2 52.9 16 

All fingers, all 

art.  
91.1 100 78.9 28 

V. DISCUSSION AND CONCLUSION 

Looking at the tables displaying accuracies, it is evident 
that the best results are obtained when several joints are 
considered at the same time, whether of the same finger or of 
different fingers. This is because by having more diverse 
features to use for classification, reconstruction of a proper 
classification map, and thus discrimination between the two 
classes is easier. 

This is also the case with regard to feature selection, 
because when there are few starting features as in the case of 
single joints, feature selection is ineffective, worsening the 
results in all 8 cases, as it tends to select few features (from a 
minimum of 4 to a maximum of 7). A similar point of view 
can be made for the comparisons of the fingers, since only in 
the case of the pinky there is a slight improvement in accuracy 
(of about 1%), with a number of features selected ranging 
from a minimum of 9 to a maximum of 11. On the other hand, 
with regard to the joints considered simultaneously, in 
particular the first and the first together with the second, there 
is a clear improvement in the performance of the classifier 
after having carried out the feature selection, with 
improvements ranging from 4% to 6% [21]. 

Using a high number of features with respect to the 
number of data can often bring overfitting, according to the 

principles of the “Curse of Dimensionality”: data are over-
represented by too many indicators, which make the 
reconstruction of a proper feature map harder for classifiers, 
in turn worsening generalization [22].  

For single-finger tasks, the initial number of features is 
lower (29) because there is no aggregation, and the number of 
instances is lower accordingly: this partly explains why 
feature selection is ineffective. On the other hand, it brings 
noticeable improvements when considering sets with a higher 
number of instances and features, like the aggregated ones.  

Analysing the confusion matrices of the various 
comparisons, it can be seen that in general, the classifier tends 
to misclassify more controls by classifying them as myotonia 
patients than the other way around, having instead a better 
accuracy for myotonia patients. In fact, the worst results are 
obtained when the classifier gets all the controls wrong. This 
may probably be due to the fact that the data collected during 
the measurements of the controls are more similar to those of 
the myotonia patients than they should be, due to several 
factors: the correct execution of the test by each control is 
variable and subjective, the glove made to fit differently 
according to the palm size of the persons tested, problems 
related to an incorrect sampling of the measured signal, etc. 

In the end, the best classification results are obtained 
considering both joints of the middle finger and all 8 joints of 
the four fingers.  

As far as features are concerned, it is already stated that, 
due to the limited amount of data and features, selection on 
single tasks did not bring relevant results. In general, with 
regard to the eight joints taken individually, mostly features 
inherent to the angular coefficients and known terms of the 
drawn lines were selected. With regard to the index and 
middle finger, there are also a good number of features 
inherent to the oscillations. In particular, for the first joint of 
the middle finger, we have the two features considered most 
important in this table, i.e. q4fit and yEnd, indicating that 
probably the final part (open hand at rest) of the measurement 
is of particular importance for discrimination with this joint. 
With regard to the two joints considered together of each 
finger, a greater importance is noted for the features related to 
the first joint, especially in the index, middle and ring fingers. 
For the middle finger in particular, q4fit and yEnd were again 
the most important, as was the case when only the first joint 
of the same finger was assessed. In general, again, there is a 
majority of features related to the five regression lines.  

The present work has made it possible to highlight the 
importance of motion analysis in the recognition and 
characterisation of myotonia, demonstrating that such analysis 
can represent an additional tool for better understanding the 
abnormalities of hand movement in this pathology. In fact, the 
main aim of our study was to demonstrate that by means of 
classification techniques based on machine learning 
algorithms, it is possible to construct classifiers that can 
discriminate measurements belonging to subjects with 
myotonia and healthy subjects [23].  All of the algorithms 
employed in the pipelines are not dependant on the number of 
instances per class, i.e., they are insensitive to unbalances. Soft 
margins, linear SVM  

Of the 8 joints analysed, we have shown that the best 
results are obtained when considering the features of several 
joints at the same time, in particular those related to the first 
joint of the middle finger and also the ring finger are most 



effective. In general, however, the classifier performs better 
when it has a number of features that is not too small for the 
dataset provided to it, making it also sensible and effective to 
apply a feature selection algorithm, which, as seen above, 
manages to improve some results. In any case, this study can 
be expanded by considering additional features that highlight 
the difference between the hand movement of a myotonia 
patient and a control, as well as trying to consider the thumb 
and third joints of each finger and see if the accuracy results 
could improve. A better balance of the dataset between the 
number of controls and myotonia patients may also help in the 
correct classification of the two classes, in addition of course 
to the fact of measuring and sampling well the movements 
performed by each patient, so as to minimise sensor-induced 
differences or other external factors not directly related to the 
disease [24]. Additional limitations of this study include the 
reduced amount of training data, the possibility of adding 
more custom features, the inherent characteristics of the 
employed sensors and the nature of the (only) movement task 
employed.  

Clearly, considering the variety and quantity of tests that 
have been carried out on each patient, this is only a small part 
of all the work that can be done to try and demonstrate that it 
is possible to extract features that are particularly 
discriminating for this disease, perhaps even obtaining better 
results than those obtained by analysing this particular 
exercise. Additional future implementations will entail 
addressing class imbalances, with solutions like oversampling 
or the usage of weighed classifiers, and using more accuracy 
metrics such as leave-one-out validation.  
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