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Abstract
How can humans remain in control of artificial intelligence (AI)-based systems designed to perform tasks autonomously? 
Such systems are increasingly ubiquitous, creating benefits - but also undesirable situations where moral responsibility for 
their actions cannot be properly attributed to any particular person or group. The concept of meaningful human control has 
been proposed to address responsibility gaps and mitigate them by establishing conditions that enable a proper attribution of 
responsibility for humans; however, clear requirements for researchers, designers, and engineers are yet inexistent, making 
the development of AI-based systems that remain under meaningful human control challenging. In this paper, we address 
the gap between philosophical theory and engineering practice by identifying, through an iterative process of abductive 
thinking, four actionable properties for AI-based systems under meaningful human control, which we discuss making use 
of two applications scenarios: automated vehicles and AI-based hiring. First, a system in which humans and AI algorithms 
interact should have an explicitly defined domain of morally loaded situations within which the system ought to operate. 
Second, humans and AI agents within the system should have appropriate and mutually compatible representations. Third, 
responsibility attributed to a human should be commensurate with that human’s ability and authority to control the system. 
Fourth, there should be explicit links between the actions of the AI agents and actions of humans who are aware of their 
moral responsibility. We argue that these four properties will support practically minded professionals to take concrete steps 
toward designing and engineering for AI systems that facilitate meaningful human control.

Keywords  Artificial intelligence · AI ethics · Meaningful human control · Moral responsibility · Socio-technical systems

1  Introduction

Deploying AI algorithms in human-inhabited environments 
comes with the risk of inappropriate, undesirable, or unpre-
dictable consequences [1, 2]. The misinterpreted skills of 
AI systems, combined with their rapid impact in public and 
private spheres of life, can lead to situations with a clear 
misalignment between human moral values and societal 
norms [3–6], and where moral responsibility for such unde-
sired impacts can often not be properly attributed to any 
person [7].

How can designers, users, or other human agents be mor-
ally responsible for systems that are designed to perform 
tasks, learn, and adapt without direct human control? The 
strong technical drive towards achieving systems which 
can act independently from human control in more sce-
narios, does not necessarily include considerations about 
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the socio-technical consequences of implementing these 
systems, especially in terms of facilitating moral responsi-
bility. In agreement with the hybrid intelligence community 
[8], we believe a stronger focus on human-AI systems (sys-
tems in which humans and AI algorithms interact during 
operation) is needed to address the complex design issue of 
ethical use and implementation of AI [9]. The very features 
that make AI algorithms useful complicate their assessment 
and predictability in the complex socio-technical context in 
which they operate - which changes over time. As a result, 
all systems based on AI, especially those with so-called 
higher “levels of autonomy” ,1 can and should be designed 
for appropriate human responsibility [11]. The holy grail 
is to design these systems in a manner that can mitigate 
the occurrence of situations that the manufacturer was in 
principle unable to anticipate, and that users were not able 
to appropriately influence or even realize.

The problem of designing for human responsibility 
over human-AI systems is challenging because such sys-
tems operate in complex social infrastructures that include 
organizational processes with both human-to-human and 
human-AI interactions, policy, and law. Designing for moral 
responsibility therefore requires a systemic, socio-technical 
perspective that jointly considers the interaction between all 
these elements [12]. This fundamental challenge of inter-
twined social, physical, and technical infrastructures does 
not exclusively concern AI: societies have settled on mor-
ally acceptable solutions for ubiquitous technology in other 
domains, such as medicine and aviation safety.

However, these solutions do not readily generalize to sys-
tems based on AI algorithms, due to properties such as: (1) 
learning abilities; (2) black-box nature; (3) impact on many 
stakeholders (even those not using the systems themselves); 
and (4) autonomous or semi-autonomous decision-making 
features.

First, AI agents can demonstrate novel behavior through 
learning from historical data and continuous learning via 
interactions with the world and other agents. Because the 
world we are concerned with is an open system with respect 
to the the agents’ perceptions and actions, the behavior 
of human-AI systems cannot be predicted with precision 
over time [13, 14]. Second, the agent’s decision-making 
process may be difficult to explain and predict, even for 
its programmer [15], complicating responsibility attribu-
tion for its consequences. Third, as AI agents may interact 
with multiple users, which have different levels of expertise, 

different preferences, and understanding, responsibility can 
become a diffuse concept for which no one feels morally 
engaged. This may be further exacerbated when AI agent’s 
autonomous features are overestimated by those interact-
ing with it. As the system’s design process may overlap 
with implementation and use [16], interactions may end up 
including humans who did not choose to be involved in its 
use, as in the case of sidewalk pedestrians interacting with 
automated vehicles. Fourth, as systems based on AI with 
increasing autonomous decision-making features operate 
with reduced or even no meaningful supervision, undesir-
able impacts might be perceived only in hindsight. Learning 
abilities, opacity, interaction with many stakeholders, and 
autonomous or semi-autonomous features are just four of 
the prominent issues, which emerge as algorithms interact 
with social environments.

To design for moral responsibility and human control is 
particularly important as quick development and immediate 
deployment “in the wild” [17], instead of regulated tests 
procedures, is urging academia and governments to take a 
stance in defining visions for trustworthy AI [5]. In fact, 
even if the “move fast and break things” mantra was con-
sidered acceptable and received wide consensus for driving 
digital innovation in the last decade, the same cannot be 
for AI with autonomous features [18]. A failure of an AI 
agent is not a “404 error page”. It is a car accident, most 
likely with fatalities [19, 20]; it is an unfair and discrimina-
tory distribution of wealth and services [21]; it is an unjust 
crime accusation based on ethnicity [22, 23]. Designers and 
developers of AI systems can only tackle this challenge by 
acknowledging upfront that successful attribution and appor-
tioning of responsibility is not a matter of fortuitous alloca-
tion of praise or blame.

The concept of meaningful human control [11, 24–26] 
was first proposed to address the problem of responsibil-
ity gaps in autonomous weapon systems, but is becoming 
a central concept when discussing responsible AI [11].The 
core idea is that humans should ultimately remain in control 
of, and thus morally responsible for, the behavior of human-
AI systems.2 Nevertheless, meaningful human control has 
also received the critique to be an ill-defined concept [29] 
that ignores operational context [30] and does not provide 
concrete design guidelines [12].

This article aims to contribute to closing the gap between 
the theory of meaningful human control, as proposed by 

1  “Level of autonomy” is a complex construct. In line with Brad-
shaw’s seven deadly myths of autonomy [10], we acknowledge that 
measuring autonomy on a single ordered scale of increasing levels is 
insufficient because it lacks context, is not human-centred, and disre-
gard functional differences, among other reasons.

2  Meaningful human control relates not only to the engineering of 
the AI agent, but also to the design of the socio-technical environ-
ment that surrounds it, including social and institutional practices [11, 
27, 28]. As [12] elaborate, “[intelligent] devices themselves play an 
important role but cannot be considered without accounting for the 
numerous human agents, their physical environment, and the social, 
political and legal infrastructures in which they are embedded.”
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[11], and the practice of designing and developing human-
AI systems by proposing four actionable properties that can 
be addressed throughout the system’s lifecycle. We start by 
unpacking the philosophical concept of meaningful human 
control (Sect. 2). We then present a set of four properties 
that were generated through an iterative process of abductive 
thinking that combined the different disciplinary perspec-
tives of the authors (engineering, computer science, philoso-
phy of technology, ethnography and design). We describe 
each property and illustrate how each of them helps defin-
ing whether and to what extent a human-AI system is under 
meaningful human control. We also suggest concrete meth-
ods and tools that can support addressing each property and 
illustrate them with respect to two case studies: automated 
vehicles and AI-based hiring (Sect. 3). Finally, we discuss 
the systemic and socio-technical nature of these properties 
and the need for transdisciplinary practices (Sect. 4) and 
conclude the paper (Sect. 5).

2 � Meaningful human control: tracking 
and tracing

The concept of meaningful human control was coined in 
the debates on autonomous weapon systems [24, 25]. At 
the heart of this concept is the idea that humans need to 
retain control and moral responsibility over autonomous sys-
tems. This discussion is no longer exclusive to the military 
domain. Meaningful human control is increasingly relevant 
in other domains as AI agents become more ubiquitous and 
autonomous, especially in non-forgiving scenarios in which 
fundamental human rights and safety are at stake. The con-
cept has already been discussed on the context of automated 
vehicles [12, 31, 32], including truck platooning [33], surgi-
cal robots [34], smart home systems [35], medical diagnosis 
[36], and content moderation in social media [37].

Although many authors agree on the need for some form 
of human control over AI agents [11, 24, 25, 30], these same 
authors may diverge and often disagree about what makes 
human control meaningful. Observing the theoretical chal-
lenges of specifying what meaningful human control means, 
Santoni de Sio and Van den Hoven [11] laid out a foundation 
for a theory of meaningful human control with an adapta-
tion of Fischer and Ravizza’s [38] philosophical account on 
guidance control, moral responsibility, and free will. Fol-
lowing the ideals of responsible innovation [39] and value-
sensitive design [40], a centerpiece of Santoni de Sio’s and 
Van den Hoven’s conception of meaningful human control 
is two necessary conditions for meaningful human control, 
tracking and tracing: 

(1)	 Tracking condition: to be under meaningful human con-
trol, a human-AI system should be responsive to the 

human moral reasons relevant in the circumstances. A 
human-AI system that fulfills this condition is said to 
track the relevant human moral reasons.

(2)	 Tracing condition: in order for a human-AI system 
to be under meaningful human control, its behavior, 
capabilities, and possible effects in the world should be 
traceable to a proper moral and technical understanding 
on the part of at least one relevant human agent who 
designs or interacts with the system.

In the tracking condition, control is said to be meaningful 
when the system’s performance co-varies with the reasons 
of the relevant person or persons, like a mercury column in 
a thermometer co-varies with the temperature in the room. 
When air humidity varies, but the temperature remains con-
stant, we expect no change in the mercury column, since it 
only tracks temperature. Similarly, when someone always 
accepts a new job only because the salary is higher, that 
person tracks financial gain, not necessarily the job’s intrin-
sic reward.

For the tracing condition, it is required that this relevant 
person or persons are in a position to have a proper moral 
and technical understanding of the system. That would not 
be the case if the thermometer would randomly induce 
changes in the mercury column, or if the concept of the 
mercury expanding or contracting is entirely unknown to 
the person. Similarly, a supervisor of an automated vehicle 
that does not understand traffic rules, would not have such 
understanding.

The tracking and tracing conditions take the concept of 
meaningful human control one step closer to support prac-
tical design and development because they provide high-
level design requirements for a human-AI system to be under 
meaningful human control. Building on this conception, 
researchers developed frameworks to analyze and quantify 
factors affecting meaningful human control for automated 
vehicles [12, 41, 42]. However, a description of general 
system-level properties that could support operationaliza-
tion of tracking and tracing conditions in diverse contexts is 
yet to be specified.

3 � Four properties of human‑AI systems 
under meaningful human control

The tracking and tracing conditions [11] provide a philo-
sophical grounding for informing the development of 
human-AI systems under meaningful human control. Yet, 
translating these philosophical concepts into a concrete 
design and engineering practice is far from trivial. For 
instance, the tracking condition suggests that a human-AI 
system should be responsive to the moral reasons of a rel-
evant human. But, how do we define the relevant human in 
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a given circumstance? How should a given AI system rec-
ognize a moral reasoning? Does the condition imply that 
every AI system should be designed to be morally sensitive 
[43]? The tracing condition implies the necessity of a proper 
moral and technical understanding from at least one relevant 
human interacting and designing the system. Does this imply 
that the AI system should be able to recognize if and when 
an interacting human has such proper moral and technical 
understanding? Or, does this imply that we need protocols 
for the design and use of AI systems that define if and when 
a human can and must have such understanding?

In an effort to answer these questions — and more — the 
authors, a group of researchers from various backgrounds 
(engineering, computer science, philosophy of technol-
ogy, ethnography and design), engaged in an iterative pro-
cess of abductive thinking [44]. Specifically, we built on 
Dorst’s conceptual framework of abductive thinking [45], 
where both a desired value (meaningful human control) 
and a working principle (tracking & tracing conditions) are 
known, to brainstorm ideas of what the solutions to achieve 
these might be. The generated ideas were then grouped into 
thematic areas and synthesized into actionable properties. It 
has to be noted, however, that although this work explores 
the solution space of the framework, our aim is rather to 
provide a contribution that sits on a meta-level, in between 
the what and the how (see Fig. 1).

Specifically, as a result of our abductive thinking where we 
collectively reflected on what strategic and engineering solutions 
would enable the two necessary conditions of meaningful human 
control [11], we identified a set of four actionable properties. In 
the following subsections we describe these properties in detail 
and illustrate their practical implications. To better highlight the 
properties and the implications, we make use of two example 

application scenarios: automated vehicles3 and AI-based hir-
ing4. Both cases manifest an urgent need for meaningful human 
control in non-forgiving scenarios that strongly impact people’s 

Fig. 1   The diagram, based 
on the framework of abduc-
tive thinking by Dorst [45], 
illustrating the positioning 
of the abductive thinking we 
performed in search for a solu-
tion space that would meet the 
claimed need for meaningful 
human control

4  AI-based hiring scenario: Job candidates applying for a vacancy 
go through an automated video interview where they record their 
answers to questions formulated ahead of time by the employer. 
After the interview is completed, an AI agent applies machine learn-
ing methods to quantify candidates’ suitability for the job by cor-
relating their facial expressions, choice of words, and voice tone to 
personal traits such as creativity, willingness to learn, and conscien-
tiousness. To tailor the AI agent towards the context-specific prefer-
ences of the employer, the machine learning algorithms were trained 
on video interviews performed with current employees and their 
respective annual performance evaluations. The employer sets a 
threshold for a passing score, and based on the scores outputted by 
the AI agent, a list of candidates who pass to the next selection round 
is automatically compiled. The candidates do not see the score they 
were assigned. Neither the candidate, nor the employer, receive an 
explanation of how the scores were computed. The employer consid-
ers the human-AI system to be a cost-effective solution for what has 
previously been a time-consuming first-round selection process that 
required hiring additional screening staff. In addition, the employer 
seeks to increase diversity at the company and considers AI-based 
selection to be less prone to discriminatory biases.

3  Automated vehicle scenario: A conditionally automated vehicle 
that can perform operational aspects of the driving task (e.g., lane 
keeping or adaptive cruise control) as well as tactical aspects: detect-
ing events and objects on the road and responding to them, and inter-
acting with human pedestrians and other vehicles. Under normal cir-
cumstances, the automated vehicle can complete a whole trip without 
interventions from the human driver; the manufacturer emphasizes 
these autonomous features in their marketing and promotional materi-
als. The driver, however, is required to constantly supervise the sys-
tem. There is no requirement for the driver to keep their hands on the 
steering wheel, but the driver must remain alert at all times and be 
able to take over operational control at the request of the automation 
system. The vehicle does not actively monitor the driver state, but in 
case a human intervention is required, it attracts the driver’s attention 
through a visual alert message and a loud auditory signal. The auto-
mated driving system used in the vehicle relies on machine learning-
based object recognition and behavior prediction components, which 
were trained on the data obtained during extensive testing on public 
roads.
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lives (e.g., bodily harm, unfair decisions, discrimination), and 
their differences with respect to time constraints, embodiment, 
and involved stakeholders juxtapose different aspects of real-
izing these properties in human-AI systems.

3.1 � Property 1. The human‑AI system has an explicit 
moral operational design domain (moral ODD) 
and the AI agent adheres to the boundaries 
of this domain

As the human-AI system has to be “responsive to relevant 
human moral reasons” (i.e., the tracking condition), we 
need to identify the relevant humans, their relevant (moral) 
reasons, and the circumstances in which these reasons are 
relevant. To this end, specifying the technical conditions 
in which the system is designed to operate is not sufficient. 
Designers should consider a larger design space, one that 
captures also the values and societal norms that must be 
considered and respected during both design and operation.

Building on the concept of operational design domain 
(ODD) which originates in the automotive domain [46], we 
name this larger design space the moral operational design 
domain (moral ODD). The concept of ODD is often used 
in the context of automated driving and refers to a set of 
contextual conditions under which a driving automation sys-
tem is designed to function: outside of it a human driver is 
responsible. Specific contextual properties of the automotive 
ODD typically include factors like road structure, road users, 
road obstacles and environmental conditions (material ele-
ments), as well as human-vehicle interactions and expected 
vehicle interactions with pedestrians (relational elements) 
[47]. In terms of legal responsibility, the ODD constitutes a 
selection of operation scenarios that can be safely managed 
[48] by the automation and in which undesired consequences 
are minimized [47]. As such, we believe it is a valuable con-
cept to extend beyond automated vehicles, but for human-AI 
systems in general.

The current conceptualization of the ODD strongly 
focuses on the technical aspects of operation and the goal 
to extend the context boundaries of the ODD. However, 
consideration of the wider societal implications is lacking. 
Similar to Burton et al. [49], we argue that the concept 
of ODD should also emphasize the broader social and 
ethical implications. We propose this extended concept 
of ODD so that functional considerations of where and 
when a human-AI system can operate, are seconded and 
complemented to the definition of the domain in which a 
system is ought or should not operate from a moral per-
spective (Fig. 2).

A simple example of a hammer illustrates the difference 
between the “can” (e.g., material and relational elements) 
and the “ought to” dimensions (e.g., moral elements). From 
a purely functional perspective, a hammer “can” be used 
as a weapon against another person. However, the morally 
acceptable use of a hammer is for hammering nails (ought 
to), not to injure other people (should not). Common sense 
already tells us that the use of a hammer as a weapon is in 
most cases morally unacceptable (can but should not). It is 
clear that the responsibility for proper use lies with the user, 
not the manufacturer (except in cases where the hammer 
clearly does not function properly, e.g., the head suddenly 
comes loose from the handle and injures a person).

In a scenario involving complex human-AI systems, this 
is often much less clear cut. In the automated vehicle case, 
the moral ODD could contain moral reasons representing 
safety (e.g., avoid road accidents), efficiency (e.g., reduce 
travel time), and personal freedom (e.g., enhance independ-
ence for seniors), to name just a few. In the AI-based hiring 
context, moral reasons could include, from the employer’s 
side, reducing discrimination or increasing the number of 
applicants in the recruitment process, while for the appli-
cants’ side autonomy over self-representation could be con-
sidered very relevant. In both contexts, however, there might 

Fig. 2   Property 1: Moral ODD. 
The human-AI system should 
operate within the boundaries 
of what it can do (for both the 
human and the AI agent) and 
within the moral boundaries 
of what it ought to do, i.e. 
the human-AI system should 
act according to the relevant 
moral reasons of the relevant 
stakeholders
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be tensions among different moral reasons and stakeholders, 
requiring an inclusive specification and careful communica-
tion of the moral ODD.

3.1.1 � Practical considerations

The specification and clear communication of the moral 
ODD support relevant humans (e.g., users, designers, devel-
opers) to be aware of the moral implications of the system’s 
actions and their responsibility for these actions, thereby 
supporting the tracing condition of meaningful human con-
trol. Furthermore, if the operation of the AI agent remains 
confined within the boundaries of what it “can do” and 
“ought to do”, the tracking condition of meaningful human 
control is supported as well, as this makes the human-AI 
system more responsive to human understanding of what 
is the morally appropriate domain and mode of operation. 
Achieving these benefits requires that: (1) the moral ODD be 
explicitly defined; (2) the AI agent embed concrete solutions 
to constrain the actions of the human-AI system within the 
boundaries of the ODD.

To define the moral ODD, designers and developers need 
to engage with fundamental questions of what are the ele-
ments composing the moral ODD and how do the features 
of each element affect the system’s behavior. The process 
starts with an ontological modelling of the environment(s) 
in which the human-AI system is expected to operate. Such 
complex assemblage of elements and relationships could be 
meaningfully represented within the moral ODD by making 
use of principles from existing research on software appli-
cations where ontologies are developed to enable context-
aware computing systems [50, 51]. The mapping of material 
and relational elements characterizing a domain should be 
complemented with an investigation of what might be the 
morally relevant reasons, what they represent in the specific 
context, assumptions and consequences related to the system 
operation. Such understanding of the moral landscape of 
an AI agent under development could be built by means of 
extensive literature and case reviews [52–54], participatory 
approaches such as interviews, interactive workshops, and 
value-oriented coding of qualitative responses [40], which 
can be supported by natural language processing algorithms 
[55].

How to satisfy the second requirement (constraining the 
AI agent to the boundaries of the moral ODD) varies accord-
ing to the constituent elements of the moral ODD. When 
constraining the material and relational aspects of the sys-
tem behavior, approaches developed in the automotive and 
aircraft domains can be a useful reference, e.g., risk-based 
path planning strategies for unmanned aircraft systems in 
populated areas [56] and geofencing [57]. Relational aspects 
can be addressed through envelope protection. In the aircraft 
domain, flight envelope protection systems prevent the pilot 

from making control commands that drive the aircraft out-
side its operational boundaries, a concept that has also been 
adopted for unmanned aerial vehicles [58]. This concept 
could be extended beyond the aircraft domain, and become 
a more general design pattern for constraining the relational 
elements of the moral ODD in the systems involving both 
embodied and non-embodied AI agents [59].

Moral constraints are arguably the most challenging to 
enforce. One possible way of imposing them is to set proba-
bilistic guarantees on system outcomes [60]. However, these 
approaches might not hold in real-world applications. Due 
to the non-quantifiable nature of morally relevant elements, 
as well as moral disagreements among humans, the bounda-
ries of the moral ODD will remain blurred [49]. Hence, it 
is crucial that humans, not AI agents, are empowered to be 
aware of their responsibilities to make conscious decisions 
if and when the human-AI system should deviate from the 
boundaries defined by the moral ODD. The assessment of 
whether and how an AI agent is confined to the moral ODD 
is not a binary check, but rather a contextualized and deliber-
ated analysis of the interaction between the AI agent, human 
agents, and the social, physical, ethical, and legal environ-
ment surrounding them. Humans, to conclude, should have 
an understanding of such blurry boundaries of the moral 
ODD and their responsibility to meaningfully control the AI 
agent in this process. Importantly, this includes the possibil-
ity of deciding that the use of an AI agent is not acceptable 
in certain contexts.

3.2 � Property 2. Human and AI agents have 
appropriate and mutually compatible 
representations of the human‑AI system and its 
context

For a human-AI system to perform its function, both humans 
and AI agents within the system should have some form 
of representations of the involved tasks, role distributions, 
desired outcomes, the environment, mutual capabilities 
and limitations. Such representations are often referred to 
as mental models; these models enable agents to describe, 
explain and predict the behavior of the system and decide 
which actions to take [61–63].

Shared representations, i.e., representations that are 
mutually compatible between human and AI agents within 
the system, allow the agents to have appropriate under-
standing of each other, the task, and the environment [62], 
which facilitates agents to cooperate, adapt to changes, and 
respond to relevant human reasons. To ensure safe operation 
of the system, agents should also have a shared representa-
tion of each other’s abilities and limitations. Specifically, 
the AI agents should account for humans’ inherent physi-
cal and cognitive limitations, while human agents should 
account for the AI agents’ limitations to avoid issues such 
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as overreliance [64]. Furthermore—crucial to achieve 
meaningful human control—these shared representations 
should include the human reasons identified in the moral 
ODD (Fig. 3), which can change over time and across con-
texts. Due to the dynamic nature of elements of the shared 
representations, the human and AI agents should be able 
to update their representations of the potentially changing 
reasons accordingly.

Incompatibility between representations could result in 
the lack of responsiveness to human reasons, thereby leading 
to undesired outcomes with significant moral consequences. 
For example, inconsistent mental models between a human 
driver and automated vehicle about “who has the control 
authority”, in which the human driver believes that the auto-
mated vehicle has control and vice versa, could result in a 
critical and unsafe system state [65].

3.2.1 � Practical considerations

In order for the agents’ shared representations to facilitate 
the system’s tracking of relevant human reasons, the system 
designers first need to define which aspects of the system 
and its context (including relevant humans, AI agents, the 
environment, and the moral ODD) each agent should have 
a representation of. The process of determining what kinds 
of representations are needed will be context-specific and 
depend on the moral ODD of the system. A useful approach 
to determine the necessary representations and to translate 
these high-level concepts into practical design requirements 
is co-active design [61]. Specific to building and maintaining 
shared representations, this approach provides guidelines on 
how to establish observability and predictability between 
the human and AI agents, including what needs to be com-
municated and when [62].

Representations can include practical matters such as 
task allocation, role distribution and system limits, but also 
understanding of how humans perceive the AI agents, human 
acceptance of and trust in the human-AI system, humans val-
ues and social norms. This should also include determining 

the appropriate level of representation. For instance, for an 
automated vehicle to interact with a pedestrian, the design-
ers need to determine whether it suffices for the vehicle to 
have a representation of just the location of a pedestrian on 
the road and their movement trajectory, or also the height 
and age of that human, their goals and intentions. In the con-
text of AI-based hiring, a key aspect requiring shared rep-
resentation is the meaning of competence. In particular, the 
meanings of soft skills, such as teamwork and creativity, are 
highly fluid, context-dependent, and contestable. Therefore, 
aligning the job-specific meaning of competence among job 
seekers, employers, and any AI agent involved in the hiring 
process is critical.

Once the representations required for each agent are 
defined, the design and engineering choices need to suffi-
ciently take these into account. Specifically, such choices 
should facilitate (1) AI agents to build and maintain repre-
sentations of the humans and their reasons, and (2) humans 
to form mental models of AI agents and the overall human-
AI system. These shared representations can be achieved 
through various combinations of implicit (e.g., through 
interaction between agents) or explicit ways (e.g., by means 
of human training, verbal communication). For example, to 
allow humans to build and maintain a representation of an 
AI agent, it can be developed to be observable and predict-
able implicitly through its design (e.g., glass-box design 
[66]), allowing the operator to better understand the AI 
agent’s decision-making. Ecological interface design can 
also leverage knowledge on human information process-
ing to design human-AI interfaces that are optimally suited 
to convey complex data in a comprehensible manner [67]. 
Maintaining accurate representations during the human-
AI system’s deployment can also occur through interac-
tion, either implicitly (e.g., through intent inference from 
observed behavior) or explicitly (e.g., explicit verbal or writ-
ten messages). For example, an AI system can probe through 
behavior whether the human is aware of its intentions before 
committing to a decision [68].

Fig. 3   Property 2: The human 
and AI agents have appropri-
ate and mutually compatible 
representations of the human-AI 
system and of each other’s abili-
ties and boundaries
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For the AI agents to have appropriate representations of 
human agents, the assumptions about human intentions and 
behavior adopted by AI agents (either implicitly or explic-
itly) need to be validated. This can be aided by incorpo-
rating theoretically grounded and empirically validated 
models of humans in the interaction-planning algorithms of 
AI agents [69, 70], or by augmenting bottom-up, machine-
learned representations with top-down symbolic represen-
tations [71, 72]. An alternative approach, value alignment 
[73], aims to mitigate the problems that arise when autono-
mous systems operate with inappropriate objectives. In par-
ticular, inverse reinforcement learning (IRL), which is often 
used in value alignment, aims to infer the “reward function” 
of an agent from observations of the agent’s behavior, also 
in cooperative partial-information settings (cooperative IRL) 
[74]. Although IRL is likely not sufficient to infer human 
preferences from observed behaviour since human planning 
systematically deviates from the assumed global rationality 
[75], such approaches could still support agents to maintain 
aligned shared representations [76].

3.3 � Property 3. The relevant humans and AI 
agents have ability and authority to control 
the system so that humans can act upon their 
responsibility

Relevant humans should not be considered just mere sub-
jects to be blamed in case something goes wrong, i.e., an 
ethical or legal scapegoat for situations when the system 
goes outside the moral ODD. They should rather be in a 
position to act upon their moral responsibility by influenc-
ing the AI system throughout its operation, and to bring the 
system back to the moral ODD if needed (Fig. 4).

This is only possible when the distribution of roles and 
control authority between humans and AI (“who is doing 
what and who is in charge of what”) is consistent with their 
individual and combined abilities, including reasonable 
mechanism for overruling the AI agent through intervening 
and correcting behavior, setting new goals, or delegating 
sub-tasks.

Flemisch et al. [65] provide a thorough account on the 
importance of an appropriate balance between an agent’s 
ability, authority, and responsibility in human–machine sys-
tems: ability to control should not be smaller than control 
authority, and control authority should not be smaller than 
responsibility. We argue that this account applies to complex 
human-AI systems as well. The ability of a human or AI 
agent includes their skill and competence to perceive the 
state of a system and the environment. This also includes a 
way to acquire and analyze relevant information, to make a 
decision to act, and to perform that action appropriately [77]. 
Ability also includes the resources at their disposal, such 
as tools (an autonomous vehicle without a steering wheel 
would severely hamper the human’s ability to control the 
vehicle’s direction; job candidates’ ability to represent them-
selves would be heavily impaired by the lack of a feedback 
mechanism) or time (an automated vehicle that would wait 
until the very last second to alert the driver of a dangerous 
situation also limits the driver’s ability to direct the vehicle 
to safety; an employer would have no control and under-
standing of an AI-based hiring system if assessment of can-
didates would be provided only after the selection process 
finishes).

The understanding of an (AI or human) agent’s ability is 
intrinsically related to the socio-technical context in which 
the system is embedded. Hence, it is important that tasks are 
distributed according to the agent’s ability in the context, not 
only from a functional perspective, but also accounting for 
the values and norms intrinsic to the activity. Approaches 
such as the nature-of-activities [78, 79], under the umbrella 
of Value Sensitive Design [40], can support the understand-
ing of which set of tasks should be (partially or totally) del-
egated or shared with AI agents, and which should be left 
exclusively to humans. Given the collaborative nature of 
many human-AI systems, team design patterns can be used 
as an intuitive graphical language for describing and com-
municating to the team the design choices that influence how 
humans and AI agents collaborate [80, 81].

The second component of the account proposed in [65] 
is control authority, i.e., the degree to which a human or AI 
agent is enabled to execute control. Consistency between 
authority and ability requires that an agent’s authority does 
not exceed their ability. And similarly, responsibility should 
not exceed authority. Thus, an agent should be responsi-
ble only for tasks they have authority to perform, and they 

Fig. 4   Property 3: The relevant humans and AI agents have the abil-
ity and authority to control the system so that humans can act upon 
their responsibility, e.g., if the human recognizes that a given situa-
tion might bring the system outside the moral ODD, they can inter-
vene to avoid this
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should have authority only over tasks they are able to per-
form. A key implication of this consistency is that control is 
exerted by the agent that has sufficient ability and authority, 
and more responsibility is carried by the agents that exert 
more control. While ability and authority are attributes that 
both human and AI agents possess, we consider responsi-
bility as a human-only quality. Therefore, the ability and 
authority of a human-AI system must be traced to responsi-
bilities of relevant humans, e.g., engineers, designers, opera-
tors, users, and managers.

In the automated vehicle case, the driver has authority 
to control the vehicle by accelerating, breaking and steer-
ing, as well to take over control authority at any time. In 
the case of AI-based hiring, employers’ authority includes 
setting a threshold for a passing score and deciding who to 
hire. Simply giving human agents final authority by design, 
without ensuring proper ability, is not sufficient to empower 
humans to act upon their moral responsibility. For example, 
a driver may have final authority over a fully autonomous 
car, but the driver’s loss of situational awareness, or even 
skill degradation as a result of systematic lack of engage-
ment in the driving task, will limit the driver’s ability to 
exert that control authority [41, 65, 82]. The same might 
happen for a manager with final authority over who to hire, 
if they merely sign off on the hiring recommendations of the 
AI agent, without substantively engaging in the assessment 
process themselves.

3.3.1 � Practical considerations

As authority should not be smaller than ability, it is impor-
tant to build a baseline understanding of the abilities of 
human and AI agents and evaluate their consistency with 
the control authority provided by the system’s design. From 
the human side, human factors literature [83] can support 
the identification of a realistic baseline on human ability 
by applying psychological and physiological principles to 
understand challenges that are likely to arise in human-AI 
interaction [82, 84]. From the AI side, a proper understand-
ing of ability should not only be task-oriented (e.g., meas-
uring performance from data sets against benchmark), but 
also behavior-oriented. Approaches to understand AI ability 
in context include approaches inspired by human cognitive 
tests, information theory [85], and ethology (related to ani-
mal behavior) [14]. Designing for appropriate authority and 
ability also requires us to expand the scope of design from 
human-AI interactions to social and organizational practices 
[11]. Human training, oversight procedures, administrative 
discretion, and policy are just a few examples of organi-
zational elements that significantly determine and shape 
agents’ authority and ability.

Design, training and technological development may 
“expand” or “shrink” agents’ abilities through innovation, 

including training humans for new skills and equipping 
AI agents with new technological capabilities, or achiev-
ing more through interaction between humans and AI and 
their combined abilities. From the AI side, especially for 
machine learning-based systems, as the relation between the 
input data and the target variable changes over time, concept 
drift methodologies can be applied to identify new situa-
tions which might impact the AI agent’s ability to respond 
to new situations [86, 87]. From the human side, interac-
tion with technology might lead to behavioral adaptation 
and unwanted situations, e.g., speeding when driving with 
intelligent steering assistance provided by an automated 
vehicle [88], decreasing human’s ability to keep the system 
within the moral ODD. In such situations, the human-AI 
system might move to a fallback state [89] or attract the 
driver’s attention back to the supervision task thus restoring 
the driver’s ability to act upon their ultimate responsibility 
for the vehicle’s operation.

Shared control is a promising approach to keep a balance 
between control ability and authority, with relevant applica-
tions in the domain of automated vehicles, robot-assisted 
surgery, brain-machine interfaces, and learning [90]. In 
shared control, the human(s) and the AI agents(s) are inter-
acting congruently in a perception-action cycle to perform a 
dynamic task, i.e., control authority is not attributed either to 
the human or to the AI agent, but is shared among them [91]. 
Shared control could be particularly useful in human-AI sys-
tems that need to act in complex situations that can rapidly 
change beyond the envisioned moral ODD, and where rapid 
human adaptation and intervention is needed.

3.4 � Property 4. Actions of the AI agents are 
explicitly linked to actions of humans who are 
aware of their moral responsibility

Satisfying the first three properties ensures that relevant 
humans are capable of acting upon their moral responsibil-
ity (property 3), are aware of the moral implications of the 
system’s actions (property 1), and have shared representa-
tions with AI agents (property 2). Yet, what is left undis-
cussed is the requirement to ensure that the effects of the 
system’s actions are traceable to the relevant humans’ moral 
understanding.

To trace any consequence of the human-AI system’s oper-
ation to a proper moral understanding of relevant humans, 
there should be explicit, explainable and inspectable link(s) 
between actions of the system and corresponding human 
morally loaded decisions and actions. We acknowledge that 
such link(s) might be a more demanding form of tracing than 
what was originally proposed in [11], nevertheless we deem 
it necessary to enable the tracing condition to be inspect-
able. Furthermore, we argue that moral understanding of the 
system’s effects should be demonstrated by, at least, those 
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humans who make decisions with moral implications on the 
design, deployment, or use of the system, even if the actions 
that bring a human decision to life are executed by the AI 
agent. Hence, all relevant human decisions related to e.g., 
design, use, policy must be explicitly logged and reported 
[66], in order to link actions of the AI agents to relevant 
decisions, preferences, or actions of humans who are aware 
of the system’s possible effects in the world.

Even if all relevant humans made their decisions respon-
sibly and with full awareness of their possible moral impli-
cations, the lack of a readily identifiable link from a given 
action of the AI agent to the underlying human decisions 
would still result in loss of tracing. The links between 
actions of the systems and corresponding human morally 
loaded decisions and actions need to be explicitly identifi-
able in two ways (Fig. 5): 

(1)	 Forward link: whenever a human within the human-AI 
system makes a decision with moral implications (e.g., 
on the design, deployment, or use of the system), that 
human should be aware of their moral responsibility 
associated with that decision, even if the actions that 
bring this decision to life are executed by the AI agent.

(2)	 Backward link: for any consequence of the actions of 
the human-AI system, the human decisions and actions 
leading to that outcome should be readily identifiable.

3.4.1 � Practical considerations

Enabling the forward link from human moral understand-
ing to AI agents’ actions relates to the epistemic condition 

(also called knowledge condition) of moral responsibility, 
which posits that humans should be aware of their respon-
sibility at the time of a decision [3, 92]. Hence, the human-
AI system should be designed in a way that simplifies and 
aids achieving moral awareness. This requires explicit links 
between design choices and stakeholder interpretations of 
moral reasons that are at stake. Values hierarchies [93] pro-
vide a structured and transparent approach to map relations 
between design choices and normative requirements. A value 
hierarchy visualizes the gradual specification of broad moral 
notions, such as moral responsibility, into context-dependent 
properties or capabilities the system should exhibit, and fur-
ther into concrete socio-technical design requirements. Such 
a structured mapping can equip stakeholders with the means 
to deliberate design choices in a manner that explicitly links 
each choice to relevant aspects of moral responsibility. These 
deliberations, as well as the accompanying rich body of 
empirical and conceptual research must be well documented, 
inspectable, and legible. This kind of transparency also sup-
ports the backward link between the system’s actions and the 
design choices made by relevant humans.

Furthermore, requirements such as explainability of the 
system’s actions can be essential in effectively empowering 
human moral awareness. Since its early works, the field of 
explainable AI has increased its scope from explaining com-
plex models to technical experts towards placing the target 
audience as a key aspect [94]. Given a certain human or 
group of humans as target audience, we see explainability in 
the context of supporting the forward link as clearly present-
ing the link between the system’s actions and human moral 
awareness, as well as their alignment to the moral ODD. For 
example, consider an automated vehicle which slows down 
and pulls off the road after it recognizes a car accident [12]. 
Right after that the vehicle should then remind the driver of 
their duty to provide assistance to possible victims in the 
accident. In the context of AI-based hiring, explanations of 
assessment scores in language that directly links observed 
job seeker performances to job-specific meanings of compe-
tence can help employers, job seekers, designers, and devel-
opers better outline the boundaries of moral ODD during 
design phase. For example, this can help reveal whether 
there is misalignment between conceptions of competence 
among the human agents and the AI algorithm.

In complex socio-technical environments the establish-
ment of links between human moral awareness and actions 
of a human-AI system is complicated by the “problem of 
many hands”, which happens when more than one agent 
contributes to a decision. It becomes less clear who is mor-
ally and legally responsible for its consequences [95]. The 
“problem of many things” complicates this further: there 
are not only many (human) hands, but also many differ-
ent technologies interacting and influencing each others, 
be it multiple AI agents or the interplay between sensors, 

Fig. 5   Property 4: Actions of the AI agents are explicitly linked 
to actions of humans who are aware of their moral responsibility. 
The forward link starts on the human and indicates that whenever a 
human makes a decision with moral implications that affects the sys-
tem’s behavior, that human should be aware of their moral respon-
sibility. The backward link looks at actions of the human-AI system 
and links it to previous human decisions (e.g., designers, users)
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processing units, and actuators [96]. In case of unintended 
consequences of the AI agent’s actions, this complexity can 
hinder the backward link, i.e., tracing the responsibility 
back to individual human decisions. This challenge calls 
for systemic, socio-technical design interventions that jointly 
consider social infrastructure (e.g., organizational processes, 
policy), physical infrastructure, and the AI agents that are 
part of these infrastructures.

Recent developments using information theory to quan-
tify human causal responsibility [97] can provide relevant 
insight for the design and development of appropriate for-
ward and backward links, by providing a model with which 
hypotheses can be tested. However, simplifying assumptions 
used in this research need to be addressed to account for 
more realistic settings. Methods from social sciences, e.g., 
Actor-Network Theory (ANT) [98] can support the devel-
opment of tracing networks of association amongst many 
actors, which can help understand how, for example, humans 
may offload value-laden behavior onto the technology 
around us. In the “sociology of a door closer”, [99] describes 
how we made door closers the element in the assembly that 
manifests politeness by ensuring the door closes softly and 
gradually, even as the human actors may barge through with-
out any action to regulate the door). This sort of division 
of moral-labor should not be done mindlessly, it requires 
human decisions to be analyzed and their relation to the 
moral ODD to be carefully analyzed.

Although establishing explicit links between human deci-
sions, human moral awareness, and actions of the AI agents 
is challenging, they allow appropriate post hoc attribution 
of backward-looking responsibility for unintended conse-
quences, helping to avoid responsibility gaps and prevent 
similar events from repeating in the future. It also facili-
tates forward-looking responsibility by creating an incen-
tive for the relevant humans to proactively reflect on the 
consequences of their decisions (design choices, operational 
control, interactions, etc.).

3.5 � Summary of the four properties

We summarize the proposed properties of systems under 
meaningful human control as follows:

•	 Property 1: The human-AI system has an explicit moral 
operational design domain (moral ODD) and the AI 
agent adheres to the boundaries of this domain.

•	 Property 2: Human and AI agents have appropriate and 
mutually compatible representations of the human-AI 
system and its context.

•	 Property 3: The relevant agents have ability and authority 
to control the system so that humans can act upon their 
responsibility.

•	 Property 4: Actions of the AI agents are explicitly 
linked to actions of humans who are aware of their moral 
responsibility.

In our view, these properties are constructive as well as 
open: they can serve as practical tools for supporting the 
design, development and evaluation of human-AI systems, 
while being applicable to diverse types of systems (as illus-
trated by the cases of automated vehicles and AI-based 
hiring).

Although the properties are not sufficient for a system to 
be under meaningful human control, we deem them neces-
sary from a design perspective: while a system developed 
to possess all these properties may still not be fully under 
meaningful human control, we believe that completely miss-
ing one of these properties would imply that the human-AI 
system is not under meaningful human control. Moreover, 
each property is non-binary and necessarily multidimen-
sional. Consequently, improving the system to some extent 
according to one or more of the four properties will lead to 
better tracking or tracing, and therefore, more meaningful 
human control over that system. That said, defining “how 
much of each property is sufficient” in a given context 
would generally require a thorough qualitative and situated 
analysis.

Furthermore, these four properties in themselves do not 
immediately translate to concrete design guidelines; met-
rics, algorithms, and methodologies needed to implement 
the properties are context- and system-specific. Yet, the 
properties provide explicit anchors for connecting to exist-
ing frameworks and methodologies across the design and 
engineering domains.

4 � The broader picture

In addition to establishing explicit links between the con-
cept of meaningful human control and existing frameworks 
across the design and engineering domains, the four pro-
posed properties unveil a range of new methodological ques-
tions and challenges on the path to practically implementing 
systems under meaningful human control.

Designing for meaningful human control requires 
designing for emergence. We argue that improving the 
human-AI system according to the properties we pre-
sented will lead to better tracking and tracing, and there-
fore more meaningful human control over that system. 
However, that does not provide an answer to the critical 
question: how much meaningful human control is suffi-
cient in a given context? We believe these uncharted waters 
need to be explored through practice-based research that 
aims to responsibly develop human-AI systems, while 
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ensuring inclusive and transparent collaborations among 
stakeholders and safe and rigorous evaluation of concepts 
and designs. On one hand, it is reasonable to expect that 
socio-technical design requirements that act for the sake 
of meaningful human control properties will vary across 
societal and application domains. On the other hand, given 
a sufficient level of conceptual abstraction, a common basic 
set of system properties that will prove practically helpful 
and robust across different societal domains can inform 
both bottom-up practice and top-down regulation towards 
meaningful human control. However, design and regulation 
cannot account for every detail of a system’s processes, 
interactions, components in a deterministic, top-down 
fashion. In fact, the socio-technical complexity of human-
AI systems and the inherent uncertainty of some aspects 
of their operation call for designing for emergence [100], 
where the focus shifts to designing the social, physical, 
and technical infrastructures that jointly provide favorable 
conditions for interactions between agents to lead to emer-
gence of desirable system properties and behaviors.

Meaningful human control is necessary but not suf-
ficient for ethical AI. Meaningful human control over AI 
relates to the broader scope of AI ethics in the sense that 
designing for meaningful human control means designing 
for human moral responsibility. That is a critical aspect 
of ethical design of human-AI systems, but by itself it 
is not sufficient to ensure other crucial aspects of ethi-
cal design and operation, such as protection of human 
rights and environmental sustainability. It is possible for 
a human-AI system to be under meaningful human con-
trol with respect to some relevant humans, yet result in 
outcomes that are considered morally unacceptable by 
society at large [11]. Meaningful human control ensures 
that humans are aware of and are equipped to act upon 
their responsibility, and that the human-AI system is 
responsive to human moral reasons. But it does not pre-
vent humans from consciously designing and operating 
the human-AI system in an unethical way. Therefore, 
meaningful human control must be part of a larger set 
of design objectives that collectively align the human-AI 
system with societal values and norms.

Transdisciplinary practices are vital to achieve mean-
ingful human control over AI. One of the most prominent 
challenges threaded throughout the four properties may 
also be the most rewarding opportunity: the inherent need 
for a socio-technical design process that crosses discipli-
nary boundaries. Each of the four properties and mean-
ingful human control as a whole is an endeavor that is 
not solvable by a single discipline. It is a systemic, socio-
technical puzzle in which computer scientists, designers, 
engineers, social scientists, legal practitioners, and cru-
cially, the societal stakeholders in question, each hold an 
essential piece of the puzzle. Hence, the only way to “walk 

the walk” is to move forward together, forming a transdis-
ciplinary practice based on continuous mutual learning 
[101] among both academic and non-academic stakehold-
ers. While this is undoubtedly a challenge, it may prove to 
be a rewarding opportunity for socially inclusive innova-
tion that puts human moral responsibility front and center.

5 � Conclusion

In this article, we address the issue of responsibility gaps in 
design and use of AI systems, and argue in favor of the concept 
of meaningful human control as a principle to mitigate them. 
To the current discourse surrounding meaningful human con-
trol, we contribute with a set of four actionable system prop-
erties and related approaches useful for implementing them 
in practice. These properties unpack the tracking and tracing 
conditions of meaningful human control [11] and provide a 
significant step forward toward its operationalization. Even 
though these properties may not be sufficient to completely 
ensure meaningful human control for all possible situations, 
we deem them necessary, and as such they help translate the 
tracking and tracing conditions into more tangible and design-
able requirements for human-AI systems. Our properties build 
upon and expand existing conceptual frameworks and method-
ologies across the design and engineering domains, such as the 
notion of operational design domain [47], ontological modeling 
[51], co-active design [61], shared mental models [62], shared 
control [90], value alignment [73], and consistency of ability, 
control authority, and responsibility [65]. With these four prop-
erties we have realized two goals: (1) contributed to closing the 
gap between the philosophical theory and practice of designing 
systems under meaningful human control, and (2) explicitly 
link meaningful human control to existing frameworks and 
methodologies across disciplines that can support design and 
development of human-AI systems.

Societal impacts and the issue of responsibility gaps in 
the use of AI today puts forward meaningful human control 
as one of the central concepts when discussing trustworthy 
and responsible AI, and we think it should also take central 
place on AI development. We believe this work will enable 
researchers and practitioners to take actionable steps towards 
the design and development of systems under meaningful 
human control, enabling many of the promised benefits of AI 
while maintaining human responsibility and control.
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