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Abstract—Transformers’ compute-intensive operations pose
enormous challenges for their deployment in resource-
constrained EdgeAI / tinyML devices. As an established
neural network compression technique, quantization reduces the
hardware computational and memory resources. In particular,
fixed-point quantization is desirable to ease the computations
using lightweight blocks, like adders and multipliers, of
the underlying hardware. However, deploying fully-quantized
Transformers on existing general-purpose hardware, generic AI
accelerators, or specialized architectures for Transformers with
floating-point units might be infeasible and/or inefficient.

Towards this, we propose SwiftTron, an efficient specialized
hardware accelerator designed for Quantized Transformers.
SwiftTron supports the execution of different types of
Transformers’ operations (like Attention, Softmax, GELU, and
Layer Normalization) and accounts for diverse scaling factors
to perform correct computations. We synthesize the complete
SwiftTron architecture in a 65 nm CMOS technology with the
ASIC design flow. Our Accelerator executes the RoBERTa-base
model in 1.83 ns, while consuming 33.64 mW power, and
occupying an area of 273 mm2. To ease the reproducibility,
the RTL of our SwiftTron architecture is released at https:
//github.com/albertomarchisio/SwiftTron.

Index Terms—Hardware Architecture, Transformers, Machine
Learning, ASIC, Quantization, Attention, Softmax, Layer
Normalization, GELU.

I. INTRODUCTION

Among advanced Machine Learning (ML) models,
Transformers are becoming mainstream for several
applications like natural language processing and computer
vision. However, they involve several compute-intensive
operations like Multi-Head Self Attention and Layer
Normalization with massive data streams. Hence, their
execution is highly power-consuming when conducted on
general-purpose hardware. Specialized architectures would
be desirable to accelerate the execution of Transformers’
operations and improve the energy-efficiency.

Several types of ML accelerators have been recently
integrated with the most common chips to execute massive
matrix multiplications that are typical in convolutional and
fully-connected layers [1] [2] [3] [4] [5]. However, such
generic architectures do not support some Transformer-
specific operations, such as Attention, Softmax, Gaussian
Error Linear Unit (GELU), and Layer Normalization.

*These authors contributed equally to this work.

Linear 
Operations, 

e.g., MatMul

Nonlinear 
Operations e.g., 
GELU, Softmax, 

LayerNormQ
u

an
ti

za
ti

o
n

D
eq

u
an

ti
za

ti
o

n

FP32 INT8 INT32 FP32
X’X

FP32

a) Hybrid FP-INT Quantization-Dequantization Scheme

b) INT-Only Quantization-Requantization Scheme used in This Work

Linear 
Operations, 

e.g., MatMul

Nonlinear 
Operations e.g., 
GELU, Softmax, 

LayerNorm

RequantizationX
INT8 INT32 INT32

X’
INT8

Fig. 1. Simplified diagrams showing the computation flows for (a) the
Quantization-Dequantization scheme of [8], and (b) the quantization-based
scheme adopted in this work that employs Requantization blocks.

Hence, the neural accelerators need to be tailored for
such unique operations involved in Transformers. Towards
this, some architectures have recently been proposed. For
instance, OPTIMUS [6] optimizes the execution of matrix
multiplications in transformers, and A3 [7] accelerates
the execution of the Attention operation. However, these
architectures only execute a certain part of a given
Transformer, and do not provide a holistic acceleration
platform for the complete Transformer. Note that other
functions like Softmax, GELU, and Layer Normalization
involve nonlinear operations that cannot be easily implemented
in integer arithmetics. A common way of handling these
operations is to iteratively quantize the input to compute matrix
multiplication with integers and de-quantize the intermediate
results to calculate the nonlinear operations in floating point
arithmetic [8]. A simplified scheme of this method is depicted
in Figure 1a. A similar approach is also adopted in the
recent Transformer Engine of the NVIDIA H100 Tensor Core
GPU [9], which implements the operations in FP8 arithmetic.
However, this approach would require the design of several
floating point arithmetic logic units with significant resource
overheads compared to the integer counterparts.

As a motivating experimental analysis comparing different
arithmetics, we synthesize an INT8-adder, an INT8-multiplier,
an FP32-adder, and an FP32-multiplier [10] in a 65 nm
CMOS technology node with the Synopsys Design Compiler
and evaluate latency, power, and area. Figure 2 shows the
respective overhead of FP32 arithmetic operators compared
to their respective INT8 implementations. These experiments
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Fig. 2. Latency, power, and area overhead of a single adder and a single
multiplier implemented in FP32 arithmetic, compared to their respective
INT8 implementations.
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Fig. 3. Overview of our novel contributions in this work.

show that the potential savings are about one order of
magnitude.

On the other hand, computing nonlinear operations with
quantized integers without incurring significant accuracy loss
is nontrivial. The state-of-the-art in this regard is represented
by the I-BERT [11], a framework that implements specific
approximations to execute all the nonlinear operations of
the Transformers with integer-only arithmetic. However,
this work implemented the Transformers on general-purpose
hardware, i.e., GPU. A specialized accelerator executing all the
Transformer layers, including nonlinear operations, using only
efficient integer arithmetic is missing, and highly required.

A. Our Novel Contributions

The above-discussed limitations motivate us to propose
SwiftTron, an efficient hardware accelerator that executes
quantized Transformers with integer-only operations (see
Figure 1b for our integer-only arithmetic flow), while focusing
on multiple different operations of a given Transformer to
provide a high degree of performance/energy efficiency. Our
contributions are discussed in the following list (see Figure 3).

• We design the SwiftTron hardware architecture, a
specialized accelerator composed of several hardware
units to execute different operations of the Transformers.
(Section III)

• We design and implement a quantization scheme for
Transformers with scaling factors to correctly execute the
linear operations with INT8 and the nonlinear operations
with INT32 arithmetics. (Section III-A)

• We synthesize the complete SwiftTron architecture in a 65
nm CMOS technology node with the Synopsys Design
Compiler and conduct gate-level simulations to measure
the area and power consumption. (Section IV)

• We compare the key features of our accelerator with the
related work to highlight that our SwiftTron is the first
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Fig. 4. Architectural model of the Transformer [12], where inputs and
outputs are taken after the positional encoding operations.

architecture that complies with all the desired features.
(Section IV-D)

• Towards encouraging fast advancements in the neural
hardware accelerator and ML community, and to ease the
reproducibility of our experiments, we open-source the
complete RTL of our SwiftTron accelerator architecture
at https://github.com/albertomarchisio/SwiftTron.

II. BACKGROUND AND RELATED WORK

A. Transformer Models

The Transformer network has been introduced in [12],
which is the reference point of the related works and
subsequent models. Transformers are formed of two main
blocks, the encoder and the decoder. They are composed of
the following layers1:

• Multi-Head Self Attention (MHSA):
– Linear Transformation to compute Query (Q), Key

(K), and Value (V ) matrices for each head.
– Attention:
∗ Q · KT multiplication, where KT denotes the

transposed matrix K
∗ Softmax(Q ·KT ) · V multiplication

– Linear Transformation after concatenating every
head Attention output.

• Residual Connection & Layer Normalization in the
MHSA

• Feed-Forward Network (FFN):
– Linear Transformation
– Activation Function
– Linear Transformation

• Residual Connection & Layer Normalization in the FFN
When repeated multiple times, these layers form the

structure of the encoder and the decoder, as shown in Figure 4.
Note that the typical activation functions for Transformers2

are the ReLU [13] and the GELU [14]. The baseline
Transformer [12] is composed of N = 6 Encoder layers and
N = 6 Decoder layers, while many different architectures

1Note that, since there is little difference between the encoder and the
decoder, the composition of their layers is very similar.

2There exist a few other options, but these are the most commonly used
activation functions in Transformers.

2
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have been proposed. The work of [15] proposed a tunable
Transformer model where the same Encoder/Decoder layer is
used until the computation reaches the desired results. This
design led to having only one instance of these layers and
the same parameter set for each iteration, which either can
be fixed a priori or adapted dynamically during inference.
On the other hand, the BERT-like architectures [16] rely only
on the Encoder part of the network, achieving state-of-the-art
performances in several tasks.

The Attention is the key operation of a Transformer,
unleashing overall better performance than other ML
architectures. However, due to the necessary non-linearities,
its compute-intensive operations challenge typical neural
hardware accelerators. Moreover, Transformers’ massive sizes,
like the OpenAI GPT-3 [17] with 96 hidden layers and
175 B parameters, lead to large memory footprint, latency,
and power consumption, making their hardware execution
extremely resource-demanding.

Some works [18] [19] proposed mathematical manipulations
for reducing the complexity of the needed operators in
functions like Softmax and Layer Normalization. Other works
inspired by compression techniques like pruning or knowledge
distillation reduce the model’s operations and parameters [20].
Note that these approaches are orthogonal to our work.

A potential technique that has the higher impact on
implementing Transformer networks onto hardware devices
is quantization, which transforms the floating-point values,
universally used in the Transformer models, into integer
values while trying to minimize the consequent precision loss.
For instance, the I-BERT [11] implements the entire BERT
network [16] with integer operations. This process consists
of an efficient way to have simpler operators and lighter
number representation, helping both the resources and memory
constraints for an efficient accelerator design. Similarly, the
I-ViT [21] quantizes the Vision Transformer [22] for image
classifiation. However, these works are deployed on GPUs,
while our focus is on specialized hardware accelerators.

B. AI Hardware Accelerators Executing Transformers’
Operations

Generic AI hardware accelerators are based on arrays
of Processing Elements (PEs) [23]. Adapting an existing
accelerator to compute the dot product between the query,
key, and value matrices in the MHSA mechanism would
require several modifications in its architecture and would not
be straightforward. Therefore, designing specialized hardware
architectures for Transformers is highly desirable.

Recent works proposed hardware designs for executing
some of the Transformer’s operations efficiently. However,
they primarily use floating-point representation, which is
complex and expensive in terms of hardware resources. To
the best of our knowledge, there are no accelerators in
prior works implementing the entire Transformer network
using only integer computations and simple approximations
for nonlinear operations. Still, the work in [24] presents
an interesting hardware architecture for MHSA and FFN.

Memory

MHSA Unit

Attention 
Unit

Softmax 
Unit

FFN Unit

LayerNorm Unit

GELU 
Unit

Square Root 
Unit

SwiftTron Architecture

Control 
Unit

Fig. 5. Top-level overview of our SwiftTron architecture.

Besides several novel additions, our work also takes some
inspiration from these works regarding the column-oriented
computations. In fact, our data flow is designed to use one
column at a time of the matrices under processing. Since
the matrix multiplication, which is the most used operation
in Transformers, requires the input to be read column-by-
column according to its algorithm, this data flow structure
enables a simple interface between blocks. The architecture
proposed in [6] proposes an optimization for the hardware
matrix multiplication in the Transformer. The work in [25]
analyzes the network design considering the hardware latency
in the process. The work in [26] evaluates the performance of
a floating-point implementation on CPUs and GPUs.

The main drawbacks of these related works from the
hardware execution perspective are the following:

1) The Floating Point representation is employed in
some computations [8] [27] [28]. This is a simulated
quantization process where almost every variable
is quantized. However, the GELU, Softmax, and
LayerNorm are computed with floating-point operations.
It not only increases the hardware complexity, but it also
requires both quantization and dequantization layers to
convert data between blocks.

2) Complex operators like exponential and square root are
implemented with expensive LUTs [29] [30], or using
different approaches that involve FFTs [31].

To overcome these issues, our proposed SwiftTron
architecture executes all the layers and functions in
transformers using only integer computations.

III. SWIFTTRON: HARDWARE ARCHITECTURE DESIGN

This section describes each hardware block designed
for executing the Transformers’ layers (as discussed in
Section II-A). The layers are mainly composed of linear
transformations and nonlinear functions. Since the linear layers
are based on matrix multiplications, a MatMul block is
designed. On the other hand, to execute nonlinear functions,
namely the Softmax, GELU, and Square Root for the
Normalization, our work deploys second-order polynomial
approximations and recursive implementation, which are based
on the concepts from [11]. A top-level view of our proposed
SwiftTron architecture is shown in Figure 5.

The Transformer’s main parameters are the model
dimension d, the number of heads k, the sentence length m,
and the feed-forward dimension dff (usually two or four times
the value of d).
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A. Quantization and Scaling Factor Design

Before going into detail of each component, it is important
to highlight that quantized values have their corresponding
scaling factors derived during the quantization process.

Formally, given a a floating-point value and qa its quantized
value, the scaling factor Sa is defined such that a =
QaSa. Scaling factors allow the transformations from floating
point to integer and vice versa, and determine the correct
operation between two integers. For example, two numbers
with different scaling factors cannot be directly summed
together, but an extra component is needed for the Residual
Connection. Furthermore, the scaling factors are fundamental
for computing the algorithm’s coefficients, especially in the
nonlinear functions. Some constraints on the scaling factor
values are applied to have representable coefficients and to
limit the risk of overflow. A scaling factor is a floating-point
number that is not directly included in the architecture to avoid
FP operators, but its value is fixed for each layer at design time.
Another critical aspect to consider is the data representation in
the architecture. The matrix multiplications are conducted with
INT8 inputs and INT32 accumulators. The nonlinear functions
operate on INT32 to avoid excessive accuracy loss. Therefore,
a Requantization block is needed to bring the INT32 values
back to INT8 as input to the subsequent MatMul operations.

Dealing with the scaling factor in linear operations is
straightforward. For instance, the multiplication between to
numbers (a and b) with different scaling factors is defined as
a · b = qaSa · qbSb = (qa · qb)(Sa ·Sb). This property holds for
matrix multiplications (MatMul), since its resulting expression
is MatMul(Sq) = S ·MatMul(q).

However, transformers contain several nonlinear operations,
such as GELU, Softmax, and Layer Normalization, for which
this property does not hold. For this reason, these operations
can be either approximated using a second-order polynomial,
as in the case of GELU and Softmax, or computed iteratively,
like for the square root of the Layer Normalization.

B. Hardware Architecture of the MatMul Block

The MatMul block is extremely important since it is
used extensively in the following designs. It is formed
by #rows × #columns Multiply-and-Accumulate (MAC)
elements that, at every iteration, receive their corresponding
row and column input and update the accumulator. Figure 6
reports an example with a 4 × 4 MAC array. After all the
inputs are scanned, they store the final output that can be
read column-by-column by tuning the selector of the output
multiplexer. In the following layers, several MatMul operations
are required with different dimensions, but depending on what
type of Transformer workload to execute, these components
can be shared and/or reused.

The bias addition for the linear transformations can be
incorporated into the component, like in this example. The bias
is added when reading the output matrix. Hence, a different
value is added to each column. For multiplications that do not
require bias, this process can be ignored.
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Fig. 6. Architectural view of a 4× 4 MatMul block with bias.

Right Shift

b

q Req(q)

c

Fig. 7. Architecture details of the Requantization (Req) unit.

C. Hardware Architecture of the Requantization Unit

A scaling factor change is necessary to reduce the precision
from 32 bits to 8 bits. To perform this transformation, the
Dyadic Numbers concept [32] is involved. Starting from the
32-bit representation of a value a, denoted with its quantized
value qa and its quantization scale Sa such that a = qaSa,
the final representation should be o = qoSo with qo on 8 bits.
Hence, equalling a and o since the real value must remain
unchanged, the formula is derived in Equation (1).

qaSa = qoSo −→ qo = qa
Sa

So
(1)

Remembering that the scaling factors are not strictly integers
but can assume any real value, this expression cannot be
implemented directly on integer-only resources. Hence, the
scaling factor ratio is represented with a dyadic number, a
rational number in the format of b/2c, where b and c are two
integer numbers. The final expression is shown in Equation (2).

qo = qa
Sa

So
= qaDN(

Sa

So
) = qa ∗

b

2c
(2)

This convention also avoids the need to use dividers, as
the required resources are only an INT32 multiplication and
a one-bit shifting, as shown in Figure 7.

D. Hardware Architecture of the MHSA Unit

The MHSA block is responsible for computing the
correspondent operation in a Transformer. A single head,
whose architecture is shown in Figure 8, is composed of three
MatMul blocks with inputs connected to Query, Keys, and
Values, and an Attention operator. Figure 9 shows an example
of the complete MHSA architecture composed of 4 heads and
another MatMul block that generates the outputs.

The choice of the number of heads to be computed in
parallel depends on the available hardware resources. Different
architectural configurations can be designed, from processing
one head at a time to computing all heads concurrently.
Therefore, data can be either processed concurrently or

4
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sequentially by reusing the head blocks. Consequently, the
computations of the final MatMul can be conducted with
multiple batches of data. Whenever it receives as input one
head output (coming in order), it updates its accumulators.

E. Hardware Architecture of the Attention Unit

The Attention architecture is shown in Figure 10. It is
composed of two plain MatMuls with a Softmax in between.
The Scale simply consists of a division by the model
dimension d. If the value of d is a multiple of 2, it becomes a
simple shift operation. The Requantization is required to keep
the input of the second MatMul to INT8.
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Fig. 10. Attention architecture, composed of MatMul, Scale, Softmax, and
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Fig. 11. Architecture of the Softmax operator. According to [11],
q1 = bb/Spec, q2 = bc/aS2

pec, q3 = bln2/Sec, and q4 = b−1/q3c, where
Se is the scaling factor of the exponential computation input (relative to qe),
Spe is the scaling factor of the polynomial approximation input (relative
to qpe) and a, b, c are the coefficient of the second-order polynomial that
approximates the function, i.e., a(x+ b)2 + c. Therefore, q1,2,3,4 can be
computed at design time and provided as constant values to the SwiftTron
architecture.

F. Hardware Architecture of the Softmax Unit

Since the Softmax is performed along the rows of the Q×
KT matrix, m Softmax components are instantiated and work
concurrently. A single Softmax operator is shown in Figure 11.
Its computation requires three phases, namely maximum
search, exponential computation, and output generation.

The implementation approach of the Softmax unit (see
Figure 12) aims at restricting the range of values in which
the exponential function needs to be computed. Following
the property described in Equation (3), as in the Softmax
inputs are limited by their maximum value, subtracting
the maximum value leads to dealing with non-positive real
numbers, which can be decomposed [11]. Consequently, the
exponential function must be computed only for the restricted
range of [−ln2, 0] and can be approximated with a second-
order polynomial.

Softmax(xi) = exp(xi)∑k
j=1 exp(xj)

= exp(xi−xmax)∑k
j=1 exp(xj−xmax)

(3)

It is evident that with this approximation, only simple
operators are involved, like a comparator for the maximum,
adders, and multipliers. The most complex operator is the
divider, whose implementation consumes relatively more
resources.

G. Hardware Architecture of the Feed-Forward Network Unit

This sub-layer has two linear transformations separated
by an activation function. The transformations, implemented
with MatMul blocks, are the biggest of the Transformer

5
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architecture, as dff is usually 4× the dimension d. The FFN
architecture is depicted in Figure 13. The activation function
used in our architecture is the GELU [14], which despite being
more complex, has better performances than the ReLU.

H. Hardware Architecture of the GELU Unit

The GELU operator, shown in Figure 14, contains the
computation of the error function (erf ). This nonlinear
function is linearized through another second-order
polynomial with limited input. With this approximation, the
resulting operators are only adders and multipliers, with
some sign-handling operations that complete the execution.

I. Hardware Architecture of the Residual Connection and
Layer Normalization Units

Since the MHSA and FFN are residual blocks, their outputs
are added to the original inputs. As we are dealing with
quantized values, the two addends need to have the same
scaling factor before being added together. This transformation
is achieved using a Dyadic unit, already discussed in the
Requantization unit (recall Equation (2)), implemented with
a multiplication by a coefficient and a right-shifting. It is a
combinatorial block that is replicated by the number of rows,
as it receives one column at a time coming from the previous
sub-blocks.

After the residual connection, the Layer Normalization
(LayerNorm) is required. Its architecture is depicted in
Figure 15. Similarly to the Softmax component, since
the LayerNorm operation works on the row elements, d
instantiations are needed. Moreover, it is composed of three
phases, the mean value calculation, the standard deviation
calculation, and the output generation.

The only nonlinear operation is the square root, which
is implemented using an iterative algorithm as proposed

Absq

q6 q7

Sign 
Inverter

Polynomial Approx.

erf Computation

GELU(q)

Output Gener.

qerf
Clip

Max=q5 q8

Fig. 14. Architecture of the GELU operator. According to [11], q5 = −b/S,
q6 = bb/Sc q7 = bc/aS2c, and q8 = b1/Serf c, where S is the scaling
factor of the GELU input (relative to q), Serf is the scaling factor of the
error function output (relative to qerf ) and a, b, c are the coefficient of the
second-order polynomial that approximates the function, i.e., a(x+ b)2 + c.
Therefore, q5,6,7,8 can be computed at design time and provided as constant
values to the SwiftTron architecture.
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Fig. 15. Layer Normalization architecture, where the Square Root unit
implements a recursive algorithm. The V alid and z signals are flags for
assisting the control unit with the correct timing.

in [33], also adopted in [11]. It is a recursive algorithm
that needs multiple cycles to compute the output. It includes
combinatorial operators and registers to store intermediate
values and break the loop.

It has a constant initial value, defined as x0. At every
iteration, the partial result xi is compared to the partial result
of the next iteration xi+1 that is equal to (xi+xi/n)/2. Note
that the division by 2 is implemented through a simple one-
position right shift. The algorithm iterates until xi+1 is larger
than or equal to xi. When this happens, the final result is saved
into the dedicated register. Since the number of cycles needed
is unknown a priori, the V alid and z signals are flags for
assisting the control unit and generate the correct timing. In
the special case when the square root input is zero, the output
goes directly to zero, and no iterations are needed.

J. Hardware Architecture of the Control Unit

At each stage of the Transformers’ process, the control unit
generates different control signals for all the components of
the SwiftTron architecture, according to the operations needed.
Its functionality is depicted in Figure 16. For the three major
operations, which are MHSA, LayerNorm, and FFN, dedicated
Finite State Machines (FSMs) generate the respective control
signals. A set of handshake signals (e.g., Start, Done, V alid)
is devised to interact between different FSMs and guarantee
the correct timing of the operations in all stages of the
Transformers’ inference.

IV. EVALUATION OF OUR SWIFTTRON ARCHITECTURE

A. Experimental Setup

We implement the complete design of our SwiftTron
architecture in RTL (VHDL) and evaluate it for the
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composed of dedicated Finite State Machines for MHSA, LayerNorm, and
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Fig. 17. Experimental setup and tool flow for conducting the experiments.

RoBERTa architecture [34] on the GLUE benchmark [35]
and for the DeiT [36] on the ImageNet dataset [37]. We
synthesize the SwiftTron architecture in a 65 nm CMOS
technology node using the ASIC design flow with the
Synopsys Design Compiler. We conduct functional and
timing validation through gate-level simulations using Mentor
Graphics QuestaSim. With the synthesized netlist, we obtain
area, power, and performance of our design. We also run the
inference on an Nvidia GeForce RTX 2080 Ti GPU for latency
comparison.

For validation, we use the pre-trained Transformer models
from the HuggingFace library [38], and implement them on
the PyTorch framework using the quantization algorithms of
I-BERT [11]. The complete flow is shown in Figure 17, where
the grey boxes are the inputs, the orange boxes are the outputs,
and the green boxes represent the main tools used. Note that
this hardware design and validation flow are well-adopted by
the hardware design community.

B. SwiftTron Synthesis Results

For evaluating the complete SwiftTron design, we evluate the
architecture with d = 768, k = 12, m = 256, and dff = 3072,
to efficiently execute the RoBERTa-base architecture [34].
Note that these values are arbitrary parameters in our design
and can be tuned during design time to support the execution
of different Transformer architectures. The clock period has
been set to 7 ns, which corresponds to a clock frequency
of ≈ 143 MHz. To comply with the timing requirements,
the computations of the Softmax and LayerNorm units have
been partitioned into three pipeline stages. Each component
of the SwiftTron architecture has been tested separately and

TABLE I
SUMMARY OF SYNTHESIS RESULTS OF OUR PROPOSED SwiftTron

ARCHITECTURE.

Clock Frequency 143 MHz Technology Node 65 nm

Power Consumption 33.64 W Area 273.0 mm2

TABLE II
ACCURACY AND INFERENCE LATENCY FOR ROBERTA-BASE AND
ROBERTA-LARGE MODELS ON THE STT-2 TASK OF THE GLUE

BENCHMARK WITH SEQUENCE LENGTH m = 256 AND FOR DEIT-S ON
THE IMAGENET DATASET WITH RESOLUTION 224× 224 EXECUTED ON

OUR SwiftTron ARCHITECTURE. THE LAST COLUMN REPORTS THE
SPEEDUP W.R.T. THEIR EXECUTION ON THE RTX 2080 TI GPU.

Model Accuracy Latency Speedup w.r.t. GPU
RoBERTa-base on STT-2 95.2% 1.83 ms 3.81×

RoBERTa-large on STT-2 96.4% 45.70 ms 3.90×

DeiT-S on ImageNet 79.11% 1.13 ms 3.58×

simulated to validate its outputs compared to the software-
level implementation of [11]. Area and power consumption
have been evaluated based on the reports obtained by the
Synopsys Design Compiler tool, while the latency has been
measured with a cycle-accurate simulator3. Table I summarizes
the key results obtained from the synthesis. Table II reports
the accuracy and latency of different Transformer models
executed on our SwiftTron architecture and the speedup of
our accelerator compared to an Nvidia GeForce RTX 2080
Ti GPU with CUDA 10. Our experiments run more than 3×
faster than the GPU implementations.

C. Area and Power Breakdown

The total values of the area and power consumption of the
complete SwiftTron architecture are reported in the respective
lines of Table I, while Figure 18 analyzes in detail the
breakdown for each component. It is evident that the MatMul
block is responsible for the majority (55%) of the area of the
entire architecture. The difference between MatMul and other
components becomes even larger for the power consumption.
While the Softmax unit occupies 17% of the total area, its
contribution to the total power is only 14%. An even more
significant difference is noted for the LayerNorm unit, which
occupies 25% area, but its power consumption is 6%. As
expected, the GELU unit is a small component with only 3%
area and 1% power consumption.

D. Comparison with Related Works

While it is known that a specialized accelerator brings
immense advantages compared to executing the same task on
a general-purpose hardware device, e.g., CPU or GPU, it is
difficult to compare metrics like power and performance across
completely different hardware platforms of the related works,
which include GPUs, FPGAs, and other ASIC architectures
synthesized for different technology nodes. Hence, we identify

3The simulator considers the worst-case scenario in terms of clock cycles
computed by the square root operator of the LayerNorm unit.
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TABLE III
SUMMARY OF COMPARISONS BETWEEN THE RELATED WORKS AND OUR PROPOSED SwiftTron ARCHITECTURE.

Work HW Implementation Bit-width Complete Architecture Nonlinear Function Computation
OPTIMUS [6] 3 ASIC 28 nm INT16 7 No 7 N/A

A3 [7] 3 ASIC 40 nm 3 INT8 7 No 3 Integers (approximated)

FTRANS [31] 3 Xilinx FPGA INT16 3 Yes 7 Integers using FFT

Lu et al. [24] 3 Xilinx FPGA 3 INT8 7 No 3 Integers (approximated)

EFA-Trans [29] 3 Xilinx FPGA 3 INT8 3 Yes 7 LUT

FQ-BERT [30] 3 Xilinx FPGA 3 INT8 3 Yes 7 LUT

Lin et al. [8] 7 TITAN V GPU 3 INT8 3 Yes 7 FP32

I-BERT [11] 7 Tesla T4 GPU 3 INT8 3 Yes 3 Integers (approximated)

I-ViT [21] 7 RTX 2080 Ti GPU 3 INT8 3 Yes 3 Integers (approximated)

Transformer Engine [9] 3 ASIC 4 nm (inside H100 GPU) 7 FP8 3 Yes 7 FP16 / FP32

SwiftTron (ours) 3 ASIC 65 nm 3 INT8 3 Yes 3 Integers (approximated)

(a) (b)

   

   

  

   

            

             

   

   

    

            

             

Fig. 18. (a) Area and (b) power breakdown of our SwiftTron architecture.

key features of a hardware architecture for Transformers
that push its efficiency to the upper boundary. Not only the
hardware device on which it is implemented is important, but
also the bit-width plays a key role in determining its energy
efficiency. This is because even simple operators like adders
and multipliers are relatively lightweight when implemented
using integer arithmetic and low bit-width, like for INT8. On
the other hand, their floating-point implementation incurs a
significant complexity overhead.

Table III summarizes the comparison between our SwiftTron
architecture and the related works, considering these important
features for a hardware architecture for Transformers. From
the table, it is clear that our work complies with all the
requirements, while all the related works have at least one
missing feature. Some works [8] [11] [21] implement their
design on GPUs, other works [6] [7] [24] accelerate only
part of a complete Transformer, and other works do not
use efficient computations for their nonlinear functions. The
design proposed in [31] uses integer computations, but its
complexity is high due to the presence of FFT transforms. The
architectures presented in [29] [30] use LUTs for computing
some nonlinear operations, while the works in [8] [9] performs
the nonlinear computations using FP16 or FP32 arithmetics.

V. CONCLUSION

In this paper, we present SwiftTron, a specialized accelerator
for Transformers that executes all the operations, including
the nonlinear operations, in integer arithmetic. The correct
computations between integers are achieved through a
specialized quantization scheme that accounts for diverse
scaling factors. Dedicated designs implement approximated
versions of the nonlinear units, like Softmax, GELU, and
Layer Normalization. The SwiftTron architecture synthesized
using the ASIC design flow shows efficient area, power, and
performance while complying with all the desired features for
a Transformer accelerator. Our design and thorough analyses
pave the way for future developments of efficient Transformer
architectures.
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