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Abstract

Despite the recent advances in the field of object detec-
tion, common architectures are still ill-suited to incremen-
tally detect new categories over time. They are vulnerable to
catastrophic forgetting: they forget what has been already
learned while updating their parameters in absence of the
original training data. Previous works extended standard
classification methods in the object detection task, mainly
adopting the knowledge distillation framework. However,
we argue that object detection introduces an additional
problem, which has been overlooked. While objects belong-
ing to new classes are learned thanks to their annotations,
if no supervision is provided for other objects that may
still be present in the input, the model learns to associate
them to background regions. We propose to handle these
missing annotations by revisiting the standard knowledge
distillation framework. Our approach outperforms current
state-of-the-art methods in every setting of the Pascal-VOC
dataset. We further propose an extension to instance seg-
mentation, outperforming the other baselines.

1. Introduction
Object detection is a key task in computer vision that

has seen significant development in recent years. The ad-
vances were made possible by the rise of deep neural net-
work architectures [3, 19, 24, 33, 47, 48], which improved
results while reducing computation time. Despite the ad-
vances, these architectures assume that they already know
all of the classes they will encounter and are not designed to
incrementally update their knowledge to learn new classes
over time. A naı̈ve solution would be to restart the training
process from the beginning, gathering a new dataset with all
of the classes and retraining the architecture. However, this
is impractical because it would necessarily require a sig-
nificant computational overhead to re-learn the previously
learned classes, as well as the use of previous training data
that may no longer be available, for example due to privacy
concerns or intellectual property rights.

A better solution is to use incremental learning and up-

Ground truth Expected Output

Step 1

Person

Old Classes New Classes Future Classes

Step 2

Car

Person

Dog, Car, Bus

Dog, Bus

Step 3

Dog

Person, Car

Bus

Objects in Image

Figure 1. An illustration of the missing annotation issue of object
detection in different time steps. At training step t, the annotations
are provided only for new classes (red), while all the other objects,
both from old (blue) and future (yellow) steps are not annotated.

date the models directly to extend their knowledge to new
classes by training only on new data and avoiding catas-
trophic forgetting [39]. Incremental learning has primarily
been studied in the context of image classification [2, 14,
18, 28, 31, 46, 49] but it has only recently been applied to
more complex tasks like object detection [10,22,43,51,59]
and semantic segmentation [5–8,13,40,41]. Performing in-
cremental learning in object detection (ILOD) poses addi-
tional challenges because each image contains multiple ob-
jects and, following the definition in [51], only objects be-
longing to new classes are annotated while the rest (objects
belonging to either old or future classes) are ignored, intro-
ducing missing annotations (see Fig. 1).

Previous research has concentrated on introducing regu-
larizations to prevent catastrophic forgetting, but the impact
of missing annotations has been overlooked. Regions with-
out annotations, in particular, are commonly considered as
background areas, and the model assigns them to a special
background class. As a result, objects that are not annotated
will be associated with the background, exacerbating catas-
trophic forgetting in old classes and making training more
difficult in future classes.
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To overcome this issue, inspired by [6], we revisit the
common knowledge distillation framework in ILOD [43,51,
59] proposing MMA, that Models the Missing Annotations
in both the classification and distillation losses. We flex-
ibly allow the model to predict either an old class or the
background on any region not associated with an annota-
tion on the classification loss to alleviate catastrophic for-
getting. Alternatively, because current classes may have
been annotated as background in a previous learning step,
we revisit the distillation loss, matching the teacher model’s
background probability with the probability of having ei-
ther a new class or the background, allowing new classes
to be learned more easily. On the Pascal-VOC dataset [16],
we demonstrate the utility of our method by examining a
variety of single-step and multi-step tasks. Without using
any image from previous training steps, we show that our
method outperforms the current state-of-the-art.

Finally, we show that by adding an additional knowledge
distillation term to our framework, we can easily extend it
to the task of instance segmentation. On the Pascal SBD
2012 dataset [17], we show that our method outperforms
the other baselines.
To summarize, the contributions of this paper are as follows:

• We identify the peculiar missing annotations issue in
incremental learning for object detection.

• We propose to revisit the standard knowledge distilla-
tion framework to cope with the missing annotations,
showing that our proposed MMA outperforms previ-
ous methods on multiple incremental settings.

• We extend our method to instance segmentation and
we show that it outperforms all the other baselines. 1

2. Related work

Object Detection. Object detection architectures can be
mainly distinguished in two categories: one-stage detec-
tors [3,35,47,52,53,61] and two-stage detectors [19,20,24,
32, 48]. Two-stage detectors are usually superior in perfor-
mance but are less efficient, implementing two subsequent
steps to perform detection: the model first extract regions
of interest (RoIs) employing either a neural network [48]
or an external region proposer [19] and then use a MLP on
the RoIs to obtain the final classification and bounding box
regression. Differently, one-stage detectors directly predict
the final output, without requiring to predict RoIs. These
architectures are undoubtedly powerful in a standard, of-
fline setting but they are not suited to incrementally add
new classes over time. In this work, we focus on extending
two-stage methods, in particular the Faster R-CNN [48], to
extend its knowledge on new categories without forgetting
the previous knowledge in absence of the original data.

1Code can be found here https://github.com/fcdl94/MMA.

Incremental Learning. The problem of catastrophic for-
getting [39] has been extensively studied in the image clas-
sification task and recently extended to semantic segmen-
tation. Previous works can be divided in three categories:
rehearsal-based [4, 26, 42, 46, 50, 54], regularization-based
[9,12,28,31,58] and parameter isolation-based [37,38,49].
Rehearsal-based methods either store [4,26,46,55] or gener-
ate [42,50,54] examples of previous tasks, which are used to
compensate for the lack of previous data during the training
phase of the new task. Parameter isolation-based methods
assign a subset of the parameters to each task and prevent
them to change to avoid forgetting. Regularization-based
methods can be divided in prior-focused and data-focused.
The former [2, 9, 28, 58] relies on knowledge stored in pa-
rameters value, constraining the learning of new tasks by
penalizing changes of important old parameters. The lat-
ter [6, 12, 14, 15, 18, 26, 31, 56] exploits distillation [25]
and uses the distance between the activation produced by
the old network and the new one as a regularization term
to prevent catastrophic forgetting. In this work, we focus
on the data-focused regularization-based knowledge distil-
lation approach by adapting it in the object detection con-
text while modeling the missing annotations issue. We note
that [6] identified a problem similar to the missing anno-
tations in incremental semantic segmentation called back-
ground shift. We take inspiration from it to address the
missing annotation problem in object detection.

Incremental Learning in Object Detection. Incremental
learning in Object detection has witnessed more attention
in last years. A pioneer work in this task is [51], that pro-
poses a framework based on two-stage object detectors by
performing knowledge distillation on the output of Fast R-
CNN [19]. Inspired by this work, some methods extend
the distillation framework on the Faster R-CNN [48] ar-
chitecture by adding distillation terms on the intermediate
feature maps [10, 36, 43, 57, 59] and proposing to further
avoid forgetting on region proposal network [10,22,43,59].
Interestingly [59] proposed a pseudo-positive-aware sam-
pling algorithm to identify regions belonging to old classes
and preventing them to be sampled as background regions.
However, it only provides a partial solution for the miss-
ing annotation since it does not consider them in the distil-
lation term nor the confidence of the model. Other meth-
ods [1,21,27,29] focused on rehearsal methods to maintain
the old task knowledge, either performing replay of the in-
termediate features [1] or the images [21, 21, 30]. Differ-
ently, [34] proposes a parameter isolated method extending
EWC [28] in the context of object detection. Finally, a few
works explored incremental learning utilizing one-stage ar-
chitectures [30,44,45]. In this work, we focus on proposing
a distillation framework for two-stage architectures by ex-
plicitly modeling the missing annotations about object not
belonging to the current training step.

2
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3. Method
3.1. Problem Definition and Preliminaries

The goal of object detection is to train a model able to
detect objects, i.e. localize and classify them by producing
a rectangular box and a class label. In this work, we fo-
cus on detection model in the R-CNN [19, 24, 48] family.
A detection model, denoted Fθ with parameters θ, is com-
posed by three components: a feature extractor FFE , a re-
gion proposal network (RPN) FRPN

θ , and a classification
head FRCN

θ . Denoting with x an image, the feature extrac-
tor produces a dense feature map. The map is forwarded to
the RPN with the goal of producing a set of N rectangu-
lar regions of interest (RoIs), each associated with a binary
objectness score. The N RoIs are then applied to the fea-
ture map and classified by the classification head that pro-
duces, for each RoI, the class probabilities p ∈ IR|C|+1, in-
dicating with C the set of classes, and the rectangular boxes
r ∈ IR4|C|, one for each class. We note that the classifier
also outputs a class score for the background to indicate that
no objects are present in the RoI.

In incremental learning for object detection (ILOD) the
training is performed over multiple learning steps, each one
introducing a new set of classes to be detected. Formally,
in the t-th training step, a detection model Fθt is updated to
learn a set of classes Yt employing a training set Dt. We
note that while an image in the training set Dt can contain
multiple objects of different classes, following the ILOD
protocol [51] only annotations for classes in Yt are pro-
vided. Moreover, at training step t the old training sets are
not available. After the t-th step, the model Fθt is expected
to produce prediction for all the classes seen so far, i.e. its
output should consider the classes in Ct = ∪t

t′=1Yt′ . We
note that Yi ∩ Yj = ∅ for any i, j ≤ t and i ̸= j.

Faster R-CNN. In the standard Faster R-CNN [48] training
is performed minimizing a multi-task loss as follows:

ℓfaster = ℓRPN
cls + ℓRPN

reg + ℓRCN
cls + ℓRCN

reg . (1)

The first two terms are the classification and regression loss
on the RPN [48], while the latter are applied on the classi-
fication head output [19]. Please refer to [19, 48] for addi-
tional details on the training of Faster R-CNN.

3.2. MMA: Modeling the Missing Annotations

Despite its strength, Faster R-CNN is not well suited to
updating its weights in order to learn new classes. Fine-
tuning the model on Dt using Eq. (1), in particular, causes
the model to forget everything it has learned, resulting in
catastrophic forgetting [39]. To address this, previous re-
search [10, 22, 43, 51, 59] proposed the use of knowledge
distillation [25, 31], in which, at the training step, the stu-
dent model Fθt is forced to mimic the output of the teacher
model Fθt−1 , i.e. the model at the previous training step.

Previous research, while addressing forgetting, did not
address the issue of missing annotations. At time step t the
dataset Dt provides annotations only for objects in Yt and
other objects present in the image, belonging either to past
or future classes, are not annotated. Following the standard
detection pipeline, any RoI that does not match a ground
truth annotation is associated to the background. This intro-
duces two issues: (i) if the RoI contains an object of an old
class, the model learns to predict it as background, exacer-
bating the forgetting; (ii) when the RoI contains an object
that will be learned in the future, the model learns to con-
sider it as background, making harder to learn new classes
when presented. The missing annotation issue is similar to
the background shift presented in [6] in the context of incre-
mental learning for semantic segmentation. In the follow-
ing, we show how to adapt the equations proposed by [6] in
incremental learning for object detection.

Unbiased Classification Loss. The classification loss
ℓRCN
cls in the Faster R-CNN has the goal to force the net-

work to produce the correct class label for the RoIs. In de-
tail, given a sampled set of N RoIs generated by the RPN
and matched with a ground truth label (positive RoI) or with
the background (negative RoI), the loss is computed as:

ℓRCN
cls =

1

N

N∑
i=1

zi(
∑
c∈Ct

ȳci log(p
c
i ))+(1−zi) log(p

b
i ), (2)

where zi is 1 for a positive RoI and 0 otherwise, ȳi is the
one-hot class label (1 for the ground truth class, 0 other-
wise), and pbi indicates the probability for the background
class for the i-th RoI.

The Eq. (2) does not consider that only information about
novel classes is available in the ground truth because it
was designed for standard object detection. The problem
is that all other objects in the image that are not associated
with any ground-truth are treated as a negative RoI and the
model learns to predict the background class on them. This
problem is especially harmful for objects of old classes be-
cause it causes the model to forget the object’s correct class
and replace it with the background class, resulting in severe
catastrophic forgetting.

To avoid this issue, we modify Eq. (2) as follows:

ℓRCN
cls =

1

N

N∑
i=1

zi(
∑
c∈Yt

ȳci log(p
c
i ))+

(1− zi) log(p
b
i +

∑
o∈Ct−1

poi ),

(3)

where pci is the probability of class c for query i, Yt are the
new classes at t and Ct−1 are all the classes seen before t.
Using Eq. (3) the model learns new classes on the positive
RoIs (zi = 1) while preventing the background to supersede
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Figure 2. Overview of MMA, highlighting its contributions. Given an image, it is forwarded on the student (top) and teacher (bottom)
models. The blue box illustrates the behavior of unbiased cross entropy loss on a negative RoI (i.e. RoI without annotation): the model
maximizes the probability of having either the background or an old class. In the red box, we show the effect of the unbiased distillation
loss on the classification output for a new class region: it associates the teacher background with either the student background or a new
class. Lastly, in green, it is reported the RPN distillation loss.

the old classes: instead of forcing the background class on
every negative RoI (zi = 0), as in Eq. (2), it forces the
model to predict either the background or any old class by
maximizing the sum of their probabilities. An illustration is
reported in the blue box of Fig. 2.

Unbiased Knowledge Distillation. A common solution to
avoid forgetting is to add two knowledge distillation loss
terms to the training objective [10, 22, 43, 59]:

ℓ = ℓfaster + λ1ℓRCN
dist + λ2ℓRPN

dist , (4)

where λ1, λ2 are hyper-parameters.
The goal of ℓRCN

dist is to maintaining the knowledge about
old classes on the classification head. Previous works
[43, 51] force the student model to output classification
scores and box coordinates for old classes close to the
teacher employing an L2 loss. However, they ignore the
missing annotations, i.e. the new classes have been observed
in previous steps but, since they had been observed without
annotations, they have been associated to the background
class. The teacher would predict an high background score
for new classes RoIs, and forcing the student to mimic its
behavior would make harder to learn new classes, contrast-
ing the classification loss. Taking model the missing anno-
tations, we formulate the distillation loss as:

ℓRCN
dist =

1

N

N∑
i=1

ℓRCN
dist cls(i) + ℓsmooth l1(r

t
i , r

t−1
i ), (5)

ℓRCN
dist cls(i) =

1

|Ct−1|+ 1
(pb,t−1

i log(pb,ti +
∑
j∈Yt

pj,ti )

+
∑

c∈Ct−1

pc,t−1
i log(pc,ti )),

(6)

where pk,t−1
i , rt−1

i and pk,ti , rti indicates, respectively, the
classification and regression output for the proposal i and
class k of the teacher and student model, and b is the back-
ground class. While the second term of Eq. (5) has been
used in previous works [43, 51] and considers the box co-
ordinates, we propose to modify the first term that is re-
sponsible to handle the classification scores. To model the
missing annotations, Eq. (6) uses the all the class probabili-
ties of the student model to match the teacher ones: the old
classes Ct−1 are kept unaltered among student and teacher
models, while the background of the teacher pb,t−1

i is as-
sociated with either a new class or the background in the
student. With Eq. (6), when the teacher predicts an high
background probability for a RoI belonging to a new class,
the student is not forced to mimic its behavior but it can
consolidate its new knowledge and predict the correct class.
An illustration is reported in the red box of Fig. 2.

On the other hand, ℓRPN
dist goal is to avoid forgetting on

the RPN output. Since annotation for old classes are not
available, the RPN learns to predict an high objectness score
only on RoIs belonging to new classes. To force the RPN to
maintain an high objectness score for regions belonging to
old classes, we use the loss proposed by [43]. The student
is forced to mimic the teacher only on regions belonging to
old classes, i.e. where the teacher score is greater than the
student one. Considering A regions, we compute ℓRPN

dist as:

ℓRPN
dist =

1

A

A∑
i=1

1[sti≥st−1
i ]||s

t
i − st−1

i ||+

1[sti≥st−1
i +τ ]||ω

t
i − ωt−1

i ||,
(7)

where sti is the objectness score and ωt
i the coordinates of

FRPN
θt on the i-th proposal, || · || is the euclidean distance, τ

is an hyperparameter, and 1 is the indicator function equal
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to 1 when the condition on the brackets is verified and 0
otherwise. Note that when sti > st−1

i , the teacher produces
an objectness score greater then the student and the pro-
posal is probably containing an old class. Differently, when
sti ≥ st−1

i , the proposal is likely belonging to a new class
and forcing the student to mimic the teacher score may in-
troduce errors that hamper the performance on new classes.

3.3. Extension to Instance Segmentation

The goal of instance segmentation is to produce a precise
pixel-wise mask for each object in the image. To produce
masks we rely on Mask R-CNN [24], that extends the Faster
R-CNN introducing a mask head FMASK

θ . It produces,
for each RoI, an additional binary segmentation mask with
shape |C| × h× w, where C is the set of classes and h,w is
the mask resolution. To train the mask head, [24] introduces
an additional loss term that is summed to the multi-task loss
in Eq. (1). Formally, Mask R-CNN objective is:

ℓmask = ℓfaster + ℓMASK
cls , (8)

where ℓMASK
cls is the per-pixel binary cross-entropy loss

between the FMASK
θ output and the binary mask of the

ground truth class. Please refer to [24] for details.
Despite the method presented in Sec. 3.2 already ac-

counts for forgetting on the detection head, by applying
Eq. (8) we incur the risk to forget how to segment past ob-
jects while learning the new ones. For this reason, we fur-
ther extend Eq. (4) to add a knowledge distillation term on
the mask head. Formally, in instance segmentation we em-
ploy the following training objective:

ℓ = ℓmask + λ1ℓ
RCN
dist + λ2ℓ

RPN
dist + λ3ℓ

MASK
dist , (9)

where λ1, λ2, λ3 are hyper-parameters.
ℓMASK
dist has the goal of keeping the segmentation mask

for old classes close to the output of the teacher model. In
particular, we employ a per-pixel binary cross-entropy loss
between the teacher model masks and the student ones. For-
mally, denoting as mt

c,i the segmentation mask produced by
FMASK

θt for the class c at pixel i, we compute

ℓMASK
dist =

1

|I||Ct−1|
∑
i∈I

∑
c∈Ct−1

mt−1
c,i log(mt

c,i)+

(1−mt−1
c,i ) log(1−mt

c,i),

(10)

where I is the set of pixels and |I| = h × w. We note
that Eq. (10) is computed only on the segmentation masks
belonging to old classes in Ct−1, while the masks belonging
to the new ones are not considered.

4. Experiments
4.1. Experimental Protocol

We evaluate MMA on the Pascal-VOC dataset. In partic-
ular, following previous works, we employ PASCAL-VOC

2007 [16] for object detection. It is a widely used bench-
mark that includes 20 foreground object classes and con-
sists in 5K images for training and 5K for testing. For in-
stance segmentation, we employed Pascal SBD 2012 [23],
that contains the same set of 20 classes but also reports the
instance segmentation annotations. We used the standard
split of Pascal SBD 2012, using 8498 images for training
and 2857 for evaluation. Following [51], for both object
detection and instance segmentation we implement the fol-
lowing experimental protocol: each training step contains
all the images that have at least one bounding box of a novel
class. We remark that at each training step it is assumed to
have only labels for bounding boxes of novel classes, while
all the other objects that appear in the image, either belong-
ing to past or future classes, are not annotated. This is a
very realistic setup since it does not make any assumption
on the objects present in the images and reduces the amount
of annotation required in each incremental step.

4.2. Implementation Details

For object detection, we followed previous works [21,
27,29,43,57,59] and we use the Faster R-CNN architecture
with a ResNet-50 backbone. Similarly, for instance seg-
mentation, we employ the Mask R-CNN [24] architecture
with ResNet-50 backbone. Both backbones are initialized
using the ImageNet pretrained model [11]. We used the
same training protocol of [43,51] but we increased the batch
size from 1 to 4 to reduce the time required for training,
scaling accordingly the learning rate and number of itera-
tions. In particular, for object detection we train the net-
work with SGD, weight decay 10−4 and momentum 0.9.
We use an initial learning rate of 4 · 10−3 for the first learn-
ing step and 4 · 10−4 in the followings. We performed 10K
iterations when adding 5 or 10 classes, while we trained for
2.5K when learning only one or two classes. We apply the
same data augmentation of [43,51]. We set λ2 equal to 0.1,
0.5, and 1 when adding 10 classes, 5, and 1 or 2 classes,
respectively. λ1, λ3 are set to 1.

4.3. Object Detection Results

As done by previous works [29,43,51,57,59], for incre-
mental object detection we evaluate our method considering
experimental settings adding a different number of classes
in one or multiple training steps. We report adding 10 (10-
10), 5 (15-5) or 1 (19-1) class in a single incremental step
and performing two incremental steps adding 5 classes (10-
5), five steps adding two classes (10-2) and either ten (10-1)
or five (15-1) steps adding one class. As in previous works,
we split the classes following the alphabetical order.

Single-step incremental settings (10-10, 15-5, 19-1). Re-
sults are reported in Tab. 1. The Avg metric equally weights
new and old classes averaging their aggregated mAP. We
benchmark MMA against previous works reporting the re-
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Table 1. mAP@0.5% results on single incremental step on Pascal-VOC 2007. Methods with † come from reimplementation. Methods with
* use exemplars.

19-1 15-5 10-10
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg
Joint Training 75.3 73.6 75.2 74.4 76.8 70.4 75.2 73.6 74.7 75.7 75.2 75.2
Fine-tuning 12.0 62.8 14.5 37.4 14.2 59.2 25.4 36.7 9.5 62.5 36.0 36.0
ILOD (Fast R-CNN) [51] 68.5 62.7 68.3 65.6 68.3 58.4 65.9 63.4 63.2 63.1 63.2 63.2
ILOD (Faster R-CNN) [51] † 70.3 65.2 70.0 67.8 72.5 58.0 68.9 65.3 69.2 53.0 61.1 61.1
Faster ILOD [43] 68.9 61.1 68.5 65.0 71.6 56.9 67.9 64.3 69.8 54.5 62.1 62.1
Faster ILOD [43] † 70.9 64.3 70.6 67.6 73.5 55.6 69.1 64.6 71.1 52.3 61.7 61.7
PPAS [60] 70.5 53.0 69.2 61.8 63.5 60.0 61.8 61.8
MVC [57] 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1
OREO* [27] 69.4 60.1 68.9 64.7 71.8 58.7 68.5 65.2 60.4 68.8 64.6 64.6
OW-DETR* [21] 70.2 62.0 69.8 66.1 72.2 59.8 69.1 66.0 63.5 67.9 65.7 65.7
ILOD-Meta* [29] 70.9 57.6 70.2 64.2 71.7 55.9 67.8 63.8 68.4 64.3 66.3 66.3
MMA 71.1 63.4 70.7 67.2 73.0 60.5 69.9 66.7 69.3 63.9 66.6 66.6

Table 2. mAP@0.5% results on multi incremental steps on Pascal-VOC 2007. Methods with † come from reimplementation.

10-5 10-2 15-1 10-1
Method 1-10 11-20 1-20 Avg-S 1-10 11-20 1-20 Avg-S 1-15 16-20 1-20 Avg-S 1-10 11-20 1-20 Avg-S
Joint Training 74.7 75.7 75.2 75.2 74.7 75.7 75.2 75.2 76.8 70.4 75.2 73.5 74.7 75.7 75.2 75.2
Fine-tuning 6.6 28.3 17.4 21.8 5.2 12.3 8.8 16.7 0.0 8.0 2.4 6.7 0.0 4.6 2.3 8.6
ILOD (Faster R-CNN) [51] † 67.2 59.4 63.3 65.2 62.1 49.8 55.9 62.2 65.6 47.6 60.2 65.8 52.9 41.5 47.2 59.1
Faster ILOD [43] † 68.3 57.9 63.1 65.5 64.2 48.6 56.4 62.8 66.9 44.5 61.3 67.1 53.5 41.0 47.3 60.4
MMA 66.7 61.8 64.2 67.3 65.0 53.1 59.1 63.8 68.3 54.3 64.1 67.5 59.2 48.3 53.8 62.4

sults on the same settings. We compare either with methods
using rehearsal [21,27,29] or not using them [43,51,57,59].
We underline that the former methods are not compared
fairly with MMA, since we do not use any replay memory
to store old samples. Furthermore, for a fair comparison
we report ILOD [51] and Faster ILOD [43] using our same
architecture and training protocol. Finally, we report two
simple baselines: the joint training upper bound, where the
architecture is trained using the whole dataset and all the
annotations, and the fine-tuning, where the architecture is
trained on the new data using Eq. (1), without employing
any regularization strategy.

As can be noted in Tab. 1, fine-tuning suffers a large drop
in performance on the old classes, clearly indicating that
catastrophic forgetting is an issue to be addressed. While
previous works improve the performance, addressing the
forgetting issue, MMA outperforms all the previous meth-
ods, also the ones that uses exemplars to avoid forgetting,
demonstrating the validity of our approach. In particular,
when comparing with ILOD [51] and Faster ILOD [43], we
note that our method achieve comparable performance on
old classes but outperforms them on the new classes, out-
performing them of 1% on both 19-1 and 15-5, and even by
10% on the 10-10 setting. We argue that the improvement
is largely due to the unbiased distillation loss, that mod-
eling the missing annotations, removes incoherent training

objectives, increasing the performance. Comparing MMA
to previous state-of-the-art, we note that it outperforms the
competitive rehearsal strategies in every setting. On the 19-
1 setting, MMA outperforms the ILOD-Meta by 0.5% con-
sidering equally every class (1-20) and by 1.1% OW-DETR
when considering equally old and new classes (Avg). Simi-
larly, in the 15-5 and 10-10 settings, MMA outperforms the
best rehearsal method by 0.9% and 0.3% on all the classes
0.7% and by 0.3% on the Avg metric, respectively.

Multi-step incremental settings (10-5, 10-2, 15-1, 10-1).
While performing a single training step is valuable to eval-
uate the ability to alleviate catastrophic forgetting, a more
realistic setting is to perform multiple incremental steps
adding new classes. In this section, we analyze the behavior
of MMA against three baselines: fine-tuning, ILOD [51],
Faster ILOD [43], all implemented following our experi-
mental protocol. We report the results for the four consid-
ered settings in Tab. 2, showing the mAP% over multiple
incremental steps and Fig. 3, where the results after the last
incremental step are reported. Tab. 2 further reports the av-
erage performance across multiple steps Avg-S.

We can observe that performing multiple incremental
steps is challenging and existing methods performances
drop badly compared to single step scenarios. In particu-
lar, fine-tuning the network on new data, without using any
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Table 3. mAP@(0.5,0.95)% results of incremental instance seg-
mentation on Pascal-VOC 2012.

19-1 15-5
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg
Joint Training 40.4 54.1 41.1 47.2 41.0 41.2 41.1 41.1
Fine-tuning 6.7 46.3 8.7 26.5 1.9 35.3 10.2 18.6
Fine-tuning w/ Eq. (3) 12.5 47.5 14.3 30.0 13.0 35.5 18.6 24.2
ILOD [51] 40.1 38.3 40.0 39.2 39.2 30.8 37.1 35.0
Faster ILOD [43] 40.6 38.1 40.4 39.3 39.4 30.3 37.1 34.8
MMA 40.6 43.0 40.8 41.8 38.2 33.7 37.1 35.9
MMA + ℓMASK

dist 41.0 42.8 41.1 41.9 40.2 32.2 38.2 36.2

technique to avoid forgetting, lead to completely forgets the
old classes, reaching, in the last step, performances close to
0% on old classes. ILOD [51] and Faster ILOD [43] sub-
stantially alleviate catastrophic forgetting, leading to better
results both on old and new classes. However, when com-
paring with MMA, we see that both ILOD and Faster ILOD
achieve worse results. In particular, after the last step, it
is evident that MMA obtain better performances on novel
classes: +2.4% o 10-5, +3.3% on 10-2, +6.3% on 15-1,
and 6.8% on 10-1 w.r.t. the best among the baselines. Fur-
thermore, MMA also obtains comparable or greater perfor-
mance than previous methods on the old classes. Over-
all, MMA outperforms the best among ILOD and Faster
ILOD by 0.9% on 10-5, 2.7% on 10-2, 2.8% on 15-1, and
6.5% on the 10-1 setting. We note that the improvement is
larger when adding more classes, indicating that our method
is better suited to performing multiple-incremental steps.
Considering the trend over multiple training steps in Fig. 3,
we note that MMA is always comparable or better than pre-
vious methods. In particular, it is remarkable that MMA
largely outperforms the other methods when increasing the
number of training steps, as shown in the 10-1 setting.

4.4. Instance Segmentation Results

Following the protocol used in incremental object detec-
tion, we evaluate our method considering two experimen-
tal settings: adding one (19-1) and five (15-5)classes in a
single training step. As in object detection, we follow the
alphabetical order of the dataset. Following the standard
practice on instance segmentation, we report the mAP av-
eraged across 11 IoU thresholds, ranging from 0.5 to 0.95,
with a step of 0.05. We compare MMA with fine-tuning,
fine-tuning using the unbiased classification loss (Eq. (3)),
ILOD [51] and Faster ILOD [43]. For all the methods we
employ the same architecture and hyper-parameters.

Tab. 3 shows the results for the 19-1 and 15-5 settings, re-
porting the average mAP of new and old classes separately,
the average over all classes, and the average of new and
old classes (Avg), weighting them equally. We can see that
fine-tuning shows an impressive forgetting on old classes,
both on the 19-1 and 15-5 settings. Introducing the unbi-

Table 4. Ablation study of the contribution of MMA components
in the 15-5 setting. Results are mAP@0.5%. MMA is in green.

Eq. (3) ℓRCN
dist ℓRPN

dist 1-15 16-20 1-20 Avg
- - - 14.2 59.2 25.4 36.7
✓ - - 40.0 57.8 44.4 48.9
✓ UKD - 67.3 60.3 65.6 63.8
✓ l2 ✓ 73.7 56.8 69.5 65.3
✓ CE ✓ 72.8 59.4 69.5 66.1
✓ UKD ✓ 73.0 60.5 69.9 66.7

ased classification loss (Eq. (3) helps in alleviating forget-
ting but the results are still low on old classes, clearly indi-
cating that introducing a technique to prevent forgetting is
required. ILOD and FasterILOD, in fact, improve the per-
formances on old classes. However, forgetting is prevented
at the cost of a decrease in performance on novel classes:
they both loses nearly 8% on the 19-1 and 5% on the 15-5
with respect to fine-tuning. Differently, employing our pro-
posed MMA we clearly improve the performance, prevent-
ing forgetting while showing good performance on novel
classes. In particular, w.r.t. ILOD and Faster ILOD, MMA
obtains, on new classes, nearly +5% and +3%, respectively
on 19-1 and 15-5, while showing comparable performance
on old classes. Considering the extended version of MMA
(MMA + ℓMASK

dist ), it slightly improves the performance on
old classes w.r.t. MMA, while obtaning comparable results
on the new ones. Overall, it obtains 41.1% and 38.2% on
the 19-1 and 15-5, respectively, 0.3% and 0.9% better than
MMA. Interestingly, we note that, without any regulariza-
tion on the mask head (MMA), we can still achieve good
segmentation performance. This is due to the non com-
petitiveness among classes on the mask head, which only
regress a binary segmentation mask, while the class is pre-
dicted by the classification head, as in standard Faster R-
CNN. Overall, MMA and its extension demonstrate to out-
perform the other baselines in instance segmentation, show-
ing a good trade-off between learning the new classes and
avoiding to forget the old ones.

4.5. Ablation Study

In Table 4 we report a detailed analysis of our contri-
butions, considering 15-5 setting in incremental object de-
tection. We ablate each proposed component: the unbiased
classification loss (Eq. (3)), the classification head knowl-
edge distillation loss (ℓRCN

dist ), the use of the RPN distilla-
tion loss (ℓRPN

dist ), and finally, the use of a feature distillation
loss, as proposed in [43]. The first row indicates fine-tuning
the network on the new data, without applying any regu-
larization. It can be noted that the performances are poor
on the old classes, while it achieves good performance on
the new ones. Adding the unbiased classification, the per-
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Figure 3. mAP% results on multiple incremental steps on Pascal-VOC 2007.

formance on the old classes substantially improves: from
14.2% to 40.0%. This is due to the handling of missing
annotation that alleviates forgetting. Introducing the unbi-
ased distillation loss in Eq. (6) (UKD), the performances
improves significantly, both on old classes, reaching 67.3%,
and new classes, going from 57.8% to 60.3%. We argue that
the performances on the new classes improves thanks to the
distillation loss since the model learns to better distinguish
the old classes from the new ones, improving the overall
precision, We then introduce the RPN distillation loss, ob-
taining the final MMA model. We see that the performance
further improves on old classes, achieving 73.0%, while the
performance on the new classes is comparable.

Finally, we compare the unbiased knowledge distillation
in MMA with other possible choices. Inspired by previ-
ous works we employ the L2 loss on the normalized clas-
sification scores [43, 51] and the cross-entropy (CE) loss
between the probability of old classes [31]. We see that
MMA distillation outperforms them, especially on the new
classes, clearly demonstrating that modeling the missing an-
notations is essential to properly learn them. Overall, MMA
achieves on the average of old and new class performance
66.7%, 1.4% and 0.6% more than using the L2 loss or the

cross-entropy loss.

5. Conclusions

We studied the incremental learning problem in object
detection considering an issue mostly overlooked by pre-
vious works. In particular, in each training step only the
annotation for the classes to learn is provided, while the
other objects are not considered, leading to many missing
annotations that mislead the model to predict background
on them, exacerbating catastrophic forgetting. We address
the missing annotations by revisiting the standard knowl-
edge distillation framework to consider non annotated re-
gions as possibly containing past objects. We show that
our approach outperforms all the previous works without
using any data from previous training steps on the Pascal-
VOC 2007 dataset, considering muliple class-incremental
settings. Finally, we provide a simple extension of our
method in the instance segmentation task, showing that it
outperforms all the baselines. We hope that our work will
set a new knowledge distillation formulation for incremen-
tal object detection methods. We leave extending our for-
mulation to one-stage detectors as a future work.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 2

11


	1 . Introduction
	2 . Related work
	3 . Method
	3.1 . Problem Definition and Preliminaries
	3.2 . MMA: Modeling the Missing Annotations
	3.3 . Extension to Instance Segmentation

	4 . Experiments
	4.1 . Experimental Protocol
	4.2 . Implementation Details
	4.3 . Object Detection Results
	4.4 . Instance Segmentation Results
	4.5 . Ablation Study

	5 . Conclusions

