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Abstract: The fusion of multiple sensors” data in real-time is a crucial process for autonomous and
assisted driving, where high-level controllers need classification of objects in the surroundings and
estimation of relative positions. This paper presents an open-source framework to estimate the
distance between a vehicle equipped with sensors and different road objects on its path using the
fusion of data from cameras, radars, and LiDARs. The target application is an Advanced Driving
Assistance System (ADAS) that benefits from the integration of the sensors” attributes to plan the
vehicle’s speed according to real-time road occupation and distance from obstacles. Based on
geometrical projection, a low-level sensor fusion approach is proposed to map 3D point clouds into
2D camera images. The fusion information is used to estimate the distance of objects detected and
labeled by a Yolov7 detector. The open-source pipeline implemented in ROS consists of a sensors’
calibration method, a Yolov7 detector, 3D point cloud downsampling and clustering, and finally a
3D-to-2D transformation between the reference frames. The goal of the pipeline is to perform data
association and estimate the distance of the identified road objects. The accuracy and performance
are evaluated in real-world urban scenarios with commercial hardware. The pipeline running on
an embedded Nvidia Jetson AGX achieves good accuracy on object identification and distance
estimation, running at 5 Hz. The proposed framework introduces a flexible and resource-efficient
method for data association from common automotive sensors and proves to be a promising solution
for enabling effective environment perception ability for assisted driving.

Keywords: ADAS; environment perception; object detection; sensor fusion; camera; LIDAR; ROS

1. Introduction

Environment perception is a fundamental task for every control pipeline related to
assisted and autonomous driving. It constitutes the foundation layer of the architecture,
being essential to ensure safe and efficient navigation and decision-making. This process in-
volves the continuous collection and analysis of data from various sources, such as cameras,
LiDARs, radars, and ultrasonic sensors [1]. Through sensor fusion and data association,
sensors’ inputs are used to detect and categorize objects, recognize road signs, and assess
road conditions [2]. By providing real-time situational awareness, environment perception
enables intelligent vehicles to make informed decisions, including obstacle avoidance,
speed control, and path planning, thereby ensuring safety, comfort, and eventually fuel
economy [3].

The development of new Advanced Driver Assistance Systems (ADASs) has played a
major role in both academic and automotive industry research activities in recent years [4].
The proposal of algorithms intended to enhance drivers and passengers’ experiences in
vehicles has represented an important catalyst for the adoption of novel and more advanced
perception pipelines. ADASs have traditionally been synonymous with safety and comfort
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applications [5], exploiting position sensors such as radars and ultrasonics to improve driver
assistance and occupant well-being. However, the paradigm is shifting, with an increasing
emphasis on leveraging new technologies and more advanced sensing techniques to boost
overall vehicle usage and energy efficiency. This transition pushes the development of new
hardware as well as new sensor fusion techniques that extend beyond their conventional
use. While safety and comfort remain paramount, the demand for eco-driving solutions
has become an essential component of modern mobility [6]. The ADAS is at the forefront
of this evolution, offering a bridge between safety, comfort, and sustainability.

The efficient fusion of multiple sensors’ data in real-time remains a crucial process to
solve the perception problem in the current ADAS, where the computational resources are
scarce and the cost is a major constraint. The high-level controllers need a large amount of
information on the surrounding environment to plan their next control action effectively.
The focus of ADAS is to assist the driver in making choices during common road scenarios.
Classifying objects in the surroundings of the vehicle and estimating their relative positions
are important tasks in reconstructing common road scenarios.

This paper presents an open-source framework to estimate the distance between a
vehicle equipped with perception sensors and different road objects on its path, using the
association and fusion of information from different data sources. Although the solution
to the perception problem is well known in the literature, it is difficult to find openly
available and scalable frameworks to deploy sensor fusion from multiple sources on
commercially available hardware. The purpose of this work is to provide an easily scalable
and customizable method to deploy a complete perception pipeline on low-cost hardware,
addressing the common challenges of embedded software development in automotive.
The solution is meant to be used as a support for rapid prototyping of high-level control
logics and ADASs, such as the application of vehicle dynamics controllers, speed planning
algorithms, and eco-driving techniques, which can be categorized under the name of
Eco-Driving Assistance Systems (EDASs).

The final results of the proposed method have been tested in real-world scenarios on
commercial hardware running open-source software packages. The pipeline presented
can be employed straightforwardly to solve the perception problem for ADASs or EDASs,
which aim to leverage information from sensor fusion to improve the situational awareness
of the algorithm on the road. In the case of the application, the sensor fusion method is
coupled with a real-time rapid prototyping electronic control unit (ECU) to control the
longitudinal motion of a light-duty commercial vehicle to minimize its energy consumption
in urban environments.

The remainder of this work is organized as follows: Section 2 describes the state-of-
the-art sensor fusion methods and related techniques used for object distance estimation.
Section 3 presents the proposed methodology to fuse the data acquired by a camera and a
LiDAR and its software implementation. Section 4 describes the setup of the experiments
and methods used to evaluate the effectiveness of the approach. Finally, Section 5 discusses
the experimental results based on the real-world scenarios of the application presented and
contains the authors’ conclusions.

2. Related Work

High-resolution cameras are typically used to determine the shape and texture of
complex objects, such as road signs and traffic signals [7]. Although computer vision
algorithms have made some progress in visual 3D detection, the task remains challenging
due to a lack of accurate depth information [8].

LiDAR is another commonly used sensor that can accurately calculate the object’s
distance relative to the sensor, creating a detailed point cloud representation of the envi-
ronment. However, one notable drawback of LiDAR is that its effectiveness diminishes at
greater ranges, resulting in sparser point clouds and decreased object detection capabilities.
This limitation is critical in scenarios where long-range detection is necessary, as it can
compromise the system’s ability to respond to distant obstacles effectively.
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Camera and LiDAR systems can also be adversely affected by weather conditions such
as heavy rain, snow, or fog [9]. Such environmental challenges not only heighten the risks
associated with autonomous driving but also pose significant hurdles to the advancement
of related technologies. Ensuring safety and reliability in varied weather conditions is
essential for the widespread adoption of autonomous vehicles.

To achieve high-level autonomous driving capabilities, multi-modal fusion of sensor
data is increasingly recognized as a necessity [10-13]. Fused data is often collected from
various sources, including 3D radar, cameras, LIDAR, and 4D radar, because each sensor
type contributes with unique advantages. For instance, while LiDAR provides high accu-
racy in detailed surroundings, 4D radar offers extended detection ranges (exceeding 500 m)
and better performance under challenging conditions.

The fusion of these diverse data streams allows autonomous systems to leverage the
strengths of each sensor, compensating for their weaknesses. By combining the precise
distance information from LiDAR with the comprehensive environmental understanding
from cameras and the long-range capabilities of 4D radar, assisted driving systems can
also benefit from the integration of different data streams. This multi-faceted perspective is
critical for making real-time decisions and ensuring the safety of passengers, pedestrians,
and other road users.

Despite the significant advancements in sensor technologies and multi-modal fusion
for autonomous driving, several open points and research gaps remain. One major area
that requires further exploration is the improvement of the algorithms for effective data
integration from diverse sensors. Current methods struggle with the challenges posed
by sensor discrepancies, such as varying resolutions, noise levels, and operational ranges.
Additionally, there is a need for robust perception techniques that can effectively handle
the complexities of real-world scenarios, including dynamic environments with rapidly
changing conditions such as urban environments. Another critical gap is the development
of standardized benchmarks and evaluation metrics to assess the performance of perception
systems, which will be only partly discussed in this paper. The objective here is to assess
the performance of a rather simple but flexible setup specifically in urban scenarios and
provide an open platform for generalized development of fusion algorithms.

3. Methodology

The proposed sensor fusion approach is based on a calibrated camera-LiDAR sensor
set, a properly trained object detector, and a ROS (Robot Operating System) ([14]) envi-
ronment running on an embedded onboard computer. The goal is to combine sensor data
to extract the detected objects’ positions so that a high-level ADAS can use it. The sensor
fusion process consists of six steps: time synchronization of the data flows, preprocessing
of the point cloud, distance calculation, projection of the 3D point cloud to the 2D images,
distance measurement of the detected object, and output of the complete information.

3.1. Time Synchronization of the Data Flows

The fusion algorithm needs to subscribe to two topics: a source of point cloud data and
an image with bounding boxes. The two data flows considered in the application proposed
are 2D images from a camera and 3D point clouds from a LiDAR. The streams usually
come at different rates: in the case of LIDAR, point cloud data is available at 10 Hz, while
the object detector outputs images at a maximum rate of 5 Hz on the platform considered.

A data synchronization method is embedded in the pipeline to allow real-time fusion
of the data streams. ROS provides an embedded policy-based time synchronizer in the
“message_filters” library, which takes in messages of different types from multiple sources
and outputs them only if it has received a message from each of those sources with the
same timestamp. There is a timestamp in the header of both the data frames considered.
Two policies can be adopted at this stage: the ExactTime and the ApproximateTime [15,16].
The ExactTime policy requires messages to have exactly the same timestamp in order to
match, while the ApproximateTime policy uses an adaptive algorithm to match messages
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based on their timestamps. Since it is unrealistic for the sources considered to have frames
from the two data flows at the exact same time, the ApproximateTime policy has been
chosen. Its process to find the best match by allowing time differences is shown in Figure 1.
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Figure 1. ApproximateTime policy graphical representation with four data streams. The red dots in
the figure represent the pivot data points used to synchronize the different messages in one sample.

3.2. Preprocessing of 3D Cloud Points

The core of the fusion process is a callback function that uses as input the point
cloud data of the sensor_msgs::PointCloud2 message type and the image data with detection
information of the vision_msgs::Detection2D Array message type.

The PCL library [17] is used to process the point cloud data, and OpenCV [18] to
process the image data. The first task is to convert the message in sensor_msgs::PointCloud?2
data type to the PointCloud < pcl::PointXYZRGB > data type in PCL and apply a filter
on the lateral direction to limit the field of view (FoV) to 10 m on each side. The purpose
is to focus on detecting the distance only of the objects in front of the vehicle and in the
adjacent lanes.

3.2.1. Point Cloud Filtering and Downsampling

The second task is to filter out the points belonging to the ground to reduce the size of
the point cloud and lower the computational burden of the following steps. The points on
the ground account for a considerable portion of the cloud, and they can affect the accuracy
of the clustering task. Many methods are used in the literature for ground filtering, such as
RANSAC [19], morphological approaches [20], or machine learning-based methods [21].
However, those methods are complex and resource-intensive, which is against the purpose
of this preliminary step. To increase accuracy in the clustering step, a straightforward
approach has been selected: a threshold on the z-axis is set to filter out points on the ground
according to the position of the LiDAR relative to the ground. The pcl::PassThrough
function is used to implement this operation.

The adopted method is the well-known voxel grid downsampling [22]. The pcl::Voxel Grid
function is applied to realize the voxel grid downsampling. Despite being a little slower,
it has proven to be more accurate, so it uses the centroid as the representative point.
The voxel grid leaf size is set to 10 cm, according to the planned application scenario where
the common detection distance is between 5 and 20 m. Experiments with sizes in the range
of 5 to 30 cm have proven that the selected size retains the best trade-off. This process
effectively reduces the number of points by preserving the overall distribution and shape
of the original point cloud.

3.2.2. Point Cloud Clustering and Data Association

The next step involves cluster extraction from the downsampled point cloud to en-
hance detection capabilities. Challenges such as object overlap, background noise, and hard-
ware misalignment can degrade data association. By downsampling, distant objects become
sparser while closer objects remain prominent. Proper clustering parameters help filter out
background noise, ensuring that detected object distances are accurately measured, even
admitting projection deviations.

In the proposed approach, extraction of the Euclidean clusters is performed with the
pcl::EuclideanClusterExtraction class. The class provides various parameters that can be
adjusted to control the clustering behavior, including the minimum and maximum cluster
sizes, the distance threshold for considering points as neighbors, and the search method to
use. The first step is to define a search method for the extraction, and PCL provides three
main search methods, namely KdTree [23], Octree [24], and FlannSearch [25].



Sensors 2024, 24, 7895

50f21

In the considered application, KdTree is the most suitable for a fast and efficient
nearest-neighbor search. Its main parameters (cluster tolerance and min-max cluster sizes)
have been chosen accordingly. The cluster tolerance is the distance threshold used to
specify the maximum distance between two points for them to be considered belonging
to the same cluster. This parameter has a significant impact on the quality of clustering,
as a larger tolerance value allows greater distances between points, resulting in larger
clusters, and vice versa. In the considered application, the tolerance is set to 30 cm. With a
chosen voxel size of 10 cm during downsampling, it is reasonable to assume that for the
two adjacent voxels in the diagonal direction, the maximum distance between the farthest
points is smaller than 35 cm.

The other two parameters are minimum and maximum cluster size, which represent
the minimum and maximum number of points required for a cluster to be considered valid.
The values chosen are 50 for the minimum and 20,000 for the maximum because the main
target for the downsampling and clustering is to filter out the noisy background. As it is
reported in Section 4.1.1, there are at most 64,000 points (32 rows x 2000 columns) in each
frame of the point cloud considered. By limiting the FoV to 120° horizontally, the number
of points left after the preprocessing is around 1/3 of the total points. According to our
experience in processing the point cloud of the HESAI PandarXT-32, for the largest object
encountered on the road (i.e., a bus), the number of points in the cloud does not exceed
20,000 points, and for the smallest object detected (i.e., a pedestrian), the number of points
in the cloud is typically more than 50 to ensure a meaningful detection. So, the pair of
parameters mentioned above is safe to ensure acceptable performance.

The set of parameters presented in this section and reported in Table 1 has proven to
be the most reliable during the experimental tests of the pipeline, as discussed in Section 4.

Table 1. Parameters used for point cloud preprocessing.

Parameter

Lateral Limit

Height Limit Leaf Size Cluster Tolerance Min Cluster Size Max Cluster Size

Value

5.0

-2.0 0.1 0.35 50 20,000

3.3. Multiple Objects’ Distance Estimation

There are different ways to define the distance between a vehicle and surrounding
objects, each with its advantages and considerations. One approach is to leverage point
cloud data to calculate the three-dimensional Euclidean distance. By working in three-
dimensional space, an accurate measure of the physical distance between the 3D sensor
and the object is obtained, as reported in (1).

d=/(xp — %02+ (yp — ¥0)* + (zp — 20)? M

where the following is true:

*  (x0,Yo, zo) are the 3D coordinates of the origin of the reference frame of the sensor.
*  (xp, yp, zp) are the 3D coordinates of the object represented in the reference frame of
the sensor.

Another viable option is to directly use the distance information along the y-axis
to represent the object’s distance in front of the vehicle, i.e., the longitudinal distance.
This approach assumes that the vehicle’s forward direction aligns with the y-axis of the
LiDAR. By considering only the longitudinal distance, the estimation is simplified and the
problem’s dimensionality is reduced. This method can be particularly useful in certain
scenarios where the precise three-dimensional location of objects might not be necessary,
i.e., for purely longitudinal vehicle dynamics control, as in the case of the application.

3.3.1. 3D to 2D Projection

The projection of the 3D cloud points onto 2D Yolov7 detection images is the core
of the proposed algorithm. This operation aims at assigning the LiDAR points to the
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corresponding objects in the camera images. To get the LIDAR and the camera to work
together, it is crucial to perform the joint calibration between the sensors and work in
a common coordinate system. The joint calibration typically involves determining the
relative position and orientation between the sensors [26], which is described by the
extrinsic parameters.

The model of the image frame considered in this work during the projection procedure
is the distortion-free projective transformation given by the pinhole camera model [27].
By applying the model, the roto-translation into a 3D coordinate frame is described by (2)

pc = A[R[t]P; )

where the following is true:

*  pcisa2D pixel in the image plane in the camera coordinate system [u;v; 1];
*  Ais the matrix representing the intrinsic parameters of the camera;

e [R|t] is the roto-translation matrix representing the extrinsic parameters;

e Ppisa3D point expressed in the LIDAR coordinate system [Xp; Y7; Z; 1].

The intrinsic parameter matrix A is used to project the 3D points in the camera
coordinate system Pc = [X¢; Y¢; Z¢] to 2D pixel coordinate system pc = [u;v;1]:

pc = APc (3)

A is a 3 x 3 matrix composed of the focal lengths fy and f,,, which are expressed in
pixel units, and the principal point (cx, ¢;), which is usually the image center:

fx 0 ¢y
A=10 f, ¢ 4)
0O 0 1

Therefore, the projection Equation (3) can be expressed as follows:

fx 0 Cx XC
=10 fy of|Ye (5)
0 0 1]|Zc

_aQ

The intrinsic parameters do not depend on the scene represented and are provided in
the camera calibration file. In the ZED2 case, matrix A also comprises the distortion coefficients.

The transformation matrix [R|t] in (2) represents the extrinsic parameters from the
sensors’ calibration, matrix R and vector ¢. It is used to perform the change of basis from
the LiDAR’s coordinate system L to the camera’s coordinate system C. R is a 3 x 3 rotation
matrix, and f is a 3 x 1 translation vector. It is defined as follows:

M 2 3 tx
[Rlt] = |ro1 12 123 1y (6)
r31 ta 133 I

From this definition, a 3D point P, = [X1;Y];Z;;1] detected by the LiDAR can be
represented in the camera frame as Pc = [Xc¢; Y¢; Z¢] applying [R|t] as follows:

Xt
Xc 1tz 13 bx Y
Yo | = |ra1 2 13 Hy Z )

Zc a1t 13 bz |
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Therefore, when the parameters are combined, Equation (2) can be rewritten as follows:

X
u fx 0 cx|[rin 2 r3 tx YLL
vl =10 fy Cy| |1 T2 T3 By 7 (8)
1 0 0 1 r31 Tr3p 133 fz 1L

The objective of calibration is to acquire the extrinsic parameters R and ¢ in a consistent
and repeatable fashion [28]. Both are very sensitive to noise during the feature extraction
process, as small errors in rotation or translation estimation can greatly affect the usability
of the calibration result. Tsai et al. [29] proposed a well-designed method to perform the
calibration using multiple sets of poses on a chessboard to obtain a robust estimate of the
calibration parameters with their uncertainty. This method was adopted to calibrate the
proposed LiDAR-camera system; the results of the calibration are reported in Section 4.2.1.

The cv::project Points function is employed to execute the projection process. The input
to the function is an array of 3D LiDAR points, and the output yields an array of corre-
sponding 2D image points, specifically the pixels within the Yolov7 detection image. Each
pixel corresponds to a LIDAR point in the input data.

3.3.2. Distance Measurement Association with Detected Objects

After the point cloud data is projected, the detected objects are evaluated based
on their bounding boxes, which contain information about their class and dimensions.
An iterative method is used to accurately identify whether projected 3D points fall within
the bounding boxes. Given the diverse shapes of detected objects, corners of bounding
boxes can lead to background points being mistakenly included. To mitigate this problem,
the method proposed applies a re-scale factor to both the height and width of the bounding
box, effectively shrinking it, which allows the algorithm to focus on the points around the
center of the object. In the application presented, a re-scale factor of 90% is already capable
of obtaining satisfactory behavior.

Once points within the adjusted bounding box are identified, their distances are
extracted from a corresponding vector. Two methods for representing the relative distance
are proposed: the minimum distance and the average distance. However, outliers can skew
the average distance calculations, so a truncated mean method is implemented to ignore the
highest 10% of distances. The minimum distance reflects the closest point to the ego vehicle,
while the average distance provides a broader context of distances. By comparing these
two metrics, the system aims to align more closely with the driver’s perception of distance,
considering that the sensor’s FoV differs from the driver’s. This evaluation enhances the
usability and safety of the distance measurement method, making it more intuitive for
real-world driving scenarios.

3.3.3. Output of the Detection Information

The last step of the algorithm proposed is to output any necessary information ac-
cording to the different requirements of the upstream ADAS control logic at different
development stages. At the testing stage, the algorithm is set to publish point cloud data
after the downsampling and clustering to tune their parameters and visualize the projected
LiDAR points on the image to check the projection’s performance. Detection information is
also necessary at this stage, such as object class, confidence score, and distance information,
and saving the information for post-processing.

The overview of the sensor fusion pipeline proposed is presented in Figure 2. The code
of the projection method as well as the complete pipeline used for testing are available at
https:/ / github.com /stefavpolito/perception-MOST (accessed on 21 November 2024).
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Figure 2. Overview of the sensor fusion pipeline with the sensors proposed for the experiments.

4. Experimental Results

In this section, the experimental setup used to verify the performance of the fusion
method is presented. The definition of hardware setup is presented first, and then the
pipeline deployment from environment preparation to training of the object detector is
addressed. The second part presents the validation tests performed on different driving
scenarios to assess real-time performance and impact on the final application.

4.1. Experimental Vehicle Setup
4.1.1. Hardware Selection and Algorithm Deployment

The onboard workstation is the Al Vehicle Computer RSL A3 from Syslogic AG
(Baden, Switzerland), combining an Jetson AGX Xavier OEM module from NVIDIA Corp
(Santa Clara, CA, USA) with an embedded aluminum housing resistant to shock and
vibration. The operating system is NVIDIA Linux for Tegra (L4T 35.1.0), Ubuntu 20.04,
JetPack 5.0.2, and ROS Noetic. ROS [14] has been chosen to ensure compatibility of various
dependencies required by the detector and the drivers of the LIDAR and camera sensors.

The sensors’ setup considered during the experimental validation consists of a camera
for 2D images and a LiDAR as a source of 3D point clouds. The camera adopted is a ZED2
Stereocamera from Stereolabs Inc (San Francisco, CA, USA) that provides a 2.2k resolution
video output and an FoV of 120°. The LiDAR is a PandarXT-32 from Hesai Photonics
Technology Co., Ltd (Shanghai, China), featuring 32 channels with 1° of vertical resolution
and horizontal FoV limited to 120°. To assess the viability of installing the sensor set on an
actual vehicle, an integrated LiDAR-camera support has been designed. The configuration
shown in Figure 3 has been mounted above the windshield as depicted in Figure 4.

Figure 3. Hesai PandarXT-32 LiDAR and Stereolabs ZED2 camera integrated sensors’ setup.



Sensors 2024, 24, 7895

9 of 21

Figure 4. LIDAR and camera mounting position on the vehicle used for on-road data acquisition.

4.1.2. Training of the Object Detector Yolo v7

According to the requirements of the considered application, there are 26 classes
of objects that need to be detected, including vehicles, traffic light status, speed limits,
traffic signs that might affect ego speed, and other objects such as pedestrians and bikes.
The detailed classes are listed as Table 2.

A custom dataset has been prepared and used to train the neural network. Many
annotated datasets for autonomous driving research can be found in the literature, but their
annotations do not meet all the specifications required. For this reason, the images from
these datasets have been used and manually annotated using the Yolo_mark tool provided
by Alexey Bochkovskiy [30], which is a graphical user interface (GUI) for marking bounding
boxes of objects in images for training Yolo neural networks.

Table 2. List of labels classes used for training of Yolo v7.

ID Class ID Class ID Class
0 vehicle 6 speedlimit_20 12 speedlimit_80
1 trafficlight NA 7 speedlimit_30 13 speedlimit_90
2 trafficlight_G speedlimit_40 14 speedlimit_100
3 trafficlight_Y 9 speedlimit_50 15 speedlimit_110
4 trafficlight_R 10 speedlimit_60 16 speedlimit_120
5 speedlimit_NA 11 speedlimit_70 17 speedlimit_130
18 yield 21 bumper_sign 24 pedestrian
19 stop 22 crosswalk_sign 25 bike

20 stop_horizontal 23 crosswalk_line

The total selection is of about 3 thousand images to train the Yolov7, which contains
1451 images from BDD100K [31], 99 images from The German Traffic Sign Recognition
Benchmark (GTSRB) [32], 706 images from The German Traffic Sign Detection Benchmark
(GTSDB) [33], and 852 images from a road sign detection database. The parameters used to
train the Yolo v7 on a local workstation are listed in Table 3. The labeled dataset is available
at github.com/stefavpolito/yolo-automotive-dataset (accessed on 21 November 2024).
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Table 3. List of parameters used for training of Yolo v7.

Parameter Workers Batch-Size Img Epochs
Value 4 4 640 x 640 600

4.2. Sensor Fusion Method Validation
4.2.1. Calibration of Sensor Set

To validate the sensor fusion method on a real test vehicle, a calibration step is
needed to retrieve the extrinsic parameters of the 3D-to-2D projection. According to [29],
the calibration procedure employed 33 poses captured with a chessboard with 7 x 5 inner
vertices with a 90 mm square length and a board dimension of 565 x 793 mm. The output
parameters are tightly linked to the mounting of the sensors and are reported as the peaks
of the Gaussian fit curve of Figure 5, where the histogram of their accuracy is also reported.

Extrinsic Parameter Results
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Figure 5. Extrinsic parameters with standard deviation from the calibration procedure [29].

The output calibration parameters in Table 4 describe the transformation from the
camera frame to the LiDAR frame, which means that the camera coordinate system is
the parent coordinate system, and that is the rule defined in the OpenCYV library. How-
ever, in the fusion algorithm, the rotation vector required by OpenCV is in Rodrigues
rotation representation, while the rotation vector given by the calibration algorithm is in
Euler angle representation. The additional transformation required has been employed to
compute the final rotation vector [0.0061, 2.2445, —2.1959] and translation vector [0.0654,
—0.0781, —0.0458].

Table 4. Output parameters from the calibration procedure.

Parameter Value Unit
roll —1.5927 deg
pitch 0.0038 deg
yaw 3.1399 deg

X 0.0654 m

y —0.0781 m

—0.0458 m
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4.2.2. Assessment of Distance Measurement Accuracy

The evaluation of the distance measure accuracy is conducted in controlled conditions
on two tests. The first scenario is an empty parking lot with standard 2.5-meter-wide
parking spaces. As shown in Figure 6, a target vehicle is parked in a fixed position,
while the test vehicle starts 2.5 m behind it. The test vehicle moves backward, increasing
the distance by 2.5 m at each step until the target is out of the Yolov7 detection range.
This setup allows comparison between measurements obtained from the sensor fusion
algorithm and a ground truth distance measurement, verifying the system’s functionality
in real applications.

Figure 6. Distance measure evaluation in parking lot scenario with target vehicle.

The second test follows a similar procedure but uses a yield sign as the target, as shown
in Figure 7. The test vehicle approaches the sign to determine the maximum distance
at which the system can recognize it. This test also compares the Euclidean distance
representation with the longitudinal distance representation, highlighting the importance
of choosing the most suitable distance representation to use LIiDAR’s precision effectively.

Figure 7. Distance measure evaluation in parking lot scenario with yield sign target.

The LiDAR point cloud representations of the two tests are reported in Figure 8.

Figure 8. Parking lot scenario point cloud visualization (left: vehicle, right: yield sign).



Sensors 2024, 24, 7895

12 of 21

In Figure 9, it can be observed that the measured distances closely align with the
ground truth, indicating that the LIDAR’s ranging capability is reliable and precise when
measuring a single target directly in front of the vehicle, with minor disparities between the
two distance representations. However, as shown in Figure 10, in the second test using the
yield sign, the difference between the distance representations becomes more pronounced.

Raw Data vs Clustered Data Distance Estimation

O Raw

X Clustered

Ground Truth

Distance [m]

Time [s]

Figure 9. Comparison of distance estimation methods on vehicle detection in parking lot.

This disparity arises because the Euclidean method takes into account the height
(z-axis) and lateral distance (x-axis) of the detected object, as depicted in Figure 11. This
test proved the hypothesis in Section 3.3, and it can be concluded that in common driv-
ing scenarios, the longitudinal distance representation is more aligned with the driver’s
perception of distance.

55 Longitudinal vs Euclidean Distance Estimation

O Longitudinal
+ Euclidean
Ground Truth
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Figure 10. Comparison of distance estimation methods on yield sign detection in parking lot.
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Figure 11. Longitudinal and lateral distance estimation performance. The blue data points in the
figure represent the longitudinal distance estimation, while the red points represent the lateral one.
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4.3. Distance Estimation Method Validation
4.3.1. Assessment of the Stability of Object Detection and Distance Measurement

Also in this case, two tests have been implemented to assess the stability of the data
association during common driving, namely in a car-following scenario in urban areas.

The first test is set on an empty suburban road where a target vehicle gradually
moves ahead until it is no longer recognized. The test vehicle pursues the target until it
re-establishes a fixed following distance, as shown in Figure 12. The test aims to benchmark
the effectiveness of raw versus preprocessed data, using as metrics the maximum effective
detection distance and root mean square error (RMSE) of the distance measurements,
with longitudinal measurement as the primary distance representation.

Figure 12 shows that the maximum stable detection distance for clustered data is
25 m, while raw data can reach 30 m, aligning with drivers’ focus in urban environments.
This detection range meets the ADAS requirements for this scenario. Additionally, both
preprocessed and raw data yield consistent, reliable distance measurements, demonstrating
the fusion algorithm'’s effectiveness in maintaining accuracy during car-following.

Furthermore, a filter on the lateral coordinate has been implemented to restrict the
FoV and focus on the current lane. Figure 13 presents a comparison of the performance on
the final distance estimate.

The second test focuses on the stability of the measurement in a typical urban driving
scenario, where a vehicle in front is followed and several traffic lights and signs are
encountered. The distance measurements captured provide valuable insights into the
system’s performance. As shown in Figure 14, the minimum distance recorded is 5 m,
indicating that a safe distance from the vehicle in front is guaranteed when coming to
a stop. The maximum distance observed is 30 m, representing the system’s maximum
ranging capability.

Clustered vs Raw Data Distance Estimation
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45 + Raw
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E 3 +

g - *
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o

% ] ° - @bt ®
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0 10 20 30 40 50 60 70
Time [s]

Figure 12. Test performed on a car-following scenario on a suburban road.
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Filtering on Lateral Coordinate - Following Scenario
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Figure 13. Detection in the following scenario of filtering on the lateral coordinate.

Relative Distance Measure in Urban Car-Following Scenario
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Figure 14. Relative distance acquisition: raw data in blue and filtered data in red.

The stability and the repeatability of the measured distances are crucial aspects of an
ADAS, as they directly impact the system’s ability to make informed decisions. An example
is the usage of distance information to provide timely warnings to the driver in applications
such as Adaptive Cruise Control (ACC) enhanced with emergency brake functionality.

4.3.2. Performance in the Detection of Multiple Objects and Distance Estimation

The next tests aim to assess the system’s performance in detecting multiple objects
and accurately measuring their relative distances. The experiments have been conducted
in three different locations, each representing real-world driving scenarios that can occur
during the normal operation of vehicles in urban conditions:

¢  Single-lane road in neighborhood: the scenario involves a typical neighborhood with
parked cars, pedestrians, bicycles, and traffic signs, aiming to assess the reliability in
detecting and measuring distances in a complex environment.

*  Two-lane road without traffic light: the tests were conducted on a two-lane road
with low traffic, featuring pedestrians and vehicles, to evaluate the performance in a
realistic urban driving environment without traffic lights.

*  Three-lane road with traffic light: the scenario involved approaching a traffic light on
a three-lane road with lane switching. It aimed to assess the distance measurement
and traffic light detection in dynamic conditions.

The criteria proposed to evaluate the performance of the fusion method in the previ-
ously defined scenarios are the following:
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Accuracy of Yolov7 detection: Yolov7’s detection accuracy is assessed by comparing
correct and false detections against the total number of objects, evaluating its reliability
in real-world scenarios.

Distance representations: the average distance of measured objects by class is calcu-
lated, allowing for a comparison of representations to evaluate the effectiveness in
reflecting the proximity between the test vehicle and the encountered objects.

Valid ranging ratio: the ratio of valid distance detections to the total detections by
object class is evaluated, offering insights into the system’s ranging capability for
various object classes.

4.3.3. Discussion of the Results on Multiple Object Detection Scenarios

After data acquisition and post-processing, the following results can be highlighted

from the three scenarios proposed to assess performance on multi-object detection. The dis-
cussion is divided into the three scenarios presented in the previous section:

Single-lane road in neighborhood: As shown in Table 5 and Figure 15, Yolov7 demon-
strates high precision in detecting vehicles within a crowded environment. However,
there may be instances of false detections for less usual objects. For objects with
valid distance measures, the average distances obtained are found to be reasonable.
However, it is worth mentioning that the measurements for traffic signs may not
always be valid because of the challenge of recognizing them steadily as targets.
Two-lane road without traffic light: As shown in Table 6 and Figure 16, Yolov7 per-
forms better in a less crowded environment. The average distances are also acceptable
for objects with valid distance measures. The acquisitions for traffic signs are still less
reliable, even though they do not suffer the issue of misidentification.

Three-lane road with traffic light: As shown in Table 7 and Figure 17, there are fewer
objects in the scenario since the driving is in a traffic flow. The performance of Yolov7
is stable, but there are still false detections in the speed limit signs. The average
distances are also reasonable; however, the measurements for traffic lights are not
available because of the difficulty in data association.

Table 5. Single-lane road in neighborhood.

Class Detection False Detection Total doyclidean Ml Elongitudinul [m] Valid Ranging [%]
Vehicle 82 0 82 7.59 6.82 914
Crosswalk Line 4 1 4 6.79 5.99 30.8
Pedestrian 4 1 5 6.25 5.54 75
Bike 1 1 2 5.67 4.70 100
Bumper Sign 1 0 1 N/A N/A 0
Speedlimit 40 1 1 1 N/A N/A 0
Table 6. Two-lane road without traffic light.
Class Detection False Detection  Total Aoyctidean (Ml Elvngitudinal [m] Valid Ranging [%]
Vehicle 61 0 61 9.83 9.05 75.5
Crosswalk Line 4 0 4 8.71 8.34 76.9
Pedestrian 6 0 6 7.51 7.19 14.3
Bike 1 0 2 6.55 5.09 25
Crosswalk Sign 5 0 5 14.23 13.95 3.8
Speedlimit 30 1 0 1 N/A N/A 0
Stop Sign 1 0 1 14.36 13.79 100
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Figure 16. Two-lane road without traffic light.

Table 7. Three-lane road with traffic light.

Class Detection False Detection  Total deuctidean [ml djongitudinal [(m]  Valid Ranging [%]
Vehicle 23 0 23 11.24 10.88 62.7
Red Light 2 0 2 N/A N/A 0
Green Light 5 0 5 N/A N/A 0
Crosswalk Line 3 0 3 8.33 7.63 66.7
Pedestrian 4 0 4 5.16 3.86 24
Bike 2 0 2 9.82 8.98 18.2
Yield Sign 2 0 2 12.88 12.59 6.67
Speedlimit 30 0 2 0 N/A N/A 0
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Figure 17. Three-lane road with traffic light.

5. Discussion

Through the analysis of the three urban driving scenarios mentioned in the last section,
several points of discussion can be addressed. In the following, the discussion is divided
between the main key performance indicators identified and the conclusions on the system’s
performance are drawn.

Accuracy of Yolov7 detection: The current training of Yolov7 demonstrates satisfactory
reliability in detecting common objects such as vehicles, traffic lights, and pedestrians.
Remarkably, the detection success rate of vehicles and traffic lights, which are the main
objects of interest in the application, is 100%. However, there are some instances of false
detection when it comes to traffic signs. This discrepancy suggests that the current training
data may not be as comprehensive or specific for accurate detection and recognition of
traffic signs. To address this issue, further training of the model with additional dedicated
datasets specifically focused on traffic signs is recommended.

Distance representation: It is observed that when an object is detected by Yolov7 and
has a valid distance measurement, both the Euclidean and longitudinal representations
provide reasonable and consistent distance measurements that align with the corresponding
scenarios. Based on the tests conducted and the analysis performed, it can be concluded
that considering the nature of driving scenarios and the need to match the driver’s distance
perception, the longitudinal distance emerges as a more suitable representation in real-
world driving situations.

Valid ranging ratio: The ranging ability of the system demonstrates variations across
different classes of objects. Objects that are relatively large and have a clear line of sight
from the LiDAR’s perspective, such as vehicles, bikes, and pedestrians, consistently yield
valid distance measurements. For instance, in the first two scenarios where the objects are
not obstructed by other objects, the valid ranging ratio exceeds 75%. This indicates that the
system successfully provides valid distance measurements for a significant portion of the
detected objects. However, in the third scenario, where several objects are present in parallel
lanes, the valid ranging ratio is decreased to 65%. This stability in distance measurement
validity can be attributed to the prominent presence and unobstructed visibility of these
objects. However, for smaller objects, such as traffic lights and traffic signs, the validity
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of distance measurements is less reliable. As for the crosswalk lines on the road, they
might pose challenges for the ground filtering function, leading to potential difficulties
in obtaining valid distance measurements. Additionally, certain vehicles and pedestrians
that are obstructed by other objects from the LIDAR’s perspective may also exhibit a lower
likelihood of obtaining valid distance measurements. These findings indicate that the
ranging ability of the system is influenced by the size, visibility, and potential obstructions
of the objects being detected. Larger and more visible objects tend to yield more consistent
and reliable distance measurements, while smaller or obstructed objects may present
challenges in obtaining valid measurements.

FoV limitation vs. fusion time: From the tests conducted on the pipeline, the lim-
itation of the FoV has significantly improved the fusion processing time. After limiting
the x-axis to cover a range of 4 m on each side of the vehicle to focus on the adjacent lanes,
it has been observed that there was a 50% reduction in the number of points that needed
to be processed compared with the unrestricted scenario. Remarkably, in the operation,
the fusion time was reduced to just 10% of the original processing time. This indicates
that by applying an FoV limitation, it can reduce the number of point cloud data to be
processed and significantly improve the fusion processing speed. This FoV filter allows
for an effective trade-off between the system’s reliability and computational efficiency. It
enables lowering the ‘min_cluster_size” parameter to detect more clusters and improve
the detection capability for distant objects while maintaining the appropriate processing
speed. This filtering technique plays a crucial role in the system, providing an effective and
reliable solution to enhance the detection of distant objects.

As a final remark, further validation and testing in diverse real-world scenarios are
necessary to solidify these findings and ensure their general applicability.

6. Conclusions

With the increasing convergence of artificial intelligence and the automotive industry,
the capability of vehicles to perceive their surroundings, process data in real-time, and inte-
grate information has become a crucial aspect of an ADAS. This work aims to investigate
the feasibility of meeting the ADAS requirements for the environmental awareness task in
a real-world application and propose a practical solution.

Based on the experimental tests, several key conclusions can be drawn. First, the Yolov7
object detector is shown to be well-suited for real-time custom object detection tasks. Its
accuracy and reliability make it a valuable choice for ADAS applications. Additionally, the pre-
processing of point cloud data proves to be essential in ensuring accurate and stable detection
and distance measurement in real-world driving scenarios. Although this operation can slightly
reduce the effective detection distance, it is crucial to achieve reliable results in complex en-
vironments, making the trade-off between accuracy and efficiency justified in this context.
Regarding distance representations, the minimum longitudinal distance has proven to be
aligned with the driver’s perception of distance in real-world driving scenarios while being the
most appropriate for safety distance assessment. In Figure 18 the final outcome of the pipeline
in terms of 3D points projection on the camera images is shown.

This work outlines the process of exploring, designing, implementing, and evaluating a
perception pipeline for an ADAS. By establishing the theoretical basis, developing hardware
and software architectures, and performing real-world tests, this work aims to demonstrate
the feasibility and effectiveness of the system’s environmental awareness. The data and
analysis provide valuable insights for further developments, offering an opportunity to
enhance performance and detection capabilities in real-world driving scenarios. On the
hardware side, the integration of multiple sensors can improve redundancy and extend
the detection range. This can be achieved by incorporating more advanced LiDAR sensors,
radars, or additional cameras to provide a more comprehensive view of the vehicle’s
surroundings. The integration of new sensors can enhance the accuracy and reliability of
the perception task, and it requires a low integration effort.
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Figure 18. Projected 3D point clouds on 2D camera images.

From a software standpoint, further development of the fusion algorithm can be
envisaged. The inclusion of an object tracking function can greatly enhance the system’s
performance by enabling the tracking and prediction of actors’ movements. This function-
ality can improve decision-making capabilities and boost proactive responses in evolving
traffic situations. Additionally, the projected image stream can be leveraged to generate an
intuitive visualization for the driver, which can enhance situational awareness.

In conclusion, this work provides a solid platform for future developments. Upgrading
the hardware components, improving the fusion algorithm, and incorporating advanced
visualization techniques can further enhance performance, safety, and user experience.
Continuous innovation and advancements in this field will contribute to the realization of
more sophisticated and effective ADAS in the future.
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