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Abstract: Elevated levels of oxidative stress are usually observed following injuries, leading to
impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been
made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity
is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive
glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative
capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great
opportunity for imparting specific biological activities to them. On this point, BGs may easily become
antioxidant substances through simple physicochemical modifications. For example, particular
antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses.
On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface
is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs
(MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they
make it possible to load antioxidants and deliver them to the desired locations. However, there are
actually limited in vivo experimental studies on the capability of modified BGs for scavenging free
radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the
actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and
regeneration. The present work aims to highlight the potential of different types of BGs in modulating
oxidative stress and subsequently improving tissue healing.

Keywords: bioactive glasses (BGs); oxidative stress; free radicals; tissue engineering; wound healing

1. Introduction

A normal tissue healing process includes four overlapping stages of (I) hemostasis, (II)
inflammation, (III) proliferation, and (IV) remodeling, which play central roles in the repair
process [1]. Numerous experimental studies have emphasized the critical role of immune
system cells in advancing tissue repair in vivo. In this regard, activated leukocytes, through
releasing reactive oxygen species (ROS) and reactive nitrogen species (RNS), play a central
role in tissue repair [2]. However, the excess levels of ROS and RNS are commonly detected
following severe tissue injuries, leading to cell damage through distinct mechanisms (e.g.,
membrane disorganization as well as protein and nucleic acid damage) and subsequently
hindering tissue repair [3,4]. Therefore, the balance between ROS/RNS generation and
antioxidant defense is crucial for efficient tissue healing in various tissues and organs
(e.g., the skin, heart, and bone). From a tissue engineering perspective, specific types
of micro/nanosized particles and biomaterials, as well as medicinal herb extracts, have
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been successfully applied for scavenging the free radicals and preventing excess ROS
production [5,6].

Prior studies have presented particular types of nanosized particles as antioxidant
substances; ceria (nanoceria), carbon materials (e.g., carbon nanotubes (CNTs)), manganese
(Mn), and selenium (Se) are among the most well-studied free radical scavengers [7,8].
Numerous in vitro and in vivo studies have revealed the molecular mechanisms behind
these free radical scavengers’ function against oxidative stress. However, the toxicity
of nanoparticles has continually been a major concern for biomedical experts and limits
their broad administration into the human body. Another group of antioxidant materials
includes naturally occurring substances that are being extensively employed for modu-
lating oxidative stress. They are generally classified into enzymatic (e.g., catalase and
glutathione peroxidase) and non-enzymatic antioxidants (e.g., flavonoids and polyphenols)
groups [9,10]. The latter group is indeed known as active ingredients of medicinal herbs
and phytochemicals that are widely utilized for their potent antioxidant activities in tissue
engineering and regenerative medicine [11]. The appropriate delivery of natural antioxi-
dants is of utmost importance, and several biocompatible vehicles have been examined for
the localized transfer of this kind of antioxidant.

Experimental studies have clarified that applying the above-mentioned antioxidants
in combination with other biocompatible materials may result in the generation of tissue re-
placements with a more potent regenerative capacity [12]. Among the diverse biomaterials
used for tissue engineering and regenerative medicine, bioactive glasses (BGs) represent a
specific class of inorganic biocompatible materials with the possibility of accelerating both
hard and soft tissue healing [13–15]. These man-made biomaterials can improve tissue
repair and regeneration by enhancing cell growth and proliferation, improving neovas-
cularization, and inhibiting bacterial infection. The chemical structure of BGs provides
the possibility of incorporating various metallic and nonmetallic elements into their basic
composition, thus generating formulations with extended biological potency. For instance,
doping the BG composition with cerium (Ce) leads to the production of antioxidant ma-
terials with potent catalase mimetic activity [16]. Moreover, the loading of antioxidant
substances (e.g., phytochemicals) to specific types of BGs, e.g., mesoporous BGs (MBGs),
was successfully performed for imparting this special activity to the material [17–19]. The
surface of BGs has also been recognized as a suitable place for grafting bioactive macro-
molecules [20]; antioxidants (e.g., polyphenols) have been successfully grafted onto BGs
for potential use in tissue engineering applications [21].

To the best of our knowledge, this is the first review report specifically discussing
the usability and applicability of BGs for modulating oxidative stress and, subsequently,
improving wound healing. To this aim, we first introduce free radicals and antioxidants
and then deal with the significance of modulating oxidative stress in the tissue healing
process. Finally, different types and formulations of BGs will be described as suitable
materials for scavenging free radicals and improving tissue repair and regeneration.

2. Oxidative Stress and Antioxidants: An Overview

Oxidative stress is described as the imbalance of redox homeostasis due to an irregular
increase in free radicals and other reactive molecules, which in healthy conditions play
a natural role in cell signaling [22]. In fact, a short-term and relatively small rise in ROS
is required for the redox signaling in biological processes such as angiogenesis (HIF-
regulated) or inflammation (NADPH oxidases), while a long-term and relatively large
increase in ROS induces damage to vital cellular macromolecules, DNA, proteins, or
lipids [23,24]. Free radicals (e.g., ROS) or pro-oxidant molecules (compounds that induce
oxidative stress) have one or more unpaired electrons that make them extremely reactive for
taking electrons from other molecules. They may have a diverse nature depending on the
molecules from which they come (oxygen, nitrogen, lipids, etc.). These species are usually
produced during cellular metabolism. ROS include free radicals and other powerfully
reactive species such as hydroxyl radical (OH•), anion radical superoxide (O2–•), hydrogen
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peroxide (H2O2), peroxyl radical (ROO•), and nitric oxide (NO•) that are mainly generated
by mitochondria [25]. Furthermore, an excess of superoxide free radicals releases free Fe2+

from iron-containing molecules, and free iron can form highly reactive radical OH• through
the Fenton reaction. Superoxide can react with NO to produce peroxynitrite (ONOO−),
another highly reactive and toxic free radical (Equations (1)–(6) shown below) [26,27]. Some
ROS and RNS, commonly referred to as RONS, can combine together to form other free
radicals. Furthermore, an excess of RONS in the mitochondria produces detrimental lipid
peroxidation, which increases reactive lipid species (RLS), another source of oxidative
stress [7].

Equations (1)–(5):

O2 + 1e− + H+ ↔HO2
• ↔ H+ + O2

−• (1)

O2
−• + H2O→ OH− + OH• + O2 (2)

Mn+ (metal) + H2O2 →M(n+1) + OH- + OH• (3)

NOS + L-arginine + O2
-• + NADPH→ NO• + citrulline + NADP+ (4)

NOS (Fe (II) heme) + O2
−• → NOS (Fe(III) heme) + O2

−• (5)

In normal cells, the presence of uncontrolled oxidative stress triggers death pathways.
If the body’s antioxidant defense system fails to neutralize the excess free radicals, the
imbalance between the defense system (e.g., antioxidants) and oxidants can cause patholog-
ical conditions. On the other hand, inflammatory cells secrete numerous reactive molecules
at the inflammation site which, consequently, culminates in worsened oxidative stress.
Additionally, a range of reactive species can stimulate an intracellular signaling cascade
that has promotive effects on pro-inflammatory gene expression [28]. Thus, oxidative
stress and inflammation are closely linked to pathophysiological events and associated
with a wide range of chronic diseases, such as diabetic wounds [29]. Furthermore, in
tissue engineering, the implanted constructs may face obstacles including exposure to a
stressed oxidative environment that can disrupt successful cellular repopulation and tissue
regeneration following transplantation. Hence, many strategies have been proposed to
tackle these issues; for instance, biocompatible materials with sustainable reactive species
scavenging abilities are documented to effectively protect newly formed tissue and engi-
neered constructs from environmental stress. Moreover, safeguarding redox equilibrium is
crucial for angiogenesis (an essential step promoting long-term survival and engraftment).
On this point, the delivery of antioxidants can preserve the viability of transplants before
and after transplantation as well as regulate the oxidative stress in the microenvironment
of implanted biomaterials [11,30].

With this in mind, ROS at high concentrations counteract healing processes due to
cellular membrane damage. Therefore, it is one of the earliest signals that drive repair as
well as regeneration [31], and ROS levels at the site of injury critically affect the regeneration
process. However, high levels of ROS can induce severe tissue injuries, even leading to
neoplastic transformation [32,33]. The crucial role of reactive species in healing has been
shown in systems with NADPH oxidase (Nox) deficiency or antioxidant overexpression.

Antioxidants are substances that can inhibit free radical-mediated oxidative stress and
toxic side effects in the human body. The antioxidant defense system controls free radical
generation to restore redox homeostasis. In other words, the antioxidant is a stable molecule
that donates an electron to unwanted free radical species, neutralizes it and curbs its ability
to cause damage. In general, these antioxidants either inhibit or delay cellular damage
because of their scavenging properties. These antioxidants have a low molecular weight
that allows them to interact with free radicals easily and terminate their chain reaction
before damaging vital molecules [34]. Natural cellular antioxidant scavengers include
the enzymatic (catalase (CAT), superoxide dismutase (SOD), thioredoxin system (Trx),
and glutathione system (GST, GPx, GR)) and non-enzymatic molecules. Non-enzymatic
antioxidant substances can be exogenously provided as drugs, although many are naturally
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acquired via the diet, such as essential fatty acids (omega-3 and omega-6), vitamins (C and
E), flavonoids, carotenoids, and trace metals (Se, Mn, Zn) (Table 1). Other antioxidants
are endogenously synthesized by cell metabolism, such as coenzyme Q10, melatonin, and
reduced glutathione [35].

Nowadays, various antioxidants have been investigated for their therapeutic potential.
However, the results of clinical trials have revealed that antioxidants often fail to prevent
the progression of ROS-associated diseases, have few benefits, and exert severe side effects
at high doses [7]. These unsatisfactory results may stem from low bioavailability, high
renal clearance, non-optimal time and duration of therapy, physiological mechanisms
that prevent high concentrations in living tissues, and toxicity [36]. In addition, the high
concentrations of natural antioxidants may cause toxicity irrespective of the origin. In this
regard, large intakes of phenolics were reported to enhance health concerns as to their in-
teractions with proteins; for example, polyphenolic substances can inactivate enzymes [37].
Therefore, it seems necessary to take advantage of biomaterial-assisted approaches in order
to target the delivery of antioxidants into the desired locations without the limitations
mentioned above.

Table 1. A summary of organic and inorganic antioxidant substances that can be used for managing
oxidative stress.

Compounds/Examples Antioxidant Activity Refs.

Organic Antioxidants

Carotenoid
(e.g., crocin, astaxanthin,
and β-carotene)

− Reduction in lipid peroxidation (MDA levels and NO levels)
− Increase in the levels of glutathione, antioxidant enzymes (SOD, CAT, and Gpx)

and thiol content
[38,39]

Flavonoid
(e.g., quercetin and catechin)

− ROS scavengers and metal ion chelators,
− Induction of antioxidant enzymes
− Inhibition of pro-oxidant enzymes
− Production of the phase II detoxification enzymes
− Delaying the onset of lipid peroxidation and preserving the alpha

tocopherol level
− Preventative activity versus hydrogen peroxide-induced oxyhemoglobin

oxidation and loss of heme oxygenase-1

[40–44]

Phenolic compounds
(e.g., curcumin and
resveratrol, and gallic acid)

− Scavenging of superoxide anion radicals, hydroxyl radicals, and nitrogen
dioxide radicals

− Suppressing oxidative stress by modulating Nrf2-HO-1-NF-κB
signaling pathways

[45–48]

Vitamin C
− Scavenging of hydroxyl, superoxide radical anion and alkoxyl in biological

media as well as reactive nitrogenated species by forming
semi-dehydroascorbic acid

[49,50]

Vitamin D
− Decrease in the production of ROS
− Enhancement in the expression of antioxidant enzymes (CAT, SOD1, SOD2,

GPX2, and GPX3)
[51]

Vitamin E

− Fight against lipid peroxidation of cell membranes
− Ability to mimic CAT, SOD, and oxidase-like activity
− Decrease in glutamate-induced intracellular production of ROS or RNS
− Reduction of the production of mitochondrial superoxide anion and DNA

oxidation by forming a low-reactivity derivative unable to attack lipid substrates

[52–54]

Inorganic Antioxidants

Cerium (Ce)

− Ability to mimic CAT, SOD, and oxidase-like activity
− Decrease glutamate-induced intracellular production of ROS or RNS
− Reduction in the production of mitochondrial superoxide anion and

DNA oxidation

[55,56]
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Table 1. Cont.

Compounds/Examples Antioxidant Activity Refs.

Manganese (Mn) − It is a part of the antioxidant enzyme superoxide dismutase (SOD)
− It has a free radical scavenging capacity

[57,58]

Selenium (Se)

− It is incorporated into glutathione peroxidase, an antioxidant enzyme that
reduces free-radicals and oxidation in the body

− Selenoproteins, as wide range antioxidants, protect the cell from
ROS-mediated damages

[59,60]

Zinc (Zn)
− Capacity to inhibit lipid peroxidation in liposomes
− Zinc deficiency causes increased oxidative stress and, consequently, increased

oxidative damage to DNA, proteins, and lipids
[61,62]

3. Bioactive Glasses (BGs): A Short Overview

The first BG, trade named as Bioglass, was invented by Hench et al. [63] in 1969 in the
USA and originally addressed to bone repair applications. After this discovery, a lot of BG
compositions have been reported for various medical applications other than bone healing,
such as drug delivery, cancer treatment, and soft tissue engineering [64–66]. The original
BG composition (45SiO2-24.5CaO-24.5Na2O–6P2O5 wt.%, the so-called “45S5”) was based
on silica (SiO2) as a primary glass network former and had the ability to create bonds
with the bone after being implanted in vivo. A sequence of 11 reaction steps describes the
bone-bonding processes of silicate BGs to living bone, where the early stages—which may
also take place in vitro—yield the formation of a hydroxyapatite layer on the surface of
glass [67]. This calcium-phosphate “skin” provides an optimal biological environment for
the next reaction stages occurring in vivo, which include cell colonization, proliferation,
and differentiation to form new living bone with a good mechanical bond to the implant
surface. The thickness of the hydroxyapatite layer has a major impact on bone-bonding
ability of the BG as well as on the interfacial shear strength. Generally, an interface thickness
of 20 µm offers strong shear strength and interfacial bonding [68]. The porosity, specific
surface area and morphology of the BGs control, in general, the formation of new soft
or hard tissue. A pore size < 1 µm is responsible for better bioactivity as well as the
attachment of cells, while large pores > 50 µm play a major role in tissue formation and
vascularization [69,70]. Glass properties can be dictated by the composition/constituents as
well as the process parameters and synthesis route (e.g., sol–gel process or melt-quenching
method) [71]. BGs can also undergo devitrification through controlled crystallization at an
appropriate temperature, thus obtaining bioactive glass ceramics, which typically exhibit
better mechanical properties and lower bioactivity as compared to the parent BGs [72].

Several methods have been developed for the synthesis of BGs and their compos-
ites, including conventional melt-quenching, sol–gel, flame synthesis, and microwave
irradiation. The original 45S5 Bioglass developed by Hench has been prepared by a high-
temperature melting process, through the melting of oxides mixed together at more than
1400 ◦C followed by a quenching step. In the 1990s, soft chemistry strategies emerged,
and since then, the sol–gel process has provided a more versatile method to design glasses
with very quick bioactive kinetics (apatite formation in a few hours upon contact with
biological fluids) [73]. In contrast to the melt-quenching method, sol–gel technology allows
the synthesis of BGs of equivalent composition but at a lower temperature. This process
is based on the hydrolysis and polycondensation of molecular precursors (alkoxides and
salts), which lead to the formation of an inorganic polymeric network at room temperature
and ambient pressure. Solvent being trapped within the network explains the gel-like
texture; a thermal treatment then allows the removal of solvents and organics as well as
the consolidation of the silicate matrix. The other two less-common methods used for BG
production are flame synthesis, which consists of baking precursors directly in a flame
reactor [74], and the microwave method, that works by dissolving the precursors in water,
followed by transfer to an ultrasonic bath and subsequent irradiation [75].
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Apart from silicate BGs, B2O3-based and P2O5-based BGs have been developed with
higher reactivity rates and, hence, higher bioactivity (in the former case) or significant
dissolution (in the latter case), which make them also suitable for soft tissue engineering
applications [76].

4. BGs for Scavenging Free Radicals

Up to now, several biomaterials with antioxidant properties have been developed to
effectively control ROS levels and modulate the inflammatory response [77]. In this regard,
the antioxidant capacity of particular formulations of BGs was evaluated in previously
reported experiments with promising results. In fact, BGs with antioxidant activity may
be produced by adding specific elements (e.g., Ce) to their chemical composition [78–80].
Previously, the effects of the synthesis procedure, composition, and morphology on the
catalase mimetic activity of antioxidant BGs were well-investigated by Malavasi and
Lusvardi [81]. They added metal oxides (MO, M = Ti, V, Mn, Fe, Co, Cu, Zr, and Ce) to
Hench’s 45S5 Bioglass (46.1%SiO2–24.4%Na2O–26.9%CaO–2.6P2O5 mol%), Kokubo BG
(50%SiO2–25%Na2O–25%CaO mol%) and MBGs (80%SiO2–15%CaO–5%P2O5 mol%), and
then evaluated the potential of these new glasses in inhibiting oxidative stress by testing
the hydrogen peroxide (H2O2) decomposition. Based on their data analysis, the most
promising antioxidant properties were confirmed for the Ce-doped BGs [81]. As a matter
of fact, Ce is naturally found in dual oxidation modes, i.e., Ce3+ and Ce4+, and two redox
states that lead to the production of cerium dioxide (CeO2) and cerium sesquioxide (Ce2O3).
In this regard, it was shown that CeO2 nanoparticles could perform free-radical scavenging
and oxidative stress attenuation through Ce3+/Ce4+ redox cycle reactions (Figure 1) [82].
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Figure 1. Reactive oxygen species (ROS) scavenging and surface regeneration properties of cerium
oxide nanoparticles. Reproduced with permission from Ref. [83].

Since Ce is the most common antioxidant dopant that can be added to the glasses,
its catalase mimetic activity was studied in two different BG formulations, i.e., Hench’s
(46.2%SiO2–24.3%Na2O–26.9%CaO–2.6P2O5 mol%) (H-series) and Kokubo’s (50.0%SiO2–
25.0%Na2O–25.0%CaO) (K-series) glasses [84]. The reported results have clarified the
critical role of the chemical composition on the catalase mimetic activity of Ce. Indeed, the
presence of phosphate groups in the intimate glasses’ structure and/or in the environment
(simulated body fluid (SBF) solution vs. pure water) lowered their catalase mimetic activity
because phosphate groups stabilize the Ce3+ species to form the CePO4 insoluble phase,
which inhibits the interconversion process between Ce3+ and Ce4+ (Figure 2). The low
cytotoxicity and broad spectrum of the bacteriostatic activity of such glasses have also been
verified by classical molecular dynamics simulations [85]. The negative role of phosphate
units in the glass network on catalase mimetic activity of Ce-doped BGs has also been
reported elsewhere [86,87].
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It should be highlighted that Ce at relatively high concentrations (above 5.3 mol%)
was able to extremely reduce the bioactivity of BGs because of the formation of insoluble
Ce-containing phases, such as CePO4: in fact, the cerium ions released by the glass surface
react quickly with the phosphate ions of the SBF forming the CePO4 insoluble phase and
making phosphate ions unavailable for hydroxyapatite formation [87]. which is key to
allow bone bonding and regeneration in vivo. Therefore, it is crucial to carefully select the
dosage of Ce in the glass composition in order to maintain both therapeutic effects, i.e.,
ROS scavenging and bioactivity.

One possible solution for utilizing a high amount of Ce in the glass network relies on
the doping of sol–gel-derived BGs instead of the melt-derived counterparts, as the former
class of BGs is more bioactive as compared to the latter due to the inherent nanoporous
texture and larger specific surface area [71,88]. Emphasizing the particle size significance,
CeO2-incorporated nanosized BGs showed a faster apatite formation, enhanced dissolution
rate, and higher protein adsorption as compared with their bulk counterparts [89,90]. In
order to study the atomic-scale properties of nanosized glasses, molecular dynamics (MD)
simulation has been applied as a powerful common tool, supporting the interpretation
of experimental trends [78,91]. Using classical core-shell MD simulations, Pedone et al.
evaluated the antioxidant activity of two nano-BG compositions, i.e., Hench’s Bioglass
(46.1SiO2–24.4Na2O–26.9CaO–2.6P2O5 mol%) and Kokubo’s phosphate (P)-free soda lime
silicate glass (25Na2O–25CaO–50SiO2 mol%) doped with 3.6 mol% of CeO2 [92]. The
authors found that the different catalase mimetic activity of the two BGs was due to the
Ce3+/Ce4+ ratio exposed at their surface (3.5 and 1.0 in bulk and 13 and 2.1 at the surface
of the Hench’s and Kokubo’s glasses, respectively). Moreover, a very high Ce3+/Ce4+ ratio
caused a reduction in antioxidant properties due to the necessity of both oxidation states of
Ce for the dismutation reaction catalysis of hydrogen peroxides. The active cerium sites
within 45S5-based BGs have been accurately described in a study by Benedetti et al. in order
to understand the functionalities at the atomic scale by investigating the local structure
around Ce ions. The presence of small amounts of Ce within the BG matrix may render an
antioxidant property for bone tissue regeneration. A contracted Ce-O first shell distance
(2–3%) concerning bulk oxides was identified in complete agreement with the results
of MD simulations [93]. Ce-doped nano-BGs with a composition of 60SiO2–(10-x)B2O3–
25CaO–5P2O5–5CeO2, (mol%) was also proposed as a multifunctional bone filler with
the ability to deliver drugs (ciprofloxacin) (Figure 3) [94]. This glass was demonstrated
to decrease reactive oxygen activity through its excellent catalytic activity as a result of
the fast interchange of the oxidation states of Ce3+/Ce4+. The authors concluded that
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the drug release behavior is determined by both the glass composition and the oxidative
stress condition.
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The use of BG-polymer composites may provide additional advantages for tissue
engineering and drug delivery applications. For example, polymers may act as a cross-
linking bridge to enhance the interfacial interaction between glasses and loaded drug,
which can significantly increase the drug-loading capacity while avoiding initial burst
release [95]. In order to take benefit from BGs and polymers simultaneously, Dziadek et al.
prepared polycaprolactone (PCL)-BG composites as carriers for antioxidant polyphenols
(PPh) extracted from Salvia officinalis L. [96]. The existence of PPh in the composite films
enhanced their mechanical properties and provided antioxidant activity. The authors have
shown that PPh release kinetics can be modulated by the use of the sol–gel-derived BG par-
ticles (40SiO2–54CaO–6P2O5 mol%). The films containing the lowest concentration of PPh
(1.5 w/w) exhibited good cytocompatibility, significantly increased alkaline phosphatase
(ALP) activity, and induced the expression of bone extracellular matrix proteins (osteo-
calcin and osteopontin) in human normal osteoblasts in vitro; in contrast, they reduced
the production of intracellular ROS in macrophages. Furthermore, the composites loaded
with PPh showed antibiofilm properties against Gram-positive and Gram-negative bacte-
ria. The results indicate that the developed constructs represent potential multifunctional
biomaterials with a wide range of tunable physicochemical and biological properties that
are beneficial for tissue engineering. In another study, ferulic acid, which is known to be
an antioxidant phenolic phytochemical, was utilized for developing chitosan–BG–ferulic
acid (CS-BG-FA) composite coatings by using the alternating current electrophoretic de-
position (AC-EPD) technique [97]. The prepared construct was compatible with MG-63
human osteoblast-like cells and showed an effective bactericidal activity against both Gram-
positive and Gram−negative bacteria. However, no specific assay was carried out by the
authors for determining the antioxidant performance of the composites.

5. Mesoporous Bioactive Glasses (MBGs) as Platforms for the Delivery of Antioxidants

As earlier mentioned, MBGs are an extraordinary class of BGs that hold great promise
in drug delivery and tissue engineering strategies [98,99]. Up to now, a huge number of
MBGs have been developed and applied for rendering particular biological activities. For
instance, MBGs with a high surface area to volume ratio exhibit superior bioactive behavior
and better in vivo osteogenesis as compared to conventional glasses [100,101]. Additionally,
MBGs can be loaded with different types of biomolecules (e.g., growth factors) and provide
a drug delivery system for accelerating tissue repair and regeneration [102].
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Most antioxidant MBGs have been prepared by incorporating Ce into their chemical
composition [103]. Since the incorporation of Ce into melt-derived BGs leads to a drastic
decrease in their bioactivity, sol–gel-derived MBGs were used for preparing Ce-containing
antioxidant glasses in various experiments. In this regard, 80SiO2–15CaO–5P2O5 and
80SiO2–20CaO (mol.%) MBGs samples doped with 5.3 mol.% of CeO2 showed good cata-
lase activity while still exhibiting proper bioactivity properties [104]. In 2021, El-Fiqi et al.
evaluated the effect of Ce doping on the structural, physicochemical, catalase-mimic, and
biological properties of MBGs. The composition was a binary 85% SiO2–15% CaO glass in
which Ce (0, 5, and 10 wt%) partially replaced CaO [105]. These ultrasmall-sized MBGs
(<30 nm) were successfully developed by the ultrasound-assisted sol–gel method. The
presence of Ce3+ and Ce4+ (72.57 and 27.43%, respectively) was detected at the MBG
surface. The glasses showed a high antioxidant effect (catalase-mimic activity) without
causing any adverse impacts on bioactivity and cytocompatibility. In order to promote
the therapeutic effects of MBG nanoparticles (MBGNs), their endowment with additional
antioxidant properties has become of great interest to control the oxidative stress associ-
ated with bone remodeling defects. As a result, the pro-osteogenic and anti-inflammatory
activities of antioxidant mesoporous spherical Ce-doped MBGNs (100–300 nm) have been
verified by Zheng et al. using a two-step strategy [106]. First, a microemulsion-assisted
sol–gel method was applied to synthesize MBGNs (70SiO2–30CaO, mol%), and then a
post-impregnation approach was developed for the modification of MBGNs with Ce. With
a concentration of Ce4+ (relative molar percentage of 74%) higher than that of Ce3+, the
obtained Ce-doped MBGNs at 1 mg/mL showed no cytotoxicity against fibroblasts. More-
over, a reduction in the expression of genes responsible for oxidative stress in macrophages
(J774a.1) was observed after incorporating Ce into MBGNs. Ce-doped MBGNs also sup-
pressed pro-osteoclastogenic responses due to their pro-osteogenic activities, which make
them promising candidates as advanced biomedical devices for targeting infected bone
defects and inflammatory bone diseases (e.g., osteoporosis) [106,107].

In addition, to incorporate antioxidant elements, MBGs can be loaded with antioxidant
natural or synthetic macromolecules for modulating oxidative stress and accelerating
tissue healing. On this matter, gallic acid, polyphenols (POLY), and anthocyanins were
successfully loaded into Ce-doped MBGs to enhance their antioxidant activity [17]. The
results clarified that unloaded Ce-MBGs have only a marginal capability of SOD-like
activity, while the samples loaded with the biomolecules, especially POLY, revealed a
substantial improvement in the SOD-like activity.

Ce-containing MBG-derived 3D scaffolds were also successfully developed with drug
delivery ability for possible use in tissue engineering applications [108]. These scaffolds
were fabricated by using poly(methyl methacrylate) (PMMA) as a sacrificial template, and
the presence of Ce was confirmed in both oxidation states Ce4+/Ce3+, in the scaffolds. In
some studies, Ce-doped MBGs were embedded into polymeric matrices to make composites
with antioxidant activity and high tissue regeneration capacity. For instance, Ce3+/Ce4+-
containing MBGs were previously added to alginate beads for bone tissue engineering
applications [109]; the results showed the beads having 1.2 and 3.6 CeO2 mol% could
counteract the oxidative stress without a negative impact on the proliferation of pre-
osteoblastic cells MC3T3-C1 cells. However, cell differentiation was decreased as a function
of Ce-content in the samples.

Shruti et al. [110] also incorporated curcumin in Ce-, Ga- and Zn-doped MBGs (basic
composition 80SiO2–15CaO–5P2O5 mol.%) to obtain a triply functional biomaterial com-
bining an apatite-forming ability (which is key in the context of bone regeneration) and
ion/drug release. The release profiles of curcumin from these glasses were able to exert
pharmacological activities, thus showing great promise in overcoming the typical limita-
tions of curcumin (e.g., insolubility in water, poor bioavailability); however, the antioxidant
properties in vitro/in vivo were not specifically investigated in that study.



Molecules 2022, 27, 6642 10 of 14

6. Conclusions and Future Outlook

Controlling oxidation could be the key that opens the doors of a new type of targeted
biomedicine with huge impact and opportunities for improving therapy. This is a partially
unexplored land requiring, firstly, a better knowledge of the biomolecular mechanisms
behind oxidation and related physiological/pathological effects, as well as the relation-
ship between oxidation and immunomodulatory pathways. Implantable BGs can play a
major role in this scenario as they are able to indeed exert antioxidant effects on cells and
tissues through two main modalities, i.e., the release of antioxidant ions or antioxidant
biomolecules. In this regard, great promise has been shown by MBGs as they can act as
carriers for the uptake and delivery of both therapeutic agents, alone or simultaneously. In
fact, metallic elements such as cerium can be incorporated into the glass network during
the synthesis process and then released upon contact with biological fluids according to
controllable kinetics. On the other hand, cerium was reported to delay the apatite-forming
ability of BGs, and hence the bioactivity, due to the formation of competitive and insoluble
cerium phosphate phases. In order to manufacture BGs with higher bioactivity, a suitable
morphology should be selected. In this regard, MBGs with high specific surface area due to
nanotexturing and nanosize allow the bioactivity-related concerns of Ce-containing glasses
to be overcome. Furthermore, a range of organic molecules, even characterized by chal-
lenging properties such as insolubility in water, could be loaded into the nanosized pores
of MBGs, from which they can then exert the desired therapeutic action. This is the case
of curcumin, which can be potentially used for the treatment of various oxidation-related
diseases ranging from skin wounds to cancer. How to govern the concurrent release of
ions and biomolecules in terms of synergistic/antagonistic interactions is one of the great
challenges for BG researchers and biomaterials scientists in general.

Moreover, the surface reactivity of BGs can be effectively exploited for grafting proce-
dures and functionalization strategies, involving both the outer surface of glass products
and the walls of internal nanopores (as in the case of MBGs), thus further expanding the
versatility of such biomaterials.
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