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‡Université Paris-Saclay, CentraleSupélec, CNRS, GeePs, 91192, Gif-sur-Yvette, France, guido.valerio@sorbonne-universite.fr
§Dept. Fı́sica Aplicada 1, Universidad de Sevilla, Seville, Spain, mesa@us.es

¶KTH Royal Institute of Technology, Division of Electromagnetic Engineering, 11428, Stockholm, Sweden, oscarqt@kth.se
**corresponding author

Abstract—In this work, we present a modeling methodology
to solve the eigenvalue problem for periodic structures with a
hexagonal lattice. The method is based on the previously proposed
multi-modal transfer matrix method, which is a hybrid method
that takes into account the coupling between the multiple modes
of the ports surrounding the single unit cell. Commercial software
can be used to obtain the generalized scattering parameters
which are subsequently applied to set up and solve the eigenvalue
problem of the periodic structure. This approach has the ability
to obtain complex solutions and thus makes it possible to analyze
the attenuation in the stopbands. Here, we extend the multimodal
transfer matrix method to the efficient solution of the resulting
eigenvalue problem for the case of a hexagonal lattice, detailing
the selection of the appropriate supercells and the appropriate
irreducible Brillouin zones. Two types of structures are analyzed:
a mirror-symmetric structure and a glide-symmetric structure.
Very good agreement is obtained with commercial software,
limited to the real part of the dispersion diagrams.

Index Terms—eigenmode analysis, electromagnetics, glide sym-
metry, hexagonal lattice, periodic structures, metasurfaces, nu-
merical methods.

I. INTRODUCTION

Periodic surfaces have long been a topic of interest for
the antenna community. They can be employed to tailor the
propagation of waves by synthesizing artificial surfaces or
metasurfaces that can implement an equivalent refractive index
in a meta-waveguide, or block the propagation of waves in
an electromagnetic band gap (EBG) structure. Guiding struc-
tures based on metasurfaces can be constituted by parallel-
plates waveguides (PPW) with periodic inclusions in the
plates, bounding the electromagnetic wave between them,
and controlling their propagation features by means of their
periodicity. Recently, the introduction of glide symmetry into
periodic structures has been a topic of intense research [1]–[4],
since they can provide a significant improvement of several
properties compared to conventional periodic structures, in
terms of reduced frequency dispersion, stopband rejection,

stable anisotropy, matching properties [5]. A glide-symmetric
structure is defined as being invariant with respect to a
translation of half a period and a mirroring [6], [7]. The
characteristics of periodic structures are usually represented by
dispersion diagrams, which are generated through numerical
simulations. Many different methods have been used, including
commercial software [8], mode matching [2], [4], the multi-
modal transfer matrix method (MMTMM) [9], [10], method
of moments [11], [12], and the finite element method [13].
However, most of the work to date, apart from a few recent
papers [13]–[15], has been devoted to the examination and
comprehension of rectangular lattices. In [13], the authors
study the surface modes of an open structure while in [14],
[15], the modeling of hexagonal lattice is carried out by means
of commercial software, which does not directly provide the
attenuation in stopbands.

In this work, we develop the MMTMM [9] to analyze closed
periodic structures with a hexagonal lattice. The MMTMM is
a hybrid method that is capable of obtaining complex modes,
including stopband attenuation. We use this method to examine
a unit cell with mirror and glide symmetry. This is the first
time this method has been developed and used for the mode
analysis of hexagonal lattice periodic structures. The presented
analysis and discussion provide key insights into the behavior
and use of these structures.

II. BRILLOUIN ZONES OF HEXAGONAL CELLS

In this Section we describe the two periodic structures
studied, a mirror-symmetric one and a glide-symmetric one,
and their Brillouin diagrams. The numerical values of the
relevant geometric parameters described below are the same
for the two structures, and are chosen such that, in the glide-
symmetric unit cell, the start of the stopband is about 30 GHz
and the stopband bandwidth is maximized.

Before applying the MMTMM, it is essential to determine
the Brillouin zones that are associated with the unit cells of
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Fig. 1. Geometries of the mirror-symmetric structure: (a) Primitive unit cell
and (b) the supercell. (c) The boundary of the first Brillouin zone (full line)
and the irreducible Brillouin zone (dashed line) of the primitive cell, and the
first Brillouin zone of the supercell (colored region).

TABLE I
USED SIMULATION PARAMETERS.

Variable Meaning Value
a Distance across hexagon 8.7 mm
g Gap between plates 0.05 mm
d Radius of hole 0.62a
h Depth of hole 0.6a

interest, as well as to select an appropriate supercell. The
MMTMM requires a supercell to analyze hexagonal structures,
as the used CST frequency domain solver with hexahedral
meshing [16] needs the ports to be aligned with either one of
the Cartesian axes for proper resolution of the port modes. To
ensure that the solver can obtain the port modes accurately, it
is recommended that the supercell boundaries are as uniform
as possible.

The first periodic hexagonal structure analyzed is a mirror-
symmetric PPW whose unit cell, depicted in Fig. 1(a), has a
circular hole drilled in each of the plates. In the figure, the
geometry parameters are the gap g, depth of hole h, width of
hexagon a, and diameter of the hole d. The values of these
parameters, used in the simulations, are reported in Table I.
The boundary of the first Brillouin zone of the primitive cell
is presented in Fig. 1(c) in solid line. In the same figure, the
irreducible Brillouin zone is bounded by a dashed line and
the first Brillouin zone of the supercell shown in Fig. 1(b) is
colored in red. The periodicities of this rectangular supercell
are px = a and py = 2 a cos(π/6).

The second analyzed structure is a glide-symmetric holey
structure, with its primitive unit cell shown in Fig. 2(a). For
this structure, the parameters in Table I result in a maximized
stopband, starting at about 30 GHz. The supercell is shown in
Fig. 2(b). The first Brillouin zone of the primitive cell and the
irreducible Brillouin zone are bounded by full and dashed lines
in Fig. 2(c). Since the structure does not possess 60◦ rotational
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Fig. 2. Geometries of the glide-symmetric structure: (a) primitive unit cell
and (b) the supercell. (c) The boundary of the first Brillouin zone (full line)
and the irreducible Brillouin zone (dashed line) of the primitive cell, and the
first Brillouin zone of the supercell (colored region).
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Fig. 3. Lattice of the (a) mirror-symmetric and (b) glide-symmetric hexagonal
holey structures. The bottom part of the lattice is black and the top part is
gray. The chosen supercell with the definition of phases is colored red

symmetry around the z-axis, its irreducible Brillouin zone is
larger compared to the mirror-symmetric case in Fig. 1(c). The
first Brillouin zone of the supercell is shown in red in Fig. 2(c).
Since the supercell is rotated, its Brillouin zone is rotated as
well and has its own pair of wavevectors, k′x and k′y , depicted
in gray.

To further illustrate the selection of supercells, we present
top-down views of the mirror-symmetric and glide-symmetric
supercells in Fig. 3, where the 60◦-rotation of the chosen glide-
symmetric supercell compared to the mirror-symmetric primi-
tive cell can be clearly appreciated. This rotation increases the
homogeneity of the boundaries, since these coincide with the
middle vertical planes of the holes. In the figure, the unit vec-
tors v̂ and ŵ are defined. The top part of the glide-symmetric
structure, depicted in gray, is obtained by a translation of a/2
in both directions. Moreover, the definition of phases across
the supercell, φx and φy , is also shown in gray. The values of
these phases at the edges of the irreducible Brillouin zone are
listed for the mirror-symmetric and glide-symmetric structures
in Tables II(A) and (B), respectively.



TABLE II
PHASES FOR THE EDGES OF THE IRREDUCIBLE BRILLOUIN ZONE

(A): Mirror-symmetric supercell
Point φx φy

Γ 0 0
M 0 2π
K 2

3
π 2π

(B): Glide-symmetric supercell
Point φ′

x φ′
y

Γ 0 0
K5 − 4

3
π 0

K − 2
3
π 2π

M1 0 2π

III. MODELLING METHODOLOGY

To analyze a unit cell with MMTMM, ports with N modes
are defined at the boundaries of the unit cell. Using multiple
modes is important to adequately model the near-field coupling
between adjacent unit cells [9]. Open boundary conditions are
established on the port planes. Once the generalized scattering
matrix is obtained, it is transformed into the following multi-
mode transfer matrix:

[T] =

[
[A] [B]
[C] [D]

]
(1)

where the submatrices [A], [B], [C], and [D] are computed
using [9]. We thus set up an eigenvalue problem as

[T]


Vx

Vy

Ix
Iy

 =


λxVx

λyVy

λxIx
λyIy

 (2)

where the vectors Vx,y and Ix,y are the effective voltages and
currents of the N -port modes and

λν = exp(−jφν) . (3)

Here, φν = kt · ν̂pν , where ν is either x or y, kt is the
wavevector corresponding to a mode in the structure and pν is
the spatial distance between the opposite ports of the supercell.
Note that the obtained eigenvalue problem is not linear, but
can be linearized [17]. The terms from (2) are first rearranged
into

[T̃]


Vx

Ix
Vy

Iy

 =


λxVx

λxIx
λyVy

λyIy

 (4)

where the transfer matrix is permuted by [T̃] = [P][T][P]T,
with [P] being a suitable permutation matrix. Then, the
transfer matrix is subdivided into

[T̃] =

[
[T̃xx] [T̃xy]

[T̃yx] [T̃yy]

]
(5)

and, after some matrix manipulations, the following eigenvalue
problems are obtained:(

[T̃xx] + [T̃xy][Qy][T̃yx]
) [Vx

Ix

]
=λx

[
Vx

Ix

]
(6)

(
[T̃yy] + [T̃yx][Qx][T̃xy]

) [Vy

Iy

]
=λy

[
Vy

Iy

]
(7)

where [Qν ] =
(
λν [I]−[T̃νν ]

)−1
. When dealing with rectangu-

lar unit cells, this approach enables the use of efficient eigen-
value algorithms. When the edge of the irreducible Brillouin
zone is scanned, either one of the parameters λx or λy remains
constant, or the eigenvalue problem (2) is already linear (when
λx =λy). However, this is not the case for the KΓ part of
the mirror-symmetric hexagonal supercell, and for the K5K in
the glide-symmetric structure. In this case, the problem can
be reformulated as a polynomial eigenvalue problem. Then,
eigenvalues can be found through known routines, such as
in [18].

IV. NUMERICAL RESULTS

First, we illustrate how to obtain the dispersion diagram of
the primitive cell from that of the supercell. If a supercell is
used, additional modes appear [15], [19], analogous to aliasing
when undersampling a signal. For the mirror-symmetric struc-
ture, the supercell dispersion diagram is shown in Fig. 4(a).
The figure shows the values of MMTMM and HFSS Eigen-
mode Solver (HFSS ES) [20] obtained with the supercell
(dashed line) and the primitive cell (markers). According
to [15], it is possible to identify which subset of supercell
modes correspond to the primitive-cell modes by considering
symmetry and comparing the Brillouin zones of the primitive
cell and the supercell. Thus, for example, it can be observed
that there is an additional mode in the ΓM region starting at
about 15 GHz that has an inversion symmetry with respect
to that starting at 0 GHz. This mode and its continuation
in other regions MKΓ can then be labeled as “additional”
modes. This identification of modes is clearly expected to
agree with the comparison of the results of the HFSS ES for
the primitive cell with those of the supercell. The result of
this selection procedure can be seen in Fig. 4(b), which only
shows the modes of the primitive cells. The vertical dash-
dot line at M correspond to the phase shift of an evanescent
mode with the attenuation presented in Fig. 4(c). Note that,
although the structure does not possess a stopband in all
directions (the propagating modes coincide at K), it can still
block the propagation of waves in the ŷ direction. The fact
that the results of the two methods are in excellent agreement
in Fig. 4 can be taken as a validation of the MMTMM applied
to hexagonal periodic structures.

Following a similar reduction procedure as above, Fig. 5(a)
shows the dispersion diagram of the glide-symmetric primitive
structure in Fig. 2(a). The primitive unit cell was simulated
in the HFSS ES. Note that we plot the dispersion diagram
along the boundaries of the irreducible Brillouin zone shown
in Fig. 2(c). In Fig. 5(a), the MMTMM solutions are obtained
by selecting a number of port modes whose cutoff frequencies
are not much higher than the frequency range explored. In
general, acceptable results have been obtained by retaining
the first ten port modes (more discussion on the choice of
these port modes can be found in [9]). The vertical lines
in Fig. 5(a) at the two values of Γ (left: dashed-dotted line
and right: dotted line) and M1 (solid line with square/circle
markers) correspond to the phase shifts of the stopband



M K
0

5

10

15

20

25

F
re

q
u

e
n

c
y
 [

G
H

z
]

MMTMM

HFSS ES supercell

HFSS ES primitive

(a)

M K
0

5

10

15

20

25

F
re

q
u

e
n

c
y
 [

G
H

z
]

(b)

0 0.1 0.2 0.3 0.4

/k
0

0

5

10

15

20

25

F
re

q
u
e
n
c
y
 [
G

H
z
]

(c)

Fig. 4. Dispersion diagram of (a) the supercell and (b) the primitive unit
cell of the mirror-symmetric structure. (c) Normalized attenuation in the ΓM
region (k0 is the free space wavenumber). For the MMTMM, the first 6 modes
were used.

modes calculated by the MMTMM. The MMTMM values
of the normalized attenuation of these modes are depicted
in Fig 5(b) as different purple lines. In the figure, both solid
lines are obtained at M1, but they are obtained by solving
the eigenvalue problem for either M1Γ or KM1. Thus, the
normalized attenuation presented for the square markers is
in the direction of M1Γ, while for the circle markers it is
in the direction of KM1, as defined in Fig. 2(c). Unlike the
mirror-symmetric structure, the glide-symmetric structure has
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Fig. 5. (a): Dispersion diagram of the primitive glide-symmetric unit cell.
(b): Normalized attenuation of the relevant modes in the first stopband.

a stopband in all directions.
A practical application of the results in Fig. 5(b) could be

in the use of this periodic structure as EBG. The lower bound
of the stopband is determined by the lower frequency of the
evanescent mode at Γ while the upper bound is determined
by the appearance of a second passband at M1. The unit cell
has a high degree of anisotropy in the stopband, as evidenced
by the different values of the attenuation constant of the two
evanescent modes at left/right Γ points. It suggests that the unit
cell should be oriented in such a way that the incident wave
travels in the direction of M1Γ, thus maximizing the amount
of attenuation. It should be noted that using this structure as
an EBG may not be the most suitable choice, as the stopband
and attenuation are not as high as those of rectangular glide-
symmetric structures [10].

V. CONCLUSION

This paper has presented a modeling approach based on the
multimodal transfer-matrix method (MMTMM) for hexagonal
mirror and glide-symmetric structures. The implementation of
the method was discussed, including the appropriate Brillouin
zones, the use of the supercell, and the efficient solution
of the eigenvalue problem. The results for the real part of
the dispersion diagrams obtained with the MMTMM and a
commercial eigenmode solver agree very well. Moreover, the



proposed method allows to evaluate also the modes attenuation
in the stopband.
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