
04 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning / Chaouqui, F.; Gander,
M. J.; Kumbhar, P. M.; Vanzan, T.. - In: NUMERICAL ALGORITHMS. - ISSN 1017-1398. - 91:1(2022), pp. 81-107.
[10.1007/s11075-022-01255-5]

Original

Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

Publisher:

Published
DOI:10.1007/s11075-022-01255-5

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987638 since: 2024-04-08T14:10:17Z

Springer



https://doi.org/10.1007/s11075-022-01255-5

ORIGINAL PAPER

Linear and nonlinear substructured Restricted
Additive Schwarz iterations and preconditioning

F. Chaouqui1 ·M. J. Gander2 ·P. M. Kumbhar3 ·T. Vanzan4

Received: 25 March 2021 / Accepted: 4 January 2022
© The Author(s) 2022

Abstract
Iterative substructuring Domain Decomposition (DD) methods have been extensively
studied, and they are usually associated with nonoverlapping decompositions. It is
less known that classical overlapping DD methods can also be formulated in sub-
structured form, i.e., as iterative methods acting on variables defined exclusively on
the interfaces of the overlapping domain decomposition. We call such formulations
substructured domain decomposition methods. We introduce here a substructured
version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that
RAS and SRAS are equivalent when used as iterative solvers, as they produce the
same iterates, while they are substantially different when used as preconditioners for
GMRES. We link the volume and substructured Krylov spaces and show that the
iterates are different by deriving the least squares problems solved at each GMRES
iteration. When used as iterative solvers, SRAS presents computational advantages
over RAS, as it avoids computations with matrices and vectors at the volume level.
When used as preconditioners, SRAS has the further advantage of allowing GMRES
to store smaller vectors and perform orthogonalization in a lower dimensional space.
We then consider nonlinear problems, and we introduce SRASPEN (Substructured
Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as
a preconditioner for Newton’s method. In contrast to the linear case, we prove that
Newton’s method applied to the preconditioned volume and substructured formula-
tion produces the same iterates in the nonlinear case. Next, we introduce two-level
versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical
results with numerical experiments.
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method · Restricted Additive Schwarz (RAS) · Linear and nonlinear
preconditioning · GMRES

� T. Vanzan
tommaso.vanzan@epfl.ch

Extended author information available on the last page of the article.

Published online: 22 April 2022

Numerical Algorithms (2022) 91:81–107

/



Numerical Algorithms (2022) 91:81–107

1 Introduction

We consider a boundary value problem posed in a Lipschitz domain Ω ⊂ R
d , d ∈

{1, 2, 3},
L(u) = f, in Ω,

u = 0, on ∂Ω . (1)

We assume that (1) admits a unique solution in some Hilbert space V . If the boundary
value problem is linear, a discretization of (1) with Nv degrees of freedom leads to a
linear system

Au = f, (2)

where A ∈ R
Nv×Nv , u ∈ V (∼= R

Nv ), and f ∈ V . If the boundary value problem is
nonlinear, we obtain a nonlinear system

F(u) = 0, (3)

where F : V → V is a nonlinear function and u ∈ V . Several numerical
methods have been proposed in the last decades for the efficient solution of such
boundary value problems, e.g., multigrid methods [21, 37] and domain decompo-
sition (DD) methods [34, 36]. We will focus on DD methods, which are usually
divided into two distinct classes, that is overlapping methods, which include the AS
(Additive Schwarz) and RAS (Restricted Additive Schwarz) methods [6, 36], and
nonoverlapping methods such as FETI (Finite Element Tearing and Interconnect)
and Neumann-Neumann methods [14, 26, 32]. Concerning nonlinear problems, DD
methods can be applied either as nonlinear iterative methods, that is by just solv-
ing nonlinear problems in each subdomain and then exchanging information between
subdomains as in the linear case [2, 29, 30], or as preconditioners to solve the
Jacobian linear system inside Newton’s iteration. In the latter case, the term Newton-
Krylov-DD is employed, where DD is replaced by the domain decomposition
preconditioner used [23].

An alternative is to use a DD method as a preconditioner for Newton’s method.
Preconditioning a nonlinear system F(u) = 0 means that we aim to replace the orig-
inal nonlinear system with a new nonlinear system, still having the same solution,
but for which the nonlinearities are more balanced and Newton’s method converges
faster [3, 17]. Seminal contributions in nonlinear preconditioning have been made by
Cai and Keyes in [3, 4], where they introduced ASPIN (Additive Schwarz Precondi-
tioned Inexact Newton). The development of good preconditioners is not an easy task
even in the linear case. One useful strategy is to study efficient iterative methods, and
then to use the associated preconditioners in combination with Krylov methods [17].
The same logical path paved the way to the development of RASPEN (Restricted
Additive Schwarz Preconditioned Exact Newton) in [13], which in short applies
Newton’s method to the fixed point equation defined by the nonlinear RAS iteration
at convergence. Extensions of this idea to Dirichlet-Neumann are presented in [7].
In [22], the authors describe and analyze the scalability of the two-level variants of
the aforementioned methods (ASPIN and RASPEN). In particular, they discuss sev-
eral approaches of adding the coarse space correction, and a numerical comparison
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of all these methods is reported for different types of coarse spaces. All these meth-
ods are left preconditioners. Right preconditioners are usually based on the concept
of nonlinear elimination, presented in [27], and they are very efficient as shown in
[5, 19, 20, 31]. Right nonlinear preconditioners based on FETI-DP (Finite Element
Tearing and Interconnecting—Dual-Primal) and BDDC (Balancing Domain Decom-
position by Constraint) have been shown to be very effective (see, e.g., [24, 25]).
While left preconditioners aim to transform the original nonlinear function into a
better behaved one, right preconditioners aim to provide a better initial guess for the
next outer Newton iteration.

Nonoverlapping methods are sometimes called substructuring methods (a term
borrowed from Przemieniecki’s work [33]), as in these methods the unknowns in the
interior of the nonoverlapping domains are eliminated through static condensation
so that one needs to solve a smaller system involving only the degrees of freedom
on the interfaces between the nonoverlapping subdomains [36]. However, it is also
possible to write an overlapping method, such as Lions’ Parallel Schwarz Method
(PSM) [28], which is equivalent to RAS [16], in substructured form, even though this
approach is much less common in the literature. For a two subdomain decomposition,
a substructuring procedure applied to the PSM is carried out in [15, Section 5], [18,
Section 3.4] and [10]. In [10, 11], the authors introduced a substructured formulation
of the PSM at the continuous level for decompositions with many subdomains and
crosspoints, and further studied ad hoc spectral and geometric two-level methods.
In this particular framework, the substructured unknowns are now the degrees of
freedom located on the portions of a subdomain boundary that lie in the interior of
another subdomain; that is where the overlapping DD method takes the information
to compute the new iterate. We emphasize that, at a given iteration n, any iterative DD
method (overlapping or nonoverlapping) needs only a few values of un to compute
the new approximation un+1. The major part of un is useless.

In this manuscript, we define a substructured version of RAS, that is we define an
iterative scheme based on RAS which acts only over unknowns that are located on
the portions of a subdomain boundary that lie in the interior of another subdomain.
We study in detail the effects that such a substructuring procedure has on RAS when
the latter is applied either as an iterative solver or as a preconditioner to solve lin-
ear and nonlinear boundary value problems. Does the substructured iterative version
converge faster than the volume one? Is the convergence of GMRES affected by sub-
structuring?What about nonlinear problems when instead of preconditioned GMRES
we rely on preconditioned Newton? We prove that substructuring does not influence
the convergence of the iterative methods both in the linear and nonlinear case, by
showing that at each iteration, the restriction on the interfaces of the volume iterates
coincides with the iterates of the substructured iterative method. Nevertheless, we
discuss in Section 3.1 and corroborate by numerical experiments that a substructured
formulation presents computational advantages. The equivalence of iterates does not
hold anymore when considering preconditioned GMRES. Specifically, our study
shows that GMRES should be applied to the substructured system, since it is compu-
tationally less expensive, requiring to perform orthogonalization on a much smaller
space, and thus needs also less memory. In contrast to the linear case, we prove that,
surprisingly, the nonlinear preconditioners RASPEN and SRASPEN (Substructured
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RASPEN) for Newton produce the same iterates once these are restricted to the inter-
faces. However, SRASPEN has again more favorable properties when assembling
and solving the Jacobian matrices at each Newton iteration. Finally, we also extend
the work in [10, 11] defining substructured two-level methods to the nonlinear case,
where both smoother and coarse correction are defined directly on the interfaces
between subdomains.

This paper is organized as follows: we introduce in Section 2 the mathematical
setting with the domain, subdomains and operators defined on them. In Section 3,
devoted to the linear case, we study the effects of substructuring on RAS and on
GMRES applied to the preconditioned system. In Section 4, we extend our analysis
to nonlinear boundary value problems. Section 5 contains two-level substructured
methods for the nonlinear problems. Finally, Section 6 presents numerical tests to
corroborate the framework proposed.

2 Notation

Let us decompose the domain Ω into N nonoverlapping subdomains Ωj , that is
Ω = ⋃

j∈J Ωj with J := {1, 2, . . . , N}.
The nonoverlapping subdomains Ωj are then enlarged to obtain subdomains Ω ′

j

which form an overlapping decomposition of Ω . For each subdomain Ω ′
j , we define

Vj as the restriction of V to Ω ′
j , that is Vj collects the degrees of freedom on Ω ′

j .
Further, we introduce the classical restriction and prolongation operators Rj : V →
Vj , Pj : Vj → V , and the restricted prolongation operators P̃j : Vj → V . We
assume that these operators satisfy

RjPj = IVj
, and

∑

j∈J
P̃jRj = I, (4)

where IVj
is the identity on Vj and I is the identity on V .

We now define the substructured skeleton. In the following, we use the notation
introduced in [9]. For any j ∈ J , we define the set of neighboring indices Nj :=
{� ∈ J : Ω ′

j ∩ ∂Ω ′
� �= ∅}. Given a j ∈ J , we introduce the substructure of Ω ′

j

defined as Sj := ⋃
�∈Nj

(
∂Ω ′

� ∩Ω ′
j

)
, that is the union of all the portions of ∂Ω ′

� with

� ∈ Nj . The substructure of the whole domain Ω is defined as S := ⋃
j∈J Sj . A

graphical representation of S is given in Fig. 1 for a decomposition of a square into
nine subdomains. We now introduce the space V as the trace space of V onto the
substructure S. Associated with V , we consider the restriction operator R : V → V

and a prolongation operator P : V → V . The restriction operator R takes an element
v ∈ V and restricts it to the skeleton S. The prolongation operator P extends an
element v ∈ V to the global space V . In our numerical experiments, P extends
an element vS ∈ V by zero in Ω \ S. However, we can consider several different
prolongation operators. How this extension is done is not crucial as we will use P

inside a domain decomposition algorithm, and thus, only the values on the skeleton S

will play a role. Hence, as of now, we will need only one assumption on the restriction
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Fig. 1 The domain Ω is divided into nine nonoverlapping subdomains (left). The center panel shows how
the diagonal nonoverlapping subdomains are enlarged to form overlapping subdomains. On the right, we
denote the unknowns represented in V (blue line) and the unknowns of a coarse space of V (red crosses)

and prolongation operator, namely

RP = I , (5)

where I is the identity over V .

3 The linear case

In this section, we focus on the linear problem Au = f. After defining a substruc-
tured variant of RAS called SRAS, we prove the equivalence between RAS and
SRAS. Then, we study in detail how GMRES performs if applied to the volume
preconditioned system or the substructured system.

3.1 Linear iterative methods

To introduce our analysis, we recall the classical definition of RAS to solve the linear
system (2). RAS starts from an approximation u0 and computes for n = 1, 2, . . . ,

un = un−1 +
∑

j∈J
P̃jA

−1
j Rj

(
f − Aun−1

)
, (6)

where Aj := RjAPj , that is, we use exact local solvers. Let us now rewrite the
iteration (6) in an equivalent form using the hypothesis in (4) and the definition of
Aj ,

un =
∑

j∈J
P̃jRjun−1 +

∑

j∈J
P̃jA

−1
j Rj

(
f − Aun−1

)

=
∑

j∈J
P̃jA

−1
j

(
AjRjun−1 + Rj

(
f − Aun−1

))

=
∑

j∈J
P̃jA

−1
j Rj

(
f − A

(
I − PjRj

)
un−1

)

= : GRAS(un−1). (7)
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We emphasize that
(
PjRj − I

)
un−1 contains non-zero elements only outside sub-

domain Ω ′
j , and in particular the terms A

(
PjRj − I

)
un−1 represent precisely the

boundary conditions for Ω ′
j given the old approximation un−1. This observation

suggests that RAS, like most domain decomposition methods, can be written in a sub-
structured form. Indeed, despite iteration (7) being written in volume form, involving
the entire vector un−1, only very few elements of un−1 are needed to compute the
new approximation un. A substructured method iterates only on those values of u
which are really needed at each iteration, avoiding thus superfluous operations on
the whole volume vector u (e.g., the volume residual computation f−Aun−1 and the
summation with the old iterate un−1 in the RAS method (6)). For further details about
a substructured formulation of the parallel Schwarz method at the continuous level,
we refer to [18] for the two subdomain case, and [10, 11] for a general decomposition
into several subdomains with crosspoints.

In Section 2, we introduced the substructured space V geometrically, but we can
also provide an algebraic characterization using the RAS operators Rj and Pj . We
consider

K := {
k ∈ {1, . . . , Nv} : ∃j ∈ {1, . . . , N} such that RjA(ek − PjRjek) �= 0

}
,

that is, K is the set of indices such that the canonical vectors ek represent a Dirichlet
boundary condition at least for a subdomain, and its complementKc := {1, . . . , Nv}\
K. The cardinality of K is |K| =: N . We can thus introduce

V̂ :=
{
v ∈ R

Nv : if j /∈ K then vj = 0
}

= span {ek}k∈K ⊂ R
Nv .

Finally R is the Boolean restriction operator, mapping a vector of RNv onto a vector

of RN , keeping only the indices in K. Hence, V := ImR(∼= R
N) and P = R

�
.

To define SRAS, we need one more assumption on the restriction and prolongation
operators, namely

RM−1A = RM−1APR, (8)

where M−1 is the preconditioner for RAS, formally defined as

M−1 :=
∑

j∈J
P̃jA

−1
j Rj . (9)

Heuristically, this assumption means that the operator PR preserves all the infor-
mation needed by GRAS (defined in (7)) to compute correctly the values of the new
iterate on the skeleton S. Indeed a direct calculation shows that (8) is equivalent to
the condition

RGRAS(u) = RGRAS(PRu).

Given a substructured approximation v0 ∈ V , for n = 1, 2, . . . , we define SRAS
as

vn = GSRAS(vn−1), where GSRAS(v) := RGRAS(P v). (10)

RAS and SRAS are tightly linked, but when are they equivalent? Clearly, we must
impose some conditions on P and R. The next theorem shows that assumption (8) is
in fact sufficient for equivalence.
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Theorem 1 (Equivalence between RAS and SRAS) Assume that the operators R

and P satisfy (8). Given an initial guess u0 ∈ V and its substructured restriction
v0 := Ru0 ∈ V , define the sequences {un} and {vn} such that

un = GRAS(un−1), vn = GSRAS(vn−1).

Then, Run = vn for every iteration n ≥ 1.

Proof We prove this statement for n = 1 by a direct calculation. Taking the
restriction of u1 we have

Ru1 = RGRAS(u0) = RGRAS(PRu0) = RGRAS(P v0) = GSRAS(v0) = v1,

where we used assumption (8), and the definition of v0 and GSRAS. For a general n,
the proof is obtained by induction.

Remark 1 (Implementation of SRAS) In (10), we have introduced the substructured
operator GSRAS directly through the volume operator GRAS. This definition is very
useful from the theoretical point of view as it permits to link the volume and substruc-
tured methods and facilitates the theoretical analysis. However, we stress that one
should not implementGSRAS by directly calling the volume routineGRAS onto a vec-
tor P v. Doing so, one would lose all the computational advantages as computations
on the volume vector Pv would be performed. There are two strategies to implement
a fully substructured SRAS method. The first one is to implement a routine that, for
each j = 1, . . . , N , extracts from v those values which lie on the boundary of Ω ′

j

and rescale them appropriately as boundary conditions for the local subdomain solve.
A second possibility arises from (10) and (7), by observing that

vn = RGRAS(P vn) = R

N∑

j=1

P̃jA
−1
j Rj (f − A(I − PjRj )P vn−1

= b + R

N∑

j=1

P̃jA
−1
j Rj (−A(I − PjRj )P vn−1, (11)

where b := R
∑N

j=1 P̃jA
−1
j Rjf . One can then pre-assemble the matrices Rj :=

Rj (−A(I − PjRj )P ∈ R
Mj ,N , where Mj is the number of degrees of freedom in

Ω ′
j . The matrices Rj are very sparse and their goal is just to extract the values needed

for the j th subdomain solve from vn−1. Similarly P j := RP̃j ∈ R
N,Mj weights a

subdomain solution with the partition of unity and maps it to the substructured vector.
We finally obtain the equivalent iterative method

vn = b +
N∑

j=1

P jA
−1
j Rjvn−1, (12)

where no computations are performed with matrices or vectors at the volume level,
except for the subdomain solves.
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3.2 Linear preconditioners for GMRES

It is well known that any stationary iterative method should be used in practice as
a preconditioner for a Krylov method, since the Krylov method finds in general a
much better residual polynomial with certain optimality properties, compared to the
residual polynomial of the stationary iteration (see, e.g., [8]). The preconditioner
associated with RAS isM−1 and is defined in (9). The preconditioned volume system
then reads

M−1Au = M−1f. (13)

To discover the preconditioner associated with SRAS, we consider the fixed point
limit of (10),

v = GSRAS(v) = RGRAS(P v) = R

⎛

⎝P v +
∑

j∈J
P̃jA

−1
j Rj (f − AP v)

⎞

⎠

= v + R
∑

j∈J
P̃jA

−1
j Rj f − R

∑

j∈J
P̃jA

−1
j RjAP v

= v + RM−1f − RM−1AP v, (14)

where in the second line we used the identity RP = IS . We thus consider the
preconditioned substructured system

RM−1AP v = RM−1f. (15)

Observe that as A = M − N , (15) can be written as (I − G)v = b, where G :=
RM−1NP and b := RM−1f , thus recovering the classical form of the substructured
PSM (see [10, 11, 18]).

It is then natural to ask how a Krylov method like GMRES performs if applied to
(13), compared to (15). Let us consider an initial guess in volume u0, its restriction
v0 := Ru0 and the initial residuals r0 := M−1(f − Au0), r0 := RM−1(f − AP v0).
Then GMRES applied to the preconditioned systems (13) and (15) looks for solutions
in the affine Krylov spaces

u0 + Kk(M
−1A, r0) := u0 + span

{
r0, M−1Ar0, . . . , (M−1A)k−1r0

}

v0 + Kk(RM−1AP, r0) := v0 + span
{
r0, RM−1AP r0, . . . , (RM−1AP)k−1r0

}
, (16)

where k ≥ 1. The two Krylov spaces are tightly linked, as Theorem 2 below will
show. To prove it, we need the following Lemma.

Lemma 1 If the restriction and prolongation operators R and P satisfy (8) then for
k ≥ 1,

R
(
M−1A

)k =
(
RM−1AP

)k

R. (17)
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Proof Multiplying equation (8) from the right by M−1A we get

RM−1AM−1A = RM−1APRM−1A = RM−1APRM−1APR,

where in the second equality we have used once more (8). Using induction, one gets
for every k ≥ 1,

R
(
M−1A

)k =
(
RM−1AP

)k

R,

and this completes the proof.

Theorem 2 (Relation between RAS and SRAS Krylov subspaces) Let us consider
operators R and P satisfying (8), an initial guess u0 ∈ V , its restriction v0 := Ru0 ∈
V and the residuals r0 := M−1(f − Au0), r0 := RM−1(f − AP v0). Then for every
k ≥ 1, we have

v0 + Kk(RM−1AP, r0) = R(u0 + Kk(M
−1A, r0)). (18)

Proof First, due to (8) we have

Rr0 = RM−1(f − Au0) = RM−1(f − APRu0) = RM−1(f − AP v0) = r0.

Let us now show the first inclusion. If v ∈ R
(
u0 + Kk(M

−1A, r0)
)
, then v = Ru0+

R
∑k−1

j=0 γj

(
M−1A

)j
r0, for some coefficients γj . Using Lemma 1, we can rewrite

v as

v = v0 +
k−1∑

j=0

γjR
(
M−1A

)j

r0 = v0 +
k−1∑

j=0

γj

(
RM−1AP

)j

Rr0

= v0 +
k−1∑

j=0

γj

(
RM−1AP

)j

r0 ∈ v0 + Kk(RM−1AP, r0),

and thus R
(
u0 + Kk(M

−1A, r0)
) ⊂ v0 +Kk(RM−1AP, r0). Similarly if w ∈ v0 +

Kk(RM−1AP, r0) then

w = v0 +
k−1∑

j=0

γj

(
RM−1AP

)k

r0 = Ru0 +
k−1∑

j=0

γj

(
RM−1AP

)j

Rr0

= Ru0 +
k−1∑

j=0

γjR
(
M−1A

)j

r0,

thus w ∈ R
(
u0 + Kk(M

−1A, r0)
)
and we achieve the desired relation (18).

Theorem 2 shows that the restriction to the substructure of the affine volume
Krylov space of RAS coincides with the affine substructured Krylov space of SRAS.
One could then wonder if the restrictions of the iterates of GMRES applied to the pre-
conditioned volume system (13) coincide with the iterates of GMRES applied to the
preconditioned substructured system (15). However, this does not turn out to be true.
Nevertheless, we can further link the action of GMRES on these two preconditioned
systems.
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It is well known, (see, e.g., [35, Section 6.5.1]), that GMRES applied to (13) and
(15) generates a sequence of iterates

{
uk

}
k
and

{
vk

}
k
such that

uk = argminũk∈u0+Kk(M
−1A,r0)‖M−1f − M−1Aũk‖2, (19)

and

vk = argmiñvk∈v0+Kk(RM−1AP,r0)‖RM−1f − RM−1AP ṽk‖2. (20)

The iterates uk and vk can be characterized using orthogonal and Hessenberg matrices
obtained with the Arnoldi iteration. In particular, the kth iteration of Arnoldi provides
orthogonal matrices Qk, Qk+1 and a Hessenberg matrix Hk such that M−1AQk =
Qk+1Hk , and the columns of Qk form an orthonormal basis for the Krylov subspace
Kk(M

−1A, r0). Using these matrices, one writes uk as uk = u0+Qka, where a ∈ R
k

is the solution of the least squares problem

a = argmiña∈Rk‖Qk(‖r0‖2e1 − Hk ã)‖2 = argmiña∈Rk‖‖r0‖2e1 − Hk ã‖2, (21)

and e1 is the canonical vector of Rk+1. Similarly, one characterizes the vector vk as
vk = v0 + Qky such that

y = argmiñy∈Rk‖‖r0‖2e1 − Hk ỹ‖2, (22)

where Qk, Hk are the orthogonal and Hessenberg matrices obtained through the
Arnoldi method applied to the matrix RM−1AP .

The next theorem provides a link between the volume least square problem (19)
and the substructured one (20).

Theorem 3 Under the hypothesis of Theorem 2, the kth iterate of GMRES applied
to (15) is equal to vk = v0 + Qky = v0 + RQkt, where y satisfies (22) while

t := argmiñt∈Rk‖RQk+1(‖r0‖2e1 − Hk̃t)‖2. (23)

Proof It is clear that vk = v0 + Qky = v0 + RQkt as the first equality follows
from standard GMRES literature (see, e.g., [35, Section 6.5.1]). The second equal-
ity follows from Theorem 2 as we have shown that v0 + Kk(RM−1AP, r0) =
R(u0 + Kk(M

−1A, r0)). Thus, the columns of RQk form an orthonormal basis of
Kk(RM−1AP, r0) and hence, vk can be expressed as a linear combination of the
columns of RQk with coefficients in the vector t ∈ R

k plus v0. We are then left to
show (23). We have

min
ṽk∈v0+Kk(RM−1AP,r0)

‖ RM−1f − RM−1AP ṽk‖2
= min

t̃∈Rk
‖ RM−1f − RM−1AP(v0 + Qk̃t)‖2

= min
t̃∈Rk

‖ RM−1f − RM−1APRu0 − RM−1APQk̃t)‖2.

Using the relation Im(RQk) =Im(Qk), Lemma 1, the Arnoldi relation M−1AQk =
Qk+1Hk and that r0 coincides with the first column of Qk except for a normalization
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constant, we conclude

min
t̃∈Rk

‖ RM−1f − RM−1APRu0 − RM−1APRQk̃t)‖2
= min

t̃∈Rk
‖ Rr0 − RM−1AQk̃t)‖2

= min
t̃∈Rk

‖ RQk+1(‖r0‖2e1 − Hk̃t)‖2, (24)

and this completes the proof.

Few comments are in order here. First, GMRES applied to (15) converges in
maximum N iterations as the preconditioned matrix RM−1AP has size N × N .
Second, Theorem 2 states that R(u0 + KN(M−1A, r0)) already contains the exact
substructured solution, that is the exact substructured solution lies in the restric-
tion of the volume Krylov space after N iterations. Theoretically, if one could get
the exact substructured solution from R(u0 + KN(M−1A, r0)), then N iterations of
GMRES applied to (13), plus an harmonic extension of the substructured data into
the subdomains, would be sufficient to get the exact volume solution.

On the other hand, we can say a bit more analyzing the structure of M−1A. Using
the splitting A = M − N , we have M−1A = I − M−1N . A direct calculation states
Kk(M

−1A, r0) = Kk(M
−1N, r0) by using the relation

(M−1A)k = (I − M−1N)k =
k∑

j=0

(
k

j

)

(−1)j (M−1N)j ∀k ≥ 1,

that is the Krylov space generated byM−1A is equal to the Krylov space generated by
the RAS iteration matrix for error equation. We denote this linear operator withGRAS

0
which is defined as in (7) with f = 0. We now consider the orthogonal complement
V̂ ⊥ := (span {ek}k∈K)⊥ = span {ei}i∈Kc , and dim(V̂ ⊥) = Nv − N . Since for every
v ∈ V̂ ⊥, it holds that RjA(I −PjRj )v = 0, we can conclude that V̂ ⊥ ⊂ ker

(
GRAS

0

)
.

Using the rank-nullity theorem, we obtain

dim
(
Im(GRAS

0 )
) + dim

(
Ker

(
GRAS

0

) ) = Nv =⇒ dim
(
Im

(
GRAS

0

) ) ≤ N,

hence GMRES applied to the preconditioned volume system encounters a lucky
Arnoldi breakdown after at most N + 1 iterations (in exact arithmetic). This rank
argument can be used for the substructured preconditioned system as well. Indeed
as RM−1AP = I − RM−1NP , the substructured Krylov space is generated by the
matrix RM−1NP , whose rank is equal to the rank of M−1N , that is the rank of
GRAS

0 .
Heuristically, choosing a zero initial guess, r0 := M−1f corresponds to a solu-

tion of subdomains problem with the correct right-hand side, but with zero Dirichlet
boundary conditions along the interfaces of each subdomain. Thus, GMRES applied
to (13) needs only to find the correct boundary conditions for each subdomain, and
this can be achieved in at most N iterations as Theorem 2 shows.

Finally, we remark that each GMRES iteration on (15) is computationally less
expensive than a GMRES iteration on (13) as the orthogonalization of the Arnoldi
method is carried out in a much smaller space. From the memory point of view, this
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implies that GMRES needs to store shorter vectors. Thus, a saturation of the memory
is less likely, and restarted versions of GMRES may be avoided.

4 The nonlinear case

In this section, we study iterative and preconditioned domain decomposition methods
to solve the nonlinear system (3).

4.1 Nonlinear iterative methods

RAS can be generalized to solve the nonlinear (3). To show this, we introduce the
solution operators Gj which are defined through

RjF(PjGj (u) + (I − PjRj )u) = 0, (25)

where the operators Rj and Pj are defined in Section 2. Nonlinear RAS for N

subdomains then reads

un =
∑

j∈J
P̃jGj (un−1). (26)

It is possible to show that (26) reduces to (7) if F(u) is a linear function: assuming
that F(u) = Au − f, (25) becomes

RjF
(
PjGj

(
un−1

)
+ (

I − PjRj

)
un−1

)
= Rj

(
A

(
PjGj

(
un−1

)

+ (
I − PjRj

)
un−1

)
− f

)

= AjGj

(
un−1

)

+Rj

(
A

(
I − PjRj

)
un−1 − f

)
= 0,

which implies Gj

(
un−1

) = A−1
j Rj

(
f − A

(
I − PjRj

)
un−1

)
, and thus, (26)

reduces to (7).
Similarly to the linear case, we introduce the nonlinear SRAS. Defining

Gj(vn−1) := RP̃jGj

(
Pvn−1

)
, (27)

we obtain the nonlinear substructured iteration

vn = R
∑

j∈J
P̃jGj (P vn−1) =

∑

j∈J
Gj(vn−1), (28)

which is the nonlinear counterpart of (10).
The same calculations of Theorem 1 allow one to obtain an equivalence result

between nonlinear RAS and nonlinear SRAS.

Theorem 4 (Equivalence between nonlinear RAS and SRAS) Assume that the oper-
ators R and P satisfy R

∑
j∈J P̃jGj (u) = R

∑
j∈J P̃jGj (PRu). Let us consider
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an initial guess u0 ∈ V and its substructured restriction v0 := Ru0 ∈ V , and define
the sequences {un}, {vn} such that

un =
∑

j∈J
P̃jGj (un−1), vn =

∑

j∈J
Gj(vn−1).

Then for every n ≥ 1, Run = vn.

4.2 Nonlinear preconditioners for Newton’s method

In [13], it was proposed to use the fixed point equation of nonlinear RAS as a pre-
conditioner for Newton’s method, in a spirit that goes back to [3, 4]. This method has
been called RASPEN (Restricted Additive Schwarz Preconditioned Exact Newton)
and it consists in applying Newton’s method to the fixed point equation of nonlinear
RAS, that is,

F(u) = u −
∑

j∈J
P̃jGj (u) = 0. (29)

For a comprehensive discussion of this method, we refer to [13]. As done in (14)
for the linear case, we now introduce a substructured variant of RASPEN and we
call it SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact
Newton). SRASPEN is obtained by applying Newton’s method to the fixed point
equation of nonlinear SRAS, that is,

F(v) := v −
∑

j∈J
Gj(v) = 0.

One can verify that the above equation F(v) = 0 can also be written as

F(v) = RP v −
∑

j∈J
RP̃jGj (P v) = RF(P v) = 0. (30)

This formulation of SRASPEN provides its relation with RASPEN and simplifies the
task of computing the Jacobian of SRASPEN.

4.2.1 Computation of the Jacobian and implementation details

To apply Newton’s method, we need to compute the Jacobian of SRASPEN. Let
JF (w) and JF (w) denote the action of the Jacobian of RASPEN and SRASPEN on
a vector w. Since these methods are closely related, indeed F(v) = RF(P v), we can
immediately compute the Jacobian of F once we have the Jacobian of F , using the
chain rule, JF (v) = RJF (P v)P . The Jacobian of F has been derived in [13] and
we report here the main steps for the sake of completeness. Differentiating (29) with
respect to u leads to

JF (u) := dF
du

(u) = I −
∑

j∈J
P̃j

dGj

du
(u). (31)
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Recall that the local inverse operators Gj : V → Vj are defined in (25) as the
solutions of RjF(PjGj (u) + (I − PjRj )u) = 0. Differentiating this relation yields

dGj

du
(u) = Rj −

(
RjJ

(
u(j)

)
Pj

)−1
RjJ

(
u(j)

)
, (32)

where u(j) := PjGj (u) + (I − PjRj )u is the volume solution vector in subdomain
j and J is the Jacobian of the original nonlinear function F . Combining the above
(31)–(32) and defining ũ(j) := PjGj (P v) + (I − PjRj )P v, we get

JF (u) =
⎛

⎝
∑

j∈J
P̃j

(
RjJ

(
u(j)

)
Pj

)−1
RjJ

(
u(j)

)
⎞

⎠ , (33)

and

JF (v) = R

⎛

⎝
∑

j∈J
P̃j

(
RjJ

(
ũ(j)

)
Pj

)−1
RjJ (̃u(j))

⎞

⎠ P , (34)

where we used the assumptions
∑

j∈J P̃jRj = I and RP = IS . We remark that
to assemble JF (u) or to compute its action on a given vector, one needs to cal-
culate J

(
u(j)

)
, that is, evaluate the Jacobian of the original nonlinear function F

on the subdomain solutions u(j). The subdomain solutions u(j) are obtained eval-
uating F(u), that is performing one step of RAS with initial guess equal to u. A
smart implementation can use the local Jacobian matrices RjJ

(
u(j)

)
Pj that are

already computed by the inner Newton solvers while solving the nonlinear problem
on each subdomain, and hence no extra cost is required to assemble this term. Fur-
ther, the matrices RjJ

(
u(j)

)
are different from the local Jacobian matrices at very

few columns corresponding to the degrees of freedom on the interfaces, and thus, it
suffices to only modify those specific entries. In a non-optimized implementation,
one can also directly evaluate the Jacobian of F on the subdomain solutions u(j),
without relying on already computed quantities. Concerning JF (v), we emphasize
that ũ(j) is the volume subdomain solution obtained by substructured RAS starting
from a substructured function v. Thus, like u(j), ũ(j) is readily available in Newton’s
iteration after evaluating the function F .

From the computational point of view, SRASPEN has several advantages over
RASPEN. From (33) and (34), we note that JF is a matrix of dimension N × N

where N is the number of unknowns on S, and thus is a much smaller matrix than
JF , whose size is Nv × Nv , with Nv the number of unknowns in volume. On the one
hand, if one prefers to assemble the Jacobian matrix, either because one wants to use
a direct solver or because one wants to recycle the Jacobian for several iterations, then
SRASPEN dramatically reduces the cost of the assembly of the Jacobian matrix. On
the other hand, we remark that (33) and (34) have the same structure of the volume
and substructured preconditioned matrices (13) and (15), by just identifying M−1 =
∑

j∈J P̃j

(
RjJ

(
u(j)

)
Pj

)−1
. Similarly to Remark 1 in the linear case, we can have

a fully substructured formulation, by writing

JF (v) =
∑

j∈J
P j

(
RjJ

(
ũ(j)

)
Pj

)−1
Rj ,
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where P j := RP̃j and Rj := RjJ (̃uj )P . It follows that if one prefers to use a
Krylov method such as GMRES, then according to the discussion in Section 3.2,
SRASPEN better exploits the properties of the underlying domain decomposition
method, and saves computational time by permitting to perform the orthogonaliza-
tion in a much smaller space. Further implementation details and a more extensive
comparison are available in the numerical Section 6.

4.2.2 Convergence analysis of RASPEN and SRASPEN

Theorem 4 gives an equivalence between nonlinear RAS and nonlinear SRAS. Are
RASPEN and SRASPEN equivalent? Does Newton’s method behave differently if
applied to the volume or to the substructured fixed point equation, like it happens
with GMRES (see Section 3.2)? In this section, we aim to answer these questions
by discussing the convergence properties of the exact Newton’s method applied to F
and F .

Let us recall that, given two approximations u0 and v0, the exact Newton’s method
computes for n ≥ 1,

un = un−1 −
(
JF

(
un−1

))−1
F

(
un−1

)
and vn = vn−1 −

(
JF

(
vn−1

))−1
F(vn−1),

where JF
(
un−1

)
and JF

(
vn−1

)
are the Jacobian matrices respectively of F and F

evaluated at un−1 and vn−1. In this paragraph, we do not need a precise expression
for JF and JF . However we recall that, the definitionF(v) = RF(P v) and the chain
rule derivation provides us the relation JF (v) = RJF (P v)P . If the operators R and
P were square matrices, we would immediately obtain that RASPEN and SRASPEN
are equivalent, due to the affine invariance theory for Newton’s method [12]. How-
ever, in our case, R and P are rectangular matrices and they map between spaces of
different dimensions. Nevertheless, in the following theorem, we show that RASPEN
and SRASPEN provide the same iterates restricted to the interfaces under further
assumptions on R and P , which is a direct generalization of (8) to the nonlinear case.

Theorem 5 (Equivalence between RASPEN and SRASPEN) Assume that the
operators R and P satisfy

RF(u) = RF(PRu) = F(Ru). (35)

Given an initial guess u0 ∈ V and its substructured restriction v0 := Ru0 ∈ V ,
define the sequences {un} and {vn} such that

un = un−1 −
(
JF

(
un−1

))−1
F

(
un−1

)
and vn = vn−1 −

(
JF

(
vn−1

))−1
F

(
vn−1

)
.

Then for every n ≥ 1, Run = vn.
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Proof We first prove the equality Ru1 = v1 by direct calculations. Taking the
restriction of the RASPEN iteration, we obtain

Ru1 = Ru0 − R
(
JF

(
u0

))−1
F

(
u0

)
= v0 − R

(
JF

(
u0

))−1
F

(
u0

)
. (36)

Now, due to the definition of F and of v0, and to the assumption (35), we have

F
(
v0

)
= RF

(
P v0

)
= RF

(
PRu0

)
= RF

(
u0

)
. (37)

Further, taking the Jacobian of assumption (35), we have RJF (u0) = JF (Ru0)R,
which simplifies by taking the inverse of the Jacobians to

R
(
JF (u0)

)−1 =
(
JF (Ru0)

)−1
R. (38)

Finally substituting relations (37) and (38) into (36) leads to

Ru1 = v0 − R
(
JF

(
u0

))−1
F

(
u0

)
= v0 −

(
JF (Ru0)

)−1
RF

(
u0

)

= v0 −
(
JF (v0)

)−1
F

(
v0

)
= v1,

and the general case is obtained by induction.

5 Two-level nonlinear methods

RAS and SRAS can be generalized to two-level iterative schemes. This has already
been treated in detail for the linear case in [10, 11]. In this section, we introduce two-
level variants for nonlinear RAS and SRAS, and also for the associated RASPEN and
SRASPEN.

5.1 Two-level iterative methods

To define a two-level method, we introduce a coarse space V0 ⊂ V , a restriction
operator R0 : V → V0 and an interpolation operator P0 : V0 → V . The nonlinear
system F can be projected onto the coarse space V0, defining the coarse nonlinear
function F0 (u0) := R0F (P0u0), for every u0 ∈ V0. Due to this definition, it follows
immediately that JF0 (u0) = R0JF (P0u0) P0, ∀u0 ∈ V0. To compute a coarse cor-
rection we rely on the FAS approach [1]. Given a current approximation u, the coarse
correction C0(u) is computed as the solution of

F0(C0(u) + R0u) = F0(R0u) − R0F(u). (39)

Two-level nonlinear RAS is described by Algorithm 1 and it consists of a coarse
correction followed by one iteration of nonlinear RAS (see [22] for different
approaches).
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We now focus on its substructured counterpart. We introduce a coarse substructured
space V 0 ⊂ V , a restriction operator R0 : V → V 0 and a prolongation operator
P 0 : V 0 → V . We define the coarse substructured function as

F0(v0) := R0F(P 0(v0)), ∀v0 ∈ V 0. (40)

From the definition it follows that JF0
(v0) = R0JF (P 0v0)P 0, ∀v0 ∈ V 0. There

is a profound difference between two-level nonlinear RAS and two-level nonlinear
SRAS: in the first one (Algorithm 1), the coarse function is obtained restricting the
original nonlinear system F(u) = 0 onto a coarse mesh. In the substructured ver-
sion, the coarse substructured function is defined restricting the fixed point equation
of nonlinear SRAS to V 0. That is, the coarse substructured function corresponds to
a coarse version of SRASPEN. Hence, we remark that this algorithm is the non-
linear counterpart of the linear two-level algorithm described in [10, 11]. Two-level
nonlinear SRAS is then defined in Algorithm 2.

As in the linear case, numerical experiments will show that two-level iterative
nonlinear SRAS exhibits faster convergence in terms of iteration counts compared
to two-level nonlinear RAS. However, we remark that evaluating F0 is rather cheap,
while evaluating F0 could be quite expensive as it requires to perform subdomain
solves on the fine mesh. One possible improvement is to approximate F0 replac-
ing F in its definition with another function which performs subdomain solves on
a coarse mesh. Further, we emphasize that a prerequisite of any domain decomposi-
tion method is that the subdomain solves are cheap to compute in a high performance
parallel implementation, so that in such a setting evaluating F0 needs to be cheap as
well.
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5.2 Two-level preconditioners for Newton’s method

Once we have defined the two-level iterative methods, we are ready to introduce the
two-level versions of RASPEN and SRASPEN. The fixed point equation of two-level
nonlinear RAS is

F2L(u) := u −
∑

j∈J
P̃jGj (u + P0C0(u))

= −P0C0(u) −
∑

j∈J
P̃jCj (u + P0C0(u)) = 0, (41)

where we have introduced the correction operators Cj (u) := Gj(u) − Rju. Thus,
two-level RASPEN defined in [13] consists in applying Newton’s method to the fixed
point (41).

Similarly, the fixed point equation of two-level nonlinear SRAS is

F2L(v) := v−
∑

j∈J
Gj

(
v + P 0C0(v)

) = −P 0C0(v)−
∑

j∈J
Cj

(
v + P 0C0(v)

) = 0,

(42)
where the correction operators Cj are defined as Cj (v) := Gj(v) − RP̃jRjPv.
Two-level SRASPEN consists in applying Newton’s method to the fixed point (42).

6 Numerical results

We discuss three different examples in this section to illustrate our theoretical results.
In the first example, we consider a linear problem where we study the performance
of GMRES when it is applied to the preconditioned volume system and the pre-
conditioned substructured system. In the next two examples, we present numerical
results in order to compare Newton’s method, NKRAS [5], nonlinear RAS, nonlinear
SRAS, RASPEN, and SRASPEN for the solution of a one-dimensional Forchheimer
equation and for a two-dimensional nonlinear diffusion equation.

6.1 Linear example

We consider the diffusion equation −Δu = f , with source term f ≡ 1 and homo-
geneous boundary conditions inside the unit cube Ω := (0, 1)3 decomposed into
N equally sized bricks with overlap, each discretized with 27000 degrees of free-
dom. The size of the overlap is δ := 4 × h. In Table 1, we study the computational
effort and memory required by GMRES when applied to the preconditioned volume
system (13) (GMRES-RAS) and to the preconditioned substructured system (15)
(GMRES-SRAS). We let the number of subdomains grow, while keeping their sizes
constant, that is the global problem becomes larger as N increases. We report the
computational times to reach a relative residual smaller than 10−8, and the number of
gigabytes required to store the orthogonal matrices of the Arnoldi iteration, both for
the volume and substructured implementations. The subdomain solves are performed
in a serial fashion, we precompute the Cholesky factorizations for the subdomain
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Table 1 On the top, time in seconds required by GMRES-RAS and GMRES-SRAS to reach a relative
error smaller than 10−8 for increasingly larger problems

Nv(N) − N 729000(27) − 92944 1728000(64) − 246456 3375000(125) − 511712

GMRES-RAS 11.14 47.55 136.54

GMRES-SRAS 9.86 40.37 112.06

GMRES-RAS 0.09 0.34 0.81

GMRES-SRAS 0.01 0.05 0.12

At the bottom, memory use expressed in gigabytes to store the Arnoldi orthogonal matrices in both
GMRES implementations

matrices Aj , and for SRAS we use the fixed point equation related to formulation
(12).

Table 1 shows that GMRES applied to the preconditioned substructured system
is faster in terms of computational time compared to the volume implementation.
This advantage becomes more evident as the global problem becomes larger. We
emphasize that GMRES required the same number of iterations to reach the tolerance
for both methods in all cases considered. Thus, the faster time to solution of GMRES-
SRAS is due to the smaller number of floating point operations that GMRES-SRAS
has to perform, since the orthogonalization steps are performed in a much smaller
space, and SRAS avoids unnecessary volume computations. Furthermore, GMRES-
SRAS significantly outperforms GMRES-RAS in terms of memory requirements; in
this particular case, GMRES-SRAS computes and stores orthogonal matrices which
are about seven times smaller than the ones used by GMRES-RAS.

6.2 Forchheimer equation in 1D

Forchheimer equation is an extension of the Darcy equation for high flow rates, where
the linear relation between the flow velocity and the gradient flow does not hold
anymore. In a one-dimensional domain Ω := (0, 1), the Forchheimer model is

q(−λ(x)u(x)′))′ = f (x) in Ω,

u(0) = uL and u(1) = uR, (43)

where uL, uR ∈ R, λ(x) is a positive and bounded permeability field and q(y) :=
sign(y)

−1+√
1+4γ |y|
2γ , with γ > 0. To discretize (43), we use the finite volume

scheme described in detail in [13]. In our numerical experiments, we set λ(x) =
2+ cos(5πx), f (x) = 50 sin(5πx)ex , γ = 1, u(0) = 1 and u(1) = e1. The solution
field u(x) and the force field f (x) are shown in Fig. 2.

We then study the convergence behavior of our different methods. Figure 3 shows
how the relative error decays for the different methods and for a decomposition into
20 subdomains (left panel) and 50 subdomains (right panel). The initial guess is equal
to zero for all these methods.
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Fig. 2 Solution field u(x) of Forchheimer equation (left panel) and force term f (x) (right panel)

Both plots in Fig. 3 show that the convergence rate of iterative nonlinear RAS
and nonlinear SRAS is the same and very slow. As expected, NKRAS with line
search converges better than Newton’s method and further RASPEN and SRASPEN
converge in the same number of outer Newton iterations as they produce the same
iterates. Moreover, it seems that the convergence of RASPEN and SRASPEN is not
affected by the number of subdomains. However, these plots do not tell the whole
story, as one should focus not only on the number of iterations but also on the cost of
each iteration. To compare the cost of an iteration of RASPEN and SRASPEN, we
have to distinguish two cases, that is, if one solves the Jacobian system directly or
with some Krylov methods, e.g., GMRES. First, suppose that we want to solve the
Jacobian system with a direct method and thus we need to assemble and store the
Jacobians. From the expressions in equation (34) we remark that the assembly of the
Jacobian of RASPEN requires N × Nv subdomain solves, where N is the number of
subdomains and Nv is the number of unknowns in volume. On the other hand, the
assembly of the Jacobian of SRASPEN requires N × N solves, where N is the num-
ber of unknowns on the substructures and N � Nv . Thus, while the assembly of JF

Fig. 3 Convergence behavior for Newton’s method, NKRAS, nonlinear RAS, nonlinear SRAS, RASPEN
and SRASPEN applied to Forchheimer equation. On the left, the simulation refers to a decomposition into
20 subdomains while on the right we consider 50 subdomains. The mesh size is h = 10−3 and the overlap
is 8h
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is prohibitive, it can still be affordable to assemble JF . Further, the direct solution of
the Jacobian system is feasible as JF has size N ×N . Suppose now that we solve the
Jacobian systems with GMRES. Let us indicate with I (k) and IS(k) the number of
GMRES iterations to solve the volume and substructured Jacobian systems at the kth
outer Newton iteration. Each GMRES iteration requires N subdomain solves which
can be performed in parallel. In our numerical experiment, we have observed that
generally IS(k) ≤ I (k), with I (k) − IS(k) ≈ 0, 1, 2, that is GMRES requires the
same number of iterations or slightly less to solve the substructured Jacobian system
compared to the volume one.

To better compare these two methods, we follow [13] and introduce the quantity
L(n) which counts the number of subdomain solves performed by these two methods
till iteration n, taking into account the advantages of a parallel implementation. We
set L(n) = ∑n

k=1 Lk
in + I (k), where Lk

in is the maximum over the subdomains of
the number of Newton iterations required to solve the local subdomain problems at
iteration k. The number of linear solves performed by GMRES should be I (k) × N ,
but as the N linear solves can be performed in parallel, the total cost of GMRES
corresponds approximately to I (k) linear solves. Figure 4 shows the error decay as
a function of L(n). We note that the two methods require approximately the same
computational cost and SRASPEN is slightly faster.

For the decomposition into 50 subdomains, RASPEN requires on average 91.5
GMRES iterations per Newton iteration, while SRASPEN requires an average of
90.87 iterations. The size of the substructured space V is N = 98. For the decom-
position into 20 subdomains, RASPEN requires an average of 40 GMRES iterations
per Newton iteration, while SRASPEN needs 38 iterations. The size of V is N = 38,
which means that GMRES reaches the given tolerance of 10−12 after exactlyN steps,
which is the size of the substructured Jacobian. Under these circumstances, it can be
convenient to actually assemble JF , as it requires N × N subdomain solves which is
the total cost of GMRES. Furthermore, the N × N subdomain solves are embarrass-
ingly parallel, while the N × N solves of GMRES can be parallelized in the spatial
direction, but not in the iterative one. As future work, we believe it will be interesting

Fig. 4 Relative error decay for RASPEN and SRASPEN applied to Forchheimer equation with respect
to the number of linear solves. On the left, the simulation refers to a decomposition into 20 subdomains
while on the right we consider 50 subdomains. The mesh size is h = 10−3
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to study the convergence of a Quasi-Newton method based on SRASPEN, where one
assembles the Jacobian substructured matrix after every few outer Newton iterations,
reducing the overall computational cost.

As a final remark, we specify that Fig. 4 has been obtained setting a zero initial
guess for the nonlinear subdomain problems. However, at the iteration k of RASPEN
one can use the subdomain restriction of the updated volume solution, that isRjuk−1,
which has been obtained by solving the volume Jacobian system at iteration k − 1,
and is thus generally a better initial guess for the next iteration. On the other hand
in SRASPEN, one could use the subdomain solutions computed at iteration k − 1,
i.e., uk−1

i , as initial guess for the nonlinear subdomain problems, as the substruc-
tured Jacobian system corrects only the substructured values. Numerical experiments
showed that with this particular choice of initial guess for the nonlinear subdomain
problems, SRASPEN requires generally more Newton iterations to solve the local
problems. In this setting, there is not a method that is constantly faster than the
other as it depends on a delicate trade-off between the better GMRES performance
and the need to perform more Newton iterations for the nonlinear local problems in
SRASPEN.

6.3 Nonlinear diffusion

In this subsection we consider the nonlinear diffusion problem on a square domain
Ω := (0, 1)2,

− ∇ ·
(
1 + u(x)2

)
∇u(x) = f, in Ω,

u(x) = g(x) on ∂Ω, (44)

where the right-hand side f is chosen such that u(x) = sin(πx) sin(πy) is the exact
solution. We start all these methods with an initial guess u0(x) = 105, so that we
start far away from the exact solution, and hence Newton’s method exhibits a long
plateau before quadratic convergence begins.

Figure 5 shows the convergence behavior for the different methods as function
of the number of iterations and the number of linear solves. The average number of
GMRES iterations is 8.1667 for both RASPEN and SRASPEN for the four subdo-
main decomposition. For a decomposition into 25 subdomains, the average number
of GMRES iterations is 19.14 for RASPEN and 19.57 for SRASPEN. We remark
that as the number of subdomains increases, GMRES needs more iterations to solve
the Jacobian system. This is consistent with the interpretation of (34) as a Jacobian

matrix J
(
u(j)

)
preconditioned by the additive operator

∑
j∈J

(
RjJ

(
u(j)

)
Pj

)−1
;

We expect this preconditioner not to be scalable since it does not involve a coarse cor-
rection. In Table 2 we compare the computational time in seconds to reach a tolerance
of 10−8 by RASPEN and SRASPEN. SRASPEN is faster due to the less expensive
GMRES iteration which is inherited by the linear analysis (see Table 1).

We conclude this section by showing the convergence behavior for the two-level
variants of nonlinear RAS, nonlinear SRAS, RASPEN, and SRASPEN. We use a
coarse grid in volume taking half of the points in x and y, and a coarse substruc-
tured grid taking half of the unknowns as depicted in Fig. 1. The interpolation and
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Fig. 5 Relative error decay versus the number of iterations (top row) and error decay versus the number
of linear solves (bottom row). The left figures refer to a decomposition into four subdomains, the right
figures to a decomposition into 25 subdomains. The mesh size is h = 0.012 and the overlap is 8h

restriction operators P0, R0, P 0 and R0 are the classical linear interpolation and
fully weighting restriction operators defined in Section 5. From Fig. 6, we note that
two-level nonlinear SRAS is much faster than two-level nonlinear RAS, and this
observation is in agreement with the linear case treated in [10, 11]. Since the two-
level iterative methods are not equivalent, we also remark that two-level SRASPEN
shows a better performance than two-level RASPEN in terms of iteration count. As
the one-level smoother is the same in all methods, the better convergence of the sub-
structured methods implies that the coarse equation involving F0 provides a much
better coarse correction than the classical volume one involving F0.

Even though the two-level substructured methods are faster in terms of iteration
count, the solution of the FAS problem involving F0 = R0F(P 0(v0)) is rather

Table 2 Time in seconds required by RASPEN and SRASPEN to reach a relative error smaller than 10−8

for the nonlinear diffusion equation with 4, 25 and 49 subdomains

Nv(N) − N 961(4) − 120 6241(25)-1200 12321(49)-2520

RASPEN 0.40 17.30 107.57

SRASPEN 0.34 15.54 98.18
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Fig. 6 Relative error decay versus the number of iterations for Newton’s method, iterative two-level non-
linear RAS and SRAS, and the two-level variants of RASPEN and SRASPEN. The left figure refers to
a decomposition into 4 subdomains, while the right figure refers to a decomposition into 16 subdomains.
The mesh size is h = 0.012 and the overlap is 4h

expensive as it requires to evaluate twice the substructured function F (each evalua-
tion requires subdomain solves) to compute the right-hand side, to solve a Jacobian
system involving JF0

, and to evaluate F on the iterates, which again require the
solution of subdomain problems. Unless one has a fully parallel implementation
available, the coarse correction involving F0 is doomed to represent a bottleneck.

7 Conclusions

We presented an analysis of the effects of substructuring on RAS when it is applied
as an iterative solver and as a preconditioner. We proved that iterative RAS and iter-
ative SRAS converge at the same rate, both in the linear and nonlinear case. For the
nonlinear case, we showed that the preconditioned methods, namely RASPEN and
SRASPEN, also have the same rate of convergence as they produce the same iter-
ates once these are restricted to the interfaces. Surprisingly, the equivalence between
volume and substructured RAS breaks down when they are considered as precondi-
tioners for Krylov methods. We showed that the Krylov spaces are equivalent, once
the volume one is restricted to the substructure, however we obtained that the iter-
ates are different by carefully deriving the least squares problems solved by GMRES.
Our analysis shows that GMRES should be applied to the substructured system as
it converges similarly when applied to the volume formulation, but needs much less
memory. This allows us to state that, while nonlinear RASPEN and SRASPEN pro-
duce the same iterates, SRASPEN has advantages when solving the Jacobian system,
either because the use of a direct solve is feasible or because the Krylov method can
work at the substructured level. Finally, we introduced substructured two-level non-
linear SRAS and SRASPEN, and showed numerically that these methods have better
convergence properties than their volume counterparts in terms of iteration count,
although they are quite expensive in the present form per iteration. Future efforts
will be in the direction of approximating F0, by replacing the function F , which is
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defined on a fine mesh, with an approximation on a very coarse mesh, thus reduc-
ing the overall cost of the substructured coarse correction, or by using spectral coarse
spaces.
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