
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Graph Neural Network Model for Fast and Accurate Quality of Result Estimation for High-Level Synthesis / Jamal,
MUHAMMAD USMAN; Li, Zhuowei; Lazarescu, MIHAI T.; Lavagno, Luciano. - In: IEEE ACCESS. - ISSN 2169-3536. -
ELETTRONICO. - 11:(2023), pp. 85785-85798. [10.1109/ACCESS.2023.3303840]

Original

A Graph Neural Network Model for Fast and Accurate Quality of Result Estimation for High-Level
Synthesis

Publisher:

Published
DOI:10.1109/ACCESS.2023.3303840

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2979565 since: 2023-06-26T10:27:45Z

IEEE

Received 12 July 2023, accepted 28 July 2023, date of publication 9 August 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3303840

A Graph Neural Network Model for Fast
and Accurate Quality of Result Estimation
for High-Level Synthesis
M. USMAN JAMAL , (Graduate Student Member, IEEE),
ZHUOWEI LI , (Graduate Student Member, IEEE),
MIHAI T. LAZARESCU , (Senior Member, IEEE),
AND LUCIANO LAVAGNO , (Senior Member, IEEE)
Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: M. Usman Jamal (muhammad.jamal@polito.it)

This work was supported in part by the Key Digital Technologies Joint Undertaking under the REBECCA Project under Grant 101097224;
in part by the European Union, Greece, Germany, Netherlands, Spain, Italy, Sweden, Turkey, Lithuania, and Switzerland; and in part by the
Italian ICSC National Research Centre for High-Performance Computing, Big Data and Quantum Computing in the context of the
NextGenerationEU Program.

ABSTRACT High-level synthesis (HLS) is a solution for rapid prototyping of application-specific hardware
using the C/C++ behavioral programming language. Designers can apply HLS directives to optimize
hardware implementations by making trade-offs between cost and performance. However, current HLS tools
do not provide reliable quality of results (QoR) estimates, which prevents designers from making these
trade-offs efficiently to ensure that the design meets the constraints. Taking advantage of the widespread use
of machine learning (ML) to improve the predictability of electronic design automation (EDA) tools, we pro-
pose several graph neural network (GNN)-based models that learn and predict the post-implementation QoR
from the pre-schedule control data flow graph (CDFG) representation of an HLS design targeting field-
programmable gate array (FPGA) implementation, considering also the user HLS optimization directives.
Experimental results show that our model can estimate the timing and resource usage of a previously
unseen design (i.e, a completely new CDFG) within milliseconds with high accuracy, reducing prediction
errors by up to 74% compared to the estimate generated by the Vitis HLS tool itself after going through
time-consuming scheduling and binding, and by 29% and 22% for resource usage and timing prediction,
respectively, compared to the state-of-the-art.

INDEX TERMS Electronic design automation (EDA), graph neural network (GNN),machine learning (ML),
high-level synthesis (HLS), quality of results (QoR), field-programmable gate array (FPGA).

I. INTRODUCTION
With the rapid expansion of hardware development and the
increase in design complexity, there is a growing need for
more efficient and effective design techniques. Traditionally,
hardware design has been an expensive and time-consuming
process requiring a high level of expertise and specialized
knowledge. In recent years, high-level synthesis (HLS) has

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

emerged as an important method for hardware design, allow-
ing high-level programming languages such as C/C++ to
be automatically transformed into hardware designs [1]. The
introduction of HLS has allowed designers to create hard-
ware using high-level programming languages, allowing both
faster design and faster simulation than register-transfer level.
By using HLS, designers can benefit from the abstraction and
modularity of high-level languages, enabling them to produce
more sophisticated, powerful, and portable hardware designs
in less time. In addition, designers can use HLS directives

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85785

https://orcid.org/0000-0002-1962-3764
https://orcid.org/0000-0003-4631-3531
https://orcid.org/0000-0003-0884-5158
https://orcid.org/0000-0002-9762-6522
https://orcid.org/0000-0002-5668-6801

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

(also called pragmas) to optimize hardware implementations
by considering trade-offs between cost and performance. This
flow allows designers to quickly and effectively experiment
with different design configurations before working on the
final implementation.

HLS was developed to meet the above requirements, but
current commercial HLS tools do not provide reliable esti-
mates of the final quality of results (QoR) [2]. As a result,
designers are unable to make cost/performance trade-offs
and guarantee that the design will meet the requirements
because the estimation results in terms of timing and resource
usage often significantly differ from the actual QoR after
implementation.

Graphs are a widely used model in electronic design
automation tools [3]. In addition, electronic design automa-
tion tools have recently begun to use machine learning
approaches, especially for analysis tasks [4]. Recent research
has shown that graph-based machine learning techniques can
be successfully applied to various phases of the electronic
design automation flow, including logic synthesis [5], [6],
placement and routing [7], [8], [9], [10], power estimation
[11], verification [12], and testing [13].

Graph-based ML approaches have also been used to
improve the quality of results estimates in HLS [6], [14],
[15], [16]. Although these studies clearly show the advan-
tage of using graph neural networks (GNNs), they either do
not include the pragmas in their input representation or still
require features extracted from the HLS synthesis report. The
former ignores important designer input that affects QoR,
while the latter requires the execution of the scheduling, bind-
ing, and register-transfer level generation phases, which are
more time-consuming than the front-end compilation phase
on which our approach relies. In addition, our approach is
tool agnostic because we use the low level virtual machine
(LLVM) intermediate-representation (IR), which serves as
the basis for almost all HLS tools, but the ML models we
generate after training are of course both tool and platform
specific.

In this work, we aim to predict the post-implementation
QoR of an HLS design, starting from both the user C/C++
code and the user-defined optimization directives. We use
the output of the Vitis HLS open source front-end, without
any scheduling or binding information. The design input
is represented as LLVM IR from which control flow, data
flow, and call flow graphs can be derived using standard
compiler techniques. To define our ML problem, we model
the program as a single graph that combines the previously
mentioned graphs. Furthermore, we use GNNs to learn the
underlying heuristics and optimization techniques to predict
the desired objectives, namely lookup table (LUT), flip-flop
(FF), digital signal processing unit (DSP) and critical path
timing (C.P.). We do not target block RAM, latency and
throughput estimation, since the commercial HLS tools pre-
dict them relatively accurately.

We propose a GNN-based framework to predict the qual-
ity of results of an HLS design based on its HLS IR.

FIGURE 1. Overall framework flow and the relationship between the
general HLS-based hardware design workflow (left-hand side) and our
proposed framework (right-hand side) for estimating quality of results
(QoR) of an HLS-based design.

We formulate the QoR prediction problem as a multi-
objective regression task to estimate post-implementation
resource usage and timing without invoking the back-end
of the HLS tool. The general structure of our prediction
model is shown in Fig. 2. The front-end consists of a GNN
model that generates the graph-level representation for a
given input design. The back-end consists of regression-based
multi-layer perceptrons (MLPs) that are fed with the gen-
erated graph-level features to predict the estimation targets.
Fig. 1 shows our overall framework flow and also shows
the relationship between the general HLS-based hardware
design workflow and our proposed predictive framework
for estimating the QoR of an HLS-based design. Our pro-
posed predictive framework is shown on the right side of the
flowchart, showing both training and inference flows. In both
phases, the IR-based graph is used as input data. During the
training process, in addition to the input data, the correspond-
ing ground truth (i.e., the actual number of resources and
clock period) is also required, which is extracted from the
post-implementation report. On the other hand, the inference
process uses the trained model to predict the QoR of a new
HLS design based on its IR.

The experimental results show that our graph-based pre-
diction model not only outperforms the commercial HLS tool
for realistic applications from various domains, but also has
the ability to generalize to previously unseen design cases by

85786 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 2. General structure of the framework to evaluate different graph neural network (GNN) models. Features are passed to the trainable embedding
layer to create their dense vector representations. This vector representation with the corresponding HLS IR based graph is fed as an input to GNN model.
A pooling operation is applied across all the nodes to create a single graph-level feature vector which is fed to four separate MLPs for each prediction
objective (lookup table (LUT), flip-flop (FF), digital signal processing unit (DSP) and critical path (C.P.)).

extending the learned knowledge. We target Xilinx FPGAs
in this work, but our framework is based on LLVM IR, which
makes it tool independent. Thus, it can be extended to other
LLVM-based HLS tools.

Our main contributions are:
• We propose a method that exploits a graph-based repre-
sentation of an HLS design that includes both program
semantics and pragma information (Section IV-B), but
not scheduling and binding information. This graph can
be easily extracted from the LLVM model generated by
the open source front end of Vitis HLS and other LLVM-
based HLS tools.

• We develop a multi-objective GNN-based learning
model aimed at estimating resource usage and timing for
a design point using post-implementation training data,
which can be evaluated very quickly (in milliseconds,
see Section IV-D), even for medium-sized designs.

• The experimental results show that our proposed model
not only provides an improved prediction accuracy up
to 74% compared to Vitis HLS, but it can also generalize
the learned knowledge to estimate completely unseen
designs (Section V), not just unseen variants of the
same design where change only the synthesis directives,
which is much easier.

The rest of this article is organized as follows: Section II
summarizes existing ML-based HLS prediction techniques.
Section III provides background on how an HLS design is
represented as a graph and on GNNs. Section IV presents
our overall approach to estimate QoR of HLS designs
using GNNs. In Section V, we evaluate the proposed
approach and provide experimental results, followed by con-
clusions and future work in Section VI.

II. RELATED WORK
ML techniques have been successfully applied to address
various challenges during the chip design flow [17]. These
techniques have also been used to resolve the difference

between QoR estimates in HLS and post-implementation
results. Some of this work is shown in Table 1.

Dai et al. [18] and Makrani et al. [19] propose non-graph-
based ML models to estimate a design post-implementation
resource usage and timing by extracting global features
from HLS synthesis reports, thus requiring the most time-
consuming HLS steps, namely scheduling and binding.
Dai et al. [18] use a linear model (Lasso), an artificial neu-
ral network (ANN), and XGBoost to recalibrate the results
generated from HLS reports. Makrani et al. [19] use Linear
Regression, ANN, Support Vector Machine (SVM), Random
Forest (RF), and an ensemble of the four models. However,
their methods require the HLS reports as input, and their
ability to correctly estimate unseen designs is questionable.
On the other hand, our solution input is the HLS LLVM

IR after the front-end execution, so we generate the QoR
estimates earlier, before the back-end execution. Therefore,
the HLS back-end itself could benefit from our estimates
(e.g., HLS scheduling could use our critical timing path pre-
dictions when balancing pipeline stages).

Another problem with previous work is the limited gener-
alization capabilities, since the inputs (features) to the model
can only be extracted after scheduling and binding. This
means that for each new and unseen design, one must run
time-consuming phases of HLS, which can take hours for
larger designs, to collect the features needed to estimate QoR.
Our model instead predicts QoR without going through the
scheduling and binding steps, while, as we show in Section V,
it can estimate new and unseen designs better than the HLS
tool itself.

Wu et al. [14] and Ustun et al. [6] use graph-based ML
models to perform HLS prediction tasks. Wu et al. [14] pro-
poses an end-to-end reinforcement learning-based framework
for design space exploration. A GNN-based performance
predictor (GPP) is integrated into the framework to predict
post-implementation resource utilization and timing based on
the data flow graph (DFG) representation. They use a separate

VOLUME 11, 2023 85787

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

TABLE 1. Comparison of ML-based approaches for high-level synthesis (HLS) prediction tasks.

GNN-based model for each objective. Ustun et al. [6] builds
a customized GNN-based model to automatically learn oper-
ation mapping patterns to improve operation delay prediction
for HLS-based designs. Their approach improves the esti-
mation accuracy by 72% with respect to Vitis HLS. Both
works only consider data flow graphs (DFGs). They show
the effectiveness of using graph neural networks even though
they do not include pragmas in their input representation and
focus on predicting only DSP clustering and clock period.

De et al. [15] compare both graph-based and non-graph-
based machine learning models to improve delay prediction
accuracy for ASICHLS and propose a hybrid model that con-
siders both local (structural) and global (domain knowledge)
features. The global features are extracted from HLS reports,
so one has to run HLS during the inference phase, which can
take a long time for large designs. We run only the HLS front-
end, which is much faster, and requires only global features
that are known to the designer before HLS starts, namely
design constraints.

Wu et al. [16] propose a graph-based ML approach to
estimate resource usage and timing based on the results of
different HLS stages. The input graphs are constructed from
the IR operator information (*.adb file) and the features are
extracted from both *.adb files and other HLS intermediate
results. They formulate the prediction problem as a single-
objective task; that is, a separate GNN-based model for each
type of resource and for timing. Furthermore, the format of
the *.adb file is not documented and can be changed at any
time. Instead, we take the information from the LLVM bit-
code (*.bc), which is a standard, well-documented format
that is generated right after the HLS front-end compilation
process, and we build a single predictive model for all the
targeted objectives. Also, [16] does not consider the HLS
synthesis directives, whereas we do.

Table 1 summarizes the relevant state-of-the-art ML-based
approaches for HLS prediction tasks and compares themwith
our contributions.

III. PRELIMINARIES
A. DESIGN AS GRAPH
Most major compiler tools use graphs for optimization and
transformation, and the first step in their compilation process
is always to transform the input program into an IR graph.

Modern HLS tools are designed and based on state-of-the-
art compilers such as LLVM [20] and GCC [21]. The input
is a high-level code that represents the functionality of the
design and can be written in programming languages such as
C/C++. The input to the front end of the HLS tool undergoes
several IR transformations, and the final output IR is geared
towards hardware circuit generation, for example by using
bit-width-accurate operations such as 7-bit additions. The
HLS IR consists of basic blocks, where each block contains
assembler-like instructions with no incoming or outgoing
branches except at the beginning and end of the block. The
HLS IR can be represented as different types of graphs such as
control flow, data flow, and call-flow for specific information
extraction.

In the control flow graph, the nodes correspond to the
LLVM instructions of the program, and the edges represent
how the instructions are sequenced, including conditional
branches. The data flow graph contains the same nodes, while
the edges represent values flowing between instructions, from
results to input operands, using the static single assignment
form. Finally, the call graph represents the calling relationship
between sub-functions, starting from the top function being
synthesized. We considered a combination of these three
graphs for our experiments.

B. GRAPH NEURAL NETWORKS
Graphs are a type of data structure that helps represent
complex information explicitly by establishing relationships
between objects. Recently, there has been a significant surge
of interest in using deep neural networks, also graph neural
networks [22], to analyze graph-structured data. Associating
feature vectors (also known as node embeddings) with graph
nodes gives GNNs the ability to capture both structural and
contextual information. An edge-weighted graph can be rep-
resented as G(V ,E,A), where V and E are the set of vertices
and edges, respectively, and A ∈ Rn×n is an adjacency matrix
where Aij is the weight of the directed edge from vertex i to
vertex j, or 0 if no such edge exists. An undirected graph
can be represented by a symmetric adjacency matrix, and
an unweighted graph can be represented by a matrix where
all entries are either 0 or 1. Additionally, a graph can be
associated with a matrix of node features X ∈ Rn×d , where
the feature vector (with d elements) of the i-th node is the

85788 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

i-th row. Thus, a GNN is a model that learns a trainable
nonlinear mapping function F such thatH = F(A,X), where
H ∈ Rn×k is the output feature matrix.
A GNN model iteratively computes a sequence of feature

matrices from the input node feature matrix through a series
of cascading layers. All layers have exactly the same graph
structure, but their feature vectors can have different sizes.
An aggregate (AGG) and an update (UPDATE) functions are
applied to each node in each layer. TheAGG function receives
the feature vector information from the neighboring nodes
of the ith node in the tth layer and sends the aggregated
information to the UPDATE function to update the ith node
features in the (t + 1)th layer based on the aggregated value
and possibly the ith node feature value in the tth layer. Note
that this may change the size of the feature vector, while the
graph remains the same across all layers. In addition, some
classes of GNNs, such as dynamic graph attention network
(GAT), also use edge features in the aggregation process.
A READOUT function, such as mean or max pooling,
is applied after the last layer to summarize the features from
all nodes and produce a single graph-level feature vector,
which is typically used as input to the MLP that produces the
final GNN output(s).

For example, a convolutional neural network where all
layers have exactly the same ‘‘image’’ size (along the x and
y directions) can be seen as a special case of GNN, where
(1) each node in the graph (except the ‘‘boundary’’ nodes,
which have smaller neighborhoods) has a set of neighbors
(i.e., nodes connected to it by edges) of the same size and
shape as the convolution filter, (2) the number of channels
in each layer is the number of elements in the node fea-
ture vector, (3) the AGG function computes a convolution
(and pooling) operation over the neighbor’s feature vectors,
(4) the UPDATE function is a ReLU, and (5) the READOUT
function concatenates the features of the last layer.

The message passing-based architecture [23] of a generic
GNN model can be summarized as follows

mt+1i = AGG
(
htu | u ∈ N (i) ∪ {i}

)
(1)

ht+1i = UPDATE
(
mt+1i

)
(2)

hG = READOUT
(
hTi , i ∈ V

)
(3)

where the feature vector for node i at layer (also called
iteration) t is denoted by hti ,N (i) represents the neighborhood
of node i, i.e. the set of nodes with an edge to i, where
mt+1i represents the aggregated message from neighbors, V is
the node set of the graph G, T is the number of layers, i.e.
message-passing iterations, of the GNN, and hG is the final
graph-level feature vector sent to the output MLP.

GNNs can be divided into two groups based on the learn-
ing method: transductive and inductive. Transductive-based
GNNs need to see the whole graph structure to learn each
node feature vector during training. If there is a change in the
structure of the graph, a model has to be retrained. Therefore,
they are not able to generalize to unseen graphs. On the other

hand, the inductive-based GNN learns a trainable function
that aggregates the feature vectors from a node neighborhood
to generate feature vectors for the nodes in the graph. Because
this trainable function is shared across the graph, like the filter
of a CNN layer, the learned model can be applied to unseen
graphs without re-training, making it generalizable. In this
work, we have performed the training via inductive learning
for the GNN models.

In general, different GNN models differ from each other
based on different aggregate and update functions [24].
Any permutation-invariant operation can serve as an AGG
function, and any differentiable function can be used as an
UPDATE function. In our experimentation, we have used
4 different GNNs, namely: graph convolutional network [25],
dynamic graph attention network [26], graph isomorphism
network [27], and deep adaptive graph neural network [28].
In this paper, we refer to these models as GCN, GAT, GIN
and DAGNN respectively.

IV. METHODOLOGY
In this paper, we present ourGraph-based Machine Learning
approach to estimating the quality of results (QoR) of HLS-
based designs. The general framework is shown in Fig. 1,
which first generates a graph based on HLS IR and then
predicts the post-implementation QoR. The main steps are as
follows:

• Section IV-A describes how the dataset is built by using
different designs.

• Section IV-B presents how a graph is constructed and
generated for an HLS design.

• Section IV-C defines the local and global feature vectors
used by the predictive model.

• Section IV-D shows the proposed model and its training
and inference phases.

A. DATASET GENERATION
The fundamental step in anyML problem is to obtain the data
on which the ML model can be trained, validated, and tested.
The dataset should include a variety of designs from different
applications so that the trained MLmodel is robust enough to
generalize. For this purpose, we choose 30 designs from the
well-known HLS benchmark suites, namely MachSuite [29],
Polyhedral [30], and Rosetta [31]. The application domains of
these designs cover a wide range of areas such as linear alge-
bra, image and signal processing, computer graphics, data
mining, stencils, sorting, and ML. To create multiple hard-
ware implementations for each design, we used differentHLS
pragmas, i.e., synthesis directives (see Table 2) and various
clock periods (2.5 ns, 5 ns, 7.5 ns, and 10 ns). This allows our
predictive model to learn designs with different area-delay
tradeoffs. Thus, we build a data set with a total of 2465 data
points. We synthesize each design point in our dataset with
Vitis HLS 2021.2 [32] and implement it with Vivado 2021.2
[33] (usingVivado defaults for synthesis and implementation)
targeting Zynq UltraScale+ field-programmable gate array

VOLUME 11, 2023 85789

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

TABLE 2. Synthesis pragma configurations.

TABLE 3. Overall Summary of designs in our DATASET.

devices. The ground truth (actual resource usage and critical
path timing) of each of these design points is extracted from
the implementation and timing reports generated after the
place and route phase for maximum prediction accuracy.
Table 3 shows the range of values of the target objectives in
our dataset. The usage percentage for LUTs, DSPs and FFs
with respect to available resources on field-programmable
gate array chip used in our dataset is 75%, 100% and 22%
respectively.

B. INPUT
The input to our proposed GNN-based predictive model is an
HLS IR graph representing the functionality of the design,
extracted after the front-end compilation step. As mentioned
in Section III-A, we used a combination of control flow, data
flow, and call flow graphs for our experiments. A program
semantic information representation tool, ProGraML [34] is
used to extract the graphs from a given IR and combine them
into a single graph. It merges information from control and
data flow graphs and also preserves the function hierarchy by
incorporating the call flow.

The out-of-the-box configuration of ProGraML converts
the LLVM statements into nodes of the generated graph
with some special features like the opcode. By using the
LLVM language reference manual [35], we have extended
ProGraML capabilities to retrieve more critical information
from the LLVM statements, namely operand bit width, and
opcode category, and append it to the feature vector of each
corresponding node in the graph, as discussed below.

Bit-width describes the number of bits in the instruction
operands, which is highly relevant to the hardware resource
prediction. For example, an instruction that operates on 7-bit
operands requires fewer hardware resources than an instruc-
tion that operates on 32-bit operands.

The Opcode category identifies the functionality of an
LLVM instruction. In general, the resource requirements
and behavior of different LLVM instruction categories vary,
affecting overall performance and resource utilization. For
example, the Arithmetic category contains statements that
perform arithmetic operations, such as adding or multiplying.
In principle, this information could be learned by a GNN
from the opcode, but this would require more layers and more
training data. We decided to provide it directly because it is
design-independent and easy to derive automatically.

Algorithm 1 shows the steps to construct the graph for an
HLS design.

Algorithm 1 Graph Generation for HLS Design
Require: HLS design

LLVM IR Bitcode← Vitis HLS Front-end (HLS design)
LLVM IR← LLVM Disassembler (LLVM IR Bitcode)
Graph Representation ← Modified ProGraML (LLVM
IR)

Fig. 3 shows a toy example of how the input graph to
our model is generated. For illustration purposes, only the
most relevant nodes in the graph are shown. For example,
we have omitted zero extension and alloca nodes in the figure,
while our model considers them as well. Fig. 3 (a) shows
the HLS code for implementing the dot product of two input
vectors, including two sample HLS pragmas inside the loop.
Fig. 3 (b) shows its graph representation, extracted after
the HLS frontend compilation. The graph has two types of
nodes. The LLVM statements are represented by the blue
nodes, which are connected according to the control flow.
The variable values and constant values that represent the
operands and results of the statements in the data flow are
represented by the nodes in red. Three different colors are
used to symbolize different types of edges: blue, red, and
green for control, data, and call, respectively. Fig. 3 (c) shows
the local and global features that can be extracted directly
from the IR graph and user-defined optimization directives
(see Section IV-C for details).

C. FEATURES
Our proposed approach uses two different sets of features that
are useful for predicting post-implementation QoR. These
feature sets are extracted from two different sources, the HLS
IR code and user-defined HLS synthesis directives. We call
these sets local and global features, respectively. Local fea-
tures contain structural and contextual information. Structural
information describes the connectivity of nodes in the graph
and is encoded as an adjacency matrix. Contextual informa-
tion refers to node and edge properties, and this information
is explicitly encoded as a feature vector for each node and
edge.

For each node, its type, category, opcode, block ID, func-
tion ID, and bitwidth are taken into account. For example,
type indicates whether the node is a statement, a variable,

85790 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 3. An High-level synthesis (HLS) design example with its graph representation (a) shows the HLS code for an
implementation of dot product with two sample synthesis directives provided as an input to the HLS tool (b) shows its
graph representation based on an intermediate-representation (IR) which is extracted after the HLS front-end
compilation (c) shows the local and global features used by the model. Local features are extracted directly
from the IR graph. Global features are user-defined synthesis directives.

TABLE 4. Local features: Nodes and edges.

or a constant. For an edge, we only considered its type, which
basically tells whether the edge belongs to control, data,
or call flow. Details of local features are listed in Table 4.
Edge features are only considered by one of the models we
used, namely GAT.

Table 2 displays the list of global features. We feed the
global feature vector into our prediction model by concate-
nating it with the final graph-level feature vector generated
by READOUT. These features can be useful for integrating
domain-specific knowledge into the model and improving
its predictive capabilities. They have a direct impact on the
timing and resource requirements of a design. For this reason,
we explicitly provide this information to our model. These
features are exactly the same as the main user-defined HLS
synthesis directives, so they are well-known to the designer.

These global features could also be automatically extracted
from the HLS IR code via ssdm intrinsic functions

(function calls that encode both user-written and tool-
generated synthesis directives) and encoded as local features
for the nodes. However, as we show in Section V-B, the
estimation accuracy is significantly improved by using global
features as well. We leave to future work the exploration
of different sets of local features and/or GNN architectures
to overcome the need for global features and handle more
complex kernels, including, for example, multiple pipelined
loops.

D. MODEL
We formulate the QoR prediction problem as a multi-
objective regression task to estimate the post-implementation
timing and resource usage for LUT, FF, and DSP of a given
design based on its HLS IR without scheduling and bind-
ing. We do not address the block RAM estimation problem
because the HLS estimates are already quite reliable in this

VOLUME 11, 2023 85791

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

case, although we could. We use multi-task learning, where
a single GNN model is trained and the generated graph fea-
ture vector is fed to a set of MLPs to estimate the different
objectives.

The general structure of our model architecture is shown in
Fig. 2. It takes the graph representation of the design as input
and creates the initial feature vector by converting the features
extracted from LLVM (Table 4) via a trainable embedding
layer [36]. This information is then passed to the GNN
model, which iteratively updates the feature vectors layer
by layer. These updated feature vectors are used to generate
a graph-level representation vector via mean pooling, i.e.
by computing an average vector of all final feature vectors of
all nodes, which is then concatenated with the global feature
vector and passed to a set of MLPs to predict multiple targets.
We evaluated different GNNmodels (Section III-B), using the
same flow for a fair comparison (so the only difference is the
type of GNN layers).

Fig. 4 shows the training flow of the proposed framework.
Before training, we preprocess the data and apply normaliza-
tion so that each objective (timing, LUTs, DSPs, and FFs)
can contribute equally to the training loss. For example,
in the case of resource utilization, we normalize the resource
utilization by dividing it by the total number of resources
available on the field-programmable gate arrays, converting
it to a percentage utilization. Once the dataset and associated
features are available, we perform the training to obtain a
predictive model. The ground truth labels are extracted from
the post-implementation reports.

We train the GNNs model via supervised learning to learn
the behavior of the underlying HLS heuristics and opti-
mization techniques, such as scheduling, sharing, register
allocation, etc., in order to quickly and accurately predict the
desired objectives. During the training phase, an HLS design
and its configurations are first fed into the HLS tool front-
end, where the HLS IR is generated. The graph generator (see
Section IV-B for details) then converts the HLS IR into the
graph used by the GNN model as discussed above.

To select the best GNN model, we first randomly set aside
a 20% of the data set, also called the hold-out or test set. This
hold-out is not used during training and validation, but only
at the end to evaluate the final performance and report the
results. Then, we perform training by 5-fold cross-validation
on the remaining 80% dataset, where the hyperparameters of
the considered models are optimized and tuned.

The inference flow of the proposed framework is shown in
Fig. 5. The main purpose of the inference phase is to achieve
fast and accurate QoR prediction of the design compared to
the HLS baseline without going through the implementation
process, which is time consuming. In the inference phase,
we apply the same preprocessing workflow to unseen designs
(test set data points) to generate a graph and extract feature
vectors. These are then fed into the already trained model to
perform target prediction.

It is worth noting that our predictive model is able to
complete the inference to estimate resources and timing in

FIGURE 4. Training phase of the proposed framework.

milliseconds given a graph, as opposed to the implementation
phase, which typically takes minutes to hours. Table 5 shows
the inference time of the predictive model and the time HLS
tool takes for a single data point. Our model provides better
estimates of resource usage and timing in less than half of a
time with respect to the HLS tool. If we exclude the common
time needed to execute the Front-End, our model is more than
60x faster than the Back-End.

V. EXPERIMENTAL RESULTS
A. SETUP
Our framework is deployed using PyTorch and all GNNmod-
els mentioned in Section III-B are implemented and trained
using PyTorch Geometric [37] library on a Linux machine

85792 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 5. Inference phase of the proposed framework.

TABLE 5. Inference time for the proposed model vs HLS time per design
point.

equipped with an Nvidia GeForce RTX 3060 graphical pro-
cessing unit. The designs in the dataset (Section IV-A) are
synthesized and implemented using Vitis HLS 2021.2 [32]
and Vivado 2021.2 [33], respectively. The ground truth labels
of the four objectives (LUT, FF, DSP, C.P.) are extracted from
the post-implementation reports. The dataset is randomly
divided into 70% for training, 10% for validation, and 20%
for testing.

For our experiments, each model has the structure shown
in Fig. 2, with the following characteristics:

1) A trainable embedding layer, that converts the features
(see Table 4) from the HLS IR into a feature vector of
size 300 that is fed as an input to the GNN layers.

2) TwoGNN layers, i.e., the AGG andUPDATE functions
are run twice, with input feature vector size 300, inter-
nal feature vector size of 128 and output feature vector
size of 64.

3) A mean pooling layer, taking the mean of each one of
the 64 output features across all nodes, and generating

a single graph-level vector of 64 features that is fed to
the MLPs.

4) Four separate MLPs, one for each prediction objective
(LUT, FF, DSP, C.P.), each with three layers with 32,
16 and 1 output features respectively.

We trained the GNN-based models in an inductive setting
[38] with the Adam optimizer [39] for 100 epochs, using
a learning rate of 0.001, a weight decay of 0.0005, and an
exponential linear unit [40] as the activation function. All of
these hyperparameters, including the number of layers and
feature vector sizes, are tuned using the validation set during
the training phase. Since the prediction problem is formulated
as a regression task, we use root mean square error as ametric
for evaluating themodels.We perform 5-fold cross-validation
to check the effectiveness and robustness of the models and
to select the best-performing model. We also compare our
models with the commercial HLS tool (Vitis HLS) used as a
baseline model and with a graph learning-based performance
prediction model [16]. Algorithm 2 shows the process of
extracting the baseline and ground truth values for a given
HLS design.

Algorithm 2 Baseline and Ground Truth (G.T.) Extractor
Require: An HLS design

RTL design, HLS report← Vitis HLS (HLS design)
Post-implementation report← Vivado (RTL design)
Baseline← HLS baseline Extractor(HLS report)
G.T.← G.T. Extractor(Post-implementation report)

B. MODEL EVALUATION AND MODEL SELECTION
A GNN model transforms the local feature vectors into a
single graph-level feature vector, which is then passed to the
non-graphic regression model (in this case using a 3-layer
MLPs). We first test the performance of the GNN models
with only local features (i.e., no manual information from the
designer).

Fig. 6a shows the performance evaluation of GNN mod-
els with respect to baseline regarding LUT, FF, DSP and
C.P. in terms of root mean square error, while Fig. 7a
shows the prediction improvements of the models over
the baseline. For LUT utilization prediction, GAT provides
the best improvement, with more than 55% over baseline.
In the case of FF, GCN, GAT, and DAGNN give predic-
tion improvements of more than 40%. GAT is the best
of all models at reducing prediction error relative to the
HLS baseline model for DSP utilization. For C.P. timing, all
models improve the prediction by more than 45%. On aver-
age, GAT is the best model for improving resource utiliza-
tion prediction, and DAGNN is the best for timing. Note
that in practice, different models may be used for different
objectives.

Fig. 6b shows the performance evaluation of the graph
neural network (GNN) model with respect to the HLS base-
line for the target objectives by also using global features.

VOLUME 11, 2023 85793

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 6. Performance comparison of different GNN-based predictive models for lookup table (LUT), flip-flop (FF), digital signal processing unit
(DSP) and critical path (C.P.) with HLS Baseline on the test set (the lower the better).

FIGURE 7. Quality of results (QoR) prediction improvements of different GNN-based predictive models for lookup table (LUT),
flip-flop (FF), digital signal processing unit (DSP) and critical path (C.P.) with respect to HLS Baseline on the test set.

FIGURE 8. Performance comparison of best performing GNN-based
predictive models for lookup table (LUT), flip-flop (FF), digital signal
processing unit (DSP) and critical path (C.P.) with HLS Baseline (the lower
the better). A 5-fold cross-validation is performed. Both Local and Global
features are considered.

Global features are concatenated with the graph features
generated by the GNN models and fed into the non-graph
regression model, MLP. Fig. 7b shows the quality of results
(QoR) improvements of the GNN-based predictive models
over the baseline. All models provide performance prediction
improvements of more than 50% for LUT utilization. For FF
utilization, GAT and DAGNN are the best models at reducing
the prediction error over the baseline, improving the QoR
prediction by up to 52%. In the case of DSP utilization,
GAT provides the best prediction improvement among all
GNN models with respect to the HLS baseline. The GAT
model with both local and global features gives a relative
improvement of almost 19% over the GAT model with local
features only.

For C.P. timing, GCN, GAT, and DAGNN based models
improve the prediction by more than 70% with respect to
the baseline, with DAGNN providing the best improvement
at 72%.

85794 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 9. Quality of results (QoR) prediction improvements of different GNN-based predictive models for lookup table (LUT), flip-flop (FF), digital signal
processing unit (DSP) and critical path (C.P.) with respect to HLS Baseline. Both Local and Global features are used.

These GNN models provide a relative performance
improvement of up to 47% over the same models using only
local features.

It is worth noting that all of these GNN-based predic-
tion models perform better than the HLS baseline model
for all target objectives. The comparable accuracies of the
models provide a testament to the robustness of our pro-
posed methodology, where the training method of the model
and its architecture matter relatively little with respect to
the improvements over the state of the art. Graph iso-
morphism network (GIN) provides the least benefit in
terms of prediction error reduction among all the models
tested, especially in the case of DSP usage prediction (see
Fig. 7b). Based on this empirical evidence, we do not use
the graph isomorphism network for the model selection
phase.

For model selection, we use 5-fold cross-validation with a
holdout test set (see Section IV-D for details). Fig. 8 compares
the performance of the GCN, GAT and DAGNNmodels with
respect to the HLS baseline. Error bars in the figure show the
standard deviation of the models.

Fig. 9a shows the QoR improvements of the selected mod-
els over the baseline for the target objectives. For the LUT and
FF utilization predictions, all selected graph-based models
give improvements of more than 50%. The GAT based model
gives the best result of 57% for LUT, while the GCN based
model gives the best result of 55% for FF. In the case of DSP
prediction, GAT is the clear winner, reducing the prediction
error by more than 30%. For C.P. timing, all graph-based
models provide a prediction improvement of more than 67%,
with the GAT-based prediction model being the best (71%).
GAT outperforms other graph-based models in three out of
four target objectives and is not far behind in predicting FF
usage (where the GCN-basedmodel performs best).Based on
these results, we choose the GAT-based model, but we could

FIGURE 10. Quality of results (QoR) prediction improvements of our best
performing GNN-based model for lookup table (LUT), flip-flop (FF), digital
signal processing unit (DSP) and critical path (C.P.) with respect to HLS
Baseline and the state-of-the-art on Unseen Kernels.

use different models for different objectives, as mentioned
above.

To evaluate the selected model over the entire dataset,
we perform a generic 5-fold cross-validation. Fig. 9b shows
the quality of results prediction improvements over the entire
data. It is observed that the GAT based prediction model pro-
vides significantly better prediction with respect to the HLS
baseline model, giving up to 74% performance prediction
improvements.

C. UNSEEN KERNELS AND COMPARISON WITH
STATE-OF-THE-ART
To check the performance of our chosen model on
unseen kernels and for a quantitative comparison with the
state-of-the-art, we choose four kernels (gemm_ncubed,
optical_flow, jacobi2d, and stencil2d),

VOLUME 11, 2023 85795

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

FIGURE 11. Performance comparison of the GAT-based predictive model for lookup table (LUT), flip-flop (FF), digital signal processing unit
(DSP) and critical path (C.P.) with respect to HLS Baseline for different loop unrolling factors (the lower the better).

including all their design variants created using different HLS
synthesis directives and clock frequencies, and use them as a
test set for evaluation (in 5-fold cross-validation, the test set
was chosen at random, so training saw many variants of each
design). gemm_ncubed is a dense matrix multiplication
algorithm, optical_flow computes the motion of each
pixel in a sequence of image frames, jacobi2d is an
iterative method that computes and updates each grid point by
averaging its neighbors, and stencil2d performs stencil
computation using a 9-point square stencil. Note that all of
these kernels have different code structures.

We compare our model quantitatively with the graph-
based machine learning approach [16], which provides
their tool in open source. For comparison with other
ML-based approaches, Table 1 provides a qualitative
analysis.

We take the best-performing regression model in [16] for
resource usage and timing prediction, train it to the best
of our ability, and call it PNA-HLS. A separate PNA-HLS
model is trained for each objective. Fig. 10 shows that our
GAT-based prediction model reduces the prediction error
for resource utilization and timing prediction by 68% and
34%, respectively, compared to HLS. Our proposed model
also outperforms the state-of-the-art PNA-HLS model by
29% and 22% for resource utilization and timing prediction,
respectively.

Fig. 11a, Fig. 11b, Fig. 11c and Fig. 11d show the per-
formance of GAT-based prediction model for different loop
unrolling factors and compares with the Baseline for LUT,
FF, DSP and C.P. respectively. These figures further demon-
strate that overall our proposed model provides better quality
of results prediction compared to HLS.

VI. CONCLUSION
Although high-level synthesis (HLS) provides great flex-
ibility for optimizing designs for area and performance,
HLS-estimated quality of results (QoR) often differ from
actual post-implementation results. We propose an HLS tool-
agnostic graph neural network (GNN)-based framework for
estimating quality of results of HLS designs, as long as the
tool provides a publicly readable low level virtual machine-
based intermediate-representation (IR). Of course, the GNN
must be trained differently for each new tool, but once trained,
it can be reused for different results.

First, a method is developed to extract a graph-based
representation of a design directly from the HLS front-end
output, encoding both program semantics and HLS synthesis
directive information. Then, a multi-objective GNN-based
learning model is proposed to predict resource usage and tim-
ing of HLS designs within milliseconds without invoking the
HLS back-end to perform scheduling and binding. To address
the issue of the limited ability of a pure GNN-based model

85796 VOLUME 11, 2023

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

to be aware of global information such as design guidelines,
this information is explicitly passed to the learning model
in addition to the local features automatically extracted from
the IR.

The experimental results show that our proposed predic-
tion model outperforms both a commercial HLS tool and a
state-of-the-art GNN-based tool [16] for realistic benchmark
applications from different domains. It also shows that our
model is capable of extending the learned knowledge and
generalizing it to unseen design cases. We plan to extend our
framework to larger designs and more application domains in
future work.

REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011, doi: 10.1109/TCAD.2011.2110592.

[2] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and Z. Zhang,
‘‘FPGA HLS today: Successes, challenges, and opportunities,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, pp. 1–42, Dec. 2022,
doi: 10.1145/3530775.

[3] Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, ‘‘Understanding graphs in
EDA: From shallow to deep learning,’’ in Proc. Int. Symp. Phys. Design,
Mar. 2020, pp. 119–126, doi: 10.1145/3372780.3378173.

[4] D. S. Lopera, L. Servadei, G. N. Kiprit, S. Hazra, R. Wille, and W. Ecker,
‘‘A survey of graph neural networks for electronic design automation,’’ in
Proc. ACM/IEEE 3rd Workshop Mach. Learn. CAD (MLCAD), Aug. 2021,
pp. 1–6, doi: 10.1109/MLCAD52597.2021.9531070.

[5] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Süsstrunk,
and G. De Micheli, ‘‘Deep learning for logic optimization algorithms,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–4, doi:
10.1109/ISCAS.2018.8351885.

[6] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, ‘‘Accurate operation
delay prediction for FPGA HLS using graph neural networks,’’ in Proc.
IEEE/ACM Int. Conf. Comput. AidedDesign (ICCAD), Nov. 2020, pp. 1–9,
doi: 10.1145/3400302.3415657.

[7] Y.-C. Lu, S. Pentapati, and S. K. Lim, ‘‘VLSI placement optimization
using graph neural networks,’’ in Proc. 34th Adv. Neural Inf. Process. Syst.
(NeurIPS) Workshop ML Syst., 2020, pp. 6–12.

[8] Y.-C. Lu, S. Pentapati, and S. K. Lim, ‘‘The law of attraction: Affinity-
aware placement optimization using graph neural networks,’’ in Proc. Int.
Symp. Phys. Design, Mar. 2021, pp. 7–14, doi: 10.1145/3439706.3447045.

[9] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, ‘‘A timing engine
inspired graph neural network model for pre-routing slack prediction,’’ in
Proc. 59th ACM/IEEE Design Autom. Conf., Jul. 2022, pp. 1207–1212,
doi: 10.1145/3489517.3530597.

[10] R. Kirby, S. Godil, R. Roy, and B. Catanzaro, ‘‘CongestionNet: Rout-
ing congestion prediction using deep graph neural networks,’’ in Proc.
IFIP/IEEE 27th Int. Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2019,
pp. 217–222, doi: 10.1109/VLSI-SoC.2019.8920342.

[11] Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, ‘‘Pow-
erGear: Early-stage power estimation in FPGA HLS via heterogeneous
edge-centric GNNs,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2022, pp. 1341–1346, doi: 10.23919/DATE54114.2022.
9774682.

[12] Y. Zhang, H. Ren, and B. Khailany, ‘‘GRANNITE: Graph neural
network inference for transferable power estimation,’’ in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6, doi:
10.1109/DAC18072.2020.9218643.

[13] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
‘‘High performance graph convolutional networks with applications in
testability analysis,’’ in Proc. 56th Annu. Design Autom. Conf., Jun. 2019,
pp. 1–6, doi: 10.1145/3316781.3317838.

[14] N. Wu, Y. Xie, and C. Hao, ‘‘Ironman: GNN-assisted design space
exploration in high-level synthesis via reinforcement learning,’’
in Proc. Great Lakes Symp. VLSI (GVLSI), 2021, pp. 39–44, doi:
10.1145/3453688.3461495.

[15] S. De, M. Shafique, and H. Corporaal, ‘‘Delay prediction for ASIC
HLS: Comparing graph-based and nongraph-based learning models,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 4,
pp. 1133–1146, Apr. 2023, doi: 10.1109/TCAD.2022.3197977.

[16] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, ‘‘High-level synthesis perfor-
mance prediction using GNNs: Benchmarking, modeling, and advancing,’’
in Proc. 59th ACM/IEEE Design Autom. Conf., Jul. 2022, pp. 49–54, doi:
10.1145/3489517.3530408.

[17] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang,
‘‘Machine learning for electronic design automation: A survey,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 26, no. 5, pp. 1–46, Sep. 2021,
doi: 10.1145/3451179.

[18] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Y. Young, and Z. Zhang,
‘‘Fast and accurate estimation of quality of results in high-level synthesis
with machine learning,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-
Program. Custom Comput. Mach. (FCCM), Apr. 2018, pp. 129–132, doi:
10.1109/FCCM.2018.00029.

[19] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. P. Dinakarrao,
H. Homayoun, and S. Rafatirad, ‘‘Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level synthe-
sis design,’’ in Proc. 29th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2019, pp. 397–403, doi: 10.1109/FPL.2019.00069.

[20] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), Mar. 2004, pp. 75–86, doi: 10.1109/CGO.2004.1281665.

[21] (2022). GCC, the GNU Compiler Collection. [Online]. Available:
https://gcc.gnu.org/

[22] Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehensive
survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4–24, Jan. 2021, doi: 10.1109/TNNLS.2020.2978386.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, andG. E. Dahl, ‘‘Neural
message passing for quantum chemistry,’’ in Proc. 34th Int. Conf. Mach.
Learn. (PMLR), 2017, pp. 1263–1272.

[24] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, ‘‘Graph neural networks: A review of methods and applications,’’
AI Open, vol. 1, pp. 57–81, Jan. 2020, doi: 10.1016/j.aiopen.2021.01.001.

[25] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with
graph convolutional networks,’’ in Proc. 5th Int. Conf. Learn. Repre-
sent. (ICLR), 2017, pp. 1–14. [Online]. Available: https://openreview.
net/forum?id=SJU4ayYgl

[26] S. Brody, U. Alon, and E. Yahav, ‘‘How attentive are graph attention net-
works?’’ in Proc. 10th Int. Conf. Learn. Represent. (ICLR), 2022, pp. 1–26.
[Online]. Available: https://openreview.net/forum?id=F72ximsx7C1

[27] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are
graph neural networks?’’ in Proc. 7th Int. Conf. Learn. Represent.
(ICLR), 2019, pp. 1–17. [Online]. Available: https://openreview.net/
forum?id=ryGs6iA5Km

[28] M. Liu, H. Gao, and S. Ji, ‘‘Towards deeper graph neural networks,’’
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 338–348, doi: 10.1145/3394486.3403076.

[29] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, ‘‘Mach-
Suite: Benchmarks for accelerator design and customized architectures,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2014,
pp. 110–119, doi: 10.1109/IISWC.2014.6983050.

[30] L.-N. Pouchet and U. Bondugula. (2022). PolyBench/C. [Online]. Avail-
able: https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

[31] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston,
Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang, ‘‘Rosetta: A
realistic high-level synthesis benchmark suite for software programmable
FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2018, pp. 269–278, doi: 10.1145/3174243.3174255.

[32] Xilinx. (2022).Vitis High-Level Synthesis User Guide. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021
_2/ug1399-vitis-hls.pdf

[33] (2022). Vivado Design Suite User Guide. [Online]. Available:
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw
_manuals/xilinx2021_2/ug973-vivado-release-notes-install-license.pdf

[34] C. Cummins, Z. Fisches, T. Ben-Nun, T. Hoefler, M. O’Boyle, and
H. Leather, ‘‘ProGraML: A graph-based program representation for data
flow analysis and compiler optimizations,’’ in Proc. 38th Int. Conf. Mach.
Learn. (ICML), Jul. 2021, pp. 2244–2253.

VOLUME 11, 2023 85797

http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1145/3530775
http://dx.doi.org/10.1145/3372780.3378173
http://dx.doi.org/10.1109/MLCAD52597.2021.9531070
http://dx.doi.org/10.1109/ISCAS.2018.8351885
http://dx.doi.org/10.1145/3400302.3415657
http://dx.doi.org/10.1145/3439706.3447045
http://dx.doi.org/10.1145/3489517.3530597
http://dx.doi.org/10.1109/VLSI-SoC.2019.8920342
http://dx.doi.org/10.23919/DATE54114.2022.9774682
http://dx.doi.org/10.23919/DATE54114.2022.9774682
http://dx.doi.org/10.1109/DAC18072.2020.9218643
http://dx.doi.org/10.1145/3316781.3317838
http://dx.doi.org/10.1145/3453688.3461495
http://dx.doi.org/10.1109/TCAD.2022.3197977
http://dx.doi.org/10.1145/3489517.3530408
http://dx.doi.org/10.1145/3451179
http://dx.doi.org/10.1109/FCCM.2018.00029
http://dx.doi.org/10.1109/FPL.2019.00069
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1145/3394486.3403076
http://dx.doi.org/10.1109/IISWC.2014.6983050
http://dx.doi.org/10.1145/3174243.3174255

M. U. Jamal et al.: GNN Model for Fast and Accurate Quality of Result Estimation for HLS

[35] (2022). LLVM Language Reference Manual. [Online]. Available:
https://llvm.org/docs/LangRef.html

[36] (2022). Embedding—PyTorch 2.0 Documentation. [Online]. Available:
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

[37] M. Fey and J. E. Lenssen, ‘‘Fast graph representation learning with
PyTorch geometric,’’ in Proc. ICLR Workshop Represent. Learn. Graphs
Manifolds, 2019, pp. 1–9.

[38] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Inductive representation
learning on large graphs,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2017, pp. 1025–1035.

[39] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.

[40] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accurate deep
network learning by exponential linear units (ELUs),’’ in Proc. 4th Int.
Conf. Learn. Represent. (ICLR), 2016, pp. 1–14.

M. USMAN JAMAL (Graduate Student Member,
IEEE) received the M.S. degree from Politec-
nico di Torino, Italy, in 2018, where he is
currently pursuing the Ph.D. degree with the
Department of Electronics and Telecommunica-
tions, under the supervision of Prof. Luciano
Lavagno. His research interests include high-level
synthesis, low-power high-performance comput-
ing, and machine learning for electronic design
automation.

ZHUOWEI LI (Graduate Student Member, IEEE)
received the B.E. degree from the Guangdong
University of Technology, China, in 2019. He is
currently pursuing the M.S. degree with the
Department of Electronics and Telecommunica-
tions, Politecnico di Torino. His research interests
include machine learning and robotics.

MIHAI T. LAZARESCU (Senior Member, IEEE)
received the Ph.D. degree in electronics and com-
munications from Politecnico di Torino, Italy,
in 1998. He was a Senior Engineer with Cadence
Design Systems and founded several startups.
He is currently an Assistant Professor with Politec-
nico di Torino. He coauthored over 60 scien-
tific publications, four books, and international
patents. His research interests include design tools
for WSN/IoT platforms, ubiquitous environmental

sensing, efficient neural networks, indoor human localization, edge and leaf
IoT data processing, and high-level HW/SW co-design and synthesis.

LUCIANO LAVAGNO (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing and computer science from UC Berkeley,
in 1992. He was an Architect with the POLIS
HW/SW co-design tool. Since 1993, he has been
a Professor with Politecnico di Torino, Italy.
From 2003 to 2014, he was an Architect with
Cadence CtoSilicon high-level synthesis tool.
He coauthored four books and over 200 scientific
articles. His research interests include the synthe-

sis of asynchronous circuits, HW/SW co-design, high-level synthesis, and
design tools for wireless sensor networks.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

85798 VOLUME 11, 2023

