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ABSTRACT

Nowadays smart contexts (such as smart cities/homes, or Indus-
try 4.0) are rapidly gaining popularity. These new paradigms are
enabled by the adoption of smart devices, that allow several pro-
grammatically driven actions. The Internet of Things (IoT) is the
network built by connecting these smart devices. A critical aspect
of these devices is their limited hardware support for security func-
tions. This makes protecting IoT devices very challenging, although
very important because they implement critical functions, as in Cy-
ber Physical Systems. In this case, the protection of these systems
is of paramount importance because their compromise could cause
not only digital but also physical damage. Remote Attestation (RA)
is a security process that permits a trusted party to remotely verify
devices integrity but this becomes challenging for IoT devices due
to their hardware constraints. Swarm Attestation (SA) is a general-
ization of RA to reduce its overhead for IoT environments. In this
way, it becomes possible to attest large IoT networks. This paper
introduces SAFEHIVE, a new schema for SA to maximize dynamic
swarm configuration and management. This schema permits to
manage heterogeneous devices in a dynamic scenario, even in the
case of great variability.
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1 INTRODUCTION

The Internet of Things (IoT) [6] has surged in popularity, finding
applications across diverse domains (Fig. 1) such as healthcare,
industrial control, and smart home. IoT devices are often deployed
in swarms, a heterogeneous group of communicating devices. For
instance, in smart factory control systems, multiple interconnected
IoT devices collaborate to manage crucial processes [26].

The IoT nodes are typically small, battery-powered embedded
devices designed to perform specific tasks. They may be used in
harsh and remote environments, presenting numerous challenges.
The most important ones are trust, security, and privacy manage-
ment. Those devices are less capable of detecting and blocking
unauthorized activities. For this reason, they are the target of vari-
ous attacks. Usually, an external trusted entity is used to monitor
the system integrity status. This procedure is called Remote Attes-
tation (RA) and consists of a remote Verifier asking for an integrity
proof representing the current state of an Attester and comparing
it with the expected state. If many IoT devices are involved, the
standard attestation approach does not scale. Not all devices may be
connected to the Internet, in some cases it is not necessary and only
opens to risks. The IoT device communication process is usually
a power-consuming operation, especially if directed to a distant
receiver. Not all the devices connected in the swarm have the same
needs: Some devices may necessitate more integrity guarantees
because they perform more critical operations. Other devices may
have to guarantee short delays so can not spend periodically many
resources on attestation procedures. For those reasons, the IoT de-
vice swarms are usually attested as a single entity, this process is
called Swarm Attestation. The Swarm Attestation idea is that the
Verifier contacts a single node which is in charge of obtaining the
integrity proof of the whole system and generating a quote for
the whole system. The integrity proof of each device may have a
different form given the heterogeneous identity of the swarm.

Besides, there are some solutions for Swarm Attestation in the
literature, but they miss some core features or lack adaptability to
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Figure 1: High-level view of a Cyber-Physical System.

various contexts. An important feature that is often not considered
is to handle dynamic join and leave of swarm nodes during the
attestation process. This feature is important in various fields to
allow modification to the network topology without interrupting
the verification process. Another feature not well established in
the existing works is an isolation method for compromised nodes.
Usually, when the Verifier finds anomalies in the network it marks
the whole storm as untrusted, even if was one node compromised.

Contributions. This paper introduces SAFEHIVE, a new schema
for Swarm Attestation. The solution aims to maximize configura-
bility and better adapt to different swarm configurations. Another
important feature is the support for dynamic swarm, where a node
may connect or disconnect during the attestation procedure. SAFE-
HIVE introduces a protocol for the isolation of compromised nodes,
not allowing them to communicate in the network. The schema
considers the heterogeneity of the swarms and allows custom con-
figuration for each node given its peculiarities. In addition, the
solution is compared with other works in the Swarm Attestation
field considering different scenarios.

Paper structure. This paper is organized as follows. Section 2
presents a brief explanation of the main concepts needed for the
proposal, providing an overview of Remote Attestation and Swarm
Attestation. Section 3 overviews the most related work to the pro-
posed schema underlining the differences. Section 4 explain the
assumption made in terms of minimal device requirements and the
threat model defined. Section 5 explains in detail the SAFEHIVE
architectural design explaining all the protocols defined. Section
6 underlines the security guarantees provided by the proposed
schema. Section 7 provides some conclusion.
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Figure 2: Basic Remote Attestation schema.

2 BACKGROUND

2.1 Remote Attestation

Remote Attestation (RA) [9] is a procedure that permits a trusted
party (Verifier) to remotely verify the software and hardware con-
figuration of a platform (Attester). The basic structure, as shown in
Fig. 2, is the one of a challenge-response protocol. It begins with
the Verfier sending an attestation request to the Attester, gener-
ating a nonce to avoid replay attacks. Once the Attester receives
the attestation request, it produces an Integrity Report (IR), which
contains an integrity proof of its internal state and the nonce, and
it is signed with its private key (KA_priv) to provide authentication.
The Verifier, after having received the IR, first of all, verifies the
signature of the IR with the public part of the Attester key pair
(KA_pub) and then verifies that the Attester’s internal state is equal
to the expected one (EA). If this check is successful, the Attester
can be evaluated as trusted, otherwise, it is considered untrusted.
The key component necessary to perform RA is the Root of
Trust (RoT) [8]. The peculiarity of this component is that it is con-
sidered trusted apriori because there is no possibility of detecting
misbehaviour at runtime. The RoT is composed of three elements:

(1) Root of Trust for Measurement (RTM): it has the purpose of
collecting integrity measurement of the software and hard-
ware configuration;

(2) Root of Trust for Storage (RTS): it has the purpose of storing
the integrity measurements calculated by the RTM;

(3) Root of Trust for Reporting (RTR): it is the element that per-
mits to externally provide the measurement securely stored
in the RTS.

Based on these concepts, the Trusted Computing Group' (TCG),
proposed the concept of Trusted Platform (TP). This is a platform
that can measure all its software and hardware components, to be
able to provide them to another entity to verify the TP integrity.
The TCG proposed the Trusted Platform Module (TPM) [25] which
is a possible way to implement a TP. The TPM is a secure element,
that implements a RTS and RTR. It is implemented as a hardware

Uhttps://www.trustedcomputinggroup.org
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Figure 3: Basic Swarm Attestation schema.

component, built to provide security capabilities such as tamper
resistance. The TPM possesses some registers, called Platform Con-
figuration Registers (PCRs), that are used to store the measurements
computed by the RTM. A PCR supports only the extend operation
for updating its value. This operation permits to keep the history
of all values assigned to a PCR. The extension is performed by
taking the current value of the PCR, concatenating it with the new
measurement to store, and then calculating the hash of this con-
catenation. The hash calculated is the new value that is stored in

the PCR:
PCRuew = Hashpjgo (PCRy 4 || measurement)

Hardware-based Attestation. These techniques rely on dedicated
hardware, typically a cryptographic chip, present on the Prover. One
of the most common hardware devices for RA is the TPM. The TCG
proposed the TPM specification, with version 1.2 being the first [24].
Subsequently, an improved version, TPM 2.0, was proposed and
is the current standard [24]. Alternative RA approaches leverage
Trusted Execution Environments (TEEs) [20], such as Intel SGX [10]
or ARM TrustZone [19]. These techniques typically rely on specific
hardware extensions that provide enhanced security features.

Software-based Attestation. Although hardware-based attesta-
tion offers a highly effective solution for RA, it might not always
be practical due to hardware and software limitations, particularly
in embedded devices. To overcome this challenge, software-only
RA approaches have emerged to minimize hardware overhead. Pio-
neer [21] exemplifies such a software-based primitive, operating
without dependence on CPU architecture extensions or secure co-
processors. This method’s core concept involves the dispatcher
(Verifier) utilizing egeer to establish a dynamic root of trust [17] on
the untrusted platform (Prover), guaranteeing the integrity of all
contained code.

Hybrid Attestation. While software-based approaches for RA
may not be sufficient in certain networked settings due to potential
adversarial capabilities [12], a hybrid approach that incorporates
both software and hardware has been developed to address this
issue. One example is SMART [11], which is based on a minimal
hardware modification of embedded Micro Controller Units (MCUs)
and represents the first minimal hardware solution for establishing
a dynamic root of trust in such devices.
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While purely software-based approaches for RA might be insuf-
ficient in specific networked environments due to potential adver-
sarial capabilities [12], a hybrid approach combining software and
hardware elements has been proposed to address this challenge.
One proposed mechanism is SMART [11], which leverages mini-
mal hardware modifications to embedded MCUs. This approach
represents the first instance of a minimal hardware solution for
establishing a dynamic RoT on such devices.

2.2 Swarm Attestation

Swarm Attestation [7] schemas have been proposed because the
single attester-verifier schema started to be inefficient for IoT in-
frastructures. For this reason, new methods have been developed
to be able to manage the RA of potentially vast IoT networks. A
swarm is a network of interconnected IoT devices that can com-
municate with each other and it represents the system on which
to perform RA to verify the integrity of the devices. The goal of
swarm attestation schemas (Fig. 3) is to be able to collect attestation
evidence by contacting only one node of the swarm. This permits
to be unaware of IoT network topology and even the number and
identity of the devices that compose the swarm. This is typically
not required because the purpose is to verify the integrity of the
whole swarm, and not of the single device. This can be done by
defining an aggregation pattern which permits to collect and aggre-
gate all the swarm integrity reports, sending to the verifier only
the final aggregate. The main aggregation patterns are: spanning
tree, broadcast, and hierarchical.

In the spanning tree schema [1, 5] works with the Verifier send-
ing an attestation request to a node of the swarm (Fig. 4). This node
that receives the first attestation request, sends it to its neighbours,
following a spanning tree defined on the network. Each node sends
its attestation report to the node that forwarded the attestation
request. Each node aggregates also the attestation report received
and then passes it to the previous node. In this way, the verifier re-
ceives an aggregate report that can be used to evaluate the swarm’s
trustworthiness.

The broadcast schema [3, 15] works a bit differently from the
spanning tree. It begins with an attestation request sent to the
verifier to a node of the swarm, but the propagation is performed
by sending this attestation request is sent in broadcast to all the
devices in the communication range (Fig. 5). The aggregation is

Attestation

request - ’E
.

W”

Figure 4: Spanning tree aggregating pattern in Swarm Attes-
tation.
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Figure 6: Hierarchical aggregating pattern in Swarm Attesta-
tion.

performed in broadcast as well, so the integrity report is sent in
broadcast and the node that receives it, will aggregate it with the
others received.

The hierarchical schema [13, 16] is quite different from the pre-
vious ones. The swarm is divided into clusters of devices, with one
cluster leader for each cluster. In this case, the verifier sends the
attestation request to all the cluster leaders, and then they send
it to all the nodes that belong to the cluster (Fig. 6). The aggrega-
tion is performed by all the cluster leaders, and then they send the
aggregate to the verifier.

3 RELATED WORK

In the last few years, many security schemas have been presented
to address the attestation of computationally lightweight device
swarms. Firstly embedded devices were attested singularly princi-
pally using software-based techniques [22], later also hybrid [18]
and, hardware-based ones [27]. SEDA (Scalable Embedded Device
Attestation) [5] introduced the concept of Swarm Attestation. This
schema allows the attestation of the whole device network as a
single entity. Each component of the swarm is based on an architec-
ture compliant with SMART [11] or TrustLite [14], to set minimum
hardware requirements. The protocol is divided into two phases.
The offline phase is initializing and registering each device to neigh-
bouring devices. The online phase consists of the attestation of
the system. A Verifier contacts an arbitrary element of the swarm
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(initiator) that will recursively propagate the request reaching the
whole system. Every node can attest its neighbours and transmit
the results to other nodes. The accumulated attestation result will
be sent to the Verifier by the initiator. Besides giving the basis
for swarm attestation, this protocol has limitations. SEDA lacks
a method for the identification and isolation of compromised de-
vices. When one component within the swarm is compromised,
the entire swarm is marked as untrusted. Swarm components are
usually heterogeneous, with each device having unique priorities,
capabilities, and requirements. Additionally, each component has
varying security needs, necessitating different attestation times.
SEDA forces strict attestation times, for each attestation cycle every
device is attested. This leads to attesting too frequently on some
devices while others may not attest as often as required. Another
concern regards dynamic swarms, as SEDA lacks support for adding
or removing devices during the attestation process.

After SEDA many other solutions were proposed to attest swarms,
the first one that introduces a more dynamic topology proposed
by Ambrosin et al. [2]. In this schema, each node will perform self-
attestation and communicate in broadcast the result to its neighbors.
A Verifier can contact any node and obtain information regarding
the status of the device and its neighbours. PADS [3] propose a
similar approach using a more sophisticated method for converging
into a “network view”. Periodically each node broadcasts its status
and the knowledge about its neighbours. In this case, every node
knows the whole network status. Also, SALAD [15] is a schema
for dynamic swarm attestation. The concept is similar to the other
solution, propagating the self-attestation results but in a more se-
cure way. However, SALAD necessitated that every pair of devices
within the swarm possess a unique symmetric key, leading to signif-
icant resource consumption. These solutions tackle the challenge
of provisioning reference values in a dynamic system by storing
values directly on the devices. This enhances the dynamism of the
verification process but also introduces security concerns regarding
self-attestation. Additionally, updating these devices becomes more
challenging.

Alternative solutions, like WISE [4], concentrate on adapting to
the diverse requirements of the devices. During each attestation
round, only a portion of devices are queried for integrity proofs.
This solution is cluster-based, some nodes will be elected as cluster
leaders and have to propagate to the cluster members the attes-
tation requests. The cluster leaders must be configured statically
before initiating the attestation process. Leaders establish a vir-
tual spanning tree for communication and forwarding attestation
requests. Dividing the swarm into clusters reduces the communi-
cation overhead but this solution requires no topological changes
during the attestation process. Another solution cluster-based is
MTRA [23] which requires a heterogeneous fixed network. MTRA
assumes the presence in the swarm of devices that mount a TPM
that will be elected cluster leaders. Also in this design, there is no
possibility for dynamic insertion or removal of nodes. The network
is configured, sharing secrets and discovering neighbours in the
offline phase, once the attestation starts it is not possible to perform
changes to the topology.

ESDRA [16] introduced the concept of untrusted node accusation,
employing a many-to-one attestation scheme. It employs adjacent
devices to assess the prover’s integrity and promptly notifies the
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Figure 7: Minimal device architecture for supporting the
security requirements.

network owner of any compromised nodes. This schema introduces
also the reputation mechanism if a node has been trusted for various
attestation routines it will play more important roles in the system.
The division in clusters is still static and delegated to the network
owner. Besides introducing a way to identify compromised nodes,
it does not dynamically isolate them but relies on the intervention
of the network owner.

The proposed solution will fill those gaps, aiming to be complete
and highly configurable. The solution will handle dynamic swarms
without forcing strict attestation times on all devices.

4 SYSTEM MODEL

4.1 Device Requirements

To perform hardware-based RA, a device needs basic hardware
requirements (Fig. 7) that permit it to have a hardware RoT. These
basic requirements are necessary for having the possibility to se-
cure store identity and attestation keys needed by the device. The
secure storage must provide constraints on the possibility of modi-
fying those keys. For these reasons, a ROM must be present on the
device, to protect those data from manipulation. In addition, also a
memory protection mechanism is required, such as a Memory Pro-
tection Unit (MPU), to have the possibility of setting permissions
on specific memory regions. This permits to protect some portions
of code from the untrusted environment and can perform some crit-
ical operations like measuring the device code that must be attested
and the report function which has access to the private part of the
attestation key. In the must be present an attestation function which
performs all the operations needed by RA. The MPU assert that the
keys can be accessed only by the memory region of the attestation
function, and protect the attestation function from external manip-
ulations. Further enhancements may be present depending on the
application, such as cryptographic accelerators, display adapters,
and communication interfaces.

4.2 Threat Model

Only software adversaries are considered, who can perform remote
attacks. Adversaries can fully access the network and perform pas-
sive (e.g. eavesdrop on communication) or active (e.g. malware
injection) attacks. Coherently with all the other swarm attestation
techniques we didn’t consider DoS and physical attacks. Physical
ones are expensive and difficult to detect and DoS are almost im-
possible to completely resist. We consider that the adversaries are
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Figure 8: Swarm initialization.

capable of modifying every packet sent in the network and evad-
ing the attestation protocol via various methods, such as forging,
substituting, replaying, and eavesdropping.

5 SAFEHIVE: ARCHITECTURAL DESIGN

The proposed design is cluster-based, where each cluster has a
dynamically elected leader that coordinates integrity proofs ag-
gregation. The attestation process starts with the Remote Verifier
sending a broadcast attestation request to the cluster leaders. The
cluster leaders forward the attestation request to the cluster mem-
bers. Each member may take part in the attestation process, collect
its integrity proofs and send them to the cluster leader. The cluster
leader will gather integrity proofs and, along with its integrity proof,
transmit them to the next cluster leader according to a spanning
tree structure, ultimately reaching the Verifier. When the verifier
receives the integrity report will perform the verification of the
whole system’s integrity proofs and release an authentication token
for each entity. These tokens are distributed to each device and are
used to prove the state when communicating with another node.

5.1 Cluster Configuration

The cluster structure is designed to be dynamic and automatically
adapt to different topologies. It is assumed that the heterogeneous
structure of the swarm comprehends devices with low capabili-
ties but also nodes with more computational power and internet
connection. Each device is configured with a value that reflects
its predisposition to become a cluster leader. The value considers
the device’s hardware capabilities, its connection to the Internet
and, the possibility of delaying its common operations. If the device
cannot become a leader will have a value of 0 (zero). All the devices
with a predisposition to become leaders have the Verifier IP and
information configured and a crescent value of up to 10.

The initialization of the swarm starts with the first device turned
on as represented in Fig. 8. The first device turns on the network
and broadcasts a Cluster Leader Discovery packet (a). It receives no
response, so it sets itself as Cluster Leader and notifies the Remote
Verifier of the presence of a new Cluster Leader in the network (b).
The Remote Verifier notifies the new Cluster Leader of its identity
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and of its Parent Cluster Leader, which is null, so it becomes the
root of the tree (c). ¢/ will send its integrity reports directly to the
Remote Verifier (d). The second device turned on will start the leader
discovery protocol. As shown in Fig. 9, this involves broadcasting
its identity and value in a cluster leader discovery packet (a). If a
cluster leader is present in the communication range will respond
with its value. The node will join the cluster leader’s network in
case has a lower or equal value, and in case of a higher value will
become the cluster leader and inglobate the other cluster leader
network (b).

If no other node responds, it will become a cluster leader, given it
possesses the necessary characteristics (Fig. 10 (a)). The new cluster
leader, to be recognized by the system, notifies the Remote Verifier
about the presence of a new cluster leader (b). Then the Remote
Verifier responds with the new Cluster Leader identity (cl2) and its
Parent Cluster Leader in the spanning tree, which in this case is
cli (c). After this procedure, the cl will send its integrity reports
to clj (d). Otherwise, if the node does not have the capabilities, it
will attend to the connection of a cluster leader performing this
protocol on loop.

A cluster leader keeps track of the number of cluster members, to
monitor their quantity. Each cluster leader has a maximum amount
of devices that can be accepted into its cluster. When the cluster
reaches 70% of the max dimension will start to accept only devices
not able to become cluster leaders (the ones with values lower than
3). This happens to encourage the creation of new clusters to avoid
large clusters. It may still happen that a cluster reaches the maxi-
mum dimension, in this case is necessary to scatter the cluster into
smaller ones. The cluster rebalancing procedure, shown in Fig. 11,
happens when a new device broadcasts a Cluster Discovery packet
to join the network (a). If the cluster leader cl3 reaches the maximum
number of child nodes (b), it will ¢l3 broadcast a Cluster Leader
Election packet indicating the average leadership score (e.g. 5) of
its child nodes (c). All nodes with a leadership score higher or equal
to the score indicated by the leader re-execute the Cluster Leader
Discovery protocol. The device with the highest score assumes the
leadership of the cluster and notifies the Remote Verifier (d). The
Remote Verifier notifies the new Cluster Leader of its ID and its
Cluster Leader parent (e). The network automatically converged to
a new clusters configuration (f). After that, those nodes will start
the leader discovery protocol and create new clusters. The cluster
leader will not accept them back when reaches 70% of its maximum
capacity.

Another aspect to consider is when clusters become too small.
In this case, there would be a high number of clusters that can be
merged, avoiding unnecessary overhead. For this reason, we defined
a cluster merging protocol, depicted in Fig. 12. When clusters are too
small, periodically Cluster Leaders can try to re-balance clusters
in the network (a). When the Merging Protocol is triggered, the
Leader of the small cluster sends a Cluster Leader Election packet
to its child nodes (b). Nodes perform a Cluster Leader Discovery
protocol, in which the Leaders of non-maximal clusters, that fall
within the reception range of the short-range network, participate
(c). The new Cluster Leader is elected (d). If a Cluster Leader has
been "downgraded" to a normal node, it notifies the Remote Verifier
of its removal as a Cluster Leader (e). The network converged to a
more balanced topology (f).
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All the cluster leaders in the network are connected with a span-
ning tree. The spanning tree facilitates parallel computing while
also reducing transmission costs. In such scenarios, the energy cost
of nodes increases significantly with greater communication dis-
tances. Utilizing multi-hop communication helps mitigate energy
costs. Each member of the spanning tree has information regarding
its parent in the tree and the number of nodes that it has connected.
When a node becomes cluster leader it necessitates to be registered
at the Verifier. The node sends a request to become cluster leader,
giving its information, including also its position in the swarm. The
Verifier accepts the new cluster leader sending him the information
regarding its parent in the spanning tree. After that, the Verifier
also notifies the parent node about the insertion of a new node
between its child. The Verifier knows the best point where insert
the new cluster leader in the spanning tree given its position in the
swarm and the tree’s balance.

Another scenario to be considered is a device leaving the swarm.
In case of graceful leave, the device will communicate to its cluster
leader that he is leaving. A cluster leader may communicate its
intent to leave to the members, prompting them to search for a
new leader. Simultaneously, it communicates this decision to the
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Figure 11: Cluster Re-balancing Protocol.

Verifier, which will readjust the spanning tree accordingly. In the
case of ungraceful leave, if it is a cluster leader and fails to respond
during an attestation cycle, the Verifier will label it as untrusted
and disband its cluster. Common nodes that ungracefully leave the
swarm, will be set as unreachable.

5.2 Attestation Schema

The attestation in this solution allows the attestation of devices
only when necessary, without forcing attestation time for the whole
system. The network is composed of different devices, and forcing
all to attest with the same frequency will lead to critical devices
being under-attested and low-capability devices spending too much
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time in the attestation procedure. This solution allows custom at-
testation times and isolates compromised devices or those with not
fresh enough attestation reports. The idea is not to have the cluster
components not always in listen mode for attestation requests, but
only when their token is expiring they participate in the attestation
procedure.

The attestation procedure is still driven by the Verifier, which
has high computation capabilities (Fig. 13). The Verifier knows
the cluster leader’s topology, it can start the verification phase by
sending an attestation request in broadcast to all the cluster leaders
(a). The request will include a nonce to avoid both replay attacks
and duplicate request messages received within the network. The
cluster leader will forward the attestation request in-broadcast to
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Figure 14: The gathering, aggregation, and transmission of
integrity proofs back to the Verifier.

all the cluster members (b). Only a subset of the cluster members
participate in the attestation: all Cluster Leaders and child devices
with expiring authentication tokens (Fig. 14). They will collect
the integrity proofs and send them to the cluster leader (a). The
cluster leaders will aggregate all the proofs received together with

its evidence and send them to its parent in the spanning tree (b).

The last cluster leader will send the response to the Verifier. At this
point, the Verifier checks the validity of the integrity proofs and
emits tokens for each entity attested. The tokens are sent back to
the cluster leaders who will distribute them in the cluster. If a node
does not respond even if its token is expired it is not possible to
mark it as compromised. These devices may go into power-safe

mode if has no tasks to address and in this mode ignore the requests.

In this case, the device shouldn’t communicate with others, in case
it happens its token is expired and the communication request will
be rejected. Instead, if it is a cluster leader that does not respond to
attestation requests, it will be marked as untrusted and removed
from the network. Each device in the swarm may require different
times for integrity-proof generation. The cluster leader will wait
for the response of the cluster members but may happen that a
device sends the integrity proofs when the cluster leader has already
passed the quote to its parent. In this case, the integrity proof of this
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Field
status

Description

result of last verification

last-verification timestamp of the last verification

token-duration duration of the token validity

class of the device
public key of the device
score of the device predisposition to
become a cluster leader

device-class

device-pkey

value

max number of devices that could handle in
its cluster if became cluster leader

Table 1: Token’s fields.

max-dimension

device will be inserted in the next verification round. The Verifier
detect that those proofs belong to the previous attestation cycle but
still verifies them and releases a token with lower time validity for
this device.

Given the heterogeneous network, the Verifier could not pos-
sess the reference values for each kind of device. This problem is
addressed by including information regarding the device in the re-
sponse, together with the integrity proof. There will be specified the
device type, its public key, its endorser and, a pointer to download
its reference values from the endorser. With this information, the
Verifier, if trusts the endorser, can download the reference values
and use them for the attestation.

5.3 Authentication Token

The communication between devices in the swarm is regulated by
an authentication token, which is released and signed by the Verifier.
The token is released after a correct attestation of the device, it has
a duration dependent on the device’s characteristics. The Verifier
sends the tokens to the cluster leaders who will distribute them to
the cluster members. The token contains information related to the
device and its status (Tab. 1).

At each attestation cycle, the Verifier releases a token for each
trustworthy node that participated in the attestation (Fig. 15). Those
certificates are sent to the cluster leaders (a) who will broadcast
them into their subnets (b). The compromised devices in the Cluster
will not acquire a new valid Authorization Token (c). If the Cluster
Leader is compromised, the Remote Verifier also considers the
devices connected to it to be compromised and does not issue
Authorization Tokens for them (d).

When a cluster member receives a new token, it activates a
timer, and before its expiration, the device must participate in an
attestation round to get a fresh one. Each time a device wants
to communicate with another one, it must present its token and
request the other node’s token. The token is a way to introduce itself
to others, giving secure information regarding its status and identity.
Firstly, when receiving another token, it is essential to check that it’s
signed by the same authority that signed mine. Then it is necessary
to check that the tokens have not expired. A device can verify the
validity of a token by comparing the timestamp with its one. It
must calculate the difference (At) between the two timestamps
representing the issue time of the tokens. Once calculated this delta,
it must read the current value of its timer, to know how much time
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has passed since the last valid token has been received. Adding the
value of the timer to the At makes it possible to know the time
passed since the issue time of the token to verify. If this value is
less than the expiration time, then the token is still valid and the
device that sent it is trustworthy. If the value obtained is positive it
means the token is still valid.

At = Issueyjme (MyToken) — Issuetime (ReceivedToken) (1)

Validity = Expire;,,.(ReceivedToken) — (At + MyTimer) (2)

ReceivedToken is valid < Validity > 0

®)

This procedure enables token validity verification without requiring
time synchronization, which is difficult to obtain in swarm systems.

This schema isolates automatically untrusted nodes, not allow-
ing them to communicate in the swarm and compromise others
(Fig. 16). With this mechanism, when a node is compromised, there
is no need for a timely action by the network administrator as the
compromised node is automatically and seamlessly ring-fenced. In
case a cluster leader is compromised, all its nodes will be considered
untrusted, since their attestation procedure is based on the cluster
leader. Since the token is released and signed by the Verifier, it’s
feasible to use it for intra-cluster communications, since a single
entity releases all the tokens.
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Remote Verifier

Figure 16: Trusted Communications in the swarm.

6 SECURITY DISCUSSION

We will now examine how SAFEHIVE's security holds up against
the adversary model introduced in Section 4.2. In an attestation
scheme, the goal of an adversary, whether local or remote, is to com-
promise the firmware and/or configuration data of a device without
the Verifier being able to detect the compromise and manage to
alter/poison the correct functioning of the network.

In general, an attestation protocol is considered secure if it is
computationally impossible for a polynomial attacker to trick the
verifier into accepting a forged attestation result as valid. We assume
that the implementation of the attestation protocol in SAFEHIVE
uses cryptographic primitives that guarantee security strength com-
pliant with the recommendations of the TCG. Furthermore, we
assume that the Remote Verifier adopts a True Random Number
Generator (TRNG) which guarantees that the nonce issued by the
Verifier at each attestation cycle is unpredictable. If an attacker
could predict a small enough set of values into which the nonce
would most likely fall, he could collect attestation reports generated
using the predicted nonces and subsequently respond to the Remote
Verifier with them.

The adjustable window between two attestations on a device,
tailored to its capabilities, enables strict attestation intervals for
security-critical devices without forcing constrained devices to
spend excessive time in the attestation process. Utilizing tokens
to mediate interactions with other devices can effectively isolate
compromised devices and mitigate the risk of infecting the entire
network.

7 CONCLUSION

IoT is widely gaining interest and protecting them is becoming
crucial, because they can manage sensitive data that need secure
processing. Typically Remote Attestation (RA) is adopted to assert
the trustworthiness of network components. In the case of IoT net-
works, traditional RA procedures are of difficult application, due
to the large number of connected devices. For this reason, Swarm
Attestation has been proposed, to provide integrity information
of an IoT network while avoiding the necessity to contact directly
each node of the network. This paper introduced SAFEHIVE, a
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swarm attestation protocol for heterogeneous groups of resource-
constrained devices. It leverages dynamic clusters and isolates com-
promised nodes with a token mechanism. SAFEHIVE is scalable
and highly efficient, making it suitable for dynamic networks en-
compassing thousands of devices. Its minimized communication
overhead depends on the acceptable latency for detecting compro-
mised devices, rendering it well-suited for application in various
domains, particularly time-sensitive and safety-critical environ-
ments.
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