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An ML-aided Reinforcement Learning Approach
for Challenging Vehicle Maneuvers

Dinesh Cyril Selvaraj, Shailesh Hegde, Nicola Amati, Francesco Deflorio,
and Carla Fabiana Chiasserini, Fellow, IEEE

Abstract—The richness of information generated by today’s1

vehicles fosters the development of data-driven decision-making2

models, with the additional capability to account for the context3

in which vehicles operate. In this work, we focus on Adaptive4

Cruise Control (ACC) in the case of such challenging vehicle ma-5

neuvers as cut-in and cut-out, and leverages Deep Reinforcement6

Learning (DRL) and vehicle connectivity to develop a data-driven7

cooperative ACC application. Our DRL framework accounts for8

all the relevant factors, namely, passengers’ safety and comfort9

as well as efficient road capacity usage, and it properly weights10

them through a two-layer learning approach. We evaluate and11

compare the performance of the proposed scheme against existing12

alternatives through the CoMoVe framework, which realistically13

represents vehicle dynamics, communication and traffic. The14

results, obtained in different real-world scenarios, show that our15

solution provides excellent vehicle stability, passengers’ comfort,16

and traffic efficiency, and highlight the crucial role that vehicle17

connectivity can play in ACC. Notably, our DRL scheme improves18

the road usage efficiency by being inside the desired range of19

headway in cut-out and cut-in scenarios for 69% and 78% (resp.)20

of the time, whereas alternatives respect the desired range only21

for 15% and 45% (resp.) of the time. We also validate the22

proposed solution through a hardware-in-the-loop implementation,23

and demonstrate that it achieves similar performance to that24

obtained through the CoMoVe framework.25

Index Terms—Machine learning-based vehicle applications;26

Connected vehicles; Vehicle dynamics; Adaptive cruise control27

28

I. INTRODUCTION29

Recent report by the World Health Organization (WHO)30

indicates that nearly 1.35 million people die in road acci-31

dents, and approximately 20–50 million people suffer non-32

fatal injuries yearly. Also, traffic congestion takes a substantial33

toll on public health and economy because of the polluted34

air, people’s commuting time, and fuel consumption [1], [2].35

In this context, Connected Autonomous Vehicles (CAV) can36

play an essential role, as they can mitigate traffic externalities,37

especially safety and traffic efficiency. Both vehicles and road38

infrastructures are increasingly equipped with sensing compu-39

tational equipment to assist the driver, as well as with vehicle-40

to-everything (V2X) communication devices to facilitate data41

exchange. As a result, a CAV can gather an enormous amount42

of data promoting the development of Machine Learning (ML)43

models to further improve passengers’ safety and comfort.44

Among the Advanced Driver Assistance Systems, the Adap-45

tive Cruise Control (ACC) is one of the most popular applica-46

tions in new vehicles generations, and it seemingly performs47
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Fig. 1: Architecture of 2LL-CACC scheme.

well under most car-following scenarios. However, there are 48

few challenging scenarios where the human has to be alert 49

and take control of the vehicle to perform a safe maneuver 50

over the ACC [3]. One such scenario is given by the lane 51

change maneuvers which are more common on the roads, and 52

responsible for 7.6% of the car crashes in the US [4]. To 53

overcome such limitations of the traditional ACC, we propose 54

an ML-based ACC application that leverages the information 55

collected through both sensors and communication devices. 56

Such application can improve not only safety but also comfort 57

and traffic efficiency since it substantially reduces the traffic 58

shock waves that usually occur during challenging maneuvers. 59

More specifically, the framework we propose, called 2- 60

Layer Learning Cooperative ACC (2LL-CACC), accounts for 61

CAVs’ road efficiency, safety, and comfort, as follows. Effi- 62

ciency is measured by the headway metric – a proxy way to 63

measure the inter-vehicle distance in a traffic stream [5]–[7]. 64

Safety is expressed in terms of the longitudinal slip ratio and 65

the Time-To-Collision (TTC), where the former is the amount 66

of slip experienced by pneumatic tires on the road surface, 67

while the latter represents the time it takes for two vehicles to 68

collide. Finally, comfort is measured through the jerk metric, 69

defined as a rate of change in the vehicle’s acceleration. 70

As sketched in Fig. 1, 2LL-CACC aims at finding the best 71

tradeoff among road efficiency, safety, and comfort by using 72

a Deep Reinforcement Learning (DRL) where the reward 73

function is an ML-driven weighted sum of the three metrics. 74

The top layer hosts a Random Forest Classifier [8] to assess the 75

current contextual information, while the lower one includes 76

a Deep Deterministic Policy Gradient (DDPG) [9] algorithm 77

that aims to maximize the cumulative reward by mapping the 78

states and action through an optimal policy. Thanks to such 79
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a 2-layer ML-based approach, 2LL-CACC can adapt to the1

operational context and effectively selects the acceleration to2

adopt, thus overcoming the limitations of the traditional ACC3

in coping with challenging traffic situations. To demonstrate4

this, we primarily address road traffic scenarios where the ego5

vehicle follows a short-distance/low-velocity lead vehicle, as6

it typically occurs during cut-in and cut-out scenarios.7

Our main contributions can thus be summarized as follows:8

(i) We present the 2LL-CACC, an ML-aided DRL framework9

that employs a two-layered learning strategy to accomplish10

road efficiency, safety, and comfort objectives. The two layers11

host the Context Recognition Model and the DRL model,12

respectively. The role of the Context Recognition Model is to13

recognize the current contextual information and appropriately14

weigh the reward components, i.e., road efficiency, safety, and15

comfort. Subsequently, the weighted reward components assist16

the DRL model convergence by providing valuable feedback17

on the DRL learning process.18

(ii) To achieve the above objectives and adequately rep-19

resent the environment, the DRL states exploit information20

about the lead vehicle and its relation to the ego vehicle in21

terms of its lead vehicle’s acceleration, headway, and relative22

velocity. Furthermore, vehicle stability-related states, such as23

longitudinal slip and road friction coefficient, are used to24

evaluate the vehicle’s stability. As rewards, we use headway as25

a traffic efficiency indicator, jerk to assess comfort, and slip to26

ensure vehicle stability. The reward components are modeled27

to provide positive/negative reinforcement to the agent as28

feedback.29

(iii) Specifically, for the aggressive driving scenarios, we30

have introduced a V2X-supported gradual-switching technique31

that facilitates the ego vehicle to change focus on the lane-32

changing vehicle safely and steadily. Unlike the car-following33

scenario, gradual switching is crucial for the early identifica-34

tion of lane-changing vehicles and smooth transition between35

the vehicles to prevent the deterioration of the target key36

performance indicators.37

(iv) We present a detailed process flow of the Hardware-In-38

the-Loop (HIL) implementation that facilitates the real-time39

deployment of the PyTorch-based DRL agent in the dSPACE40

SCALEXIO AutoBox through the MathWorks environment.41

Also, the HIL validation demonstrates that 2LL-CACC can42

be actually implemented in a real-world vehicle and that it43

achieves a similar outcome as in the CoMoVe simulations.44

Overall, the proposed system uses a content recognition45

model to assess the contextual information, the DRL model46

to drive the ego vehicle in an efficient, safe, comfortable way,47

and finally, the gradual switching to identify the lane-changing48

vehicles and adequately manipulate the DRL states to take49

suitable decisions.50

The rest of the paper is organized as follows: Sec. II51

discusses relevant previous work and highlights our novel52

contributions. Sec. III describes the 2LL-CACC framework53

and explains how V2X communication is exploited, while54

Sec. IV and Sec. V detail, respectively, the integration with55

the CoMoVe framework and the process flow of the HIL56

implementation. Sec. VI presents the performance of 2LL-57

CACC against state-of-the-art alternatives. Finally, Sec. VII58

draws our conclusions and discusses future work. 59

II. RELATED WORK 60

The Adaptive Cruise Control application efficiently controls 61

the longitudinal speed of the vehicle for simple car-following 62

scenarios, while such complex conditions like cut-in or cut- 63

out maneuvers can be highly challenging [3], [10], as the 64

inter-vehicle distance may change dramatically. In particular, a 65

defensive response to the cut-in/cut-out vehicles may greatly 66

affect traffic efficiency [11], while an overly aggressive re- 67

action leads to collision with very high probability [4]. It 68

is thus critical that automated/autonomous vehicles overcome 69

the current limitations to ensure safety. To assist vehicles in 70

such complex situations, ML techniques are widely adopted. 71

In particular, (D)RL algorithms have been preferred to other 72

ML approaches, since they effectively deal with uncertain and 73

partially observable environments [12]. Several works [13]– 74

[17] have explored the usage of (D)RL-based algorithms to 75

improve vehicle performance in complex scenarios. In particu- 76

lar, [13] leverages a DRL-based CACC algorithm that exploits 77

information from vehicle’s RADAR and vehicle-to-vehicle 78

(V2V) communication to maintain the desired headway with 79

the lead vehicle. Even though V2V communication can help to 80

identify lane-changing scenarios beforehand, [13] only focuses 81

on optimizing headway, thus overlooking the passenger com- 82

fort or vehicle stability. The traditional ACC also suffers from 83

similar inadequacies, as it does not consider the environmental 84

factors while controlling the longitudinal vehicle movements. 85

The DRL-based framework in [15] addresses some drawbacks 86

of [13], by using a multi-objective reward function to optimize 87

vehicle’s safety, comfort and efficiency. It also considers a 88

continuous action space, unlike the DRL framework in [13] 89

which can only select an action from a pre-defined discrete 90

action space. However, [15] only considers a linear model to 91

simulate the vehicle behavior, which is often not suitable to 92

represent a vehicle in real-world conditions. Furthermore, prior 93

art has not considered vehicle stability under different road 94

conditions as an objective, which is an integral part of the 95

passenger’s safety. To address this limitation, our framework 96

utilizes longitudinal slip ratio and road friction coefficient to 97

ensure the vehicle’s stability. Even though we obtain these 98

parameters from the simulation models, one can estimate them 99

in real-life situations by leveraging the estimation techniques 100

proposed in, e.g., [18]–[20]. 101

Looking at the cut-in scenario, [16] presents a DRL frame- 102

work tailored to deal with cut-in events and car-following 103

scenarios. [16] uses a two-step process: (i) a deep neural 104

network trained to predict the cut-in maneuver, and (ii) a 105

Double Deep Q Network (DDQN) to train the DRL model 106

for the cut-in scenario. As part of the second step, the authors 107

develop an Experience Screening, a pre-training process where 108

multiple DRL simulations are performed for a set of pre- 109

defined scenarios, and the best experiences (states, actions, 110

rewards, transition states) of each scenario are stored in an 111

experience pool. Later, the DDQN samples the data from the 112

experience pool for faster training convergence and generaliza- 113

tion across different scenarios. We take this study as one of the 114
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benchmarks against which we compare our scheme. However,1

since the dataset used in [16] is not publicly available, we had2

to compared our framework to the vanilla DDQN algorithm,3

which is the core component of the algorithm proposed in4

[16]. It is also worth stressing that, differently from the5

framework we propose, the DDQN algorithm only supports a6

discrete action space. Thus, the degree of freedom to choose7

an appropriate action is limited, compared to 2LL-CACC.8

As for non-ML-based methods, [21]–[23] focus on improv-9

ing the traditional ACC to handle the cut-in vehicles. [22]10

presents a (C)ACC algorithm for platooning in vehicle cut-11

in/cut-out situations. It uses a Proportional-Derivative (PD)12

controller, which takes relative velocity and distance between13

the lead and ego vehicle as input and outputs the desired ego14

vehicle acceleration. Nevertheless, in our conference paper15

[24], we compared the performance of a similar (C)ACC16

controller to our proposed DRL framework, and the results17

showed that the DRL framework can achieve better results than18

the approach in [22]. [23] proposes instead Model Predictive19

Control (MPC) for cut-in maneuvers with safety and comfort20

objectives. However, [25] shows that MPC suffers high com-21

putation and time complexity, while a model-free DRL model22

can be trained offline and provide results promptly.23

In a (D)RL framework, the representation of a reward24

function is critical, as it quantifies the value associated with25

each state and action pair and assists the agent in learning an26

optimal policy. [26] remarks that (D)RL with sparse rewards27

can lead to instability and suboptimal policy convergence.28

Likewise, each reward component should be weighted opti-29

mally in a multi-objective DRL agent to achieve the desired30

outcome and faster convergence. Few studies [27], [28] use31

supervised reward shaping techniques to assist the sparse32

rewards setup, which is a different approach from ours, as33

we focus on predicting optimal weights for each reward34

component according to the current contextual information.35

In general, (D)RL frameworks employ recognized sim-36

ulators to validate their agent’s performance [29]. In our37

work, we employ the CoMoVe simulation framework [30]:38

a sophisticated validation tool that can realistically simulate39

both detailed vehicle dynamics and communication models.40

Finally, we mention that a preliminary version of this41

work has been presented in our paper [24]. With respect to42

[24], (i) we now develop a two-layer ML-based approach,43

with an ML classifier dynamically determining the setting44

of the weights for the three reward components in the DRL45

agent; (ii) the DRL framework is enhanced to identify lane-46

changing scenarios in advance and actuate gradual-switching47

strategy to the new lead vehicle assuring comfort, safety, and48

efficiency, and (iii) the HIL implementation demonstrates the49

deployability of 2LL-CACC in actual vehicles.50

III. THE 2LL-CACC FRAMEWORK51

In this section, we describe the 2LL-CACC scheme, which52

aims to learn an optimal decision-making strategy for the ego53

vehicle, ensuring an efficient, safe, and comfortable driving54

experience. As depicted in Fig. 1, 2LL-CACC comprises two55

layers: the top one hosts an ML model to access the current56

context and scenario characteristics; the lower one focuses on 57

the DRL agent attributes to learn an optimal policy. 58

At any given time t, the ego vehicle traveling through a road 59

traffic scenario provides information about the environment, 60

specifically, neighboring vehicles and road conditions, to the 61

DRL agent and Context Recognition model as state s(t) ∈ S 62

and context c(t) ∈ C (resp.). Given s(t), the role of the 63

DRL framework is to attain efficient, safe, and comfortable 64

driving 2LL-CACC by maintaining optimal speed, according 65

to headway, slip, and jerk values through the agent’s decision- 66

making policy. Based on the input state, s(t) ∈ S , the DRL 67

agent takes action (A) to change the behavior of the ego 68

vehicle by either accelerating or decelerating it. As a response 69

to the action, the agent gets a reward from the environment. 70

The representation of states, actions, and reward in the DRL 71

framework assists the agent in learning the optimal policy. 72

In our study, the reward comprises three components, 73

namely, headway, slip, and jerk, to model efficient, safe, 74

and comfortable driving. However, equally weighted reward 75

components may not provide optimal feedback to the DRL 76

agent, as, depending on the situation experienced by the ego 77

vehicle, a component may be more important and hence 78

should be weighted more. Examples include the case where 79

road pavement conditions are particularly slippery and vehicle 80

stability has to be ensured with highest priority, or the case 81

where the ego vehicle has high driving speed and should 82

maintain a sufficient headway. Thus, each reward component 83

should be weighted depending upon the current context, as 84

the latter impacts the learning process directly. To do so, 85

it is necessary to derive the relation between features that 86

impact the reward components and the corresponding weights. 87

To this end, we introduce the Context Recognition Model, 88

which leverages a Random Forest Classifier to infer such 89

a relationship and determine the weight to be associated 90

with each reward component based on the current context 91

c(t). Subsequently, the predicted weights are used to regulate 92

their corresponding reward components, and the sum of the 93

weighted rewards facilitates the DRL model in learning an 94

optimal policy. Fig. 2 depicts an overview of the proposed 95

2LL-CACC framework. 96

In the following, Sec. III-A details the top layer hosting 97

the Context Recognition model, while Sec. III-B presents the 98

lower layer hosting the DRL framework. The notations used 99

in Sec. III-A and Sec. III-B are summarized in Tab. I. 100

A. Top Layer: Context Recognition Model 101

As mentioned above, we use an ML model to predict the 102

weights of each reward component, based on the current 103

situation. Specifically, we uses a Random Forest Classifier 104

(RFC) [8], [31] and train it to interpret the current contextual 105

information through selected input features (C), and output the 106

optimal weight class for the headway (lh), stability (ls), and 107

comfort (lc) reward components. 108

1) Preliminaries: In general, RFC is a powerful ensemble 109

algorithm that has been proved to handle high dimensionality 110

problems efficiently. It suits the problem at hand particularly 111

well, since we have a set of input features that must be mapped 112
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Fig. 2: An overview of the proposed 2LL-CACC framework.

TABLE I: Notations

Symbols Description
C Contextual Information
S DRL State Space
A DRL Action Space
Z Experience Replay Buffer
xh Headway Reward Weight Coefficient
rh Headway Reward Component
xs Stability Reward Weight Coefficient
rs Stability Reward Component
xc Comfort Reward Weight Coefficient
rc Comfort Reward Component
α Lead Vehicle Acceleration
ϑ Headway
∆ϑ Headway Derivative
ξ Longitudinal Slip
µ Road Friction Coefficient
ν Relative Velocity
j Jerk
ẍ Ego Vehicle’s Acceleration

χ
Safety Indicator, corresponding

to the Time-to-Collision (TTC) value

ψ
Road Condition,

based on the road friction coefficient (µ)

ω
Road Network,

describes the current road traffic scenario

Q(s, a|β) Parameterized State-Action value function
with β as parameters

π(s|η) Parameterized Policy function
with η as parameters

into three weight labels accordingly. In a nutshell, the RFC1

builds a set of independent decision trees and aggregates them2

together to get accurate predictions. Notably, the Random3

Forest model utilizes the bootstrap aggregation method to4

mitigate the high variance issue observed in single decision5

tree techniques. With the help of bootstrap aggregation, each6

decision tree samples a random subset of data from the original7

dataset and it uses a random subset of input features to build8

the tree. Because of the randomness, the decision trees are less9

correlated and produce better prediction outputs than a single10

decision tree. Essentially, a decision tree aims to split the data11

into homogeneous branches to determine the outcome. The12

tree includes two types of nodes (i) a decision splitting the data 13

into two subsets (branches), and (ii) a leaf node representing 14

an outcome decision. With the help of the Gini Index (GI) 15

[31], each decision node determines a splitting criterion based 16

on a specific feature and a threshold, which results in fewer 17

samples of heterogeneous classes in each subset H. At each 18

subset, the GI is calculated as: 19

GI(H) = 1−
n∑

i=1

p2i (1)

where n is the total number of classes, and pi the number of 20

samples in subset H that belong to the i−th class normalized 21

to |H|’s’ cardinality. Then, the weighted average of each 22

subset’s GI is used to identify the best criteria to split the 23

data. Given subsets H1 and H2, the weighted GI is given by: 24

GIw(H1,H2) =
n1
n
GI(H1) +

n2
n
GI(H2) (2)

where n1 and n2, represent the number of samples in subsets 25

H1 and H2, respectively, and n is the total number of rows in 26

H1 ∪ H2. Similarly, GIw is calculated for different splitting 27

criteria, and the criterion with minimum GIw is used to split 28

the data. Indeed, the smaller GI value means better splitting 29

criteria with a higher percentage of homogeneous classes in 30

the subsets. The decision node continues to split the data till 31

all values in each subset are homogeneous, i.e., belong to 32

the same class. However, the splitting is controlled by the 33

maximum tree depth parameter to tackle overfitting. In the 34

decision-making (i.e., inference) phase, the input data traverse 35

the decision tree from decision nodes to the leaf node, where 36

the majority class in the leaf node is predicted as the output 37

label. The output label is decided based on the majority vote 38

of all decision trees. 39

40

2) Context Recognition Model: The context recognition 41

model employs the Random Forest Classifier to predict the 42

weights of the reward components based on the current 43

contextual information. Therefore, the RFC takes input fea- 44

tures that concern the ego vehicles’ objectives to choose the 45

corresponding labels for the reward components. We have 46

three reward components representing headway (rh), stability 47

(rs), and comfort (rc). To support the classification model, 48

we discretize the weight values into 20 bins and numerically 49

labeled each bin (e.g., label 1 represents [0.0, 0.05], label 2 50

[0.05, 0.1], etc.). We chose classification rather than regression 51

algorithms because the predicted values vary considerably in 52

regression, causing the DRL model to map a similar state- 53

action pair with different rewards, and, hence, slowing down 54

convergence. At a given time t, the input features headway 55

(ϑ(t)), jerk (j(t)), and longitudinal slip (ξ(t)) play a crucial 56

role, as they represent the three main objectives of the ego 57
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vehicle. They are formulated as:1

ϑ(t) =
∆Plead(t)

Vego(t)
(3)

j(t) =
ẍ(t)− ẍ(t− 1)

τ
, (4)

ξ(t) =


VR

ego(t)−VW
ego(t)

VR
ego(t)

, ẍ(t) >= 0

VR
ego(t)−VW

ego(t)

VW
ego(t)

, otherwise
(5)

where ∆Plead(t) is the relative distance between lead and2

ego vehicle, Vego(t) is the ego vehicle’s velocity, VR
ego(t) is3

the ego vehicle’s tire tangential velocity, VW
ego(t) is the ego4

vehicle’s wheel ground point velocity, ẍ(t) is the ego vehicle’s5

acceleration at time t and τ is the sampling interval of the6

framework. Apart from them, the ego vehicle acceleration7

(ẍ(t)) at time t helps identify the vehicle’s current operating8

range (braking or speeding up) , which affects the objectives.9

Likewise, a safety indicator is used to determine critical10

situations and further discount the comfort factor in case of11

imminent danger. In this work, we use Time-To-Collision12

(TTC) to identify potential collision situations, representing13

the time it takes for two vehicles to collide, if their speed is14

not modified. The TTC at time t is formulated as:15

TTC(t) =
∆Plead(t)

ν(t)
(6)

where ν(t) represents the relative velocity between the lead16

and ego vehicles at time t. Therefore, the safety indicator at17

time t (χ(t)) is computed as:18

χ(t) =

{
1, TTC(t) > 4 s

0, TTC(t) ≤ 4 s
(7)

where the 4-s threshold is set based on [32].19

Furthermore, the road friction coefficient (µ(t)) at time20

t is directly related to vehicle stability, where an abrupt21

acceleration change often leads to instability in low-friction22

roads. The road condition (ψ(t)) is defined as:23

ψ(t) =


1, 0.7 ≤ µ(t) ≤ 1

2, 0.4 ≤ µ(t) < 0.7

3, µ(t) < 0.4 .

(8)

Finally, (ω(t)) represents the road traffic scenario at time t,24

as the ego vehicle’ behavior may significantly vary, e.g., from25

urban intersections to highway scenarios. In addition, the road26

traffic scenarios are expressed as unique discrete values to27

benefit the learning process.28

To summarise, at the generic time-step t, context (c(t)) is29

represented by the following features:30

• headway (ϑ(t)) representing the distance between ego31

and lead vehicle;32

• longitudinal slip (ξ(t)) representing the ego vehicle’s33

stability;34

• jerk (j(t)), i.e., the comfort factor;35

• ego vehicle’s acceleration (ẍ(t));36

• n, a binary value that indicates whether the TTC drops37

below a fixed safety threshold or not;38

• road condition (ψ(t)) describing the road friction coeffi-39

cient (µ(t)) in the form of slippery, wet, or dry conditions;40

• road network (ω(t)) representing the current road traffic 41

scenario. 42

At every time-step, the RFC model takes the current context 43

(c(t)) as input and predicts the optimal weight label for head- 44

way, stability, and comfort reward components. Then, labels 45

(lh, ls, lc) are converted into values (xh, xs, xc) according to 46

their discretized bins. For example, with reference to the above 47

example about the bins’ labels, if the RFC model predicts 1 48

as headway label lh, the corresponding headway weight is a 49

random uniform value between 0 to 0.05. 50

B. Bottom Layer: The DRL Model 51

We now provide a detailed description of the DRL model, 52

starting with some preliminaries on DRL and then introducing 53

the solution we designed. 54

1) Preliminaries: The goal of a RL model is to learn an op- 55

timal decision-making strategy by repeatedly interacting with 56

an environment that provides positive or negative feedback 57

as a reward for the current behavior. Its main components 58

are: state-space (S), i.e., a representation of the environment; 59

action space (A), a set of actions an agent can take to interact 60

with the environment; rewards (R), numerical feedback from 61

the environment; policy (π(s)), a decision-making strategy 62

that characterizes the mapping from states to actions; value 63

function (Qπ(s, a)), which indicates the expected future return 64

from the state-action pair. The policy and value function facili- 65

tate the agent to take a sequence of actions that maximizes the 66

cumulative discounted reward received from the environment. 67

The RL problem is generally modeled as a Markov De- 68

cision Process (MDP). At any given time step t, the MDP 69

is represented through a quintuple, < s(t) ∈ S, a(t) ∈ 70

A,K, r(s(t), a(t)) ∈ R, γ > where K is the state transition 71

probability matrix, and γ ∈ [0, 1] is a discount factor for 72

future rewards. K, specifies the probability of being in s(t+1) 73

due to action a(t) taken at state s(t). However, it is difficult 74

to model the state transitions for complex problems such as 75

vehicle dynamics, thus we adopt an actor-critic method, which 76

is model free and exhibits low computational complexity. 77

In the actor-critic framework, the critic uses a function 78

approximator to learn the value function parameters β opti- 79

mizing the value function (Q(s, a|β)), while the actor adopts 80

a function approximator as well to update the policy parameter 81

(η) in the direction suggested by the critic to optimize π(s|η). 82

In general, RL algorithms employ deep neural networks as 83

function approximators to achieve the optimal solution, and 84

such techniques are collectively called Deep Reinforcement 85

Learning (DRL) methods. 86

In our work, we use Deep Deterministic Policy Gradient 87

(DDPG) [9], a DRL algorithm that follows the actor-critic 88

framework to learn both the value function and policy. The 89

critic network with parameters β takes care of the value 90

function estimation (Q(s, a|β)) while the actor network with 91

parameters η represents the agent’s policy (π(s|η)). Notably, 92

the DDPG algorithm supports the continuous action space 93

and suits the 2LL-CACC scheme to learn the optimal ego 94

vehicle acceleration profile. As the name signifies, it learns 95

a deterministic policy where the policy predicts the action 96
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directly, rather than predicting a set of probability distributions1

over the action space A. Since the policy is deterministic, a2

standard normal noise with zero mean and a standard deviation3

of 0.1 is added to the predicted action value during training,4

to ensure the continued exploration of the action space.5

Further, it leverages experience replay buffer and tar-6

get network techniques to ensure a stable and efficient7

learning process. The experience replay buffer (Z) stores8

the agent’s experience samples as a tuple (s(t), a(t), s(t +9

1), r(s(t), a(t)), d(t)) at every step, where d(t) is a binary10

value indicating whether the state s(t+ 1) is a terminal state11

or not. In the replay buffer Z , the next state (s(t + 1)) is12

represented as s′ as it holds transitions from several time steps.13

The algorithm then randomly draws the experience samples14

from the buffer during the learning process. Since the replay15

buffer allows using the same transitions multiple times, the16

experience replay buffer improves the sample efficiency and17

removes the correlation between them by random sampling.18

The target network, instead, helps stabilize the learning. In19

general, the value function tries to minimize the Mean-Squared20

Bellman Error (MSBE), which indicates the difference be-21

tween the current value function and the value function with22

greedy policy (taking actions with maximum expected return).23

It is represented as:24

L(β,Z) = EZ [(Q(s, a|β)− yt)2]),with (9)
yt = r(s, a) + γ(1− d)max

a′
(Q(s′, a′|β) (10)

a′ = π(s|η) (11)
(s, a, s′, r, d) ∈ Z . (12)

Note that both terms in (9) depend on the same value function25

parameters β. Eventually, it causes instability in the learning26

process as both the terms in the (9) keep changing. Thus,27

the structure of the main actor and critic network is cloned28

as a target actor-and-critic network (Q′ and π′) with different29

parameters (β∗, η∗) to overcome training instability. The target30

network parameters are used in the (10)–(11) to calculate yt31

and later, the MSBE. As the training progresses, the main32

network parameters (β, η) are gradually updated to the target33

network (β∗, η∗) through the Polyak averaging technique.34

Essentially, the critic network is trained to minimize the mean35

square error of the target network’s expected return and value36

predicted by the critic network, while the actor network aims37

to maximize the critic network’s mean value for the actions38

predicted by the actor. Subsequently, the model learns to39

predict the actions with maximum critic value for the current40

state.41

2) The DRL-based Acceleration Control: The DRL-based42

ACC application we develop seeks to optimally determine the43

ego vehicle’s acceleration through system state information44

gathered from the ego vehicle’s sensors and neighboring45

vehicles. The pseudo-code of the proposed scheme is presented46

in Algorithm 1.47

States and Action: At a certain time-step t, the state space48

of the environment is represented by: (i) the lead vehicle49

acceleration α(t), (ii) the headway ϑ(t), (iii) the headway50

derivative ∆ϑ(t), (iv) the longitudinal slip ξ(t), (v) the friction51

coefficient µ(t), and (vi) the relative velocity ν(t). In the state52

Algorithm 1 DRL-based Acceleration Control

Randomly initialize critic network Q(s, a|β) and actor
π(s|η) with weights β and η
Initialize target network Q′ and π′ with weights β∗ ← β
and η∗ ← η
Initialize replay buffer Z
for episode= 1,M do

Receive initial observation state s(1)
for t = 1, T do

Select action a(t) = π(s(t)|η)+ random normal
noise according to the current policy and exploration
noise
Execute action at and observe new state s(t+ 1),
rewards of each component (rh(s(t), a(t)),
rs(s(t), a(t)), rc(s(t), a(t))), environment status
d(t)
Get weights (xh, xs, xc) from Context Recognition
Model
Calculate the reward r(s(t), a(t)) based on the
weights and their reward components
Store transition (s(t), a(t), s(t+ 1), r(s(t), a(t)),
d(t)) in Z
Sample a random mini batch of N transitions
(si, ai, si+1, ri, di) from Z
Set yi = ri + γQ′(si+1, π

′(si+1|η∗)|β∗)

Update critic by minimizing the loss:
L = 1

N

∑
i(yi −Q(si, ai|β))2

Update the actor policy using the sampled policy
gradient:
∇ηJ ≈ 1

N

∑
i∇aQ(s, a|β)|s=si,a=π(si)·

∇ηπ(s|η)|si

Update the target networks:
β∗ ← ρβ + (1− ρ)β∗

η∗ ← ρη + (1− ρ)η∗

end for
end for

space, the preceding vehicle acceleration is obtained through 53

V2X communication, which is simulated with the help of the 54

CoMoVe framework, and we assume the road friction coeffi- 55

cient is provided by an external estimation method running in 56

the ego vehicle. The headway (ϑ(t)) and longitudinal slip ξ(t) 57

variables are formulated through Eq. 3 and Eq. 5, respectively. 58

The remaining state variables are formulated as: 59

∆ϑ(t) = ϑ(t)− ϑ(t− 1) (13)
ν(t) = Vlead(t)− Vego(t) (14)

where ϑ(t) and ϑ(t − 1) are the headway values at time t 60

and t− 1 (resp.), and Vego(t) and Vlead(t) represent ego and 61

lead vehicle’s velocity (resp.) at time t. In our model, and in 62

contrast to prior art [13], [15], we also account for the wheel 63

longitudinal slip ratio and road friction coefficient, to represent 64

the vehicle stability. 65

Since our DRL model aims to control the ego vehicle’s 66
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acceleration, action a(t) ∈ A is defined as a continuous1

variable. Further, the action values are bounded, in regular2

conditions, between [-2, 1.47] to provide a comfortable travel3

experience [33]. The DRL agent receives a numerical value4

from the environment as feedback on the agent’s behavior, a5

numerical reward that motivates the DRL agent to satisfy the6

desired objective. The sampling interval of our framework is7

τ = 100ms long; the state observation and action decision8

routine are performed every τ seconds.9

Reward Components: The reward function comprises three10

components: headway (representing traffic flow efficiency),11

stability (representing safety), and comfort, each component’s12

value ranging in [-1,1]. More formally, we have:13

r(s(t), a(t)) = xh · rh(s(t), a(t)) + xs · rs(s(t), a(t))
+xc · rc(s(t), a(t))

(15)

where xh, xs, xc are the weight coefficients obtained from14

the Context Recognition Model, which dynamically vary ac-15

cording to the current state, and rh(s(t), a(t)), rs(s(t), a(t)),16

rc(s(t), a(t)) are, respectively, the headway, vehicle stability,17

and comfort reward component at time step t. The three reward18

components are detailed below.19

Headway reward component: Headway is a proxy way to20

measure the gap between two successive vehicles, i.e., ego and21

lead vehicle [13], [15], and it can be calculating using Eq. 3.22

Following [13], we set the ideal headway to secure a safe and23

efficient inter-vehicle distance to 1.3 s, while headway values24

lower than 0.5 s imply a possible risky situation between the25

ego and the lead vehicle. Traffic efficiency is further ensured26

by adding the relative velocity between ego and lead vehicle27

to the headway term, as in (17). The headway term remains28

unchanged if the ego and lead vehicle travel at the same speed.29

If instead the ego vehicle travels faster or slower than the30

lead vehicle, its velocity affects the relative distance, hence31

the headway. Thus, the addition of the relative velocity helps32

regulate the ego vehicle’s acceleration proactively. Compared33

to our preliminary work [24], the addition of relative velocity34

to the state space (S) and reward calculation assists the35

DRL model to consider the neighboring vehicles traveling at36

different velocities effectively.37

The headway reward component (rh(s(t), a(t))) is modeled38

as a Log-Normal distribution function with mean ϵ and vari-39

ance σ, equal to 0.285 and 0.15, respectively:40

rh(s(t), a(t)) =M1 · Fh − 1, with (16)
φ(t) = ϑ(t) + ϑ(t) · νnorm(t) (17)

νnorm(t) =
ν(t)− Vmin

Vmax − Vmin
(18)

Fh =M2 · flognorm(φ(t)|ϵ, σ), (19)

flognorm(x|ϵ, σ) = 1

σ
√
2 · pi

exp
(−(lnx− ϵ)2)

2σ2
(20)

where Vmin, Vmax, M1, M2, pi are the parameters of the41

headway reward component and their respective values are42

defined in Tab. IV. Such headway reward function reaches +143

for φ(t) = 1.3 s, and −1 for φ(t) = 0.5 s with the specified44

parameter values.45

Comfort reward component: It is associated with the rate46

of change of acceleration with time, i.e., jerk j(t). According47

to [33], the best comfort is observed when the absolute jerk 48

value is below 0.9 m/s3, while values above 1.3m/s3 indicate 49

aggressive driving. Therefore, the reward function decreases 50

gradually with the jerk value rising from 0.6m/s3 to 2m/s3, 51

and it saturates with the minimum reward of −1. To satisfy 52

the desired jerk reward trend, the comfort reward component 53

is modeled using Polynomial Curve Fitting. It is worth noting 54

that the passengers’ safety supersedes the comfort factor 55

during critical situations. Thus, we consider the TTC as a 56

safety indicator to identify dangerous situations. The comfort 57

reward is neglected when TTC≤ 4 s, to prioritize safety during 58

such situations. The comfort reward is formulated as: 59

rc(s(t), a(t)) = χ(t) · f(jerk), with (21)
f(jerk) = polyfit(j(t),M3) (22)

where M3 is the polynomial degree parameter specified in 60

Tab. IV, and χ(t) is the safety indicator declared in (14), which 61

is used to discount comfort in the case of danger. 62

Stability reward component: It is valued in terms of the slip, 63

i.e., the maximum tractive force of a pneumatic tire on road 64

surfaces. Based on experimental data, an absolute longitudinal 65

slip value below 0.2 is considered a stable condition. Thus, the 66

stability reward gives a maximum reward of +1 for zero slip, 67

and a negative reward for slip values over 0.2, indicating that 68

the vehicle is not in the stable region. The stability reward is 69

given by a tanh function as: 70

rs(s(t), a(t)) =M4 · (Fs + 1) with (23)
Fs = tanh(−M5 · ξ(t)) (24)

where M4, M5 are scaling parameters and their respective 71

values are reported in Tab. IV. 72

Simulation Environment: To learn the desired behavior, the 73

DRL agent has to interact with an environment that simulates 74

the neighboring vehicle’s behaviors and road conditions. Our 75

study uses CoMoVe, a comprehensive simulation environment 76

that can accurately simulate all vehicles’ dynamics and sensor 77

arrays, V2X communication, and road conditions to facilitate 78

the DRL agent’s learning process. Sec. IV explains in detail 79

the integration of the DRL model with the CoMoVe simulation 80

framework. 81

Importance of V2X Communication: The role of communi- 82

cation in the 2LL-CACC scheme is crucial as it is responsible 83

for collecting lead vehicle’s acceleration to form the state 84

space (S) in the DRL model. Furthermore, in the cut-in and 85

cut-out scenarios, the lead vehicle often falls in the blind spot 86

of the ego vehicle’s sensor array, resulting in late detection of 87

the lead vehicle’s presence and in uncomfortable maneuvers 88

to avoid a potential collision. Through V2X communications, 89

instead, the ego vehicle can periodically receive information 90

on the lead vehicle’s movements (e.g., yaw rate and position) 91

and recognize in advance its intention to change lane, even 92

before the sensor array can perceive it. 93

To fully benefit from such additional information, we intro- 94

duce a gradual switching technique that allows the ego vehicle 95

to gradually switch the attention to the cut-in vehicle, or the 96

vehicle ahead of the cut-out vehicle, to perform moderate 97

evasive maneuvers without hindering the passengers’ safety 98

and comfort. Denoting with Ye and Yc, respectively, the lateral 99
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position of the ego vehicle and that of the generic lane-1

changing vehicle, we define ∆Yc as:2

∆Yc = Yc − Ye . (25)
Then we let the ego vehicle trigger a lead-vehicle switch when-3

ever ∆Yc crosses a certain threshold. Specifically, in the cut-4

out scenario, the ego vehicle switches to the new lead vehicle5

when ∆Yc > M6 · Y0 with Y0 being the lane width (i.e.,6

3.3 m) and M6 a scaling factor. In the cut-in scenario, instead,7

the ego vehicle takes as new lead vehicle the one cutting-in8

when ∆Yc < M7 · Y0 with M7 being a scaling factor. The9

values of the scaling factors we used are presented in Tab. IV.10

Since the gradual switching indicates slowly shifting the focus11

from one vehicle to another, this scaled variable suits well our12

methodology and actual implementation. Next, let us introduce13

a normalized variable ℘ scaled between 0 and 1 according to14

the specified thresholds.15

As long as ∆Yc is less than the threshold value in the cut-16

out scenario, we compute the headway to be fed to the DRL17

model as:18

ϑ(t)=
℘∆Pc(t)+(1−℘)∆Pn

Vego
(26)

where n is the new lead vehicle, identified by the ego vehicle19

based on the values of yaw rate received from its neighbors20

through V2X communication. Similarly, as long as ∆Yc is21

greater than the threshold in the cut-in scenario, the headway22

input to the DRL model is:23

ϑ(t)=
℘∆Pp+(1−℘)∆Pc

Vego
(27)

where p is the previous lead vehicle. Specifically for cut-in24

situations, the gradual switching technique incorporates an25

adaption of the Automated Lane Keeping System (ALKS), UN26

Regulation No. 157 [34]. As per the regulation suggestions,27

the gradual switching technique is refined to wait for at28

least 0.72 seconds before reacting to the cut-in vehicle to29

avoid considering any temporary lateral position changes in30

the social vehicle. Subsequently, if the social vehicle’s lateral31

position continues to change for more than the specified32

threshold, the proposed switching technique will change the33

focus gradually to the lane-changing vehicle, considering it34

a cut-in situation. In addition, we monitor the ego vehicle’s35

Time-to-Collision (TTC) concerning the social vehicle and the36

social vehicle’s lateral position during the lane-changing phase37

to handle aggressive cut-in situations. The ego vehicle will38

switch its focus entirely to the lane-changing social vehicle if39

any of the conditions are met:40

• TTC becomes lower than the TTCLaneIntrusion [34]41

threshold, defined as:42

TTCLaneIntrusion =
ν

2 ·M8
+M9 (28)

where ν is the relative velocity between the lane-changing43

social vehicle and the ego vehicle, while M8 and M9 are44

scaling factors accounting for maximum deceleration rate45

and reaction time, respectively;46

• TTC is less than 4 s [32];47

• The social vehicle is 30 cm [34] inside the ego vehicle’s48

lane.49
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Fig. 3: Architecture of the CoMoVe framework.

The relative velocity between the ego vehicle and the lead 50

vehicle (ν) is computed similarly, and further used by the DRL 51

framework to control the ego vehicle movements. In summary, 52

the gradual switching technique is specifically introduced to 53

handle challenging vehicle maneuvers such as cut-in and 54

cut-out. In fact, it influences the DRL model variables to 55

advise the agent to accommodate the lane-changing maneuvers 56

efficiently. The results reported in Sec. VI-B further validate 57

the importance of V2X communication in the proposed frame- 58

work. 59

IV. INTEGRATING THE DRL MODEL IN COMOVE 60

The CoMoVe framework [30], depicted in Fig. 3, combines 61

widely used simulators in each domain (mobility, commu- 62

nication, and vehicle dynamics) and makes them to interact 63

efficiently. It combines: (i) SUMO, a traffic simulator for 64

vehicle mobility, (ii) ns-3, a network simulator to model 65

V2X communications, (iii) the MATLAB/Simulink module 66

modeling the vehicle dynamics and the vehicle on-board 67

sensors while Driving scenario designer converts the vehicle 68

information from SUMO to MATLAB format to support the 69

on-board sensing, (iv) a Python Engine as a middle-man to 70

handle the information flow between the modules and the host 71

control strategies. 72

CoMoVe leverages SUMO’s TraCI library, ns3’s Python 73

bindings, and MATLAB’s Python Engine to write complete 74

Python simulation scripts and ensure efficient interactions 75

between them. Consequently, the Python Engine is the Co- 76

MoVe’s core: it can access information from each simulator 77

and hosts the 2LL-CACC framework to control the ego 78

vehicle movement. As for the DRL state components, the lead 79

vehicle acceleration value (α(t)) is received through the ns3 80

V2X communication model, while the vehicle sensor model 81

output helps calculate the headway (ϑ(t)), headway derivative 82

(∆ϑ(t)), and relative velocity ν(t) values. The longitudinal 83

slip (ξ(t)) and friction coefficient (µ(t)) are obtained through 84

the Simulink Vehicle Dynamic model. The DRL model’s 85

action (desired acceleration) is used as a reference signal 86

to the ego vehicle’s lower level controller in the Vehicle 87

Dynamics Model. A pure electric vehicle with a 14-Degree-of- 88

Freedom (DoF) mathematical model and rear in-wheel motors 89

are utilized to characterize the vehicle dynamics. 90
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Using the CoMoVe framework, in Sec. VI we show how1

2LL-CACC provides a safe, comfortable, and efficient driving2

experience in challenging road scenarios.3

V. HARDWARE-IN-THE-LOOP IMPLEMENTATION4

Testing and validating ADAS subsystems in assembled5

vehicles incurs significant overhead in terms of time, safety,6

and cost. Thus, HIL simulations have emerged as a convenient7

way to virtually validate the system in a wide range of8

test scenarios during the vehicle development process. In9

general, HIL simulations validate control algorithms through10

a real-time virtual environment encompassing the vehicle’s11

functionalities.12

To validate our approach, we perform HIL simulations13

using dSPACE real-time systems comprising modular and14

robust platforms for testing autonomous driving. Notably, HIL15

simulations demonstrate the deployable nature of the proposed16

controller with a similar outcome in the actual vehicle.17

More specifically, in the proposed framework, the imple-18

mentation of HIL simulation involves two main steps:19

(i) Conversion of the pre-trained Python DRL model into20

MATLAB/Simulink supported DRL model, and21

(ii) Generation of the DRL agent.22

Since the vehicle sensor and dynamics models are simulated23

in the MathWorks environment, the Python-based DRL agent24

must be converted into the MATLAB-supported DRL agent25

for auto code generation. Note that the network simulator26

(ns3) and traffic mobility model (SUMO) are not part of27

the HIL implementation, as they do not support the auto28

code generation process. Instead, the HIL simulation uses the29

mobility traces of the lead vehicles’ and is assumed to be30

equipped with the vehicle’s V2X communication On-Board31

Unit (OBU) to receive the lead vehicle information.32

As specified in Sec. III, we embedded the DDPG algorithm33

into the CoMoVe framework through the Python Engine.34

Specifically, the PyTorch machine learning framework is used35

to build and train the DDPG algorithm’s neural network model.36

In general, the Open Neural Network Exchange (ONNX)37

format is used to achieve interoperability between different38

ML frameworks like TensorFlow, PyTorch, and MATLAB.39

However, the support of the ONNX format in MATLAB is40

limited to the 3D input layers, i.e., images, so the direct41

usage of the PyTorch model in MATLAB is unattainable.42

As a workaround, we replicated the PyTorch neural network43

structure in MATLAB, and its learnable parameter values are44

transferred to the MATLAB model. In essence, the learnable45

parameters are the optimized weights and biases of the neural46

network that are learned to achieve the desired outcome.47

Then, the MATLAB DRL model is converted into a function48

to evaluate the learned policy of the DRL agent. At a given49

time step t, the generated function can predict the action (a(t))50

based on the state (s(t)), as per the trained optimal policy.51

Subsequently, the function is integrated into the Simulink52

model through the “MATLAB Function” block, so that it53

can directly predict the control action for the ego vehicle in54

Simulink. Notice that the generated function does not support55

further learning and can only be used to perform inference.56

Finally, we validated the performance of PyTorch and 57

MATLAB DRL agents by transferring multiple model pa- 58

rameters from PyTorch to MATLAB. Tab. II presents the 59

observed Root Mean Square Error (RMSE) of the headway 60

parameter concerning the PyTorch and MATLAB DRL agents. 61

The validation results indicate that the effect of the model 62

conversion on the output values is negligible, thus firmly 63

confirming the correct transfer of the PyTorch DRL model 64

to MATLAB. In the second step, the dSPACE’s Real-Time 65

Interface (RTI) links the Simulink software with the dSPACE 66

hardware. In particular, the RTI extends Simulink’s C code 67

generator to execute the Simulink software model in real- 68

time hardware. Later, the generated C code is loaded into the 69

dSPACE SCALEXIO AutoBox to perform the HIL simulation. 70

TABLE II: Model conversion validation

Headway RMSE (Ideal = 1.3 s)
Validation Models PyTorch MATLAB

1 0.1766 0.1799
2 0.184 0.186
3 0.2165 0.2187
4 0.1926 0.1951
5 0.1645 0.1665

dSPACE simulates two main subsystems: Controller and 71

Plant. The controller subsystem provides the desired accel- 72

eration for the ego vehicle based on the current states; the 73

Plant subsystem instead simulates the ego vehicle dynamics, 74

sensors, and lead vehicles’ mobility traces. In this work, we 75

used a dSPACE SCALEXIO AutoBox hardware equipped with 76

Intel Core i7-6820EQ, the quad-core processor. The results of 77

the HIL simulations are discussed later in Sec. VI-B. 78

Fig. 4 shows the process flow of our HIL implementation 79

(left) and the structure of the HIL simulation platform in 80

dSPACE SCALEXIO (right). 81
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Model

Simulink Model

DRL, Vehicle Dynamics,
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Acceleration

PlantController

Pre-trained DRL policy

Fig. 4: Process flow of HIL implementation (left); dSPACE
SCALEXIO Simulation process (right).

VI. PERFORMANCE EVALUATION 82

This section first introduces the realistic settings, under 83

which we derive the performance of the 2LL-CACC, as well as 84

the state-of-the-art technique that we consider as benchmark 85

(Sec. VI-A). Then, using both the CoMoVe framework and 86

the HIL implementation, it presents the obtained performance 87

results in relevant, practical scenarios (Sec. VI-B). 88

A. Reference scenario and test cases 89

We explore two highly challenging highway driving scenar- 90

ios where a lead vehicle cut in and out from its current lane, 91
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Fig. 5: Cut-out (top) and cut-in (bottom) scenarios.

TABLE III: DRL Hyperparameter values

DDPG DDQN

Action Space (-2, 1.47)
[-2.0, -1.6, -1.2,
-0.8, -0.4, 0.09,

0.4, 0.8, 1.2, 1.47]
Hidden Layers 3 (actor, critic each) 6

Neurons 64 64
Actor Learning Rate 0.0001 0.0001
Critic Learning Rate 0.001 -

Target Network Update 0.001 (ρ) 100 (steps)
Replay Buffer Size 50000 500000

Mini-Batch Size 48 64

exposing the ego vehicle to unclear or critical situations. In1

both scenarios, as shown in Fig. 5, the lead vehicle (LV), i.e.,2

LV-A in the cut-in and LV-B in the cut-out scenario, is in the3

sensor array’s blind spot. Thanks to V2X communication, the4

ego vehicle becomes aware of the LV’s lateral movements and5

employs the gradual switching technique to change its focus6

between the two lead vehicles. Note that the ego vehicle’s7

sensor array takes over the perception control only once the8

new LV is in its field of view. Fig. 6 illustrates the lateral9

movement of the LVs in the considered mobility scenario.10

In addition, we compare the proposed framework to the11

state-of-the-art method in [16], whose implementation cannot12

be entirely reproduced because their dataset is not available13

for public use. We therefore consider the vanilla DDQN14

algorithm [35], which is the core component of the method15

used in [16]. Tab. III shows the hyperparameter values we used16

for the DDPG and DDQN algorithms and Tab. IV presents17

the parameter values of the different reward components.18

Sec. VI-B discusses the behavior of the ego vehicle equipped19

TABLE IV: Parameter values

Parameters Values
Vmin 0m/s
Vmax 36m/s
τ 100 ms
pi 3.142
M1 2
M2 0.4944
M3 9
M4 2.0099
M5 3
M6 0.5
M7 0.8
M8 6ms−2

M9 0.35 s
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Fig. 6: Lead vehicles’ lateral movement in the cut-out (left) and cut-
in (right) scenarios.
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Fig. 7: Cut-out scenario. Left: Vehicles’ velocity (top) and ego
vehicle’s headway (bottom). Right: Vehicles’ acceleration (top) and
ego vehicle’s jerk (bottom), under 2LL-CACC and DDQN.

with the 2LL-CACC, and its relative performance with the 20

case where at the bottom layer we use the state-of-the-art 21

vanilla DDQN algorithm instead of the proposed DRL model, 22

in the challenging cut-in and cut-out maneuvers. For brevity, 23

in the plots shown in the following we refer to the considered 24

benchmark as DDQN. 25

B. Results 26

We start by discussing the performance of 2LL-CACC in 27

the cut-out scenario. The top left and top right plots of Fig. 7 28

present the velocity and acceleration profile of the vehicles. 29

The bottom left and right plots show instead the headway and 30

the jerk trend, i.e., the efficiency and comfort factor of the 31

objectives. In Fig. 7, the black line indicates the ego vehicle’s 32

desired operating range to maintain safe inter-vehicle distance, 33

provide adequate comfort, and improve road usage efficiency. 34

As mentioned, in the cut-out scenario LV-A changes lane 35

at the last moment, to avoid collision with the slow-moving 36

vehicle in front of it. As the ego vehicle monitors the LVs’ 37

lateral movements, it responds to the lane-changing behavior 38

by gradually switching its focus to LV-B. 39

Notice that the ego vehicle’s DRL model is designed to 40

maintain a headway of 1.3 s, but the headway increases as the 41

ego vehicle gradually switches its focus to LV-B. Initially, the 42

ego vehicle speeds up to compensate for the rise in headway; 43

however, it also keeps track of the TTC with LV-A to ensure it 44

does not collide with it before it completes the lane-changing 45

maneuver. Once LV-A’s lateral position is far enough, LV-B 46

becomes a primary focus for the ego vehicle. Subsequently, 47
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Fig. 8: Time-To-Collision trend of cut-out (left) and cut-in (right)
scenarios, under 2LL-CACC and DDQN.

the ego vehicle decelerates to maintain zero relative velocity1

with LV-B, as the latter travels at a lower velocity.2

From the bottom left plot of Fig. 7, we can see that 2LL-3

CACC maintains the headway inside the desired range for4

about 69% of the simulation time. Also, although the ego5

vehicle cannot keep the headway inside the desired range6

during the cut-out maneuver, the left plot of Fig. 8 shows7

that the TTC never drops below the critical threshold of 4 s,8

thus always guaranteeing safety. For better visualization, Fig. 89

presents the TTC with an upper bound of 100 s and highlights10

the lower critical threshold of 4 s with a black horizontal line.11

In terms of comfort, one can notice a few spikes in the jerk12

trend from the bottom right plot of Fig. 7, which however are13

necessary to maintain in a safe range the TTC between the14

vehicles, which have clearly higher priority. Also, the context15

recognition model consider the safety indicator (χ) as one of16

the input features to appropriately assign weights to the reward17

components, so as to prioritize passenger safety. The blue line18

in the figure denotes the time when the sensor array detects19

the presence of the new LV. One can infer that the detection is20

indeed very late, and it could lead to unsafe conditions if the21

ego vehicle responded to the new LV just from that moment.22

As we can see from Fig. 7, the DDQN-assisted ego vehicle23

does not provide satisfactory results compared to the 2LL-24

CACC. The bottom left plot of Fig. 7 highlights that the25

DDQN model maintains the headway inside the desired range26

only for 15% of the total simulation time, while the counterpart27

maintains it for 69% of the time, providing much better28

road usage efficiency. Regarding comfort, DDQN could keep29

the jerk within the desired range for most of the time, but30

one can notice the oscillatory behavior showing a frequent31

change in the acceleration and, hence, resulting in sub-optimal32

performance. In particular, the DDQN suffers from the usage33

of discrete action space as in this case the ego vehicle has only34

a limited set of accelerations to choose from. Since the vehicle35

travels on a dry road and according to a non aggressive driving36

behavior, Fig. 9 confirms that the ego vehicle’s longitudinal37

slip is always within the desired range, thus ensuring the38

vehicle’s stability.39

Further, it is worth mentioning that we tested the DDQN40

model with an extended set of actions comprising 19 equally41

spaced actions between -2m/s2 and 1.47m/s2. However, the42

DDQN model could not converge even after 480 episodes43

since the larger action space increases the model complexity44

and demands more time to learn the optimal behavior. In45
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Fig. 9: Cut-out scenario: Vehicle wheel slip under 2LL-CACC and
DDQN. Left: left front wheel (top) and left rear wheel (bottom). Right:
right front wheel (top) and right rear wheel(bottom).
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Fig. 10: Cut-in scenario. Left: Vehicles’ velocity (top) and ego vehicle
headway (bottom). Right: Vehicles’ acceleration (top) and ego vehicle
jerk (bottom), under 2LL-CACC and DDQN.

contrast, 2LL-CACC learns an optimal policy within 340 46

episodes and delivers better results than the DDQN. 47

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

−0.1

0.0

0.1

0.2

Le
ft 

Fr
on

t W
he

e 
 S

 ip

EgoVehic e 2LL-CACC
EgoVehicle DDQN

Optima  Range

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

−0.1

0.0

0.1

0.2
Ri

gh
t F

ro
nt

 W
he

e 
 S

 ip

EgoVehic e 2LL-CACC
EgoVehicle DDQN

Optima  Range

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

−0.1

0.0

0.1

0.2

Le
ft 

Re
ar

 W
he

e 
 S

 ip

EgoVehic e 2LL-CACC
EgoVehicle DDQN

Optima  Range

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−0.2

−0.1

0.0

0.1

0.2

Ri
gh

t R
ea

r W
he

e 
 S

 ip

EgoVehic e 2LL-CACC
EgoVehicle DDQN

Optimal Range

Fig. 11: Cut-in scenario: Vehicle wheel slip under 2LL-CACC and
DDQN. Left: left front wheel (top) and left rear wheel (bottom). Right:
right front wheel (top) and right rear wheel(bottom).

We now move to the cut-in scenario. The top plots of 48

Fig. 10 show the velocity (left) and acceleration (right) trends 49

of the vehicles’ involved in the scenario. The lead vehicle 50

(LV-A) traveling at higher speed overtakes the ego vehicle 51

and then starts a cut-in maneuver to enter the ego vehicle’s 52

lane. Also, LV-A decelerates in order to squeeze into the gap 53

between the ego vehicle and LV-B. As before, the ego vehicle 54

promptly recognizes the lane-changing maneuver thanks to 55

V2X communications, and it starts to monitor the lateral 56

movement of the social vehicle. Once the gradual switching 57

determines it is a cut-in situation, the ego vehicle starts 58

decelerating as the distance between them reduces rapidly. 59

Note that in this situation, the distance between the ego 60

vehicle and LV-A does not represent the gap between them. 61
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Fig. 12: Cut-in scenario. Left: Ego Vehicle velocity (top) and headway
(bottom). Right: Acceleration (top) and jerk (bottom), under 2LL-
CACC and HIL.

Instead, the relative distance is calculated according to the1

turning angle and length of LV-A, as it also incorporates the2

ego vehicle’s collision point on LV-A. The calculated relative3

distance gives additional time to the ego vehicle to handle4

the maneuver effectively. The camera sensor quickly identifies5

the LV-A presence and takes control to define the relative6

distance between the cars. Nevertheless, the role of V2X7

communication is still crucial, as it recognizes the maneuver8

proactively and allows the ego vehicle to decelerate gradually.9

As for the headway, the bottom left plot of Fig. 10 shows10

that the 2LL-CACC can maintain such metric within the11

desired range for a more extended time period compared to the12

DDQN (78% versus 45% of the total simulation time). Also,13

the right plot of Fig. 8 shows that the TTC never drops below14

the critical safety threshold of 4 s: this shows that, even in the15

closer cut-in situation, the gradual switching can assist the ego16

vehicle to ensure safety and better road usage efficiency.17

The bottom right plot of Fig. 10 underlines that the jerk18

is temporarily outside the desired range during the cut-in19

maneuver, but this is again inevitable, as the scenario demands20

such a response to maintain a safe distance between the cars21

for the whole simulation period. In this scenario the DDQN22

model cannot handle the cut-in maneuver as efficiently as the23

2LL-CACC. Furthermore, the ego vehicle’s longitudinal slip24

presented in Fig. 11 shows that the vehicle remains stable with25

both DDPG- and DDQN-based models, given that the cut-in26

scenario is carried out on dry road conditions.27

In addition, we have executed the cut-in scenario in the28

dSPACE Scalexio AutoBox and verified the HIL system’s per-29

formance. As can be seen in Fig. 12, the HIL implementation30

achieves similar performance to that obtained with the standard31

model in the loop setup. This result further strengthens the32

2LL-CACC’s ability, as it validates the deployable nature of33

the trained DRL model in actual vehicles.34

Finally, Tab. V presents the Root Mean Square Error35

(RMSE) of the obtained results to highlight the quantitative36

performance of the proposed framework. 2LL-CACC achieves37

very good results with respect to all objectives, and no-38

tably outperforms the DDQN-based model in all scenarios.39

In terms of comfort, 2LL-CACC has higher jerk RMSE40

values; however this is inevitable, to promptly react to new41

conditions, as passengers’ safety has to be prioritized over42

comfort in these critical scenarios. Still, 2LL-CACC achieves43

TABLE V: Comparison between 2LL-CACC and DDQN in terms of
RMSE for headway, jerk, and slip

RMSE
Metrics Scenarios 2LL-CACC DDQN

Headway
(Ideal = 1.3 s)

Cut-out 0.1184 0.2515
Cut-in 0.1767 0.1872

Jerk
(Ideal = 0m/s3)

Cut-out 1.2405 0.6976
Cut-in 0.4715 0.8812

Slip
(Ideal = 0)

Cut-out 0.018 0.018
Cut-in 0.02 0.02

an excellent trade-off among the three objectives, providing 44

safe inter-vehicle distance, improved road usage efficiency, and 45

satisfactory comfort to the passengers. 46

VII. CONCLUSION 47

We addressed Adaptive Cruise Control (ACC) for connected 48

autonomous vehicles in such challenging traffic scenarios as 49

the cut-in and cut-out maneuvers. We proposed a 2-layer, 50

ML-assisted deep reinforcement learning (DRL) approach 51

that weighs the target metrics such as headway, jerk, and 52

longitudinal wheel slip properly and achieves the best trade- 53

off among safety, road efficiency, and comfort objectives. 54

When compared with state-of-the-art alternatives, our frame- 55

work provides substantially better performance. Notably, it 56

achieves 54% and 33% better headway than its alternatives, 57

thus ensuring better traffic flow efficiency. Particularly, the 58

V2X communication enables the ego vehicle to be timely 59

and gradually switch its focus to the neighboring vehicles, 60

significantly boosting safety performance. While we have con- 61

sidered roads to be straight (hence, lane-changing maneuver 62

only influences the lead vehicle’s yaw rate), future work will 63

leverage ADAS applications like lane change detectors and 64

extend the proposed framework to turning roads. 65
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