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Abstract
The paper has been suggested by the following observations: (1) the atmospheric growth rate of carbon dioxide concentra-
tion is smaller than that ascribed to the emission of fossil-fuel combustion and (2) the fossil-fuel reserves are finite. The 
first observation leads to a simple dynamic model, based on the balance of CO2 land/ocean absorption and anthropogenic 
emissions, only limited by the depletion of fossil-fuel reserves, in a business-as-usual scenario. The second observation 
suggests of projecting the past CO2 emissions to the future, by constraining emissions to the limit of reserve availability. 
Similar projections are available in the literature, but either driven by heuristics or by complex simulation packages. The 
paper provides a simple and formal method only driven by historical data, their uncertainty and simple models. The method 
aims to provide CO2 concentration projections, which being constrained by fossil-fuel finite reserve may be in principle 
employed as bounds to forecasting exercises. The time–invariant dynamics of the land/ocean absorption is the simplification 
of a more complex set of equations describing carbon dioxide exchange between different reservoirs. Contribution of other 
greenhouse gases like methane and nitrous oxide has been neglected, since their emissions cannot be projected with the 
paper methodology. Comparison with recent profiles of the Intergovernmental Panel on Climate Change (IPCC) confirms 
that the finite-reserve projections of the fossil fuel emissions is close to those of a moderate Shared Socioeconomic Scenario 
(SSP) like SSP2-4.5—a result in agreement with other authors—but also reveals the limits of the simplified model, when 
extending the tuned dynamics of the recent mean CO2 exchanges to long-term future. The limits derive from linearity, time 
invariance, and aggregation assumptions, which allow a more complex model of CO2 exchanges to be simplified and tuned 
on experimental data.

Keywords  Airborne CO2 · CO2 concentration · Fossil-fuel emission · Fossil-fuel reserve · CO2 land/ocean absorption 
dynamics · CO2 projection

1  Introduction

Future greenhouse gas (GHG) and especially carbon diox-
ide (CO2) emissions by fossil-fuel combustion are the 
subject of extensive research, in relationships with inter-
national pledges about net zero 2050 emissions [1]. The 

Intergovernmental Panel on Climate Change (IPCC) already 
in 1990 assessed long-term emission scenarios up to 2100 
[2]. These scenarios have been used in the analysis of the 
possible change of climate variables (especially the climate 
energy measured by the global near-surface temperature) 
due to increasing atmospheric GHG concentration and of 
the options for mitigating the change. Recently the Climate 
Action Tracker (CAT, [3]) has summarized in a chart the 
projections of different policies aiming at reducing the 
atmospheric concentration growth of carbon dioxide and 
other GHGs, in an effort of mitigating the relevant effects on 
future global warming. Revised scenarios and projections, 
included in Figure TS.4, page 53, of the Technical Summary 
in [4], are compared with the paper findings in Section 4.2.

The above cited scenarios and simulations (see [5–8], 
and [9]) do not explicitly mention, as a limiting factor 
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of the fossil-fuel emissions, their physical reserves. The 
topic of “fossil-fuel resources (‘reserves’ in this paper) as 
a constraint in emissions scenarios” is explicitly treated in 
[10–13], and [14]. In [10], literature projections are com-
pared with the IPCC Representative Concentration Pathways 
(RCP) in [15]. In [14], fossil-fuel emission and reserve data 
are elaborated by a logistic equation to project future emis-
sions. Other publications like [16] and [17] treat this topic 
with the aim of predicting the amount of reserves that will 
remain unextracted under IPCC mitigation strategies.

The goal of the paper is to offer a complete, formal, and 
statistically proven procedure for converting historical CO2 
concentration and emission data into a simple dynamic 
model that allows measurements to be projected into the 
future, while respecting the constraint of finite fossil-fuel 
reserves. The procedure may be repeated by scholars, fed by 
new data and gradually enriched by other data, in agreement 
with the more complex model of the Appendix.

The paper starts from the airborne CO2 concentration, 
which has been measured by the Mauna Loa Observa-
tory since 1958 (the so-called Keeling curve [18]), thus 
neglecting other GHGs like methane and nitrous oxide as 
they depend on different emission sources and removal 
mechanisms. The CO2 concentration is defined as the 
mole fraction in a given volume of the dry air [19]. It is 
referred to by IPCC as mixing ratio in the Glossary [20]. 
The concentration unit, which is employed here, is the part 
per million of the mole fraction, shortened to [ppm]. The 
conversion between mass and mole fraction is explained in 
Section 2.2. CO2 is dynamically exchanged among atmos-
phere, biomass, land and ocean, in the so-called annual 
carbon cycle (see [21, 22], and [23]). A big deal of car-
bon dioxide is taken out from atmosphere by vegetation 

photosynthesis, but at the same time, half of this goes back 
to air by vegetation emission during night and by daily 
animal breathing. Part of the remainder goes to soil after 
vegetation death and, due to bacterial fermentation, again 
into the air. Part is washed away by surface fresh water into 
the sea. An estimate of the net exchange can be performed 
by computerized models. Their results have been collected 
by the Global Carbon Project (GCP, [24, 25]).

Before industrial era, ice-core proxy data of the last 
2000 years, show the concentration of the airborne CO2 
fluctuating around 280 ± 10 ppm [21]. The concentration, 
since the early nineteenth century, is slowly growing until 
World War II, and then steadily increasing since the fif-
ties of the past century, when systematic measurements 
began to be provided by the Mauna Loa Observatory (data 
have been retrieved from the Scripps Research site [26]). 
As a result, the seasonal exchange between land, ocean, 
and atmosphere is accompanied by a mean atmospheric 
increase, small if compared with the seasonal exchange, 
but progressively accumulating. The main contribution 
to such an inflow has been allotted, less than one century 
ago [27], to the CO2 emission of the fossil-fuel combus-
tion [21, 28]. Actually, the mean annual emission flow 
[ppm/y] happens to be larger than the corresponding air-
borne concentration growth, as shown in Fig. 1a, implying 
that part of the accumulated carbon dioxide is absorbed 
by land and ocean, which behave as carbon sinks. In 
Fig. 1a, the cumulative fossil–fuel emission [ppm] is the 
progressive sums of the annual emissions [ppm/y] during 
the industrial era (since 1750). It is compared with the 
airborne CO2 concentration increment during the same 
period. Figure 1b shows the annual rate [ppm/y] of the 
concentration profiles in Fig. 1a.

Fig. 1   a Annual airborne CO2 concentration since 1750 (from Scripps Research [26]) and cumulative fossil-fuel emission (from Global Carbon 
Project [24]). b Annual rate of the profiles in (a): the CO2 growth rate and the fossil-fuel emission
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A fundamental question arises: How long does it take a 
perturbation of the airborne CO2 to be absorbed by land and 
ocean sinks? Answer to this question will be given in Sect. 2, 
with the aim of forecasting the future CO2 concentration 
based on the proposed dynamic model. The absorption time 
constant (the term is typical of the dynamic system field 
[29], relaxation time of chemistry [30]) should not be con-
fused, as pointed out in [21, 31], and [32], with the residence 
time driven by the annual land/ocean–atmosphere zero-mean 
flow. In terms of dynamic systems, the latter is the CO2 
transport delay in the atmosphere, like that of a fluid along a 
pipe. Both time intervals are referred to as lifetimes by [21]. 
Their origin is different: chemistry kinetics at the bound-
ary between land/ocean and atmosphere in the former case, 
atmospheric transport mechanisms in the latter case.

A better distinction between absorption time constant and 
residence time may be provided by fixed-volume (Eulerian) 
fluid dynamics (see the Appendix) and parcel (Lagran-
gian) fluid dynamics. The fluid level x(t) in a fixed volume 
(e.g. CO2 concentration in a given dry-air volume) is the 
result of the flows from/to the environment. By restricting 
to a small perturbation �x(t) = x(t) − x around a constant 
equilibrium level x , the equilibrium is said to be asymp-
totically stable if and only if the input/output flow balance  
contains (i) a negative feedback term −k𝛿x(t), k > 0 , whose 
positive opposite k�x(t) , under 𝛿x(t) > 0, represents the 
land/ocean absorption of the airborne CO2, and (ii) a flow 
balance u(t) independent of �x(t) , according to the state 
equation: 𝛿ẋ(t) = −k𝛿x(t) + u(t), 𝛿x

(
t0
)
= 𝛿x0 . The param-

eter � =
1

k
[s] is referred here as absorption time constant, 

thinking to the absorption of the airborne CO2 by land and 
ocean, because of 𝛿x(t) > 0 , with respect to a pre-industrial 
equilibrium x . The time constant has been estimated in [21] 
equal to 100 years and in this paper (Section 2.5) to about 
50 years. The flow term u(t) may be split into four terms: 
(i) a zero-mean bounded periodic term, which is dominated 
by the annual carbon flow (neglected in the paper by tak-
ing the annual mean of the previous state equation); (ii) 
an unbounded term, which is dominated by anthropogenic 
CO2 emissions (treated in the paper); (iii) a bounded terms 
dominated by the anthropogenic land-use change emission 
(treated in the paper); and (iv) bounded irregular terms 
(treated in the paper). Coming to Lagrangian dynamics, let 
us consider a CO2 parcel emitted by land and ocean. While 
in the atmosphere, it will be transported, transformed and 
dispersed, and then reconstituted. The time taken by a mean 
CO2 parcel to come back to land and ocean is referred to as 
airborne residence time: It has been estimated in [21] equal 
to 3.5 years. The annual periodic component of u(t) is the 
main responsible.

Several packages of global circulation models (GCM) 
have been devoted to simulate and understand the Earth’s 
carbon cycle within the studies of the global climate 

prediction. The paper derives a simple dynamic model of the 
annual mean carbon cycle mimicking the chemical kinetics 
of the carbon dioxide exchanged between atmosphere and 
land and atmosphere and ocean. The model is described in 
the Appendix as a set of state equations, where each state 
variable accounts for the CO2 amount of Earth’s reservoirs 
(as such or in chemically modified forms), included the fos-
sil-fuel deposits (coal, oil and natural gas). Model simpli-
fication under reasonable assumptions leads to a first-order 
differential equation with a pair of unknown parameters:

1.	 The equilibrium x of the airborne CO2 concentration is 
found close to the ice-core mean value of the last two 
Holocene millennia.

2.	 The time constant � of the stabilizing land/ocean absorp-
tion feedback is found close to half a century. The esti-
mated time constant includes the effect of the carbon 
feedback [21], which, by opposing land/ocean absorp-
tion, is such to increase �.

Advantages of simple physical models can be summa-
rized as follows: (i) parameters can be easily related to his-
torical data; (ii) model structure can be statistically checked 
and optimized; (iii) they provide intuitive interpretation of 
the involved phenomena; and (iv) they may provide, if prop-
erly constructed, identified and validated, reasonable predic-
tions of the phenomenon of interest.

In [14], fossil-fuel emissions, similar to those in Sec-
tion 3, are projected by means of a modified logistic equa-
tion. The author relies on a public domain model like MAG-
ICC (Model for the Assessment of Greenhouse Gas Induced 
Climate Change, described in [33]) for integrating emission 
data into the airborne CO2 concentration. The interesting 
fact is that peak values and times of CO2 emission and con-
centration in [14] look rather close to the findings of this 
paper as reported in Table 5, thus providing a check.

Estimation of the dynamic model parameters in Sections 2 
and 3 from experimental data and the subsequent projec-
tions in Section 4 look close to the practice in the carbon 
cycle and climate change literature. For instance, in [34–36], 
and [37], starting from projections of GCM packages, the 
main goal was to identify the carbon feedback gain and 
constituent parameters. Their procedure exploits static rela-
tions between airborne and land/ocean CO2 concentration, 
cumulative emissions, and global temperature, which can be 
rewritten in terms of the Appendix model, as briefly shown 
in Section 2.7.

In Section 3, historical data of the fossil-fuel depletion are 
predicted with the help of the Meixner distribution (see [38] 
and [39]), a typical bell-shaped curve. As explained in Sec-
tion 3.3, the choice among similar curves comes from the 
direct interpretation of the Meixner distribution parameters 
in terms of the prediction amplitude, shape, skewness, and 
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location. The aim is to predict a future depletion that is con-
strained by current reserves. The predicted depletion, con-
verted into equivalent CO2 emission, becomes the input of the 
absorption dynamic model. Starting from the current epoch, 
the model integrates the predicted emissions, decremented by 
land and ocean absorption, thus providing a finite-reserve pro-
jection of the airborne CO2 concentration until tEnd = 2150 y . 
The date has been chosen both for accommodating coal 
reserves and for agreeing with the model validity interval, 
from t0 = 1955 y to tm = 1955 + Δtm,3� = 2131 y . The inter-
val is estimated in Section A.5.

Comparison in Section 4 with the projections in Figure 
TS.4, page 53, of the Technical Summary in [4], which are 
obtained by complex/intermediate simulation packages, 
and are driven by business-as-usual and mitigation policies, 
shows that only the projection period close to the present 
complies with finite-reserve predictions, as already observed 
in [10] and [14]. The paper ends with a brief discussion and 
analysis of the issue, which takes advantage of the simple 
dynamic model of Section 2.

2 � A Dynamic Model of the Carbon Dioxide 
Absorption by Land/Ocean Sinks

2.1 � Model Variables and Notations

The aim of the section is to formulate a dynamic model 
of the annual mean carbon exchange, which excludes the 
seasonal carbon cycle (see [22]), but is capable of fitting 
the airborne CO2 drift of the industrial era. Fossil-fuel  

emissions and their absorption by land and ocean sinks will 
be accounted for. To this end, it seems natural to define the 
reservoirs ('pools' is an alternative term) of Table 1, capable of 
storing an amount xs of carbon dioxide under different forms. 
Something like this has been sketched in [21] and referred to 
as the “Carbon Cycle Orrery” (see [5, 6, 34–36], and [37]).

The simplified symbols of u5 in rows 8 and 9, though 
denoting the same variable, are employed in different con-
texts: (i) u(t) > 0 denotes the CO2 input flow of the state 
Eq. (10) and (ii) −c(t) < 0 denotes in (24) the CO2 output 
flow of the fossil-fuel deposit.

To avoid symbol multiplication, instances of the same 
variable, say x , will be distinguished by marks as in Table 2. 
The most complicated mark applies to regression residuals 
where hat and tilde pile up. The column “Section” refers to 
the first Section of usage.

The reservoir state variables (briefly states or levels) are 
collected into the column vector x =

[
x1, x2, x3, x4, x5

]
 , where 

the inline notation of [29] has been adopted. The term res-
ervoir implies both CO2 emission and uptake, whereas sink 
just indicates uptake and deposit emission.

In the proposed dynamic formulation, the amount xs(t) , 
or the relevant chemical compounds, of each reservoir is a 
state variable, whose time rate equals a combination of input 
(positive) and output (negative) exchange flows ±vsh(x,Θ) 
and of the anthropogenic flow ±us . The exchange flows are 
assumed to depend on the reservoir levels and on the global 
temperature Θ at the boundary layers of atmosphere, land, 
and ocean. Detailed equations are derived in the Appendix 
and then simplified into a pair of state equations driven by 
the emission u5 of the fuel combustion. The first equation 

Table 1   CO2 reservoirs and 
their notations

No. Reservoir Symbols Unit (alternative) State equation Comments

1 Atmosphere x1, x ppm (GtCO2) (10), (A.18) Absorption dynamics
2 Ocean x2 ppm (GtCO2) (A.8) Appendix
3 Land (vegetation and soil) x3 ppm (GtCO2) (A.8) Appendix
4 Cement constructions x4 ppm (GtCO2) (A.8) Appendix
5 Fossil fuels x5, r ppm (GtCO2) (24), (A.18) Emission projection
6 Total x0 ppm (GtCO2) (A.1) Appendix
7 Earth’s interior NA Not available (NA) NA Neglected
8 Fossil-fuel emission c = u5 GtCO2/y (ppm/y) (24), (A.18) Emission projection
9 Fossil-fuel emission u = u5 GtCO2/y (ppm/y) (10), (A.18) Absorption dynamics

Table 2   Variable instances and 
their marks

No. Variable instance Symbol Section Variable instance Symbol Section

1 Error variable (tilde) x̃ 2.3 Measurement (breve) ⌣
x 2.2

2 Annual mean, constant 
value (overline)

x 2.2 Equilibrium value (underline) x 1,2.1

3 Estimated variable (hat) x̂ 2.4 Regression residuals (tilde and hat) ̂̃x 2.4

4 Time derivative ẋ 1, 2.2 Time derivative of the mean ẋ 2.2
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indexed by s = 1 and developed in this section expresses 
the annual mean concentration x = x1 =

[
CO2

]
atm

 of the air-
borne CO2 as the combination of anthropogenic emissions 
and of the land/ocean absorption. The expression of the land/
ocean absorption implicitly includes the effect of the carbon 
feedback [21], which the paper does not need to explicitly 
estimate. Subscript 1 will be dropped. The second equation, 
which is indexed by s = 5 and will be employed in Sect. 3, 
expresses the depletion of the fossil-fuel reserve level r = x5.

In the next sub-sections, the equation indexed by s = 1 
is derived by physical/chemical arguments, which provide 
a justification of the Appendix model. The equation is then 
converted into a perturbation equation around the unknown 
CO2 equilibrium x = x

1
 (underlining denotes equilibrium) and 

employed for fitting equation parameters to historical data.

2.2 � Annual Mean Rate and Concentration: 
Definition and Units

The annual mean concentration x(t) of the atmospheric car-
bon dioxide, which excludes the zero-mean component of 
the seasonal carbon cycle, is defined by the integral

where x(t) denotes the current concentration in a given 
volume of the dry atmosphere, in parts per million 
[ppm], and the time t  is given in fractions of year [y]. 
Here, annual mean values are overlined to distinguish 
them from current values, but the notation will be aban-
doned when unnecessary. The integer t0 = floor(t) cor-
responds to the time 0:0 of January 1. The current year 
is denoted by ti = t0 + iT = t0 + i, i = 0, 1,… , where t0 
must be chosen. The generic time instant is defined as 
t = t0 + iT + 𝜏, 0 ≤ 𝜏 < T = 1 . Since the mean x is measured 
from January to December, the corresponding sample x(i) is 
referred to the year mid time si = ti + T∕2 = ti + 1∕2 , which 
leads to the notation x(i) = x

(
si
)
 . The annual mean rate ẋ(t) 

can be proved to coincide with the increment:

Figure 1a shows the measurements of the mean CO2 
increment 

⌣

X (i) =
⌣
x (i)−

⌣
x (0) (blue color, the “breve” 

mark denotes measurements, see Table 2, row 1) from the 
Scripps Research data record [26] since t0 = 1750 y , and the 
measured cumulative sum 

⌣

C (i) = T
∑i

k=0

⌣
c
�
tk
�
[ppm] (red 

color) of the fossil fuel emissions [ppm/y] from GCP data. 
Measurements are in units of concentration [ppm] and con-
centration rate [ppm /y]. The natural measuring unit of the 
CO2 amount (the state variable xs ) in the reservoir s would 
be a mass unit like billion of metric tons [GtCO2], but the 

(1)x(t) =
1

T ∫
t+T∕2

t−T∕2

x(�)d� [ppm], T = 1 y,

(2)ẋ(t) = T−1(x(t + T∕2) − x(t − T∕2))[ppm∕y].

[ppm] unit will be usually employed. The conversion factor 
�CO2 from CO2 mass to concentration in the dry air is given 
by the following:

where the mean dry-air mass mdry_air comes from [40], and 
MCO2 and Mdry_air are the molar masses of CO2 and the dry 
air, respectively.

We distinguish between the measurement 
⌣
x (i) and the 

unknown “true” value xtrue(i) of the global airborne CO2 
mean annual concentration. Their relation can be written 
as follows:

where �x(i) is the unknown, but bounded, model error and 
x̃(i) is the random measurement error. According to [19], 
�x(i) is believed to be rather negligible due to the Mauna Loa 
Observatory privileged location, but nonetheless it exists 
and depends of the atmospheric volume definition. Investi-
gation about �x(i) is not a scope of the paper. Thus, the true 
value will be taken as x(i) = xtrue(i) + �x(i).

2.3 � Derivation of the State Equation

The main reservoirs capable of absorbing airborne CO2 are 
the ocean and land sinks. The reservoir in seawater can be 
explained by the seawater reactivity, which is alkaline in 
character. The equilibrium constant of the relevant reaction

has been discussed in [21, 30, 31, 41], and [42].
The land sink can be mainly explained by the photo-

synthesis, which encompasses, in the very first stages, a 
reaction similar to (5) between carbon dioxide and water, 
that constitutes the cell cytoplasm. Carbon dioxide enters 
the cell through the cell membrane, where is incorporated 
into already existing organic carbon compounds. Using the 
organic compounds ATP (adenosine triphosphate, a source 
of energy) and NADPH (nicotinamide adenine dinucleotide 
phosphate, a reducing agent), the resulting compounds are 
then reduced and removed to form further carbohydrates, 
such as glucose. Being the reaction (5) the first common 
stage of both sinks, it can be incorporated into the same 
mathematical treatment. The reaction (5) must be consid-
ered from the kinetic point of view, as the paper interest lies 
in situations where chemical reactions have not yet reached 
their equilibrium conditions. This happens because each 
year billions of tons of carbon dioxide are emitted into the 

(3)

�CO2 =
1

mppm

=
1

7.804

ppm

GtCO2

⟺ mppm =
mdry_air

106

MCO2

Mdry_air

=
5.135 × 106 Gt

106

44.01 g∕mol

28.96 g∕mol

,

(4)
⌣
x (i) = xtrue(i) + 𝛿x(i) +�x(i) = x(i) +�x(i),

(5)CO2(gas) + H2O ⟺ CO2(aq) + H2O ⟺ H2CO3
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atmosphere by burning fossil fuels, thereby disturbing the 
pre-industrial equilibrium. As in any kinetic-controlled reac-
tion, the direct (from left to right) and inverse (from right 
to left) semi-reactions must be considered. However, if we 
assume that the concentration [H2CO3] of carbonic acid in 
seawater and in cytoplasm remains constant, at least in the 
decade time span, the inverse semi-reaction has nearly a con-
stant rate. Conditions of the assumption will be formulated 
in the Appendix. By accounting for the direct reaction in 
(5), we can write the following differential equations, which 
express the depletion of the airborne CO2 and the reverse 
reaction of the land and ocean depletion:

The overline in the rightmost part of the second row in 
(6) denotes constancy. The total reaction rate results from 
the sum vdir + vinv , namely,

This is only a part of the process, because every year a 
certain known amount of anthropogenic CO2 is emitted into 
the atmosphere, and the negative absorption feedback 
−kdir

[
CO2

]
atm

 is weakened by the carbon feedback (CF) kCF 
as shown in the Appendix (see [34, 36, 37, 43]). In essence, 
the CO2 exchange between land/ocean and atmosphere, 
expressed by the reaction rates in (6), depends on the bound-
ary temperature and in turn, the temperature is affected by 
the airborne CO2. Equation (7), when completed by the term 
d[CO2]anthr

dt
 that accounts for the CO2 emission rate, by the 

initial condition 
[
CO2

]
atm

(
t0
)
=
[
CO2

]
atm,0

 and by the net 
feedback gain k = kdir − kCF > 0 , becomes

Although kdir > 0 is weakened by the carbon feedback 
gain kCF > 0 , the actual net gain remains positive, k > 0 , as 

(6)
vdir(t) = −kdir

[
CO2

]
atm

(t)

vinv(t) =
d[H2CO3](t)

dt
= kinv

[
H2CO3

]
(t) = vinv

.

(7)
d
[
CO2

]
atm

(t)

dt
= vinv + vdir = vinv − kdir

[
CO2

]
atm

.

(8)

d
[
CO2

]
atm

(t)

dt
= v

inv
− k

[
CO2

]
atm

(t) +
d
[
CO2

]
anthr

(t)

dt[
CO2

]
atm

(
t0

)
=
[
CO2

]
atm,0

.

shown by the regression results in Section 2.5. Only the net 
gain k is estimated in the paper.

Equation (8) implies that the pre-industrial equilibrium [
CO2

]
atm

 can be obtained by setting d[CO2]atm(t)

dt
=

d[CO2]anthr(t)

dt
= 0 , which provides the equilibrium formula:

where the equilibrium symbol is underlined. The previous 
identity, which derives from the constancy of vinv , is the key 
assumption of the first-order state Eq. (10). It corresponds 
to Assumption 5 of the Appendix, and it will be justified 
in Section A.5. An explicit account of its fluctuations pos-
tulates a higher-order dynamic model as explained in the 
Appendix.

Notation simplification with the help of the Appendix and 
of Eq. (9) allows (8) to be rewritten as follows:

where wu denotes minor input terms to be explained below and 
in the Appendix. The input u(t) may be affected by a time delay 
�u with respect to x . As explained in Section 2.4, what matters 
is the reciprocal delay/lead times between the measurements 
of u and x . The times have been estimated to be well less than 
one year. The following notation identities apply to (10):

Equation (10) depends on the unknown parameters x
[
ppm

]
 

and k
[
1∕s

]
 , to be estimated from historical data since 1850. 

We remark that x has the meaning of unknown pre-industrial 
equilibrium (before 1850), to be estimated as ̂x from historical 
data of the industrial era in Section 2.4. The assumption can 
be a posteriori checked by taking the average x

hist
 of the his-

torical airborne CO2 concentration data 
⌣
x
(
ti
)
, ti < 1850 y , 

as in Table 3, Section 2.5, and in Section 2.6. It looks viable 
that the absolute error |||x̂ − x

hist

||| may work as a validation cri-
terion of (10) and of the model parameter estimates. A quite 
extensive check of x̂ ≅ x

hist
 is reported in Section 2.6.

(9)
[
CO2

]
atm

=
vinv

k
,

(10)ẋ(t) = −k
(
x(t) − x

)
+ u(t) + wu(t), x

(
t0
)
= x0,

(11)x(t) =
[
CO2

]
atm

(t), u(t) =
d
[
CO2

]
anthr

(t)

dt
.

Table 3   Difference and integral 
regressions since 1955

No. Parameter Symbol Unit Estimate A-posteriori standard deviation

1 Kinetic constant k̂ 1/y 0.019 (0.019) 0.0016

2 Time constant �̂ y 53 (52) 4.6
3 Equilibrium concentration x̂ ppm 286 (286) 2.4
4 Historical equilibrium x

hist
ppm 280 3.0 (until 1850)

5 Residual RMS ̂̃�Δx
ppm 0.35 (0.52) log10

(
1 − R

2
int

)
= −3.5
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For the scope of this paper, (10) must be rewritten in 
terms of the mean annual concentration x(t) defined in (1) 
and in terms of the mean annual rate u of 

[
CO2

]
anthr

(t) , which 
is defined according to (2). Thanks to linearity, integration 
and derivation commute, and thus (10) does not change in 
terms of the mean variables, which suggests to keep the 
same notations of Eq. (10), namely x = x and u = u.

The main contributors to the anthropogenic emission 
u(t) are fossil-fuel combustion and land-use change, say 
deforestation. While the former, denoted by c = u5 , will  
be forecast in Section 3 under the constraint of finite 
proven reserves, the same prediction cannot be applied to 
the latter, denoted by u3 . It is included in (10) by splitting 
the time profile as u3(t) = u3 + ũ3(t) , where u3 is a constant 
term ( u3 = 0.56 ∼ 0.64 ppm/y depending on the average 
interval) and ũ3(t) a zero-mean fluctuation (see Assump-
tion 7 in the Appendix). The mean term u3 becomes part 
of the constant flow vinv in Eqs.  (8) and (9), thus con-
tributing to the airborne carbon dioxide equilibrium x by 
u3

k
≅ 32.6 ppm (≅ 11%) , whereas ũ3(t) becomes a compo-

nent of the input wu(t) . Thus, either explicitly adding u3 to 
Eq. (10) or implicitly adding u3 through its contribution 
to x must be kept as equivalent.

A similar equation to (10) but referred to ocean is found 
in [44]. Other dynamic models can be found in [11] and [45]. 
They are somewhat different from the asymptotically stable 
Eq. (10), since they include a bounded-input-bounded-out-
put unstable component (see [29]), and therefore cannot be 
employed for long-term predictions.

2.4 � Discretization and Parameter Estimation

In order to employ the measurements 
{

⌣
x (i),

⌣
u (i)

}
,

i = 0, 1, ...,N − 1 of the mean values x and u , Eq. (10) is 
rewritten as follows:

and integrated in the time interval S(i) =
{
t;si ≤ t < si+1

}
 . 

Integration [29] provides the discrete-time equation:

Equation (13) can be arranged into a difference form, by 
defining Δx(i) = x(i + 1) − x(i) and by solving the convolu-
tion integral under the simplifying assumptions that kT ≪ 1 
(to be a posteriori checked) and that |||1 −

u(𝜏)

u(i)

||| ≪ 1 . By 
replacing x and u with their measurements, with a “breve” 
mark on the top (see Table 2 row 1), and by including wu into 

(12)
δẋ(t) = −k𝛿x(t) + u(t) + wu(t), δx

(
t0
)
= δx0, δx(t) = x(t) − x,

(13)
δx(i + 1) = exp(−kT)δx(i) + ∫

si+1

si

exp
(
−k

(
si+1 − �

))
(
u(�) + wu(�)

)
d�, δx

(
t0
)
= δx0.

the overall error Δx̃(i) , the following difference regression 
equation is found:

where error variables are marked on top by a tilde and equi-
librium variables like x are underlined. The unknown pair to 
be estimated is 

{
a, x

}
 . The equation notations are as follows:

As already remarked, we should account for delay/lead times {
nx, nu

}
 between measurements and model variables, written 

as 
⌣
x (i) = x

(
i − nx

)
+�x(i) and 

⌣
u (i) = u

(
i − nu

)
+ �u(i) . What 

matters is the difference Δn = nx − nu . The difference has been 
estimated in the range |Δn| ≤ 0.25y by a regression sequence 
of Δ

⌣
x (i + k∕12), |k| ≤ 12 versus 

⌣
u (i) as in (14). Thus, the 

difference Δn has been set to zero and the relevant deviations 
included in the overall error Δx̃(i).

The estimated pair 
{
x̂, â = exp

(
−k̂T

)}
 of (14) has been 

checked by the following integral regression equation:

where the annual mean 
⌣
x (i) of the Mauna Loa data equals 

the discrete-time integration of (13) [29].
Under the assumption of a statistically independent, zero-

mean and stationary error x̃(i) , of a zero-mean and non-
stationary emission error ũ(i) , and of the approximations 
1 − a ≃ kT ≪ 1 and b(a) ≃ T = 1 , the overall error Δx̃(i) and 
the a priori variance, restricted to the measurement errors, 
can be approximated as follows:

The value �1 ≃ 0.12 ppm (1σ uncertainty) accompanies 
the NOAA (National Oceanic and Atmosphere Admin-
istration) data set of the Mauna Loa CO2 concentration 
annual mean [46] and appears to be the upper bound of 
the same uncertainty from other sources like [25]. The 
value �c ≃ 0.05 comes from the 2021 report of the Global 
Carbon Project [25], where the 1� uncertainty of the 
global fossil CO2 emissions has been assessed at 5% of 
the emission itself.

As a mutual check, Fig. 2 shows three kinds of regression  
residuals since t0 = 1955 y : (i) the difference regression resid-
ual Δ̂̃x(i) of (14) (dark green), (ii) the integral residual ̂̃x(i) 
of (16) (pointwise green), and (iii) the cumulative residuals 
(solid cyan), which are obtained by integrating (14) with the 

(14)Δ
⌣
x
(
si
)
= −(1 − a)

(
⌣
x (i) − x

)
+ b(a)

⌣
u (i) + Δ�x(i),

(15)a = exp(−kT), b(a) =
1 − exp(−kT)

k
=

(1 − a)T

log(1∕a)
.

(16)

⌣
x (i) = x + ai

(
⌣
x (0) − x

)
+ b

∑i

k=1
ai−k

⌣
u (k − 1) +�x(i),

(17)

Δ�x(i) ≃ �x(i + 1) −�x(i) − T�u(i)

varΔ�x(i) ≃ 2var�x + T2var�u(i) = 2𝜎2
1
+
(
T𝜌c

⌣
u (i)

)2

< 0.1
.
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difference regression estimates. The regression residual, say 
̂̃x(i) , marked by tilde and hat, plays the role of the estimate 
of the regression equation error x̃(i) . The rate unit [ppm/y] in 
Fig. 2 would only apply to difference residuals. Actually, since 
the time unit is one year, integral and cumulative residuals 
[ppm] can be converted into rate units [ppm/y] without chang-
ing their values. Cumulative and integral residuals track each 
other with a small drift due to slightly different estimated val-
ues (see Table 3, Section 2.5). The integral residuals tend to be 
larger than the difference regression, because of the mid-fre-
quency components of wu(t) . For instance, the negative over-
shoot of the integral and cumulative residuals since 1990 is not 
fortuitous, but is mainly due to the Pinatubo volcanic eruption 
[47], which forced a short-term decrease of the CO2 growth 
rate. Estimated residuals are compared with the 3� a priori 
bound from (17) and with the residual a posteriori bound. The 
bounds increase because of the non-stationary error ̃u in (17).

2.5 � Regression Results

Difference and integral regression results are shown in 
Table 3 for t0 = 1955 y . Annual mean data are available 
from the Scripps Research program [26] since t0 = 1750 y , 
but the concentration rate data from ice cores (before 1959, 
[48]) look rather irregular as shown in Fig. 1b, which sug-
gested to restrict regression from t0 = 1955 y (the shaded 
area in Fig. 1b).

The regression results are summarized in Table 3 (inte-
gral regression estimates are in brackets). The estimated time 
constant �̂  refers to the absorption of the atmospheric CO2 
by the whole Earth sinks, mainly land and ocean. In other 
terms, all the absorption kinetic constants are summed up as 
in the entry (1,1) of the matrix A in (A.14). The small ratio 
1 − R2

int
 (in logarithmic scale, Table 3, last row), between 

the residual sum of squares and the total sum of squares of 
the integral regression, guarantees the model significance.

In Table 3, the a posteriori standard deviations �̂x and �̂� 
of the estimated parameters x̂ and �̂ =

1

k̂
 have been obtained 

by exploiting the quasi-linear regression in Eq. (14).
Literature estimates are rather sparse. In [44], the estimate 

for the ocean sink absorption amounts to 10 years. In [21], 
a value of 100 years is reported. The IPCC Working Group 
I, in [49], reports values from 5 to 200 years, by remark-
ing that “No single lifetime can be defined for CO2 because 
of the different rates of uptake by different removal pro-
cesses.” Other values are reported in [11]. The FAIR model 
in [50] describes the land/ocean CO2 absorption as actuated 
by four parallel pools each associated with absorption time 
constants ranging from 4.3 years to 1 million years, the last 
value accounting for a geological absorption. In Section 2.7, 
the time constant estimate will be checked by rewriting a key 
equation of [34] and [37] in terms of (10).

Figure 3a shows the measured airborne CO2 concentration 
rate Δ

⌣
x (i) (blue color) since 1955, the relevant estimated 

profile (dashed red) and the residual Δ̂̃x(i) . The residual 
short-term fluctuations may be partly explained by includ-
ing, as a component of wu(t) , the temperature anomaly of a 
Pacific Ocean equatorial belt, which is employed to monitor 
the El Niño phenomenon [47]. The residual RMS of the dif-
ference regression reduces to below 0.29 ppm (with a square 
reduction of about 35%). The scale factor sign is estimated 
to be positive, meaning that ocean absorption weakens with 
increasing temperature (in agreement with the carbon feed-
back effect). El Niño historical data cannot be long-term pre-
dicted, preventing their use in Section 3. Figure 3b shows the 
raw mean CO2 concentration increment 

⌣
x (i) −�x (blue line) 

and the estimated profile (dashed red) with respect to the 
estimated pre-industrial equilibrium (the dashed zero line). 
Regression residuals are also shown.

2.6 � Regression Extension to Whole Industrial Era

Regression restriction to the recent epoch since 1955 may rise 
questions about model and estimate validity and robustness 
versus longer periods of the industrial era. The criterion sug-
gested in Section 2.3, namely the absolute error |||x̂ − x

hist

||| of 
the equilibrium estimate, can be accompanied by the RMS of 
the regression residuals. Regression extension to industrial era 
should be deemed not necessary for future predictions, since 
as Fig. 1b shows, significant increment of fossil-fuel emissions 
just started around 1950. In [11] and [21], emissions until 1950 
are mainly justified by deforestation. Aiming to check regres-
sion validity and robustness, a sequence of M = 6 difference 
regressions has been done from 1860 until 1960, with incipit 
dates equal to t0(k) = 1860 + 20k y, k = 0, 1, ...,M − 1.

Fig. 2   Three kinds of regression residuals with a posteriori and a pri-
ori bounds
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Figure 4 shows the sequence of parameter estimates 
(blue and red lines) and their 3� uncertainty band. The 
width of the uncertainty bands slightly increases toward 
earlier dates since it is partly compensated by a larger size 
of the measured samples. The small bias of the CO2 equi-
librium fractional error, namely 

||||
�x

x
hist

− 1
|||| < 0.02 ∼ 0.06 , 

though accompanied by the explosion of the integral residu-
als (dark green), can be taken as a validity and robustness 
check. The explosion occurs because of the integration of 
mid-frequency residual components, which also justifies the 
increase of |||x̂ − x

hist

|||.

2.7 � Comparison with Carbon Feedback Literature

Let us consider in [34] the key relation between the total 
airborne CO2 increment Δx(t) = x(t) − x(t0) (including the 

carbon feedback perturbation) and the exogenous increment 
due to the input U(t) = u(t) + wu(t) in (10):

Of the symbols {g, �, �, �} from [34], � [K∕ppm] is the 
global temperature sensitivity to airborne CO2 and � [

ppm

K
] is 

the sensitivity of the land/ocean carbon uptake to global tem-
perature. Equation (10), once integrated, becomes

with �x(t) = x(t) − x , Δtx = t − t0 and h
(
Δtx

)
= exp(−kΔtx) . 

The free response can be eliminated by assuming the initial 
state equal to the airborne CO2 equilibrium, namely 
x
(
t0
)
= x , in which case �x(t) = Δx(t) . The input integral of 

(18)Δx(t) =
1

(1 − g)(1 + �)∫
t

t0

U(�)d�, g = −
��

1 + �
.

(19)��(t) = h
(
Δtx

)
δx
(
t0
)
+ ∫

t

t0

h(t − �)U(�)d�,

Fig. 3   a Mean annual airborne CO2 concentration rate (from Scripps Research data [26]): estimate and residuals with 3� a priori bound. Differ-
ence regression. b Mean annual airborne CO2 concentration (from Scripps Research data [26]): estimate and residuals. Integral regression

Fig. 4   Sequence of regressions: 
parameter estimates, uncer-
tainty, and residuals



1176	 E. Canuto et al.

(18) can be introduced into (19) by assuming that h(Δtx) 
slowly decays like when kΔtx < 1 and consequently by 
r e p l a c i n g  h(t − �)  w i t h  t h e  m e a n  v a l u e 
1

Δtx
∫ t

t0
h(t − �)d� =

1−exp(−kΔtx)
kΔtx

 ,  thus leading to the 
approximation

The function 1−exp(−x)

x
≤ 1 is such that, for x ≥ 0 , 

one can find a monotonically decreasing function 
�(∞) = 1 ≤ �(x) ≤ �(0) = 2 , which satisfies the equality

Use of the last identity, and replacement of k with 
kdir − kCF as in (8), allows (20) to be rewritten as

which is the same expression of (18) under the identities

The first identity shows that, under kdirΔtx ≫ 𝜂 , g is noth-
ing else than the ratio between the carbon feedback correc-
tion kCF and the land/ocean absorption kinetic constant kdir.

The estimate �̂ ≅ 1.52 in [37] for the period 1880–2017, such 
that Δtx = 138 y provides, by iterating the identity (21), 
�
(
k̂dirΔtx

)
= 1.48 and k̂dir ≅ 0.0163 y−1 , which is within the 

2� uncertainty interval of the estimate k̂ = 0.019 ± 0.0032 y−1

(2�) in Table 3, row 1. A coherent value �̂ ≅ 1.67 ± 0.56 can be 
found in [43], but referred to 1750–2011. CO2 emission and con-
centration growth before 1850 should be treated as negligible and 
highly uncertain (see Fig. 1a), which leads to Δtx = 161 y . The 
resulting estimate k̂

dir
≅ 0.015± 0.004 y−1 partly overlaps the 

uncertainty band of ̂k.

3 � Forecasting the Fuel CO2 Emissions Under 
Finite‑Reserve Constraint

3.1 � Introduction and Scope

In order to employ Eq. (10) for forecasting the CO2 con-
centration (Sect. 4), we need to predict the input signal 
u(t), t ≥ tP , which, as already said, is restricted to the fossil-
fuel emission c(t) = u5(t) . The time tP = 2021 y is the start-
ing epoch of the projection. Forecasting will be done by 
extending the historical fuel consumption 

⌣
c
(
ti
)
, t0 ≤ ti < tP, 

(20)Δx(t) ≅
1 − exp

(
−kΔtx

)
kΔtx ∫

t

t0

U(�)d�.

(21)
1 − exp(−x)

x
=

(
1 +

x

�(x)

)−1

.

(22)Δx(t) ≅
1(

1 −
kCFΔtx∕2

1+kdirΔtx∕2

)(
1 +

kdirΔtx

�

)∫
t

t0

U(�)d�,

(23)g =
kCFΔtx

� + kdirΔtx
, � =

kdirΔtx

�
.

by means of a parameterized analytic model: the skewed 
Meixner distribution (also known as skewed/generalized 
hyperbolic secant distribution, [38, 39]). Forecasting will 
be constrained by the available reserves, namely by the esti-
mated amount r

(
tP
)
 of the fossil-fuel deposits at the present 

date tP , whose equation from the Appendix holds:

To do this, fossil fuel consumption and reserves are split 
into three categories indicated by f = 1, 2, 3 , namely coal 
(f = 1, lignite is included) , oil (f = 2, shale oil is excluded) , 
and natural gas (f = 3, shale gas is excluded) . The total pre-
dicted emission until the zero-reserve date tEnd , namely

will be employed in (10) to predict the airborne CO2 con-
centration x̂

(
ti
)
.

3.2 � Reserves and Resources

In order to quantify the amount of fossil fuels left for use, 
let us distinguish between reserves and resources [51]. 
Resource is that amount of a natural commodity that exists 
in both discovered and undiscovered deposits. Reserves are 
that subgroup of a resource that have been discovered, that 
have a known size, and that can be technically recovered at 
a cost that is financially feasible at the present price of that 
feedstock. As a consequence, the known reserves of fossil 
fuels vary in time, with an increasing trend in the last dec-
ades, as shown in Fig. 5a, whose raw data (solid lines) are 
provided by OWID (Our World In Data) [52].

Let us denote the reserve amount of a generic fossil fuel 
with r(t) . By supposing that the trend of the raw data in 
Fig. 5a will attain a constant value r∞ in the years to come, 
the trend can be predicted upon knowing the diminishing 
law of the future marginal reserves m(t) = r∞ − r(t) with 
initial condition m0 = r∞ − r0 at time t = t0 . A law of this 
kind is usually arranged by assuming the relative variation 
d log m(t) to be proportional (with negative sign) to the 
dimensionless time interval ds(t) = dt

�
 as follows:

The range 1 < n < 2 is assumed for compelling the decre-
ment to be slightly faster than the exponential, thus account-
ing for increasing difficulties in finding new reserves. Inte-
gration of (26) provides the explicit law:

(24)ṙ(t) = −c(t), r
(
tP
)
= rP.

(25)

ĉ
(
t
i

)
=
∑3

f=1
ĉ
f

(
t
i

)
, i = N,N + 1, ...,N +M − 1,

t
N
= t

P
, t
N+M−1 = t

End

(26)

d log m(t) = −ns(t)n−1ds(t), m
(
t0
)
= m0, s(t) =

t − t0

�
.

(27)r(t) = r∞ − m0 exp(−s(t)
n), t ≥ t0.
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The asymptotic value r∞ defines the ultimate reserve 
value, to be used for further analysis. The parameters {
�,m0, r∞, n

}
 are found by fitting the raw data in Fig. 5a 

(solid lines); they vary with the fuel category f  . Given the 
parameter estimates, the reserve r(t) in (27) can be projected 
to future dates as in Fig. 5a (dashed lines). The shaded bands 
around the predicted curve r(t) correspond to 3� uncertainty. 
The estimated r∞,f  of the fuel ultimate reserve in Table 4, 
column 3, looks rather close to the 2010 estimates in [16].

We have now to determine which amount of carbon diox-
ide will be emitted in their future combustion until deple-
tion is reached. Chemically speaking, the mass of carbon 
dioxide, produced by a unitary fuel mass, can be inferred 
from the fuel chemical composition by balancing simple 
chemical reactions. However, since chemical composition 
of fuels (coal and oil) is far from being expressed by a single 
chemical compound, another way has been adopted. OWID 
datasets about fossil fuels [52] reports the annual consump-
tion of each fuel category during the 1980–2020 period, and 
the relevant emissions. Data elaboration provided the esti-
mate of the conversion factor �f  as the mean annual emitted 
CO2 mass of the fuel unit mass. The CO2 equivalent ulti-
mate reserve of the fuel f  is denoted by Rf = �f r∞,f  . Values 
are in Table 4, column 5, together with the estimates in [11] 
(2007, column 6) and [16] (2010, column 3, in brackets).

3.3 � Fossil‑Fuel Emission Projection

Given historical fossil-fuel emissions, the aim is to predict 
the future by accounting for the finite reserves in Table 4. Let 
us denote the cumulative consumption of the fossil fuel f  , in 
equivalent CO2 mass units [GtCO2], by Cf

�
ti
�
=
∑N+i

k=N
cf
�
tk
�
 , 

and let us assume that the future cumulative consumption 
equals the reserve amount Rf  , that is Cf

(
tEnd

)
= Rf .

The future interval starts from the end of the historical data, 
tP = 2021 y , and expires at tEnd = 2150 y , which, as already 
mentioned at the end of Introduction, has been chosen to com-
ply with the model validity interval (see Section A.5) and to 
allow depletion of the large coal reserves. Oil and natural gas 
projections appear as rather invariant to tEnd > 2100 , being 
depleted just after this date (see Fig. 5b). The total (all the fuel 
categories) cumulative emission is denoted by C

(
ti
)
 and the 

annual emission by c
(
ti
)
 [GtCO2/y]. The emission cf

(
ti
)
 of 

each category is approximated and predicted by an analytic 
function cf (t) = g

(
t;pf

)
 depending on the parameter vector pf  

to be estimated from historical data. The symmetric logistic 
curve has been employed in [11] and [14]. The chosen predic-
tion curve is the four-parameter skewed Meixner distribution, 
whose shape recalls an asymmetric bell. The reasons for its 
choice are simplicity and being the product of three expected 
and significant terms: amplitude a , bell shape 1

cosh(�)
 and skew-

Fig. 5   a Raw data from OWID [52] and projection of fossil-fuel 
reserves (mass and volume units), together with 3� uncertainty bands 
(the shaded areas). b Projection of the mean CO2 emissions by fuel 

and of their total  (mass flow in [GtCO2/y]) together with 3� uncer-
tainty bands (the shaded areas)

Table 4   Predicted reserve and 
equivalent CO2 emissions

No Fuel r∞,f  from (27) (in [16]) Unit R
f
[GtCO2] R

f
[GtCO2] 

in [11]

1 Coal 1100 ± 30 (1�)(1000) 1012kg 2100 ± 95(1�) 1500
2 Oil 300 ± 8 (1�)(210) 109m3 690 ± 54(1�) 500
3 Gas 200 ± 3 (1�)(190) 1012m3 370 ± 19(1�) 350
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ness exp(��) . Their product, free of the subscript f, is written 
as follows:

The meaning of the four parameters is as follows: 
a = maxtg(t) (the height of the maximum under � = 0 ) is 
the scale factor, s = arg maxtg(t) denotes location (the 
abscissa of the maximum under � = 0 ), � defines the bell 
width and −1 < 𝛽 < 1 defines the skewness degree. The 
degree � tends to become unidentifiable when the measure-
ments are restricted to a lobe of the bell (either left or 
right), that is either to 𝜎

(
tk
)
< 0 or 𝜎

(
tk
)
> 0 . The former 

is the present case, which suggests the adoption of the sym-
metric shape with � = 0 . Nonetheless, the paper projections 
look compatible with those in the literature under the 
assumption of finite reserves (see [10–12], and [16]). In 
fact, the left lobe happens to be dominated by raw data. The 
reserve bound is completed by constraining the final emis-
sion to approach a small value 

⌣
c End . As a sensitivity result, 

by lessening the pair 
{

⌣
c f ,End, tEnd

}
 , the bell width shrinks, 

and the emission peak cf ,max grows up, whereas the opposite 
occurs by increasing the pair. The negative sensitivity 
Δcmax∕ΔtEnd of the fuel emission peak cmax with respect to 
tEnd is reported in Table 5, Section 4.1, as “mean peak rate”.

Given the emission measurement 
⌣
c f

(
tk
)
 and the reserve 

estimate Rf  , the regression equations read as follows:

The first equation expresses the analytic model of the 
annual emission; the second equation constrains the projected 
cumulative emission to match the reserve Rf  after conversion 
into equivalent CO2 mass; the third equation forces the ulti-
mate emission to approach zero. The regression criterion to 
be minimized is the weighted sum of the square errors in (29), 
the weights being proportional to the a priori variance of the 
measurements.

(28)g(t;p) = a
exp(��)

cosh(�)
, � =

t−s

�
, p = [a, �, �, s].

(29)

⌣
c f

�
tk
�
= g

�
tk;pf

�
+�cf

�
tk
�
, k = 0,… ,N − 1

Rf =
∑N+M−1

k=N
g
�
tk;pf

�
+ �Rf

⌣
c f ,End = g

�
tEnd;pf

�
+�cf

�
tEnd

� .

Figure 5b, Section 3.2, shows the projected emission pro-
files [GtCO2/y] by fuel, based on historical data from 1955 
to 2020 (the irregular part of the mean profile, central solid 
line). The shaded bands account for the uncertainty of the 
parameter vector p̂f  and of the reserve Rf  . The uncertainty 
band around the estimated profile of the historical data is 
smaller than the band around the projected profiles, since 
the former is poorly affected by the reserve uncertainty.

4 � Airborne CO2 Concentration Projection: 
Comparison and Discussion

4.1 � The Projections of the Total Fuel Emission 
and of the CO2 Concentration

The historical and projected total fuel emission 
c(t) =

∑3

f=1
cf (t) is shown in Fig. 5b (black curve) together 

with the 3� uncertainty band.
The annual airborne CO2 concentration x(t) is pro-

jected until tEnd by integrating Eq. (10) under the input 
u(t) = c(t), tP ≤ t ≤ tEnd . The mean profile and the 3� lower 
and upper profiles of the airborne concentration are pro-
vided. The mean projection derives from the mean emis-
sion profile in Fig. 5b, and the pair 

{
�̂, x̂

}
 from Table 3, 

column 5. The 3� lower and upper bounds derive from the 
3� emission profiles in Fig. 5b and from the 3� parameter 
estimates 

{
�̂ ± 3�̂� , x̂ ± 3�̂x

}
 . The positive sign applies to 

the upper bound and the negative to the lower bound.
The resulting mean profile and the 3� uncertainty band of 

the projected concentration are reported in Fig. 6a. The dashed 
red line, which overlaps the mean profile until tP = 2021 y , 
corresponds to the annual mean of the Mauna Loa measure-
ments in Fig. 3b. The peak delay Δtmax = tx,max − tc,max is 
coherent, as shown in Table 5, below, with the estimated time 
constant �̂  of Eq. (10), if a duration Δtc ≅ 220 y of the fuel 
emission wave is guessed, as follows:

(30)Δtmax ≅
Δtc

2�
tan−1

(
2��̂

Δtc

)
≅ 35 y.

Table 5   Peaks and dates of the 
projected CO2 emission and of 
the airborne concentration

No. Variable Parameter Symbol Unit Range From [14]

1 Concentration Peak x
max

ppm 450 ∼ 550 (±10%) ≈ 480 ∼ 560

2 Concentration Mean peak rate Δx
max

Δt
End

ppm/y -1.0 NA

3 Concentration Date t
x,max y 2064 ∼ 2086 ≈ 2080

4 Emission Peak c
max

GtCO2/y 35 ∼ 47 ≈ 33 ∼ 55

5 Emission Mean peak rate Δc
max

Δt
End

GtCO2/y2 -0.24 NA

6 Emission Date t
c,max y 2030 ∼ 2047 ≈ 2030 ∼ 2050

7 Concentration Delay Δt
max

y 34 ∼ 39 ≈ 30 ∼ 50
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The ranges of the projected concentration peak xmax and 
of the date tmax are summarized in Table 5. In addition, the 
mean peak rate of the projected concentration and emission, 
and the concentration delay Δtmax are reported. The mean 
peak rate is the sensitivity of the peak values xmax and cmax 
to change of the end time tEnd.

4.2 � Comparison with the Literature Projections 
and Discussion

Comparison with the literature requires some care, as pro-
jections in [3, 6, 53], and [54] concern the CO2 equivalent 
of the whole atmospheric GHGs, which, as already noticed, 
follow different intake and removal mechanisms. Projec-
tions restricted to CO2 appear in Figure TS.4, page 53, of 
the Technical Summary in [4].

A pair of roads are followed. Let us start by comparing 
the CAT projections of the equivalent CO2 emissions by 
greenhouse gases, as in Fig. 6b, whose data are available. 
Since the projections in Fig. 5b are restricted to fossil fuels, 
the graphical comparison in Fig. 6b has been improved by 
downshifting the CAT current policy projections (solid and 
dashed red lines) in order to overlap the uncertainty band 
(the shaded area) of the paper projections. According to 
the OWID data, the constant down shift amounts to about 
Δu = 13GtCO2∕y , which matches the sum of methane and 
nitrous oxide emissions converted into the CO2 equivalent 
mass flow. A confirmation is given by the historical emis-
sion data (the red and blue irregular curves) which over-
lap less a small drift. The overlap confirms that the current 
policy scenarios (upper and lower) fairly coincide with the 
finite reserve scenario of this paper. Figure 6a shows also the 
projection of a climate mitigation policy, the “2030 targets.”

The second set of comparisons addresses the recent 
IPCC projections in Figure TS.4, page 53, of the Technical 
Summary in [4], whose data are summarized in the Tables 

of [55]. They supersede previous IPCC and literature pro-
jections, like those in [8] and [15]. The dataset of the CO2 
emission projections from 2015 to 2100, to be shown in 
Fig. 7 with the unit of concentration rate [ppm/y], has been 
found in the IIASA website (International Institute for 
Applied Systems Analysis, [56]). The data set of the CO2 
concentration projections from 2015 to 2500, to be shown  
in Fig. 8 until 2150, was found in the University of Mel-
bourne website. The projections have been made with an 
updated version of the MAGICC model, maintained at the 
Climate & Energy College of the University of Melbourne 
[57].

Figure 7 compares the projection of the total CO2 emis-
sion by fossil fuels in Fig. 5b with the IPCC projections 
(from the sixth Assessment Report, retrieved from [56]) of 
five different Shared Socioeconomic Pathways (SSP). To 
allow a better comparison with IPCC profiles, the mean CO2 
emission profile of the paper (dashed blue) has been added 
with the constant value u3 = 0.62 ppm of the land use emis-
sion (see the end of Section 2.3). As a result, the paper pro-
file (line 6) accurately matches the SSP 2–4.5 profile (line 
3) up to the 2060 year. Of course, a correct integration of 
the augmented emission ua(t) = u(t) + u3 through Eq. (10) 
requires the new equilibrium x

a
= x − u

3
∕k and implies that 

the projection of the land-use change emission remains con-
stant and equal to u3.

The five scenarios are explained in [3] (see also [56]). 
SSPx-y.y stands for Shared Socioeconomic Pathway, x = 1 
to 5 denotes the class of the scenarios, and y.y denotes the 
net radiative forcing [W/m2] at year 2100. Radiative forcing 
is the name given by IPCC to the algebraic sum of natural 
(sun radiation change) and anthropogenic (GHG concen-
tration change) exogenous radiant energy fluxes [W/m2], 
which perturb the energy equilibrium of the Earth’s bio-
sphere and consequently the climate.

Fig. 6   a Projection of the atmospheric CO2 concentration [ppm] based on Eq. (10) and on the estimated fossil-fuel reserves. b Comparison of 
the CO2 emission projections (mass flow in [GtCO2/y]) with the CAT projections [3], to which a downshift has been applied
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The SSP 3–7.0 projection (line 4 in Fig. 7) assumes high 
GHG emissions and CO2 emissions doubled by 2100. The 
SSP 5–8.5 projection (line 5 in Fig. 7) assumes very high 
GHG emissions and CO2 emissions tripled by 2075. They 
look outside of the envelope defined by the finite-reserve 
projections of the paper. The SSP 2–4.5 projection (line 3 
in Fig. 7) assumes intermediate GHG emissions and CO2 
emissions around current levels until 2050. Since then, it 
falls down but do not reach net zero emissions by 2100. The 
projection looks close to the mid profile of the CAT current 
policy projections in Fig. 6b and overlaps the mean finite-
reserve projection of the paper (line 6 in Fig. 7). A similar 

conclusion was reached by [10] in the regards of the RCP 
(Representative Concentration Pathway) 4.5 in [15].

Figure 8 shows the comparison of the IPCC projections 
of the airborne CO2 concentration, due to emissions in 
Fig. 7, with the finite-reserve projections in Fig. 6a. The 
cause-effect relation between IPCC profiles of Fig. 7 and 
Fig. 8 is suggested in the main page (“Greenhouse gas 
factsheets”) of the University of Melbourne website. At first 
sight, comparison looks coherent with Fig. 7 in the sense 
that SSP 3–7.0 and SSP 5–8.5 projections (lines 4 and 5 in 
Fig. 8) lie outside of the envelope defined by finite-reserve 
projections.

Fig. 7   Comparison of IPCC 
projections of CO2 emissions 
(from IIASA dataset [56]) with 
the finite-reserve projections of 
this paper

Fig. 8   Comparison of IPCC 
projections [57] of the airborne 
CO2 concentration with the 
finite-reserve projections of this 
paper
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However, the SSP 2–4.5 projection (line 3 in Fig. 8) signif-
icantly drifts away from the mean profile of this paper (line 6 
in Fig. 8), notwithstanding the relevant CO2 emission profiles 
(lines 3 and 6) overlap in Fig. 7. The drift deserves a better 
insight based on Eq. (10) and the parameters in Table 3. Inte-
gration of the SSP 2–4.5 emission profile through Eq. (10) 
should provide a similar shape as the dashed line 6 of Fig. 8, 
which is completely different from the SSP 2–4.5 concen-
tration profile (line 3) in the same Figure. The increasing 
drift in the presence of a sustained emission reduction after 
2050 y, would mean, in terms of Eq. (10), that the land/ocean 
absorption rate −k(x(t) − x) progressively reduces to balance 
the residual emission u(t) + w(t) , which is impossible due 
to x(t) > x ≅ 285 ppm . The balance could be recovered by 
forcing either k = �−1 to decrease (the time constant would 
increase above 50 y) and/or by forcing the equilibrium x to 
approach the current x(t) . Both remedies, which would be 
outside of the model assumptions, as formally given in the 
Appendix, embody the limits of the paper model and results.

The model captures the experimental mean annual 
exchange between atmosphere and the aggregated land 
and ocean and propagates to the future by assuming model 
parameter invariance, thus for instance neglecting their 
change due to near-surface temperature and airborne CO2 
concentration. Of course, we could force model parameters 
to vary in time, which has been done by accurately track-
ing the drifting profile 3 in Fig. 8 (see the MATLAB Live 
Script cited in the Data Availability). The findings must be 
kept outside of the paper scope, as the relevant time-varying 
mechanism was heuristic and unfit to experimental data. The 
authors expect, and it is the scope of the ongoing [58] and 
future work that a more complex model, as in the Appendix, 
endowed with a time-varying mechanism which is tuned on 
experimental data, may explain and validate the profiles of 
Fig. 8. The carbon cycle model of the MAGICC code [33], 
which produced the profiles of Fig. 8, and that of the FAIR 
model [50], should belong to this category.

As a final remark, we address the short interval (1955 to 
2020) of the regression measurements, being of the same 
order of magnitude of the estimated time constant �̂  . Firstly, 
the short-time duration of measurements reflects into the 
estimate uncertainty as in Table 3. Secondly, extension to 
longer past intervals as in Fig. 4 has shown rather invari-
ant estimates. Thirdly, a confirmation comes from [37] and 
[43], as shown in Section 2.7. As a further concern, strictly 
related to time-varying mechanisms, one should address the 
time constant variability due to atmosphere, ocean, and land 
conditions, like the carbon feedback, whose growth is such 
to diminish the land–ocean absorption rate. For instance, the 
kinetic constant k in (10) and other parameters may include 
scaled perturbations driven by measurable and predictable 
exogenous variables, as in the FAIR model [50].

5 � Conclusions

The paper starts from two observations: (1) the atmospheric 
CO2 concentration growth rate is smaller than that ascribed 
to the emission of fossil-fuel combustion and (2) the fos-
sil-fuel reserves are finite. The first observation leads to a 
simple and time-invariant state equation capable of account-
ing for the atmospheric CO2 absorption by land and ocean, 
treated as an aggregate. The second observation leads to a 
simple bell-shaped curve for forecasting the emission of fos-
sil fuels under current reserve constraint. Driving the state 
equation by the projected emission has allowed the airborne 
CO2 concentration to be projected close to the zero-reserve 
epoch. In principle, the resulting mean profile and the rele-
vant statistical bounds may be taken as upper physical limits 
to the projections of other scenarios.

The method advantage is rooted on simple physical 
models, whose parameters, being assumed time-invariant, 
can be estimated and checked from historical data, together 
with their uncertainty. Integration and estimation proce-
dures can be easily repeated, checked, and updated. The 
projections of the fossil-fuel emissions have been derived 
by explicitly constraining them by proven reserves. Exten-
sion to GHG emissions from non-fossil sources was not 
the aim. Comparison with recent IPCC profiles of CO2 
emissions confirms that the 3� range of the finite-reserve 
projections overlaps those of a moderate socioeconomic 
scenario like SSP2-4.5, in agreement with other authors. 
The comparison with the IPCC projections of the airborne 
CO2 concentrations has revealed itself more complex, yet 
instructive, in view of model and method extension. The 
focus has been on the CO2 airborne concentration (up to 
2150 y), which is driven by SSP2-4.5 emissions. A signifi-
cant mismatch has been found, in the sense that the relevant 
IPCC projection shows a sustained increase in the presence 
of a marked emission reduction (a decrease occurs only 
after the limit time of the assessment). The finite-reserve 
concentration, too, postpones the decreasing leg after the 
emission, but in a predictable way, which has been esti-
mated in the paper.

The main reason of the mismatch that emerges from MAG-
ICC and FAIR models is two-fold: (i) The dynamics of the 
global carbon cycle includes longer time constants than that 
estimated in the paper, and (ii) they change in time because of 
explicit/implicit time-varying mechanisms driven by perturba-
tions of the temperature and CO2 concentration. The relevant 
parameters appear tuned on the predictions of complex simu-
lated models, unlike the simple model of the paper.

Ongoing and future research aims to the following: (i) 
complete the simple carbon dynamics of the paper with tem-
perature dynamics and interconnections, as already men-
tioned in the Appendix; (ii) include other GHGs emissions, 
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not constrained by finite reserves, in the future projections; 
(iii) revise the Appendix model in the light of the literature; 
(iv) identify the proper land and ocean kinetic constants of 
the Appendix model, with the help of historical data; and (v) 
study and develop control strategies for the energy appor-
tionment, capable of aiding a progressive reduction of fossil-
fuel combustion under the energy demand.

Appendix

Derivation of state equations

A.1. Notations and Assumptions

Figure 9 sketches CO2 reservoirs (pools in [50]) and flows. 
Earth’s atmosphere is treated as a reservoir as well as 
fossil fuel deposits. Earth’s interior as well as artificial 
reservoirs capable of capturing CO2 are neglected. Main 
notations can be found in Table 1, Section 2.1. All the 
variables are assumed to be current annual averages as in 
(1) and their rates to be mean annual rates as in (2).

Given a time instant t , the existing concentration of CO2 
in the reservoir s is denoted by xs(t)[ppm] and the time rate 
(uptake if positive or emission if negative) by ẋs(t)[ppm∕y] . 
The sum x0(t) =

∑5

s=1
xs(t) stands for the CO2 amount in the 

Earth’s biosphere at time t , which, by neglecting volcanic erup-
tions, is constant in time and implies the following assumption:

Assumption 1 entrains that the time variation of the 
state xs(t), s = 1, ..., 5 is only driven by CO2 exchanges.

(A. 1)Assumption 1 ∶ ẋ0(t) = 0 at any t ≥ t0.

Two kinds of exchange rates, natural and anthropogenic, 
are distinguished. Natural emission from reservoir s to reser-
voir h , where CO2 is absorbed, is denoted by ±vsh

(
xs(t),Θ(t)

)
 , 

Θ being the global temperature [K] at the boundary between 
atmosphere and land/ocean surface. Negative sign refers to 
emission, positive sign to uptake. The series expansion of 
the exchange function around the constant equilibrium pair {
x
s
,Θ

}
 is truncated to the first-order as follows:

In (A.2), ksh is the kinetic constant [y−1] of the exchange 
around the equilibrium x

s
 , and gsh [ppm/(y × K)] denotes the 

exchange thermal sensitivity. The first part of the first-order 
term has the same form of the direct and reverse reaction 
rates in (6), if 

[
CO2

]
 is interpreted as a perturbation from 

equilibrium.
The annual zero-mean two-way component of the natural 

exchanges (the biomass carbon cycle) is neglected by treat-
ing xs(t) as the current annual average of the reservoir levels 
as in (1). The following assumption is made:

The algebraic sum of emissions from and uptakes by s ≠ 1 
is denoted by −us(t) , negative when emission dominates. 
Anthropogenic emissions may account for exchange pertur-
bations due to reduction and growth of reservoir capacity. 
For instance, land-use change may diminish land capacity, 
and the CO2 uptake rate.

(A. 2)

vsh
(
xs,Θ

)
≃ vsh

(
x
s
,Θ

)
+ ksh�xs(t) + gsh�Θ(t)[ppm∕y]

�xs(t) = xs(t) − x
s

[
ppm

]
, �Θ(t) = Θ(t) − Θ [K]

.

(A. 3)

Assumption 2. Anthropogenic exchange only occurs

between reservoirs s ≠ 1 and s = 1.
.

Fig. 9   Sketch of the main CO2 
reservoirs and their exchanges
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 A.2. The Carbon Feedback Identity

The global mean temperature dynamics is that of the single 
blackbody thermodynamics (also zero-dimension energy 
balance model), which for our scopes can be written as 
follows:

where x(t) = x1(t) is the airborne CO2 concentration [ppm] 
and u(t) accounts for exogenous sources [K/y]. The pertur-
bation (also anomaly) equation around the recent Holocene 
equilibrium defined by F

(
Θ, x, u

)
= 0 reads as follows:

where fΘ =
𝜕F(Θ,x,u)

𝜕Θ
> 0 [y−1] is a stabilizing feedback gain, 

fx =
𝜕F(Θ,x,u)

𝜕x
> 0 [K∕(y × ppm)] is the thermal rate sensitiv-

ity to CO2, and the dimensionless fu =
�F(Θ,x,u)

�u
 is the input 

gain. For our scope, Eq. (A.6) is rewritten by solving for 
�Θ(t ) as follows:

where 𝜑x =
fx

fΘ
> 0 [K/ppm] is the climate sensitivity to CO2 

[34]. The bias �Θ and the zero-mean component �Θ̃(t) , 
respectively, collect mean value and fluctuations of the 
exogenous perturbation �u(t) and of the temperature rate 
𝛿Θ̇(t) . A similar equation to (A.6) can be found in [34] and 
in the subsequent literature. Let us refer (A.6) as the carbon 
feedback identity, since by replacing �Θ(t) in (A.2), any 
natural exchange vsh

(
xs,Θ

)
 becomes dependent on the anom-

aly �x(t) of the airborne CO2 concentration.

A.3. Differential Equations and Equilibrium

The simplest equation is that of fossil fuels. We assume that 
the rate ẋ5 is only explained by anthropogenic emissions, 
which fact suggests the following first-order differential 
equation:

where u5(t) ≥ 0 and x50 denote the fossil fuel reserve at time 
t0 . Exchange with the reservoirs s = 2, 3, 4 is neglected.

The first-order differential equation of a generic reser-
voir s = 2, 3, 4 explains the rate ẋs(t) as the combination of 

(A. 4)Θ̇(t) = F(Θ(t), x(t), u(t)),Θ
(
t0
)
= Θ0,

( A. 5)
𝛿Θ̇(t) = −fΘ𝛿Θ(t) + fx𝛿x(t) + fu𝛿u(t), 𝛿Θ

(
t0
)
= 𝛿Θ0,

( A. 6)

𝛿Θ(t) = 𝜑
x
𝛿x(t) + 𝛿Θ + 𝛿�Θ(t), 𝛿Θ + 𝛿�Θ(t)

=
1

fΘ

(
−𝛿Θ̇(t) + f

u
𝛿u(t)

)
,

(A. 7)
Assumption 3 ∶ ẋ5(t) = −u5(t)[ppm∕y], x5

(
t0
)
= x50,

the exchange with other reservoirs and of the anthropogenic 
emission −us(t) to the atmosphere. We write the following:

The atmospheric equation is similar to (A.8), but includes 
all the anthropogenic emissions as follows:

We can prove that  ẋ0(t) =
∑5

s=1
ẋs(t) = 0 , in agreement 

with the conservation equation (A.1). Equation (A.8) 
can be simplified by neglecting the reciprocal exchanges 
between s = 2, 3, 4 , namely:

The simplified set of equations, with k = 2, 3, 4 , becomes 
the following:

The equilibrium is obtained by setting, in (A.11), 
us(t) = 0 and ẋs(t) = 0 . A pair of equilibriums can be arbi-
trarily chosen, for instance, the fossil fuel x

5
 and the over-

all amount x
0
=
∑5

h=1
x
s
 . This looks reasonable since they 

cannot be fixed by reciprocal exchanges, being decided by 
past evolution. By replacing the overall amount x

0
 with the 

atmospheric equilibrium x
1
 , ocean, land, and cement levels 

can be found by the exchange equilibrium identity:

A.4 Perturbation Equation Around Equilibrium

Let us denote the column vector of the reservoir states with 
x =

[
x1, x2, x3, x4, x5

]
 , where the inline notation [29] has been 

used. The equilibrium vector is denoted with x
_
 and the per-

turbation/anomaly with �x = x − x
_
 . Clearly, 𝛿ẋ = ẋ . The 

anthropogenic exchanges us, s = 2, 3, 4, 5, are collected into 
the vector u =

[
u2, u3, u4, u5

]
 . Replacement of the expansion 

(A.2) into (A.11), cancellation of the constant part in (A.2) 
(it vanishes because of the equilibrium) and collection of the 
temperature perturbations terms, provides a system of state 
equations, which, written in the matrix form, holds:

(A. 8)ẋs(t) =
∑

h≠s
(
−vsh

(
xs,Θ

)
+ vhs

(
xh,Θ

))
− us(t).

(A. 9)
ẋ1(t) =

∑4

s=2

(
−v1s

(
x1,Θ

)
+ vs1

(
xs,Θ

))
+
∑5

s=2
us(t).

(A. 10)Assumption 4 ∶ vsh(t) = 0, s, h = 2, 3, 4, s ≠ h.

(A. 11)

ẋ1(t) =
∑4

s=2

�
−v1s

�
x1,Θ

�
+ vs1

�
xs,Θ

��
+
∑5

s=2
us(t), x1

�
t0
�
= x10

ẋk(t) = −vk1
�
xk,Θ

�
+ v1k

�
x1,Θ

�
− uk, xk

�
t0
�
= xk0

ẋ5(t) = −u5(t), x5
�
t0
�
= x50

.

(A. 12)vs1
(
x
s
,Θ

)
= v1s

(
x
1
,Θ

)
, s = 2, 3, 4.

(A. 13)𝛿ẋ(t) = A𝛿x(t) + G𝛿Θ(t) + Bu(t), 𝛿x
(
t0
)
= 𝛿x0
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The equation matrices are given by the following:

The parameters k1s, s = 2, 3, 4 in the first row of A cor-
respond to the direct kinetic constant kdir in (6), k12 refers 
to the reaction between atmospheric CO2 and ocean car-
bonic acid as in (5), k13 mainly refers to photosynthesis reac-
tions between atmospheric CO2 and vegetation, and finally 
k14 refers to cement carbonation. They in turn become the 
reverse kinetic constants of the inverse reactions in the rows 
s > 1 . The parameters ks1, s = 2, 3, 4 in the first row corre-
spond to kinv in (6), namely, to the reverse kinetic constants 
of the reactions from atmospheric CO2 to ocean, vegetation, 
soil, and cement where carbon is confined. They in turn 
become the direct kinetic constants of the relevant inverse 
reactions in the rows defined by s > 1 . Finally, we have the 
identities g1 =

∑4

s=2
gs and gs = −g1s + gs1.

Equation (10) follows from (A.13):

1.	 By assuming that, during the integration interval 
t0 ≤ t < tEnd , the carbon level of ocean, land, and cement 
remains constant and equal to equilibrium, namely that

2.	 By replacing �Θ with the carbon feedback identity (A.6) 
and by including �Θ̃ into the input wu with the following 
carbon feedback assumption [34]:

As a result, Eq. (A.13) reduces to a pair of equations, 
that of the atmospheric reservoir in (10) and that of the fos-
sil fuel in (24). As the last assumption, null anthropogenic 
emissions from ocean and cement are assumed. To this end, 
nonzero emissions from the cement reservoir are included in 
u5 . The land-use change emission is decomposed into mean 
and zero-mean fluctuation, which implies the following:

(A. 14)

A =

⎡
⎢⎢⎢⎢⎢⎣

−k12 − k13 − k14 k21 k31 k41 0

k12 −k21 0 0 0

k13 0 −k31 0 0

k14 0 0 −k41 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎣

g1
g2
g3
g4
0

⎤
⎥⎥⎥⎥⎥⎦

,B =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

.

( A. 15)

Assumption 5 ∶x
s(t) = x

s
, s = 2, 3, 4

⇒ �x
s(t) = x

s(t) − x
s
= 0.

(A. 16)Assumption 6 ∶ kCF = g1𝜑x > 0.

(A. 17)
Assumption 7 ∶ u2(t) = u4(t) = 0, u3(t) = u3 + ũ3(t).

From (A.15) and Assumption 7, we write u = u5 , 
wu = ũ3 + g1�Θ̃ , and we make explicit the equilibrium 
x =

(
k21x2 + k31x3 + k41x4 + u3 + g1�Θ

)
∕k . By denoting the 

net feedback gain k in (8) as k = k12 + k13 + k14 − kCF > 0 , 
by dropping the subscript s = 1 and by recalling the nota-
tions r = x5, c = u5 of Sect. 3.1, we obtain the following:

The fossil-fuel initial time tP corresponds to the present 
epoch, which implies that the initial state rP represents the 
present fossil-fuel reserves, x0 is the atmospheric CO2 con-
centration at t = t0 , and the linear feedback term −k

(
x(t) − x

)
 

under x(t) > x is the effective land/ocean absorption flow 
corrected by the carbon feedback. Deviation from Assump-
tion 5 in (A.15) affects the first equation in (A.18) with a 
model error, which is the sum of a bias Δv

234
= kΔx

234
 and 

of a zero-mean term w234(t) . The bias is absorbed by the 
equilibrium x , whereas w234(t) is absorbed by wu(t) . Moreo-
ver, since 1+� kCF

�
=

1

�12
+

1

�13
+

1

�14
 , it follows that 𝜏1s >

�

1+� k
CF

, � =
1

k
, s = 2, 3, 4 and that � kCF ≅ g approximates the 

carbon feedback gain in [34], as shown in Section 2.7.

A.5 Implications of Assumption 5

The significance of Assumption 5 in the derivation of (A.18) 
suggests to better grasping the relevant implications and 
specifically the time interval Δtm = tm − t0 of the model 
validity. As a first step, Assumption 5 in (A.15) is rewrit-
ten by summing land, ocean, and cement carbonation CO2 
into xs = x2 + x3 + x4 and by relaxing the ideally zero error 
�xs(t) in (A.15) to be nonzero but small enough as follows:

where the upper bound 1
Ns

≪ 1 expresses a realistic small enough. 

As a second step, we prove that |�xs(t)|
x
s

 can be upper bounded  

by k1sΔtm
x
1

x
s

 , where k1s = k12 + k13 + k14 = k
(
1 +

k
CF

k

)
 and 

x
1

x
s

< 0.02 . The last inequality follows by the estimates 
x
1

x
2

≅ 0.02 and x3+x4
x
2

< 0.2 in [59]. Therefore, inequality 
(A.19) can be replaced by the following:

where the upper bound value 1
Ns

= 0.05 (5%) has been cho-
sen to be half than the peak 3� uncertainty (about 10%, 
Table 5, row 1) of the projected CO2 concentration.

(A. 18)
ẋ(t) = −k

(
x(t) − x

)
+ u(t) + wu(t), x

(
t0
)
= x0

ṙ(t) = −c(t), r
(
tP
)
= rP, t0 < tP < tEnd

.

(A. 19)
||𝛿xs(t)||

x
s

≤ 1

Ns

≪ 1, 𝛿xs = xs − x
s
, s = 234,

(A. 20)Δtm ≤ x
s

x
1

1

k1sNs

≅
2.5

k1s
,

1

Ns

= 0.05(5%),
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To prove the upper bound, let us integrate the rate 𝛿ẋs(t) , 
which from the state equations in (A.13) and (A.18), just 
amounts to the land/ocean absorption rate, that is to k1s�x1(t) 
plus some perturbation ws due to linearization: 

The temperature contribution in (A.13) has been 
absorbed by k1s (carbon feedback) and ws . The integration 
in the time interval holds the following:

where overlines denote mean values in the interval 
Δtm = tm − t0 , and we assume that |ws|

k1s
≪ 𝛿x1, 𝛿x1 > 0 . Since 

we can assume, also in the worst case of the projection 6 in 
Fig. 8 (the upper bound of the shaded area), the inequality 
𝛿x1 +

|ws|
k1s

< x
1
 , we write the following:

and we replace (A.19) with k1sΔtm
x
1

x
s

≤ 1

Ns

≪ 1 . In turn, the 
latter inequality can be converted into (A.20). By posing 
k1s ≅ k̂ = 0.019 (±0.0016, 1�) y−1 (Table 3, Section 2.5), we 
find out Δtm,−3� = 105 ≤ Δtm ≤ Δtm,+3� = 176 y (3σ) , just  
below the projection interval t

End
− t0 = 2150 − 1955 = 195 y.
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