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Abstract: This study aimed to design a linear matrix inequality (LMI)-based robust control system
and a failure identification method for small spacecraft. The key feature of the proposed method is its
capability to withstand failure in the actuation system by means of the observer and controller gain
definition. An effective approach for withstanding failure is required due to the small capabilities
of the momentum exchange device (MED) and the system’s sensitivity to external perturbations.
Passive fault-tolerant approaches can be included in the design process of the control algorithm. In
particular, the main objective of this study was the design of an H∞ controller that started from an LMI
formulation and considered the parametric uncertainties and matched failure of the actuation system.
In addition, a fault detection method based on sliding mode observers was proposed to include
an active disturbance correction algorithm and improve the system robustness and performance
during spacecraft stabilization. The closed-loop system was evaluated for different initial conditions,
including attitude positions that are far from the desired condition. The effectiveness of the proposed
approach was demonstrated using extensive simulations that considered a pyramidal actuation
configuration and hardware constraints.

Keywords: robust controller; observers; failure rejection; spacecraft dynamics; attitude control;
attitude stabilization

1. Introduction

In the last few years, technological improvements and the resulting miniaturization of
processors and electronics have given small satellites new capabilities and better perfor-
mance. The increased usage of small satellites has led to bigger attention from customers
for any kind of failure that can affect the spacecraft at any moment. Particularly, spacecraft
attitude, communication, or scientific observation impose strict requirements in terms of
attitude stability and accuracy. The attitude accuracy is usually a function of the mission
scenario and spacecraft characteristics; some mathematics related to the accuracy evalua-
tion for different missions can be found in [1] and in [2] for a real-time implementation. A
pointing stability index, for example, can be evaluated during the most critical maneuver
phases, as detailed in [3]. Moreover, the reduced mass causes the spacecraft to be more
sensitive to external perturbations, and momentum exchange devices (MEDs) have more
limitations due to their smaller dimensions.

For this reason, any kind of failure in the actuation system may critically affect the
success of the mission. Generally, over-actuated systems guarantee redundancy in the
actuators to withstand failures, but the controller design must also allow for this eventuality.
In this context, robust control methods for small satellites have been attracting the attention
of the space systems community, which needs effective approaches for withstanding
failures. Moreover, robust controllers are generally adopted to deal with bounded plant
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uncertainties, which guarantees the required performance and stability. A first definition of
robustness, although not so rigorous, can be the capability of the control system to work
well under sets of parameters that are different from the nominal one. For example, these
parameters can be uncertainties within the system that are not known but are bounded.
Failures can be considered as a bounded uncertainty of the system, and the controller can
be designed to guarantee a robust performance.

Robust controllers can be designed to act as passive fault-tolerant algorithms, as
in [4,5]; however, they have limited fault tolerance capabilities, as can be seen in [6,7].
Despite the robustness to failure being verified, some perturbation may eventually lead to
instability or loss of performance. This is directly related to the loss of control effectiveness.
An active approach would result in a more effective performance, but it requires a fault
detection system for the complete awareness of the system in real time, as seen in [8,9] for
aerial multirotors. Identifying the failure may allow for the reallocation of the control to
between the remaining actuators, which would limit the control action loss.

Among robust control strategies, the H∞ control method is well established and
studied. Referring to this controller makes the designer aware of its closed-loop system
properties and performance. Recent studies on the H∞ controller show the introduction
of the suboptimal problem [10–12]. As conducted in [13,14], the suboptimal problem is
brought back to a linear matrix inequalities (LMIs) problem. Solving the LMI problem using
numerical methods allows the design of the controller to follow a theoretical approach; in
this way, the controller is already designed to satisfy the system requirements. The LMI
design approach is under investigation for different control strategies [15–18]. With respect
to previous work, the current study proposed the inclusion of failure and uncertainties
directly into the design process. In this study, the solution of the suboptimal problem in
the LMI formulation was addressed to include plant uncertainties related to parameter
variation in the design process of the H∞ controller. Failures were modeled as unknown
disturbances acting on the systems and were included as uncertainties in the design process.

In this way, it is possible to design a robust controller that also achieves high perfor-
mance when failure occurs. However, this design process makes the controller extremely
sensitive, making actuators generally work at their maximum or minimum torque. This
limitation makes it difficult to design an effective control allocation algorithm to further
improve controller performance, as control allocation algorithms are the main solution
for achieving an effective failure rejection, as seen in [19–22]. Instead, a control correction
approach was proposed that considers the recovery of disturbances (identified as external
disturbances and failure) that are acting on the spacecraft dynamics. First, it is necessary to
identify when a failure occurs. For this purpose, nonlinear observer-based methods have
been considered.

Failure identification is generally seen as a signal estimation problem. Lately, methods
based on observers have been under investigation for failure identification and detec-
tion [23]. In particular, sliding mode observers (SMOs) [24–27] are usually developed as
failure estimation methods and are able to identify where a failure occurs. Considering
this approach, it is possible to identify the failing actuator system and take advantage of
this information to evaluate the effects of the failure and disturbance on the spacecraft
dynamics. This study proposed the combination of two SMOs: one for the identification
of the failing actuator system, and the second for the estimation of disturbances acting
on the spacecraft. Generally, the Kalman filter is the typical algorithm that is used to
estimate unknown variables [28,29]. However, in this case, system nonlinearities make
it difficult to design an effective corrective strategy based on the Kalman filter technique.
An observer-based algorithm better fits the problem formulation and, for this reason, it is
preferred to classical approaches.

Finally, a robust controller was combined with an active fault detection and correction
method, which was based on the partial recovery of the estimated disturbances. The perfor-
mance of the H∞ controller has been evaluated and compared while considering different
designing approaches and while including the failure correction algorithm based on failure
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and disturbance estimation. The effectiveness of the proposed approach was verified by
considering extensive simulations with varying initial conditions and external disturbances.

The work proposed in this study was based on the thesis of [30]; this study’s novelty
and extension of [30] are mainly related to the design of a sliding mode observer for the
identification of the failure. Moreover, additional mission scenarios are included to show
the effectiveness of the combination of an observer and robust controller. The novelties of
this study are: (i) the design of a fault-tolerant H∞ controller for small spacecraft using the
LMI design method to achieve robustness to system uncertainties that are related to the
presence of MEDs as actuators, and failures; (ii) the detection of a failure, the identification
of the failing actuator, and the estimation of disturbances acting on a spacecraft with failure
through the use of observer-based algorithms; and (iii) the combination of the proposed
control strategy with a correction approach that is based on the observer’s output.

This paper is organized as follows. The satellite attitude dynamics are presented in
Section 2, including the model of the actuator. Section 3 describes the design process of the
H∞ controller; in Section 4, the sliding mode observer is introduced as a failure detection
method, including a failure correction approach that was employed to improve controller
performance. The simulation results are shown in Section 5. Finally, some concluding
remarks are listed in Section 6.

2. System Dynamics

In this section, the satellite mathematical model is described. The considered spacecraft
falls within the small satellite definition, and it is equipped with an MED to achieve a high
attitude accuracy during maneuvers. The spacecraft’s ability to modify its orientation arises
in the use of the MED system, particularly when reaction wheels are considered. These
devices apply torque through an electric motor that sets a wheel to rotate while an equal
and opposite torque is applied on the spacecraft, which allows the wheel to rotate.

The spacecraft attitude is expressed by means of quaternions and by considering the
rotation of the body reference frame with respect to an inertial reference frame. Quaternions
were chosen to describe the spatial rotations due to their compact nature, lower compu-
tational cost, and lack of singularity, as seen in [31]. In this paper, they are represented
through the scalar plus the three-vector representation, as follows

q = {q0, qv}T

where q0 ∈ R and qv ∈ R3. The system kinematics are expressed by the evolution of
quaternions in time, and it is defined as a function of the system angular velocity

q̇ =
1
2


0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2
ω2 ω3 0 −ω1
ω3 −ω2 ω1 0

q

where ω = {ω1, ω2, ω3}T ∈ R3 is the spacecraft angular velocity expressed in the body
reference frame.

Starting from the rigid body dynamics theory, as performed in [31], the spacecraft
attitude dynamics is expressed as the conservation of the total angular momentum as the
sum of the spacecraft’s elements and MED elements. In the inertial reference frame, the
conservation of the angular momentum is given as

uI
ext = ḣI = ḣI

s/c + ḣI
med

where uI
ext ∈ R3 is the resultant external torque, and hI

s/c ∈ R3 and hI
med ∈ R3 are the

spacecraft’s and resultant MED elements’ angular momentum, respectively. It is useful
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to express this relationship in the body reference frame (parameters with no apex are
expressed in this reference frame). In this case, the attitude dynamics is expressed by

ω̇ = J−1(uext − ḣmed −ω× Jω
)

(1)

where J ∈ R3,3 is the spacecraft inertia matrix and hmed ∈ R3 is the resultant MED elements’
angular momentum. For each reaction wheel, the applied torque is equal to the variation
in time of the angular momentum, expressed in the wheels reference frame as

τ = ḣw
med

where τ, hw
med ∈ R4. Components τi and hw

med,i represent the applied torque and angular
momentum, respectively, of the i-th reaction wheel.

The definition of a rotation matrix is necessary to move from the wheels reference frame
to the body reference frame, and it is properly defined from the geometric configuration.
For this application, four reaction wheels are considered and are arranged in a pyramidal
configuration. So, the spin axes of the wheels are pointing towards the faces of a pyramid
with a square base. This means that the wheels are inclined with a fixed angle with
respect to the base of the pyramid, generating torque along the height of the pyramid;
the projections of the wheels’ momentum lie in the pyramid base, which generates torque
along the last two directions.

Thus, the rotation matrix is defined as

Z =

cos(β)cos(α) −cos(β)sin(α) −cos(β)cos(α) cos(β)sin(α)
cos(β)sin(α) cos(β)cos(α) −cos(β)sin(α) −cos(β)cos(α)

sin(β) sin(β) sin(β) sin(β)


where α is the angle between the x-axis and the first reaction wheel, and β is the angle
between the plane xy and each reaction wheel, as shown in Figure 1. For this study, we
considered α = 0◦ and β = 60◦.

Figure 1. The RWs model and configuration are shown in this figure. Pyramidal configuration with
α = 0◦ (left). Reaction wheels model (right).

The reaction wheels dynamics can be expressed in the body reference frame including
the rotation matrix Z as

Zτ = ḣmed + ω× Zhw
med

Finally, the attitude dynamics, Equation (1), is combined with MED dynamics, and it
is given as

ω̇ = J−1[uext − Zτ −ω× (Jω + Zhw
med)] (2)
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where J ∈ R3×3 is the inertia matrix, uext ∈ R3 are the external disturbances, ω ∈ R3 is the
spacecraft angular velocity, Z ∈ R3×4 is the rotational matrix from the wheels to the body
reference frames, τ ∈ R4 is the torque applied to each reaction wheel, and hw

med ∈ R4 is the
angular momentum of each reaction wheel.

In order to simulate reaction wheels dynamics, a first-order filter is included in the
model as a transport delay, as shown in Figure 1. τcmd ∈ R4 is the control torque given by
the controller and designed as

τcmd = Z+u

where Z+ ∈ R4×3 is the pseudo-inverse matrix of Z. Note that, except for the NASA
configuration with three RWs, it is necessary to allocate the three-axis control torque to
the four wheels assembly. To accomplish this, it is common to use the Moore–Penrose
pseudoinverse matrix, Z+, as the non-square control allocation matrix Z ∈ R3×4 cannot
be inverted.

3. Attitude Controller

In this section, the design process of the H∞ control algorithm is described. First, the
bounded real lemma is introduced and described. Then, the state-feedback controller for a
small spacecraft equipped with reaction wheels is designed, where the controller gain is
evaluated by solving an LMI problem. Finally, failures are introduced in the design process,
helping to achieve a fault-tolerant control design.

Consider the continuous linear time-invariant (LTI) dynamical system, given as{
ẋ = Ax + Buu + Bww
z = Czx + Duu + Dww

(3)

where x = {qv, ω}T ∈ R6 is the vector state, u ∈ R3 is the control input, w ∈ R3 is the
disturbances vector, and z ∈ R6 is the system output. Using the state-feedback control
policy, it leads to the closed-loop system{

ẋ = (A− BuK)x + Bww
z = (Cz − DuK)x + Dww

of which the corresponding transfer function is

Z(s)
W(s)

= G(s) = (Cz − DuK)(sI − A + BuK)−1 + Dw

The H∞ norm of the LTI system is the induced energy-to-energy gain, defined as

‖G(s)‖∞ = sup
ω∈R

σ̄(G(jω))

which is physically interpreted as the maximal gain of the frequency response of the system.
However, the H∞ norm cannot be analytically computed, and it has to be solved using
numerical methods. In particular, a classification of numerical methods that are used to
solve the problem can be found in [13].

According to the bounded real lemma, the closed-loop system is internally stable with

‖G(s)‖∞ < γ

if there is a positive definite symmetric matrix P [14] such thatAT P + PA PB CT

BT P −γI DT

C D −γI

 < 0, P > 0
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where γ > 0 is the H∞ performance specification. The control problem is defined through
the H∞ sub-optimal control problem.

The controller is designed to ensure

‖G(s)‖∞ < γ

where γ is pre-specified. However, the equation ruling the attitude dynamics of the space-
craft is not linear; thus, it is necessary to adapt the real system to a simplified mathematical
model that is defined through the linearization of the equation in the neighborhood of the
equilibrium condition, expressed by

x0 =

{
qv
ω

}
0
= {0, 0, 0, 0, 0, 0}T

The matrices A, Bu, and Bw have been computed through the linearization of the
system dynamics

ẋ = x0 +

(
∂ẋ
∂x

)
x=x0

x +

(
∂ẋ
∂u

)
u=0

u +

(
∂ẋ
∂w

)
w=0

w

where A ∈ R6,6, Bu ∈ R3,6, and Bw ∈ R3,6 are the Jacobian matrices of ẋ computed with
respect to x, u, and w, respectively.

A =



0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 0 hrw,3
Jx

hrw,2
Jx

0 0 0 hrw,3
Jy

0 − hrw,1
Jy

0 0 0 − hrw,2
Jz

hrw,1
Jz

0


Bu = Bw =



0 0 0
0 0 0
0 0 0
1
Jx

0 0
0 1

Jy
0

0 0 1
Jz


For what concerns Cz, Du, and Dw, it is possible to follow the same approach of the

equation that is used to describe the measurements, but for the purposes of this study, we
chose to assume Cz ∈ R6,6 as the identity matrix I6 and Du, Dw ∈ R3,6 as the null matrices.

Linear controllers also require the system to be controllable and observable. The
controllability is expressed by the matrix C, which is defined as

C =
[
B AB A2B . . . An−1B

]
where A ∈ Rn,n and B ∈ Rr,n. The system is fully controllable if C is a full row rank

rank(C) = n

The observability is expressed by the matrix O, which is defined as

O =
[
C CA CA2 . . . CAn]

and the system is fully observable if O is a full row rank

rank(O) = n

The linearized system is fully controllable and observable, fulfilling all of the require-
ments for the linear controllers.

3.1. State-Feedback Controller

The proposed control method consists of a state-feedback H∞ controller that is de-
signed to solve an LMI problem. As already defined in the previous paragraph, a linearized
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dynamic system (i.e., an LTI system, as in Equation (3)) is considered. The control policy is
defined as

u = −Kx

such that it has
‖G(s)‖∞ < γ

As previously mentioned, applying the bounded real lemma to the closed-loop system
is equivalent to solving the following LMI problemAQ + QAT + BuY + YT BT

u QCT
z + YT DT

u Bw
CzQ + DuY −γ2 I Dw

BT
w DT

w −1

 < 0 (4)

Q > 0

where the matrix is identified as M, and Q ∈ R6,6, Y ∈ R3,6 and γ > 0 are the problem
variables. The solution of these LMIs is processed using a mathematical solver. In particular,
Mosek [32] integrated Matlab with the Yalmip [33] package, which is used for the evaluation
of the H∞ suboptimal state-feedback controller; the author defined the gain matrix K.

The matrix A is subjected to uncertainties that are related to the value of reaction
wheels’ angular momentum. Considering N values of hrw,i within the working range, it
is possible to build different Aj matrices for each hrw,i combination of values. For each Aj
matrix, an Mj matrix is built from Equation (4). All of the Mj matrices are included in the
LMI problem to achieve a unique state-feedback controller K

M1 < 0
M2 < 0

...
Mm < 0
Q > 0

→ K = YsolQT
sol (5)

The controller gain K is defined considering a large combination of the reaction wheels’
angular momentum. In this way, the controller guarantees system robustness to the
uncertainties regarding the reaction wheels’ angular momentum.

3.2. Uncertainties in the Bu Matrix

The reaction wheels’ failure is considered as uncertainty in the matrix Bu. First, the
actuator health indicator (AHI) matrix is defined as

AHI = ∆ =


δ1 0 0 0
0 δ2 0 0
0 0 δ3 0
0 0 0 δ4


where δi indicates the status of the i-th reaction wheel. It is a scalar value between zero and
one, where zero represents a failed reaction wheel and one represents a healthy one. It is
possible to rewrite the spacecraft attitude dynamics equation to include the AHI

Jω̇ = uext − Z∆τ −ω× (Jω + Zhw
med)

In the nominal case, when all of the reaction wheels are working, it is verified that

Z∆τ = Zτ
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In the case of failure, the ratio between the component of Z∆τ and Zτ is not equal to
one, and it is used to represent the Bu uncertainties. Defining

bi =
(Z∆τ)i
(Zτ)i

where b ∈ R3 is the actuators’ uncertainty vector, and Bu is corrected as

(Bu)un =



0 0 0
0 0 0
0 0 0

b1/Jx 0 0
0 b2/Jy 0
0 0 b3/Jz


The operation used for the A matrix uncertainties is applied to each failure case. All

of the Mi matrices are included to generate a single state-feedback controller K

M1 < 0
M2 < 0

...
M5m < 0

Q > 0

→ K = YsolQT
sol (6)

The new design process for K allows the controller to guarantee system robustness
to failure.

4. Reaction Wheels Failure Identification and Control Correction

In this section, the observer design for the failure and disturbances estimation is
addressed. First, a sliding mode observer is designed to detect and identify the failure in
the actuation systems. Then, a second sliding mode observer is designed to estimate the
disturbances acting on the spacecraft. Finally, the disturbances are coupled with the control
input in order to improve the controller performance.

The problem of fault diagnosis can be seen as the problem of identifying and recon-
structing unknown inputs. The identification of the failing reaction wheel can be used to
improve the controller’s performance during the maneuver. Considering the following
nonlinear system described by

x(n) = g(x, t)

where g(x, t) is a nonlinear, uncertain function and x1 is the measurement.
The Slotine’s observer [34] is defined as

˙̂x1 = −α1e1 + x̂2 − k1sign(e1)
˙̂x2 = −α2e1 + x̂3 − k2sign(e1)

. . . . . .
˙̂xn = −αne1 + ĝ− knsign(e1)

(7)

where αi is chosen to ensure asymptotic error decaying when ki = 0; for a Luenberger
observer [27,35], e1 = x̂1 − x1 is the observer output error, and ĝ is an estimation of g(x, t).
The ability to generate a sliding motion between the measured plant output and the output
of the observer ensures that a sliding mode observer produces a set of state estimates that
are precisely commensurate with the actual output of the plant [36–38].

The reaction wheel fault has been estimated while considering a fault model within
the reaction wheels dynamics as

ḣrw = τ + f (8)
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where f ∈ R4 represents the faulty function. The estimation of the faulty function is
addressed by the SMO. Considering the angular momentum of each reaction wheel as the
observer input, it is possible to identify when a reaction wheel is failing, and it is possible
to reconstruct the fault signal.

Starting from Equations (7) and (8), the SMO is designed as{ ˙̂hrw = τ + f̂ + k1sign(hrw − ĥrw)
˙̂f = k2sign(hrw − ĥrw)

(9)

A secondary observer is designed to estimate the disturbances acting on the spacecraft
dynamics. First, the ideal behavior of each reaction wheel is supposed so as to have

ḣ∗rw = τ

Then, after the failure case is determined from the output of Equation (9), it is included
in the reaction wheels model as

ḣ∗rw = ∆̂τ (10)

The secondary SMO is designed as ˙̂ω = J−1
[
−Zτ + d̂−ω× (Jω + Zh∗rw)

]
+ k3sign(ω− ω̂)

˙̂d = k4sign(ω− ω̂)
(11)

where d̂ ∈ R3 is the estimation of the disturbances acting on the spacecraft; it takes into
account the external disturbances and failure. Considering the ideal case, with uext = 0, the
disturbances should match the effects of the fault signal f̂ , and this is true if Equation (10)
matches the correct failure case. Evidence regarding this is provided in Figure 2 where
the failure is estimated from d̂ as −Z+d̂ while assuming different failure cases in the
observer model.

0 500 1000 1500

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

RW
1

RW
2

RW
3

RW
4

0 500 1000 1500

Time [s]

-0.5

-0.4
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0 500 1000 1500
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-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 2. In this figure, observer’s output is shown for a single simulation with the first reaction wheel
failing. Failure estimation with the reaction wheel observer, Equation (9) (left). Failure estimation
with the attitude dynamics observer assuming no failure (center). Failure estimation with the attitude
dynamics observer matching the correct failure case, Equation (11) (right).

The left plot from Figure 2 shows the failure estimation from Equation (9) and reports
the first reaction wheel failing. The spikes are due to reaction wheels dynamics and the
delay generated by the filter between the torque application and angular momentum
change. This effect is not present in the other plots, as the observer takes advantage of an
ideal reaction wheel model. The center plot shows the failure estimation from Equation (11)
assuming no failure, which achieves no matching with the failure case. Finally, the right
plot shows the failure estimation from Equation (11) when assuming that the first reaction
wheel fails, matching the failure case.
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Finally, the disturbances are partially recovered by the remaining reaction wheels
by considering

τ = sat(−sat(Z+ucmd)− Z+(d̂− Z f̂ )) (12)

where the sat(·) function is the saturation of the control torque according to the maximum
and minimum requirements.

5. Simulations Results

In this section, extensive simulations are carried out to evaluate the controller’s perfor-
mance. The LMI-based robust design was proposed to achieve fault-tolerant controllers
for space applications. In particular, small spacecraft equipped with reaction wheels are
considered for their sensitivity to failure and external perturbation.

Considering the model of the spacecraft attitude dynamics as expressed by Equation (2),
the capability of the controller to stabilize the spacecraft with failure and perform a point-
ing maneuver was investigated. The attitude controller was defined as a state-feedback
controller, taking into account both the rotation and angular velocity of the spacecraft. A
sliding mode observer was considered to detect and identify the failure (Equation (9)).
Then, considering the failure, a secondary observer, Equation (11), was designed to estimate
the disturbances acting on the spacecraft. Disturbances estimation takes into account both
the failure recovery and external disturbances, and it was coupled with the controller input
to improve its effectiveness.

In order to consider a detailed model, sensors noise that was based on real sensors was
also included. The attitude measurement noise was modeled according to [39], where two
star-tracker sensors were combined with an IMU, providing the attitude with a 10 arcsec ac-
curacy at 10 Hz. The angular velocity was measured at 50 Hz while considering a gyroscope
model based on STIM380H [40] (noise power spectral density 0.8462 · 10−9 (rad/s)2/Hz).
For the first observer, the reaction wheels’ angular momentum was assumed to be measured
at 10 Hz with an accuracy of 10−5 kg m2s−1.

First, the H∞ state-feedback controllers were compared while considering the formu-
lations from Equations (5) and (6) and with the inclusion of the proposed disturbances
correction algorithm Equation (12).

In Figure 3, the spacecraft stabilization from random initial conditions is considered,
and a comparison between the design approach is made. The inclusion of the failure in
the evaluation of the H∞ state-feedback controller was mandatory to achieve the desired
robustness to the failure of one reaction wheel. In the right plot from Figure 3, with
the controller in the state matrix (only A uncertainties), the closed-loop system does not
converge to the desired value.

In Figure 3 and 4, a comparison is also made between the H∞ state-feedback controller
with and without the correction algorithm. The proposed approach significantly reduces
the time required to accomplish the stabilization, with comparable accuracy for both cases.
The simulation results proved that including failures as uncertainties in the controller
design allowed us to design a robust, failure-tolerant controller. The proposed corrective
algorithm does not affect the system’s capabilities to withstand failures, but it is helpful in
the stabilization process by reducing the maneuvering time.

Finally, a simulation campaign was carried out to point out the effectiveness of the
augmented controller. The simulation parameters are reported in Table 1. The considered
spacecraft follows in the small spacecraft category, with a mass of 200 kg. The initial condi-
tions and external disturbances are changed in each simulation while considering random
values. In the left plot of Figure 5, the attitude time variation for the spacecraft stabiliza-
tion of different initial conditions is shown, considering random external disturbances
and failure cases. Moreover, to test the reliability and robustness of the controller, a real
mission scenario was considered. The Earth observation consisted of an 86,400 s mission,
where the attitude was kept in the same configuration for most of the time, and the actual
maneuver lasted for 659 s. In the right plot from Figure 5, only the part concerning this
maneuver is reported. The maneuver can be described in three phases. Firstly, there is a
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transitional phase, where the spacecraft moves from the initial configuration to the desired
configuration. Then, a scientific phase occurs, in which the spacecraft moves according
to the mission-chosen path. Finally, the spacecraft returns to its initial configuration after
a second transitional phase. The proposed algorithm was able to accomplish the desired
tasks in all of the considered scenarios.

Table 1. Simulation parameters.

Parameter Value/Range

Inertia matrix [kg/m2] diag ([25 50 50])
RW inertia [kg/m2] 0.022

Maximum torque [Nm] ±0.1
External disturbances [Nmm] [−0.1, 0.1]

Initial attitude [◦] [−25, 25]
Initial angular velocity [mrad/s] [−5, 5]
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Figure 3. In this figure, the performance of the controller with the two design approaches are
compared with the augmented design: attitude time variation with no failure (left); attitude time
variation with the third reaction wheel failing (right).
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Figure 4. In this figure, the performance of the controller designed while considering the failures are
compared with the augmented design: attitude time variation with the second reaction wheel failing
(left); attitude time variation with the fourth reaction wheel failing (right).
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Figure 5. Augmented controller simulation campaign with the random initial condition, exter-
nal disturbances, and failure. Each colored line refers to a different simulation parameters and
initial condition: attitude time variation of spacecraft stabilization (left); Earth pointing mission
scenario (right).

6. Conclusions

In this study, a fault-tolerant robust controller design was addressed for small space-
craft attitude control. Robust controllers are adopted to deal with bounded system uncer-
tainties. In particular, an H∞ controller was designed as a spacecraft attitude controller and
started from the LMI formulation to achieve robustness for bounded plant uncertainties.
A spacecraft equipped with four reaction wheels was considered. Failures were modeled
and included in the design process as plant uncertainties. The H∞ suboptimal problem
was then solved for the definition of the feedback controller gain. However, despite the
controller being robust to the failure when it occurs, the system results are more sensitive
to perturbations. For this reason, an active strategy based on failure identification and
control correction was included. First, an observer was designed to detect the failure
and identify the failing reaction wheel. Then, considering the presence of the failure, the
disturbances acting on the spacecraft dynamics were estimated by means of a second ob-
server. The disturbances take into account external disturbances, failure effects, and sensor
uncertainties. The controller input was then coupled and corrected with the estimated
disturbances, improving controller performance. By means of extensive simulation, the
controller performance was investigated by considering random initial conditions and
external disturbances.

The simulation results verify the controller robustness, and the proposed control
correction shows a significant performance improvement in terms of the amount of time
needed to accomplish the maneuver. The accuracy is compromised by the high sensor
uncertainties; it could be improved by implementing a navigation algorithm, but that is not
the main purpose of this work. However, the controller robustness to sensor uncertainties
is verified, which was also verified while considering the controller reliability in an Earth
observation mission scenario. The proposed study addresses the design of a simple and
low computational cost technique for failure-tolerant attitude control. However, some
aspects can be further improved in future studies. The desired controller is able to satisfy
the requirements, but this design method makes the tuning process not trivial. Different
approaches may be investigated to improve controller tuning according to system require-
ments. Moreover, failure identification is based on reaction wheel data and can be further
improved. More sophisticated techniques may be considered (i.e., machine learning and
artificial intelligence) to detect and identify the failure. Finally, robustness to multiple
failures may be addressed, evaluating the proposed design approach or possible action
plan to avoid complete mission failure.
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