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Summary

Machine learning technologies have been part of our lives for a long time, as proven
by widely spread applications such as automatic spam filtering and face recognition
cameras. In spite of this and of the very rapid progress that characterizes research in
this field, it took several years for the general public to become aware of its potential
to influence our lives. However, no one can deny that this moment has now arrived,
mainly due to the presentation of easy-to-use interfaces that enable anyone to inter-
act with large language models. This development has sparked curiosity in the public
about which fields Artificial Intelligence will influence the most. Among them, there is
certainly Computer Vision, the domain in which deep neural networks have obtained
the most remarkable results even before Natural Language Processing studies resulted
in the development of those language models which made AI a subject on everyone’s
lips. The success of these models has been significantly supported by the generality of
the language mean and the ease of interaction but has also led to the overestimation of
their abilities, which is clearly evidenced by their inclination to make mistakes. Indeed,
there is still a long way to go in order to make deep models robust enough to enable
their deployment in safety-critical applications. Their brittleness gets particularly ex-
posed when they face real-world operating conditions characterized by a large number
of unforeseeable variables, as it happens when they meet out-of-distribution data. This
is a situation that occurs in several scenarios, for example when a deep model faces
samples with a radically different appearance from the one it is used to, or belonging
to semantic categories that it has never met.

This thesis focuses on the study of these two kinds of distribution shifts. We start by
providing some background, describing when they occur and why they impact so much
on neural networks’ performance. In this context, we focus in particular on the relation-
ship between out-of-distribution performance and representation learning: the unique
ability of neural networks to automatically learn how to summarize complex data sam-
ples, such as images or videos, into compact and easily tractable representations. With
the goal of developing deep learning methods whose scope of applicability goes beyond
lab settings, we then proceed by studying some specific distribution-shifted scenarios
for which we propose novel solutions, by trying to adopt an original point of view and
a critical eye on the most common paradigms. In particular, we first consider simpler
research settings in which a visual shift is the only difference between training and
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deployment conditions, and later move to more complex cases in which semantic and
visual shifts appear together, as this is the most likely situation when considering open-
world deployments.

Through our studies, we come to the conclusion that the way representations are
learned can seriously impact the performance of deep models on out-of-distribution
data, and it is thus necessary to adopt more robust learning approaches if we want to
obtain dependable systems. In this context, an important novelty is represented by the
recent presentation of the first foundation models for Computer Vision. These are mod-
els trained at scale on huge data collections that enable them to extract general-purpose
representations providing a fair treatment for in-distribution and out-of-distribution
data. The correct exploitation of this knowledge can thus represent a real change of
paradigm in the study of distribution-shift problems.
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Chapter 1

Introduction

1.1 Representation learning and distribution shift
The possibility to process large quantities of data, and recognize patterns that support
decision-making, relieves the programmer from the task ofmanually designing decision
rules. This technique is called Machine Learning and has enabled the solution of
complex automation tasks that without it would be literally or practically unsolvable,
by reason of the tremendous amount of required time and effort.

Deep learning has shown to be the most effective machine learning paradigm
when dealing with particularly complex data types, like images and videos. Indeed,
digital representations of these media are multidimensional matrices, with a single im-
age being described through millions of numerical values, indicating colors for a grid
of pixels. In this context, the value of a single feature, i.e. the intensity of a color for a
specific pixel, hardly provides relevant information for the solution of the task, which,
on the contrary, can be solved only by analyzing the sample as a whole. For this rea-
son, on such complex data structures many machine learning algorithms miserably fail,
even though the same algorithms provide exceptional results when they are applied to
simpler structures. The success of deep neural networks, instead, is enabled by one of
their key features: the ability to automatically learn to extract compact and meaningful
representations from complex inputs.

Representation learning enables deep neural networks to thrive in performing
complex tasks, and it is obtained for free, as a byproduct of their training on those same
tasks. In particular, in the training phase, a supervising signal applied to the network’s
low dimensional output through an objective function is propagated back to its high
dimensional input, producing an update of all of the network’s parameters in the di-
rection of making the extracted representations more and more tailored to support the
solution of the training task.

This automatic representation learning ability, which many people deem the most
important quality of deep learning, can, nevertheless, also become a significant obstacle
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Introduction

Table 1.1: Examples of visual domain and semantic shifts

Visual domain shift

Training set

Test set

Semantic shift

to the implementation of deep networks in real-world systems. Indeed, when repre-
sentation learning is induced by the optimization of an objective function, the learned
representations may very easily start recording supervision collapse [36]. This phe-
nomenon occurs when the learning signal implicitly pushes the network to extract only
the features which are really relevant to reach the considered optimization objective on
the considered training data. In other words, if no special precautions are taken, the
network finds some shortcuts, ultimately learning how to represent only what is neces-
sary to perform the task it is trained for, on the data it is trained on, disregarding any
additional information which may be contained in that data.

This phenomenon becomes a problem when there is a difference between the
distributions of training and test data, a situation possibly rare when working in
lab settings, but that becomes relevant when deep models are integrated into systems
deployed in the open-world. There are two main kinds of distribution’s difference
which commonly arise after a model’s deployment (see examples in Tab. 1.1):

• visual domain shift. It is a covariate shift as it involves the input distribution
(the visual appearance of input images), but not the output one (their seman-
tic class). For example let’s consider a fruit categorization problem: we want
to build a system that is able to recognize three kinds of fruits. If our training
dataset contains red apples and green pears, a green apple encountered after de-
ployment would almost certainly mislead our categorization software. Another
intuitive example of this situation is a change in weather conditions: if we train a
pedestrian detection system for an autonomous vehicle using a training dataset of
pictures collected in sunny weather, after deployment the system’s performance
will fall significantly any time the weather is different, even when the visibility
is not impacted by its conditions;

• semantic shift. It is an output distribution’s shift: the sets of semantic classes
appearing during train and test do not perfectly overlap. For example, let’s con-
sider a wildlife monitoring system: we install a camera trap in a forest and design
a system to recognize three animal species for whichwewant to estimate the pop-
ulation’s size. If the forest is inhabited also by other species we probably cannot
prevent our trap from capturing also pictures of them. This semantic shift will
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thus reduce the accuracy of our wildlife monitoring system which would confuse
the unknown animals with those it has been designed to recognize.

Both these scenarios can be described as outcomes of the presence of a bias in the
training dataset [154]. Indeed, in the fruit categorization scenario, including a larger
variety of samples of apples and pears in the training dataset could enable our cat-
egorization model to understand that, in order to carry out its task, focusing on an
object’s shape is much more important than focusing on its color. Similarly, for what
concerns the wildlife monitoring system, including in the training dataset samples of
all the species that inhabit the target forest should limit the risk of encountering novel
species after deployment. It is quite intuitive, however, that sometimes this kind of bias
reduction effort may prove futile. Indeed, in many open-world deployment scenarios, it
is impossible to cover the whole, control completely, or even limit the distribution from
which test data comes from. For example, in our second case study, even if we include
many more species in the problem definition, an event that’s out of our control like the
arrival of a new species in the area may always occur.

A bias in the training dataset is therefore not always avoidable, but its occurrence
is not a problem as long as the test data shows the same characteristic. When this does
not happen, the adoption of features automatically learned on the training data exacer-
bates the issue, because of the supervision collapse phenomenon. For example, going
back to our first case study, this phenomenon leads the model that is only shown red
apples and green pears to decide that the easiest strategy to distinguish between these
two fruits is to just look at their color. As a result, all the other features of the training
input samples, including the shape, are not only ignored but directly discarded in the
representation learning phase. When the model is later applied after deployment, test
samples are represented through feature vectors encoding only their color and nothing
else. Similarly, in the wildlife monitoring case, the system is led to confuse novel with
known categories simply because both are represented through features learned from
the latter.

Building on these premises, the central research question of this thesis is how to
address the distribution shifts. Indeed, the semantic and visual domain shifts are
two consequences of the same phenomenon: the presence of a distribution shift be-
tween training and test data. As such, even some proposals of solutions are based on
the same principles. For example, in the last years, a number of papers have proposed
techniques to regularize the training, with the implicit or explicit goal of reducing the
supervision collapse. With this goal in mind, some algorithms propose to adopt an aux-
iliary learning objective optimized jointlywith themain supervised one. This procedure
influences the output of the training, forcing the network to retain some additional fea-
tures besides those that are useful to perform the main task. The final model is thus
more robust to visual domain shifts [16]. Another strategy relies on the inclusion in the
training procedure of some auxiliary samples, which do not take part in the learning of
the primary task, but that, by requiring the model to be able to represent them, enable
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known-unknown samples separation [51].
Despite the similarities in terms of cause and principles behind some proposed

workarounds, there is a fundamental difference between the two kinds of distribution
shifts on which this thesis focuses, and it is in the solutions’ goal and correspondingly
on the target algorithm’s behaviors. In particular, dependable machine learning algo-
rithms should provide representations that are:

• invariant to visual domain shifts, so that decisions are not taken on the basis of
covariate variables which are not really relevant to the task at hand;

• covariant to the semantic shifts, so that they enable the detection of samples that
do not belong to the training semantics.

The first between these two goals is the subject of study of Domain Generalization
(DG), one of the research settings part of the broader cross-domain analysis research
field, which includes also the Domain Adaptation (DA) scenario, designed for those
situation in which there is some kind of a priori knowledge about the target visual
distribution which will be met after deployment. The second goal is, instead, the prob-
lem of study of the Out-Of-Distribution (OOD) detection literature, which is strictly
related to the more famous anomaly detection one.

The difference in treatment does notmean that the two problems are necessarily dis-
joint. On the contrary, theymay easily occur together in real-world applications. When
this happens the main risk is that strategies developed to alleviate the issues induced
by one type of shift, lead to an amplification of those induced by the other one. For
example, the Open Set Domain Adaptation (OSDA) setting studies those situations
in which an unsupervised dataset coming from the target visual domain can be used to
prepare a model for the visual distribution that will be met after deployment. As this
dataset is unsupervised, it can contain samples that do not belong to the set of semantics
of the supervised training one, samples which may make any naïve domain bridging
strategy futile, leading to a phenomenon called negative transfer [93]. Similarly, if an
OOD detection method is applied to test data coming from a visual distribution differ-
ent from the training one, the presence of the covariate shift risks pushing the model
towards marking all the test samples as belonging to novel classes [176].

This extremely diverse set of scenarios which could be met when studying a real-
world problem has led to the design of a large number of research settings, some more
general and some more specific, but all focusing on the tackling of a distribution shift
between training and deployment data. This thesis studies some of these settings,
describing the state-of-the-art, and proposing novel techniques to tackle their specific
problems. Most of these solutions follow the standard practice of using the available
training data to train from scratch or fine-tune a neural network on the task at hand,
while adopting sophisticated techniques to improve the generalizability of the learned
features. This approach has been the most common paradigm for a long time as it guar-
antees to obtain models that performwell at least on the in-distribution data, even if the
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corresponding performance on out-of-distribution data may be poor because of super-
vision collapse. In the very last years, the factors that have long made this approach the
most valid and successful have started fading out. The cause of this phenomenon can be
found in the significant progress made in the development of strategies for large-scale
training of neural networks, which in turn has been made possible by the development
of self-supervised learning techniques that enable learning on huge data collections.
After the successes achieved in the field of Natural Language Processing, these im-
provements have led to the presentation of the first foundation models also in the
Computer Vision world. These are models that, in reason of the scale of their training,
are able to provide high-quality general-purpose representations ready to be used for
downstream tasks [9]. Their development has the potential to force a paradigm shift
in many CV research fields and in particular in those fields where feature generaliz-
ability is fundamental, as is clearly the case of distribution shift analysis. In this area,
the availability of general-purpose features able to accurately and fairly represent both
in-distribution and out-of-distribution data may be sufficient grounds for completely
discarding networks’ training or fine-tuning on in-distribution data, a procedure which
can easily hurt any previously learned knowledge. The last contribution of this thesis
is thus the first analysis of the impact that a correct use of foundation models has on
distribution shift analysis, focused in particular on assessing the performance that these
models can unlock if compared to traditional strategies.

1.2 Contributions
This work studies the visual domain and semantic distribution shifts from a set of dif-
ferent points of view. Novel solutions are presented and large-scale experimental eval-
uations are carried out to draw a comprehensive picture of the state-of-the-art and to
better understand the advantages and disadvantages of different algorithms. The main
contributions of this thesis are:

• the presentation of the first strategy to adapt an object detector on a single
test sample (Chapter 3). The proposed approach exploits a self-supervised task
to enable training on unsupervised data in order to adapt the detector’s backbone
to the target’s distribution. We also provide a proof-of-concept of how meta-
learning can help in this context by making adaptation faster;

• the proposal of a novel robust baseline for Domain Generalization (Chapter
4) exploiting style-transfer as part of a data augmentation pipeline that enables
obtaining domain-invariant features;

• the presentation of thefirst approach able to tackle all the challenges of the com-
plex multi-source open-set domain adaptation setting with a single learn-
ing objective (Chapter 5);
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• the proposal of a similar algorithm adapted to the cross-domain open-world
recognition task by the introduction of a class-incremental learning component
(Chapter 5);

• the introduction and proof-of-concept of a tailored representation learning
strategy specifically designed to support performing OOD detection on a broad
range of tasks without fine-tuning (Chapter 6). The proposed approach is based
on relational reasoning and enables a model to provide a semantic similarity
measure on pairs of pictures;

• the definition of a novel, comprehensive benchmark for the OOD detec-
tion task (Chapter 6), overcoming the problems in terms of limited scale and
low transferability to real-world scenarios of previous benchmarks, and includ-
ing both an intra-domain and a cross-domain track;

• the first large-scale experimental comparison of fine-tuning-free and fine-
tuning-based OOD detection approaches (Chapter 6), studying for the first
time also the impact that foundation models could have on future research
developments in the setting.

All the algorithms proposed in this thesis are thoroughly analyzed through comprehen-
sive testbeds, which are inherited from the literature when they are both relevant to the
studied problem and realistic in terms of transferability of the results to real-world sce-
narios, or designed from scratch to have these characteristics when literature testbeds
do not match these constraints.

1.3 Thesis outline
The second chapter of this thesis provides a general overview of the two distribution
shift types on which we focus. The chapter introduces a formal definition of the most
general research settings tackling visual domain or semantic shift, and a summary of
the related research works. In this way we offer the reader some basis about both the
general problems in analysis and the solutions that have been proposed to deal with
them, in order to ease the understanding of the subsequent chapters which consider
also more specific settings and dive in more details about proposed solutions.

In the third chapter, we focus on one-shot unsupervised cross-domain detection,
a research setting designed to study those real-world scenarios in which an object de-
tector faces a continuously varying visual distribution after deployment, as is the case
of social media monitoring applications. In this case, traditional domain adaptation so-
lutions are unsuited to provide predictions tailored for the ever-changing visual domain
and a strategy able to adapt on a single test sample should be preferred. The proposed
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solution adopts self-supervision to reach adaptation of a neural network backbone be-
fore providing predictions. The chapter also presents an extension of this initial solu-
tion which exploits meta-learning to increase adaptation speed, and provides a compre-
hensive experimental section comparing the proposed strategies with state-of-the-art
domain adaptation solutions.

The fourth chapter focuses on the general Domain Generalization setting, analyz-
ing its relationship with data augmentation. Indeed, this broad research setting
has seen the proposal of a large number of algorithms, based on widely different strate-
gies, some of them particularly sophisticated but also rather complex. Most of these
approaches have the common goal of training models to provide domain-invariant fea-
tures but often neglect the contribution that data augmentation can have in this con-
text. The chapter thus proposes a very simple style-transfer-based data augmentation
pipeline that allows obtaining a robust DG baseline that outperforms previous state-of-
the-art approaches. We analyze how this data augmentation strategy can be combined
with previous solutions aiming to raise attention to the fact that many state-of-the-art
methods do not provide any advantage when they are combined with this improved
baseline. This finding should push for the development of novel DG strategies able to
take advantage of the proposed data augmentation pipeline in order to build even more
robust algorithms.

The two settings studied in the fifth chapter are multi-source open-set domain
adaptation and cross-domain open-world recognition. The link between them is
that they are two instances of open-world learning problems in which multiple chal-
lenges are faced at the same time. The two proposed solutions are thus equally con-
nected by being based on the same principle: the use of a single contrastive-based learn-
ing objective that allows to tackle multiple challenges jointly thanks to the structural
properties of the learned feature space. We discuss the advantages of these solutions
with respect to competitors that, in the majority of cases, are obtained as combinations
of strategies designed for individual sub-problems of the main one.

In the sixth chapter, a paradigm shift is proposed for the tackling of the Out-Of-
Distribution detection problem. In this context, the standard practice consists in
performing a complete training, or at least a fine-tuning of a pre-trained model, on
the in-distribution data of the task at hand. This procedure has a number of disadvan-
tages, ranging from the poor out-of-distribution representation capabilities induced by
supervision collapse and forgetting of the pre-trained knowledge, to the high compu-
tational cost of performing the needed training session. In order to overcome these
disadvantages, we propose to completely discard the fine-tuning phase by relying only
on pre-trained knowledge to build comparison strategies between in-distribution sup-
port data and test samples, with the final goal of providing normality scores for the
latter. In particular, we propose a relational reasoning-based representation learning
paradigm designed to learn a generic semantic similarity measure through training on
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a large dataset. For this model, we perform a thorough analysis of alternative learning
objectives and then we frame it in the bigger picture of a large-scale experimental com-
parison between fine-tuning-free and fine-tuning-based OOD detection approaches. In
this context, we consider awide number of pre-training solutions in order to assess their
applicability to the studied problem and we focus in particular on foundation models be-
cause of the impact that they can have on the whole research field.

In the seventh and last chapter, the focus is on drawing conclusions from the whole
work, in order to better outline the outcome of the conducted analyses and describe
possible future research directions.

1.4 Publication list
We list here the publications of the author in chronological order. When they are pub-
lic we also include links to repositories containing the codebases implementing the
proposed algorithms and enabling experiment reproduction. Some of the listed publi-
cations, highlighted with a (*), present contents not included in this thesis:

• [33] A. D’Innocente, F. Cappio Borlino, S. Bucci, B. Caputo, and T. Tommasi
One-shot unsupervised cross-domain detection
European Conference on Computer Vision, ECCV 2020
Code: https://github.com/VeloDC/oshot_detection

• [19] F. Cappio Borlino, A. D’Innocente, and T. Tommasi
Rethinking Domain Generalization Baselines
25th International Conference on Pattern Recognition, ICPR 2020

• [21] F. Cappio Borlino, S. Polizzotto, B. Caputo, and T. Tommasi
Self-Supervision & Meta-Learning for One-Shot Unsupervised Cross-Domain
Detection
Computer Vision and Image Understanding Journal (CVIU), 2022
Code: https://github.com/FrancescoCappio/OSHOT-meta-learning

• [15] S. Bucci, F. Cappio Borlino, B. Caputo and T. Tommasi
Distance-based Hyperspherical Classification for Multi-source Open-Set Domain
Adaptation
Winter Conference on Applications of Computer Vision, WACV 2022
Code: https://github.com/silvia1993/HyMOS

• [17] F. Cappio Borlino, S. Bucci, and T. Tommasi
Contrastive Learning for Cross-Domain Open World Recognition
The 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2022)
Code: https://github.com/FrancescoCappio/Contrastive_Open_World
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• (*) [3] A. Alliegro, F. Cappio Borlino, and T. Tommasi
3DOS: Towards 3D Open Set Learning –
Benchmarking and Understanding Semantic Novelty Detection on Point Clouds
Proceedings of the Neural Information Processing Systems (NeurIPS)
Track on Datasets and Benchmarks, 2022
Code: https://github.com/antoalli/3D_OS

• [18] F. Cappio Borlino, S. Bucci, and T. Tommasi
Semantic Novelty Detection via Relational Reasoning
European Conference on Computer Vision, ECCV 2022
Code: https://github.com/FrancescoCappio/ReSeND

• [101] L. L. Lu, G. D’Ascenzi, F. Cappio Borlino, and T. Tommasi
Large Class Separation is not what you need for Relational Reasoning-based OOD
Detection
International Conference on Image Analysis and Processing, ICIAP 2023
Code: https://github.com/lulor/ood-class-separation

• [20] L. L. Lu, F. Cappio Borlino, and T. Tommasi
Foundation Models and Fine-Tuning: A Benchmark for Out Of Distribution
Detection
IEEE Access, 2024
Code: https://ooddb.github.io/
https://github.com/FrancescoCappio/OODDetectionBench
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Chapter 2

Background and related works

The purpose of this chapter is to give an overview of the two distribution shift problems
studied in this thesis, by providing both a formal definition of their most common for-
mulations and some background on the literature focusing on them. Both the visual
domain and the semantic distribution shifts represent significantly wide research fields
which include a broad range of specific research sub-settings. As a result, this chapter
will present only the definition and background for the general versions of these prob-
lems, whereas the next chapters will mainly focus on specific scenarios and will thus
include a formal definition and some background for them.
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2.1 Preliminaries
We consider learning problems in which the goal is to learn a mapping 𝑦 = 𝑓(𝑥) from
a dataset of pairs (𝑥, 𝑦), where 𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴 and the pairs are sampled from the joint
distribution 𝑝(𝑥, 𝑦). A distribution shift between training and test (i.e. deployment)
data happens when 𝑝training(𝑥, 𝑦) ≠ 𝑝test(𝑥, 𝑦).

2.2 Visual domain shift
A visual domain shift is a covariate shift, which means that 𝑝training(𝑥, 𝑦) ≠ 𝑝test(𝑥, 𝑦)
because 𝑝training(𝑥) ≠ 𝑝test(𝑥) even though 𝑝training(𝑦|𝑥) = 𝑝test(𝑦|𝑥). This kind of shift
happens when there is a difference in the input distribution involving visual features
that do not influence the semantics. Considering real-world applications this can hap-
pen for a multitude of reasons.

For example, considering a widely known application such as autonomous driving,
it is virtually impossible to foresee all the visual scenarios that the model will face after
deployment. Indeed, in this case, visual differences may go from variations in the light-
ing conditions to variations in weather, from the differences between city streets and
country roads to the diverse architectures that could bemet when traveling through dif-
ferent countries. In this case, in order to avoid domain shifts, all the combinations of all
these circumstances should be taken into account when collecting the training, which
makes this task highly complex and particularly expensive, if not actually unfeasible.

Another common situation occurswhen training is performed by choice on a dataset
not specifically designed and collected for the target task. There could be many reasons
to do so: the target domain could not be known a priori, or collecting and or labeling
data from it could be too expensive. This last aspect is often not negligible, given the
amount of data necessary to train neural networks, and for this reason there are re-
search lines focusing specifically on how to reduce the labeling costs [145, 124]. When
this cost is too high parties sometimes focus only on data collection, which leads to the
construction of unsupervised target datasets.

One last example of very common domain shift involves all those applications for
which the training is performed on synthetic data, but the deployment is still performed
on real data. This is the case for example of many robotics scenarios [59], but it happens
often also anytime learning has to be performed on data types forwhich large real-world
data collections do not exist yet, for example 3D point clouds [3].

A domain shift is thus a situationmuchmore common than one could initially think,
and the severity of the issues that it causes could of course vary depending on the
application, but it is rarely negligible. Indeed, unless otherwise guided, neural networks
yield features that describe mostly local rather than global patterns [185, 58], which
means that they place great emphasis on characteristics that are not consistent across
domains.
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Many research settings have been designed in order to analyze domain-shifted sce-
narios and propose solutions and strategies to deal with this problem. We can organize
literature studies into twomain big families: Domain Generalization, andDomain Adap-
tation. The difference among them relies on the possibility of accessing at least some
data from the target visual domain at training time.

2.2.1 Domain generalization
The Domain Generalization (DG) setting has been designed to analyze the robustness
of deep learning models across visual domains. In this setting, models are trained on
one or more labeled source datasets, which are collected by sampling from distributions
corresponding to different visual domains. The models’ performance is later evaluated
on one or more target datasets corresponding to previously unseen domains. A robust
model proves generalization ability by making decisions avoiding any influence from
domain-specific features, which are irrelevant to the task. This ability may be innate
if it comes from the structure of the model itself or may be developed through specific
training strategies, like the adoption of particular data augmentation approaches or
auxiliary learning objectives.

The most common DG development and evaluation protocol relies on the use of
multiple source domains and a single target one. Indeed, the availability of multiple la-
beled source datasets corresponding to different visual domains enables a better under-
standing of which features are domain-specific and which are domain-invariant. The
exclusive use of domain-invariant features guarantees that the model will later provide
consistent results across any domain it may meet after deployment.

The next sections provide a formal definition of the problem followed by a short
summary of the literature studying it.

Problem formalization

We formally describe the problem in terms of data available at training time, task
goal, and data available at test time. This problem formalization framework is
both formal enough to provide in an unambiguous way all the necessary information
to completely describe a research problem, and versatile enough to be applied to all the
problems studied in this thesis.
Problem formalization:

• data available at training time: 𝑛𝑆 labeled source datasets 𝑆 = {𝑆𝑖}
𝑛𝑆
𝑖=1, each

one consisting of a set of image-label pairs: 𝑆𝑖 = {(𝑥
(𝑠)
𝑗 , 𝑦(𝑠)

𝑗 )}
𝑁𝑆𝑖

𝑗=1
. In this con-

text 𝑥 ∈ 𝒳 is a multidimensional input (an image) coming from the input space
𝒳, while 𝑦 ∈ 𝒴 is the ground-truth label coming from the label space 𝒴
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• goal: to correctly classify samples in the test set 𝑇 = {(𝑥(𝑡)
𝑖 , 𝑦(𝑡)

𝑗 )}𝑁𝑇
𝑖=1. We have

𝒴𝑆 = 𝒴𝑇 and all the datasets are sampled from different marginal distributions
and thus show different visual characteristics;

• data available at inference time: {𝑥(𝑡)
𝑖 }𝑁𝑇

𝑖=1

In practice, in DG we want to build a model which exploits the available data sources
to learn a mapping 𝑦 = 𝑓(𝑥) which generalizes to any target visual domain. There are
two main DG versions: the most common is multi-source DG, where 𝑛𝑆 > 1, but in
some scenarios a single source dataset is available (𝑛𝑆 = 1) and thus it is important also
to study single-source DG strategies.

Related works

The domain generalization task has recorded a significant interest increase in the re-
search community in the last years, which has led to the proposal of a wide variety of
approaches to deal with it. Existing methods can be roughly divided into three main
groups.

Feature Alignment These approaches inherit from one of the most common strate-
gies adopted in domain adaptation literature, which consists of measuring the distance
between domains and learning a representation that minimizes it. In the DG setting,
this strategy is applied among the available sources through MMD discrepancy con-
straints [84], metric learning (contrastive loss) [114], or by adopting adversarial domain
classifiers [86].

Meta-Learning Solutions of this group divide the sources into two groups called
meta-train andmeta-test: amodel is learned on the formerwith the real goal of reducing
the error on the latter, often exploiting multiple learning episodes. In this way, it is
possible to prepare the model for the domain shift that will be experienced on the actual
target. Two of the most well-known approaches exploit episodic training with [83], or
without [82] an ad-hoc second-order gradient descent update rule inspired by MAML
[39].

Self-supervision The adoption of an auxiliary self-supervised task has recently been
shown to support generalization by regularizing the model’s training. In [23] the jigsaw
puzzle task is used as an auxiliary learning objective together with supervised object
classification, helping the model to focus on the object parts and their shape rather
than on domain-specific features, such as the texture. Another solution [172] exploits
self-supervised rotation recognition with a similar objective. Before self-supervision,
unsupervised learning already demonstrated a beneficial effect on generalization, for
example through clustering [106].
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Alternative solutions Other approaches, which do not fall in the above categories,
of course, exist. For example, a line of research proposes to train domain-specific en-
tire networks or sub-modules, and then weight their prediction output according to
the similarity between the test sample and the source domains [32]. Other works try
to explicitly disentangle domain-specific and domain-invariant features [126], in order
to focus on the latter for robust learning. A possible strategy is also to focus on aug-
menting the source data, by exploiting pixel-level transformation, with the aim to train
models that are robust to these transformations [189].

2.2.2 Domain adaptation
The Domain Adaptation (DA) research setting has been designed to study all those
situations in which the target domain is known a priori, and some target samples are
available during training. Still, the access to the target domain is limited and thus it’s
not possible to freely collect a large supervised dataset from it. Many variations of this
scenario can be imagined and for this reason there exists an equally high number of
research sub-settings dealing with it.

For example, in supervised DA a small set of target samples are actually labeled and
this supervision can be used together with a large amount of unlabeled target samples
and of labeled source ones to train a model suited to operate in the target environment.

The most common research sub-setting, which is also the most general and thus the
one on which we focus here, is, however, the Unsupervised Domain Adaptation (UDA)
one. In this case, no supervision exists for the target samples available at training time.
A labeled source dataset is thus used to train a model so that it learns the task concepts,
and this knowledge is then adapted in some way to the target domain. Indeed, even
if they are not supervised, target samples provide plenty of information that can be
used by UDA algorithms to try to prevent or bridge any representational misalignment
between source and target data. This kind of misalignment is the main cause of the
performance drop which is recorded by models when they operate in the presence of a
domain shift: because the source and target samples are mapped in different regions of
the space, the decision boundaries learned on source data do not align correctly with
target data. As a result, by improving the domain alignment it is possible to limit the
performance drop.

Problem formalization

The UDA setting is characterized by:

• data available at training time:

– a source dataset composed of image-label pairs𝑆 = {(𝑥
(𝑠)
𝑗 , 𝑦(𝑠)

𝑗 )}
𝑁𝑆

𝑖=1
, where

𝑥 ∈ 𝒳 is a multidimensional input (an image) coming from the input space
𝒳, while 𝑦 ∈ 𝒴 is the ground-truth label coming from the label space 𝒴;
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– an unlabeled target dataset 𝑇1 = {𝑥(𝑡1)
𝑗 }

𝑁𝑇1

𝑗=1

• goal: to correctly classify samples in the test set 𝑇2 = {(𝑥(𝑡2)
𝑖 , 𝑦(𝑡2)

𝑖 )}
𝑁𝑇2
𝑖=1 . We have

𝒴𝑆 = 𝒴𝑇 and we assume that 𝑇1 and 𝑇2 are sampled from the same distribution
𝑝𝑇, which is different from 𝑝𝑆 from where 𝑆 comes;

• data available at inference time: {𝑥(𝑡2)
𝑖 }

𝑁𝑇2
𝑖=1

Many research benchmarks are built on the transductive case, where 𝑇1 = 𝑇2. In prac-
tice, in this situation, a large unlabeled target dataset is trained to adapt a model to
the target domain before performing predictions on the same target dataset. Most
real-world applications however are non-transductive, which means that the knowl-
edge learned from the target dataset 𝑇1, which is available at training time, needs to be
applied to novel target data 𝑇2 after deployment.

In most cases, the UDA problem is tackled in a single-source scenario, but a multi-
source one is equally possible and clearly guarantees access to a potentially broader
knowledge base, even if its transfer into a single model shows its own set of challenges
[127].

Even if the situation 𝒴𝑆 = 𝒴𝑇 is the most common, some settings consider the
possibility that there may not be a perfect overlap between source and target label
sets. Indeed, guaranteeing this perfect overlap may not always be possible given the
unsupervised nature of target data. A number of sub-settings study situations in which
this overlap is not guaranteed, this is the case, for example, of Universal DA [42], and
Open-set DA [123].

Related works

The final goal of most, if not all, DA approaches consists in bridging in some way the
distribution discrepancy between source and target data. The reason to do so is that a
famous theoretical analysis of the problem has led to the definition of an error bound
in cross-domain tasks as the sum of the source error with a measure of divergence
between the two domains [4]. This domain bridging can be obtained in different ways,
we organize literature methods in four main groups.

Domain distance and alignment A first family of algorithms proposes approaches
to estimate the distance between the two distributions and strategies to minimize it
during training. In [137], Saito et al. exploit the ℋ Δℋ divergence proposed in [4] in
order to minimize the discrepancy between two classifiers. When focusing directly on
the features, some methods use the kernel Maximum Mean Discrepancy (MMD) [11]
as a distance measure between the domains and try to minimize it [100], while others
use kernel-based metrics to improve alignment [45], or try to directly match the two
distributions by minimizing the differences in terms of mean and covariance [146].
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Adversarial alignment A significantly large line of research focuses on improving
feature alignment without relying on explicit distance metrics, but by exploiting the
adversarial learning principle developed for Generative Adversarial Networks (GANs)
[46]. The base approach, in this context, consists in using a domain discriminator
trained adversarially with the network’s feature extractor. This result can be obtained
by using a simple gradient reversal layer between the feature extractor and the do-
main discriminator [43]. In [155], Tzeng et al. propose a more complex approach that
uses domain-specific networks and a domain discriminator to align their output, later
processed by a classifier. CDAN [99] uses two conditioning strategies to improve the
adversarial alignment.

Pixel level adaptation A family of strategies focuses on obtaining the alignment at
the pixel-level instead of the feature-level. Similarly to what happened with adversarial
alignment methods, even approaches that focus on pixel-level adaptation exploit the
capabilities of GANs to reach their goal. Both SBADA-GAN [135] and Cycada [52]
use a bidirectional GAN similar to CycleGAN to transfer source images to the target
domain, where they can be used to train a target model. An inverse transfer is also
used to make sure that the overall transformation procedure preserves the semantics.
On its hand [12] relies on a one-way only transformation.

Regularization A number of other methods obtain the domain bridging effect with
more indirect approaches, generally involving some changes to the learning objective
or the introduction of auxiliary ones. A group of them exploits self-supervision, usually
implemented as part of a joint learning objective with a supervised task [16, 173]. The
main advantage of this approach is that, even if it does not force alignment directly, self-
supervision can be applied in the same way on supervised and unsupervised data, thus
leading the model to learn coherent features between the two. An analogous quality
also characterizes entropy-based learning objectives, which have been thus applied for
domain adaptation as well [103]. We can include in this group also MCC [62], which
focuses onmodeling the class confusion and tries tominimize it. Another regularization
approach is presented in AFN [175], which, on its part, noted that target data tend to
have features with significantly smaller norms than source data. This difference arises
from the fact that the supervised learning objective pushes the norm of supervised
samples’ representations to grow indefinitely while the training proceeds. An improved
alignment can thus be obtained by adopting a learning objective which progressively
adapts the feature norms of the two domains to a large range of value.

2.3 Semantic Distribution shift
A semantic distribution shift is a distribution shift which involves the output distribu-
tion. In this case 𝑝training(𝑥, 𝑦) ≠ 𝑝test(𝑥, 𝑦) because 𝑝training(𝑦) ≠ 𝑝test(𝑦). Given that we
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focus on problems in which the output is connected to semantics when dealing with
this problem we often describe it as a semantic misalignment whose strength can vary
significantly: it can happen that the set of semantics included in the train and test dis-
tributions do not overlap, that the test distribution includes outliers or even very small
variations of the semantics appearing in the training one.

Real-world examples of these situations are the encounter by an autonomous vehi-
cle of an unidentified object on the road, the presence on a monitored industrial con-
veyor belt of an anomalous object, or the occurrence of defects on products checked
for quality assurance. The differences among these situations may seem significant,
because the examples of semantic shifts, that we have highlighted, clearly have dif-
ferent strengths, and because the safety risks associated with these situations are not
comparable. At the same time, from the point of view of formal problem definitions,
the discrepancies are minimal: there is a closed and clearly defined set of semantics
that represents the normality, and a dependable machine learning model that should
be able to detect everything that deviates from it. This last point may also be the most
important connection among the described situations: in most semantic shift scenarios,
while the normality is clearly defined, the abnormality is not, as it simply corresponds
to the opposition to the normality. This is both a forced and a practical choice: indeed,
it is usually impossible to foresee all the semantic variations that could characterize
anomalous samples, and thus it is not possible to collect training data for all of them.
As a result, it is much more practical to rely on collecting only samples of normal data,
and then try to model the distribution from which they come, in order to be able to
detect deviations from it.

Despite these similarities, there exist various research settings studying the seman-
tic distribution shift from different points of view. Some examples are [177]:

• Out-Of-Distribution (OOD) detection. Although its name clearly describes a
significantly broad research problem, in its most common formulation it is used
to refer to a scenario with a much stricter scope, i.e. the task of detecting samples
belonging to any semantic category not appearing in the closed-set of known
ones;

• Open-set Recognition (OSR). It is similar to the previous setting, but with the
additional requirement of correctly classifying all samples belonging to known
categories;

• Anomaly Detection (AD). It is very similar to OOD detection, with the slight
difference that generally the normality is treated explicitly as homogeneous, as if
it included a single semantic concept. For example, in industrial defects monitor-
ing, anomaly detection models are usually trained on a single category of prod-
ucts (i.e. samples of a specific product) and, at test time, they analyze samples that
belong to the same semantic category, looking for discrepancies that could high-
light defects. There is also a difference in terms of motivation behind these tasks:
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in AD, the anomalous samples are usually perceived as erroneous, fraudulent or
malicious, while in OOD detection they are simply considered unknown.

Among these sub-problems, we focus on the first one because of its generality.

2.3.1 Out-Of-Distribution detection
Most machine learning algorithms, in order to work as expected, need to be applied
to data that respects the so-called iid assumption, which means that the data samples
should be independent and identically distributed. In many real-world applica-
tions, however, this condition cannot be enforced and is, in practice, often unfulfilled.
One of the phenomena that could lead to this situation is the occurrence of out-of-
distribution samples among the ones that the model meets after deployment. As the
name suggests, these samples belong to a different distribution w.r.t. the training ones
and could cause a serious drop in the model’s performance. Of course, this distribution
shift can be of any type, i.e. a covariate (like the visual domain shift) or a semantic one.

In most cases, however, the name OOD detection is used to refer to the detection
of the second type [177]. The reason may be linked to the different expectations we
have of what a robust autonomous agent should do when dealing with one of these two
issues, as anticipated in Chapter 1. Indeed, in the majority of cases, we want a robust
model to be invariant to covariate shifts, while it should detect the semantic ones.

Problem formalization

Considering the usual problem formalization framework:

• data available at training time: a support set 𝑆 = {(𝑥(𝑠)
𝑖 , 𝑦(𝑠)

𝑖 )}𝑁𝑆
𝑖=1 of sample-

label pairs, where 𝑦(𝑠)
𝑖 ∈ 𝒴𝑆, and 𝒴𝑆 identifies the known class set. The samples

belonging to it are considered in-distribution (ID);

• goal: to correctly binary-classify the samples of the test set 𝑇 = {(𝑥(𝑡)
𝑗 , 𝑦(𝑡)

𝑗 )}𝑁𝑇
𝑗=1

in one of the classes in 𝒴𝐾 = {known, unknown}, where 𝑦𝑘,𝑖 = known if 𝑦𝑖 ∈ 𝒴𝑆.

We have 𝑦(𝑡)
𝑗 ∈ 𝒴𝑇, and 𝒴𝑆 ⊂ 𝒴𝑇. Samples belonging to 𝒴𝑇 ∖𝑆 = 𝒴𝑇 ∖ 𝒴𝑆 are

considered out-of-distribution (OOD) and should be classified as unknown;

• data available at inference time: {𝑥(𝑡)
𝑗 }𝑁𝑇

𝑗=1

The support set defines the normality, hence the purpose of an OOD detector is to detect
test samples that deviate from this normality, by marking them as unknown. In practice,
this means that the detector provides for each test sample a normality score, i.e. a scalar
value which should allow to discriminate known test samples from unknown ones by
imposing a threshold on it. Inmost cases, the definition of the threshold, which is a quite
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complex and tricky problem, is not considered part of the design of an OOD detector.
Indeed, the choice about the threshold should depend on the application, which should
define if it is more important to avoid False Positives or False Negatives (see definitions
in section A.3.2).

Related works

We group literature methods designed for Out-Of-Distribution detection in four cate-
gories.

Discriminative Methods It’s common to believe, that a model trained for object
recognition on a supervised dataset will then provide predictions with high confidence
for in-distribution data, and high uncertainty when facing OOD samples. As a result,
it should be possible to separate known and unknown test samples by simply using
the classification confidence as normality score. This is the approach exploited by the
most common OOD baseline [50] which uses the maximum softmax probability (MSP)
as normality metric. This approach, however, is not particularly robust, as deep neural
networks suffer from overconfidence [118], which means that they tend to provide pre-
dictions with high confidence even for images not related to their training distribution.
Various approaches have been thus proposed to re-calibrate networks’ outputs. In [158]
Vaze et al. propose to discard the normalization effect of the softmax function and use
directly the maximum logit score (MLS) for estimating normality. ODIN [90] exploits
temperature scaling and input pre-processing to improve known-unknown separation.
An alternative consists in using Energy [95] scores instead of the original prediction
output, as these prove to be better aligned with the probability density function of
the inputs. With GradNorm [53], Huang et al. proposed to focus on the network’s
gradients, arguing that their norm enables distinguishing which samples are far from
the known distribution. ReAct [148] uses a rectification (clipping) of the network ac-
tivations, which should prevent spikes in the OOD activations from leading the final
network layer to provide high-confidence predictions for them. With a similar goal,
ASH [35] filters out the majority of the activations, keeping only those representing a
specific percentile.

All the methods listed till here are applied as post-hoc approaches on closed-set
classifiers, which means that they do not require a specific training strategy. Other
algorithms however do, for example LogitNorm [166] relies on a normalization of the
logits vector during training, which should reduce the network overconfidence. Even
this method can be considered part of the discriminative family, whose members have
the significant advantage of obtaining normality predictions from a closed-set classifier,
an ability that allows to use them also for Open-set recognition

Density and Reconstruction Based Methods Generative learning models, unlike
discriminative ones, aim at modeling the whole distribution of known data. This should
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enable identifying OOD samples in different ways. Somemodels try to estimate directly
the likelihood of samples [180], while others exploit the sample reconstruction quality
[1].

Outlier Exposure and OOD data generation Some approaches try to exploit avail-
able outlier data to prepare the model to recognize OOD samples [51, 179], even if the
concept of what is not In-Distribution is generally quite broad. When it is not possible
to access outlier samples during training, some models rely on their synthesis [25, 182].

Representation andDistanceBasedMethods As a good data representation should
be behind any good machine learning model, some approaches focus on enhancing it
to ease the detection of unknown samples. Indeed, in a reliable feature space, OOD
data should lie away from known classes enabling the use of distance metrics for OOD
detection. In order to reach this result, literature methods tackle the problem from two
different points of view: the improvement of representation learning and the definition
of specific distance metrics. Prototype learning methods, together with self-supervised
ones, are examples of the first approach [152, 64]. On the other hand, researchers have
proposed to use metrics like L2 distance from known samples [149], layer-wise Maha-
lanobis [79], or a similarity measure based on Gram matrices [142].
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Chapter 3

Domain adaptation of an object
detector on a single target sample

This chapter analyzes the one-shot unsupervised cross-domain detection research
setting, designed to study those real-world scenarios in which an object detector faces
a continuously varying visual distribution after deployment. This is exactly what hap-
pens in the context of social media monitoring: images uploaded on social media plat-
forms come from a large number of parties, including individual users, and inevitably
present an equally large variety of visual styles and characteristics. The most effective
strategy to process a stream of images of this kind is to exploit each individual test
sample as a source of information about the visual distribution from which the sample
comes from, and thus to use it for model adaptation before performing predictions. We
propose a solution to reach this result which exploits self-supervision to obtain adap-
tation on individual unlabeled samples, while we prove the unsuitability of traditional
domain adaptation strategies in the setting. We also present an extension to the initial
proposed solution, exploiting meta-learning to improve adaptation speed, by preparing
the object detection model to the particular inference procedure that it will have to per-
form after deployment. A comprehensive experimental section concludes the analysis,
proving the effectiveness of the proposed algorithms in the considered scenario.

Part of the work described in this chapter has been previously published in two papers:

• [33] A. D’Innocente, F. Cappio Borlino, S. Bucci, B. Caputo, and T. Tommasi
One-shot unsupervised cross-domain detection
European Conference on Computer Vision, ECCV 2020

• [21] F. Cappio Borlino, S. Polizzotto, B. Caputo, and T. Tommasi
Self-Supervision & Meta-Learning for One-Shot Unsupervised Cross-Domain
Detection
Computer Vision and Image Understanding Journal (CVIU), 2022
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3.1 Object detection and social media monitoring
Every day millions of images are uploaded to social media platforms by a variety of
actors, from corporations to political parties, journalists and newspapers, institutions,
entrepreneurs and most importantly private users. For the sake of freedom of expres-
sion, control over this content is limited, and a significant part of it is uploaded without
any textual description. Still, some kind of monitoring may be necessary, first of all
for tracking fake news, illegal data, and hate content. Other use cases involve differ-
ent parties, like corporations, which may be interested in brand sentiment analysis, or
institutions, which want to track trends of interest.

Given a continuous flow of images, an effective monitoring system has to focus
not only on metadata but also on images’ content, with the purpose of automatically
associating them with as many relevant tags as possible. One of the possible paths to
obtain this result involves training and deploying an object detector.

The object detection task has as its goal the recognition in images of all the objects
belonging to a predefined set of categories and their localization through bounding
boxes. This task has been largely investigated since the infancy of Computer Vision
[160] and continues to attract a large attention in the current deep learning era [94,
134, 22]. Most of the proposed algorithms assume that training and test data come
from the same visual domain; this is a strong assumption that inmany deployment cases
does not hold. For this reason, some researchers have started to investigate the more
challenging scenario where the detector is trained on data from a source visual domain,
and deployed at test time on a different target one [27, 68]. This setting is usually
referred to as cross-domain detection and heavily relies on concepts and results from the
domain adaptation literature (see Sec. 2.2.2). Unfortunately, even this approach is not
suitable for social media monitoring applications. Indeed, if we consider, for instance,
the scenario depicted in Figure 3.1, where there is an incoming stream of images from
various social media platforms and the detector is tasked to look for instances of the
class bicycle, we can immediately notice that, even if all the images contain objects
belonging to this class, these instances present styles and visual appearances that are
radically different. The underlying cause of this phenomenon can be found in the nature
of the data source, which by definition is not uniform, but on the contrary, collects the
contributions of a large variety of actors. Because each social media user expresses
himself through the content that he shares, each new image may be radically different
from the previously analyzed ones. In practice, in this scenario, each image comes from
a different visual domain, distinct from the visual domain where the detector has been
trained.

This poses two key challenges to traditional cross-domain detectors:

• in order to adapt to the target distribution these algorithms need, first of all, to
wait and collect a sufficient amount of target data samples;

• after adaptation on target images collected up to time 𝑡, there is no guarantee that
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Figure 3.1: Social media images come from a variety of domains, as they are uploaded
by different users. Standard Cross-Domain Detection algorithms struggle in this stream
monitoring setting: they need to wait to collect sufficient data for adaptation, after
which the adapted model may still be unfit to be applied on a continuously changing
target domain. We propose to use each single test image for a fast adaptation of the
source model, eventually providing predictions tailored for each target domain.

the images that will arrive from time 𝑡+1 will come from the same target domain.

We study this problem by proposing a new paradigm for dealing with it. We build
on the idea that, because each target image may come from a different visual domain,
the best strategy to handle them is to adapt the model to each single target image right
before using it for inference.

The contributions of this chapter include:

• the definition of a new research setting, which we call One-Shot Unsupervised
Cross-Domain detection. This is a cross-domain detection scenario where the
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target domain changes from sample to sample, hence adaptation should be per-
formed on single images;

• in order to tackle the novel problem, we propose a solution exploiting self-supervision
and cross-task pseudo-labeling to enable the adaptation of an object detector on
a single test sample. Our approach, which we call OSHOT, is trained on the la-
beled source domain to jointly solve two tasks at a time: themain object detection
one, and an auxiliary self-supervised rotation-recognition task. After deploy-
ment, OSHOT exploits the self-supervision signal to adapt the model’s backbone
to the target domain of each test image, effectively improving the quality of the
predictions;

• after highlighting some downsides of OSHOT, we propose an extension that we
name FULL-OSHOT. This new version of our approach leverages a novel meta-
learning formulation, designed to better combine the main supervised detection
task with the self-supervised auxiliary objective. The final aim is to effectively
prepare the model for the specific conditions that it will face after deployment.
This improvement allows for significantly faster adaptation in the inference pro-
cedure;

• we present a novel experimental benchmark exploiting both existing databases
and a new test set explicitly collected to study the social media monitoring sce-
nario. On this testbed, we evaluate our approaches comparing them against re-
cent algorithms in cross-domain adaptative detection and draw a comprehensive
picture of the state-of-the-art in the novel setting.

3.1.1 Related Works
Object Detection

Modern object detectors can be divided into one-stage and two-stage techniques. In
the former, classification and bounding box definition are performed on the convolu-
tion feature map either solving a regression problem on grid cells [133], or exploiting
anchor boxes at different scales and aspect ratios [94]. In the latter, an initial stage
deals with the region proposal process and is followed by a refinement stage that ad-
justs the coarse region localization and classifies the box content [134]. More recently
a new transformer-based object detection paradigm has been proposed [22]. The novel
structure allows discarding many hand-designed components of previous detection ar-
chitectures in favor of a more streamlined pipeline in which the object detection task
is framed as a set-prediction problem.

Regardless of the specific implementation, the detectors’ robustness across visual
domains remains a major issue.
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Cross-Domain Detection

Most of the literature studying the visual domain shift problem has focused on object
classification with solutions based on feature alignment or adversarial approaches, as
seen in Sec. 2.2.2. More recently, the interest in cross-domain analysis has reached
also the object detection world, with methods been developed considering mainly three
directions:

• the inclusion of multiple and increasingly more localized feature alignment mod-
ules at different internal stages. This approach was initially proposed in [27],
where Chen et al. pointed out, for the first time, the importance, in the object
detection context, of considering both global and local domain adaptation. The
Strong-Weak (SW) method[138] improves over the previous one pointing out the
need for a better balancing in the alignment, with strong global and weak local
adaptation.

• the adoption of a pixel-level adaptation strategy like CycleGAN [193], which en-
ables training the detector on labeled images that look like samples coming from
the target domain. This solution was initially proposed for object detection by
Inoue et al. in [57], and extended to a full domain randomization procedure by
Kim et al. in [68];

• the introduction of pseudo-labeling, also known as self-training, a procedure con-
sisting in using the output of the source model detector as a coarse annotation to
perform training on unlabeled target data. This strategy is often used in conjunc-
tion with regularization approaches in order to reduce the negative influence of
noisy annotations [67, 65].

Besides these three main categories, some researchers also proposed entirely different
approaches, like the ICR-CCR method presented by Xu et al. [171], which includes an
image-level multi-label classifier and a module imposing consistency between image-
level and instance-level predictions. Another strategy has been proposed by Wu et
al. in [168] where vector decomposition is exploited to separate domain-invariant and
domain-specific representations.

Adaptive Learning on a Budget

In the presence of a domain shift, learning on a target budget is extremely challenging.
Indeed, as we have seen in Sec. 2.2.2, the standard assumption in UDA, is that a large
amount of unsupervised target samples are available at training time so that a source
model can capture the target domain style from them and adapt to it.

Only a few attempts have been made to reduce the target cardinality. In [113] the
considered setting is that of few-shot supervised domain adaptation: only a few tar-
get samples are available but they are fully labeled. In [5, 30] the focus is on one-shot
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unsupervised style transfer with a large source dataset and a single unsupervised target
image. These works propose time-costly autoencoder-based methods to generate a ver-
sion of the target image that maintains its content but visually resembles the source in
its global appearance. This solution, although designed for image generation, and thus
with no discriminative purpose in mind, can be used for adapting the target samples to
the source domain before performing predictions on them.

Self-Supervised Learning

Unsupervised data is rich in structural information which can be uncovered by self-
supervision. The usual application of this procedure is model’s pre-training, which
means adopting a self-supervised task for a representation learning session which is
later usually followed by fine-tuning on downstream tasks. Standard self-supervised
tasks used for this purpose include rotation recognition [44], and contrastive learning
[26]. A number of works also indicated that self-supervision supports adaptation and
generalization when combined with supervised learning in a multi-task framework [23,
13].

Meta-learning

Meta-learning or learning to learn is the process of training a model with the aim of
preparing it for fast adaptability. One of the most important works on the topic is
MAML [39]. This approach implements an inner learning loop designed to solve a
standard supervised task, while an outer meta-learning loop updates the base model by
observing multiple episodes of the inner task training in order to accomplish a higher
level objective, with examples being a stronger generalization ability and a faster adap-
tation speed. Given that this technique enables adaptation on data-scarce tasks it has
been mostly used for few-shot learning.
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3.2 Problem formalization
We formalize the one-shot unsupervised cross-domain detection scenario:

• data available at training time: a set of 𝑁 sample-label pairs {(𝑥(𝑠)
𝑖 , 𝑦(𝑠)

𝑖 )}𝑁
𝑖=1

with images coming from source domain 𝑆: 𝑥(𝑠) ∈ 𝑆. Here the structured labels
𝑦(𝑠) = (𝑐, 𝑏) describe class identity 𝑐 and bounding box location 𝑏 for each object
in image 𝑥(𝑠)

• goal: to perform an object detection prediction on the test sample 𝑥(𝑡)

• data available at inference time: the single test sample 𝑥(𝑡) that comes from a
target domain 𝑇, with 𝑇 ≠ 𝑆;

Our base strategy to deal with this task consists of designing and training an object
detectionmodel that supports performing a short adaptation phase on the target sample
before exploiting it for prediction. This strategy aims at minimizing the impact of the
domain shift on the prediction for the single sample while maintaining enough flexibil-
ity to deal with the broad range of target domains that could be met after deployment.
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3.3 OSHOT: adaptation on a single sample through
self-supervision

In order to enable adaptation on a single target sample we propose to equip an ob-
ject detector with the ability to perform an auxiliary self-supervised task besides the
main detection one. We obtain this result by designing an architecture composed of
a shared backbone and two task-specific heads. In the pre-training phase, we exploit
the available labeled source data to train our model jointly on both tasks. At inference
time the self-supervised head can be exploited to perform a few gradient updates on
the test sample in order to adapt the shared backbone to the target distribution before
performing a prediction. We call our approach OSHOT.

3.3.1 Multi-task architecture
We adopt Faster R-CNN [134] as our base detection model. It is a two-stage detector
with three main components: a backbone 𝐺𝑓 mainly composed of convolutional layers,
a region proposal network (RPN), and a region-of-interest (ROI) based detection head
𝐺𝑑. The backbone 𝐺𝑓 exploits its parameters 𝜃𝑓 to extract feature representations for
input images 𝑥. These feature maps are then passed to the RPN, which produces candi-
date object proposals according to which interesting region-level features are extracted
through a procedure called ROI-pooling. These ROI-features are processed by the de-
tection head 𝐺𝑑. We use 𝜃𝑑 to indicate the parameters of RPN and ROI. At training time
the RPN and detection head outputs are used to compute the detection loss ℒ𝑑. This
training objective combines the loss of both RPN and ROI, each of them composed of
two terms:

ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥|𝜃𝑓)|𝜃𝑑), 𝑦) =(ℒ𝑐𝑙𝑎𝑠𝑠(𝑐∗) + ℒ𝑟𝑒𝑔𝑟(𝑏))𝑅𝑃 𝑁+

(ℒ𝑐𝑙𝑎𝑠𝑠(𝑐) + ℒ𝑟𝑒𝑔𝑟(𝑏))𝑅𝑂𝐼 .
(3.1)

Where ℒ𝑐𝑙𝑎𝑠𝑠 is a classification loss to evaluate the object recognition accuracy, while
ℒ𝑟𝑒𝑔𝑟 is a regression loss on the box coordinates that enables refining the localization.
We use 𝑐∗ to highlight that RPN deals with a binary classification task to separate fore-
ground and background objects, while ROI deals with the multi-class objective needed
to discriminate among 𝑐 foreground object categories.

We extend the standard Faster R-CNN architecture by adding a second head
after the initial backbone. This head is designed to perform the self-supervised rotation
recognition task [44]. We indicate it as 𝐺𝑟 and its parameters as 𝜃𝑟.
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3.3.2 Multi-task pretraining
The purpose of this phase is to build an object detection model, trained on source data,
but ready to be adapted on a single target sample after deployment. Our multi-task net-
work is trained jointly on the main detection task and on the auxiliary self-supervised
one. Formally, to each source training image 𝑥(𝑠) we apply four geometric transforma-
tions 𝑅(𝑥, 𝛼) where 𝛼 = 𝑞 × 90∘ indicates rotations with 𝑞 ∈ {1,… ,4}.

In this way, we obtain a new set of sample-label pairs {(𝑅(𝑥)𝑗, 𝑞𝑗)}𝑀
𝑗=1, where we

dropped the 𝛼 without loss of generality. Here 𝑞𝑗 is the rotation label, it encodes which
transformation was applied to the original image in order to obtain the rotated version
𝑅(𝑥)𝑗. For the multi-task training, we adopt this learning objective:

argmin
𝜃𝑓,𝜃𝑑,𝜃𝑟

𝑁

∑
𝑖=1

ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥(𝑠)
𝑖 |𝜃𝑓)|𝜃𝑑), 𝑦(𝑠)

𝑖 )+

𝜆
𝑀

∑
𝑗=1

ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑅(𝑥(𝑠))𝑗|𝜃𝑓)|𝜃𝑟), 𝑞𝑗)
(3.2)

where ℒ𝑟 is the cross-entropy loss, used to train the model on the rotation recogni-
tion task, cast as a classification problem with four classes. In order to keep a balance
between rotated and non-rotated samples in the multi-task training we randomly pick
only one rotation angle per instance.

When designing the rotation recognition part of our network we consider two dif-
ferent approaches:

• the naïf approach consists in applying the rotation recognition head 𝐺𝑟 directly
on the backbone output. In this case, 𝐺𝑟 attends to the whole image and can thus
use also background information (e.g. the position of the sky) to recognize the
rotation applied;

• a more advanced approach, which is also more consistent with the processing
strategy used by the detection head, consists of applying ROI-pooling to extract
the features corresponding to a specific bounding box as a preliminary step and
then passing these features to 𝐺𝑟. In this case, the rotation recognition head at-
tends to single-object regions and avoids using noisy information from the back-
ground to solve its task.

In OSHOT we adopt the second approach (i.e. box rotation) but consider also the first
as part of our ablation analysis whose results are in Section 3.5.

3.3.3 Test-time adaptation and inference
At inference time, before performing predictions on each target sample 𝑥(𝑡), we fine-
tune the backbone’s parameters 𝜃𝑓 by performing some gradient update steps on the
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Figure 3.2: Visualization of the adaptive phase of OSHOT with cross-task pseudo-
labeling. The target image passes through the network and produces detections. While
the class information is not used, the identified boxes are exploited to select object re-
gions from the feature maps of the rotated image. The obtained box-specific feature
vectors are finally sent to the rotation classifier. A number of subsequent fine-tuning
iterations allows to adapt the convolutional backbone to the domain represented by the
test image

self-supervised task. This enables adapting the original feature representation to the
visual distribution of the new sample. Specifically, we start from the rotated versions
𝑅(𝑥(𝑡)) of the provided sample and optimize the rotation classifier through:

argmin
𝜃𝑓,𝜃𝑟

ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑅(𝑥(𝑡))|𝜃𝑓)|𝜃𝑟), 𝑞(𝑡)) (3.3)

This process involves only 𝐺𝑓 and 𝐺𝑟, while the RPN and ROI detection components,
described by 𝐺𝑑, remain unchanged. In this adaptation phase, we include dropout to
prevent overfitting on the single target sample. In the following we use 𝛾 to indicate
the number of gradient steps (i.e. iterations), with 𝛾 = 0 corresponding to the output
of the OSHOT pre-training phase (i.e. the source model).

At the end of the fine-tuning process, the inner feature model is described by 𝜃∗
𝑓 and

the detection prediction on 𝑥(𝑡) can be performed by computing

̂𝑦(𝑡) = 𝐺𝑑(𝐺𝑓(𝑥(𝑡)|𝜃∗
𝑓)|𝜃𝑑) . (3.4)

Cross-task pseudo-labeling As in the pre-training phase, also in the adaptation
stage, we have two possible choices to design 𝐺𝑟: either considering the whole im-
age features or focusing on the object locations. In order to implement the second
approach, since in this case we are not provided with ground truth information about
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Algorithm 1: Adaptive phase on one target sample
Input: 𝐺𝑓, 𝐺𝑑, 𝐺𝑟, parameters 𝜃𝑓, 𝜃𝑑, 𝜃𝑟, from the pre-training phase, rotator 𝑅
Data: Target image 𝑥(𝑡)

1 (𝜃∗
𝑓, 𝜃∗

𝑟 ) ← (𝜃𝑓, 𝜃𝑟) ▷ copy params

2 while still 𝛾 iterations do
3 ̃𝑐, �̃� ← 𝐺𝑑(𝐺𝑓(𝑥(𝑡)|𝜃∗

𝑓)|𝜃𝑑)
4 𝑥(𝑡)

𝑟 ← 𝑅(𝑥(𝑡)); 𝑏𝑟 ← 𝑅(�̃�) ▷ rand. rotation 𝑞
5 minimize self-supervised loss using 𝑏𝑟 for ROI-pooling:

(𝜃∗
𝑓, 𝜃∗

𝑟 ) ← (𝜃∗
𝑓, 𝜃∗

𝑟 ) − 𝛼∇𝜃∗
𝑓,𝜃

∗
𝑟
ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑥(𝑡)

𝑟 |𝜃∗
𝑓)|𝜃∗

𝑟 ), 𝑞)
6 end
7 final detection prediction using updated parameters ̂𝑦(𝑡) = 𝐺𝑑(𝐺𝑓(𝑥(𝑡)|𝜃∗

𝑓)|𝜃𝑑)

the position of the objects inside the target image, we adopt a particular form of cross-
task self-training. Specifically, we follow the self-training strategy used in [67, 57] with
a cross-task variant: instead of reusing the pseudo-labels produced by the source model
on the target to update the detector, we exploit them for the self-supervised rotation
classifier. This means that in the adaptation phase, we use the prediction output of the
detection head to select locations to be used for object-level rotation recognition. In this
way, we keep the advantage of the self-training strategy, but because we do not use pre-
dicted class labels as pseudo-labels we largely reduce the risks of error propagation due
to wrong predictions.

More practically, starting from themodel parametrized by (𝜃𝑓, 𝜃𝑑) we obtain the fea-
ture maps from all the rotated versions of the target sample 𝐺𝑓({𝑅(𝑥(𝑡)), 𝑞}|𝜃𝑓), with
𝑞 = 1,… ,4. The feature map produced by the original image (i.e. 𝑞 = 4) is pro-
vided as input to the RPN and ROI network components to get the predicted detection

̃𝑦(𝑡) = ( ̃𝑐, ̃𝑏) = 𝐺𝑑(𝐺𝑓(𝑥(𝑡)|𝜃𝑓)|𝜃𝑑). This pseudo-label is composed of the class label ̃𝑐
and the bounding box location �̃�. We discard the first and consider only the second to
localize the region containing an object in all four feature maps, also recalibrating the
position to compensate for the orientation of each map. This information is then pro-
cessed through ROI-pooling and the obtained box-specific features are passed to the
rotation classification head 𝐺𝑟. This process is graphically represented in Figure 3.2,
while the whole test-time adaptation and subsequent inference pipeline is summarized
in Algorithm 1.
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3.4 FULL-OSHOT:meta-learning prepares adaptation
In the one-shot unsupervised cross-domain detection setting, models are allowed to adapt
to each target sample visual domain before performing a prediction. Still, this process
should be as fast as possible to enable the deployment of such models for real-world
monitoring applications. By design, OSHOT is able to adapt to a single target sample
by exploiting its self-supervised branch. Still, adaptation may require up to 𝛾 = 30
iterations, in order for the results to improve significantly. At the same time, OSHOT
presents an asymmetry between the multi-task pre-training and the adaptation phase:
in the former, the self-supervised task and the main detection one are learned jointly,
in the latter the self-supervised task is used alone for adaptation, and detection is per-
formed only as a second step.

In order to overcome this asymmetry, and, at the same time, obtain a model which is
able to adapt with fewer iterations, we propose to extend OSHOT, by introducing after
the original multi-task pre-training an additional pre-training phase based on meta-
learning. In this phase, we exploit source data to prepare the model for the test time
adaptation procedure. In particular, by using a single training sample at a time but
transformed via data augmentation, we simulate cross-domain learning episodes in
which the self-supervised task is employed in an inner optimization loop that performs
features adaptation, while an outer loop optimizes the network parameters in order
to obtain the best detection performance on top of the adapted features. We call
FULL-OSHOT this variant of our method.

3.4.1 Meta-learning pre-training
With the goal of preparing our model for the particular test-time adaptation procedure
that it has to face at inference time, we introduce a second pre-training phase built
on top of the bi-level optimization process of MAML [39]. Specifically, we propose to
meta-train the detection model with the rotation task as its inner base learner. The
optimization objective can be written as

argmin
𝜃𝑓,𝜃𝑑

1
𝐾

𝐾

∑
𝑘=1

ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥𝑘|𝜃′
𝑓)|𝜃𝑑), 𝑦)

s.t. (𝜃′
𝑓, 𝜃′

𝑟) = argmin
𝜃𝑓,𝜃𝑟

ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑅(𝑥𝑘)|𝜃𝑓)|𝜃𝑟), 𝑞)
(3.5)

In words, we start by focusing on the rotation recognition task for each source sample
𝑥 after augmenting it in 𝑘 = 1,… ,𝐾 different ways. We consider semantic-preserving
augmentations (e.g. gray-scale, color jittering) and perform multiple learning itera-
tions (𝜂 gradient-based update steps). This optimization, whose learning objective is
reported in the second row of Equation (3.5), leads to the update of the feature extrac-
tor and rotation classification modules (parameters 𝜃′

𝑓 and 𝜃′
𝑟). The outer meta-learning
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Figure 3.3: Visualization of the complete FULL-OSHOT proposed approach. The first
phase, inherited from OSHOT, is a multi-task pre-training in which all the modules are
updated through the rotation and detection losses. The second pre-training stage, in-
troduced for FULL-OSHOT, exploits a meta-learning with the rotation recognition as
the inner optimization task to prepare the network for the test-time adaptation stage.
In this last phase, both the rotation and feature extractor modules are updated by per-
forming the self-supervised task iteratively on a single test sample. The adapted feature
extractor is finally used to predict on the same test image. Each change in color shades
indicates an update of a module. We use dotted lines to highlight the components op-
timized in the meta-learning loop.

loop, whose learning objective is in the first row of the same Equation, leverages the
adapted features to optimize the detection model over all the 𝐾 data variants. In order
to simulate the deployment setting we neglect the ground truth object location for the
inner rotation objective. Instead, to get object locations we adopt the same cross-task
pseudo-labeling procedure that is used in the test-time adaptation phase.

We integrate this meta-learning pre-training phase in the source model preparation
strategy, after the multi-task pre-training introduced in OSHOT. We summarize in Fig.
3.3 the complete FULL-OSHOT pipeline. Given that, in the meta-learning pre-training,
we have introduced two novel components, i.e. the meta-learning loop and the addi-
tional augmentations, it is important to assess if the improvements guaranteed by this
pre-training phase come from only one of the components, or from both. Thus, with
the goal of conducting a comprehensive analysis, we also consider two intermediate
models: Tran-OSHOT extends OSHOT with the data semantic-preserving transforma-
tions used in FULL-OSHOT, and Meta-OSHOT corresponds to FULL-OSHOT without
transformations (i.e. 𝐾 = 1).

The meta-learning strategy is summarized in Algorithm 2, the adaptation phase is
inherited as is from OSHOT (see Algorithm 1).
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Algorithm 2: Meta-learning on one source sample
Input: 𝐺𝑓, 𝐺𝑑, 𝐺𝑟, parameters 𝜃𝑓, 𝜃𝑑, 𝜃𝑟, rotator 𝑅, augmenter 𝐴
Data: Source image 𝑥 with 𝑦 = (𝑏, 𝑐)

1 while still 𝑘 augmentations do
2 𝑥𝑘 ← 𝐴(𝑥)
3 (𝜃′

𝑓, 𝜃′
𝑟) ← (𝜃𝑓, 𝜃𝑟) ▷ copy params

4 while still 𝜂 iterations do
5 ̃𝑐, ̃𝑏 ← 𝐺𝑑(𝐺𝑓(𝑥𝑘|𝜃′

𝑓)|𝜃𝑑)
6 𝑥𝑟,𝑘 ← 𝑅(𝑥𝑘); 𝑏𝑟,𝑘 ← 𝑅( ̃𝑏) ▷ rand. rotation 𝑞
7 minimize self-supervised loss using 𝑏𝑟,𝑘 for ROI-pooling:

(𝜃′
𝑓, 𝜃′

𝑟) ← (𝜃′
𝑓, 𝜃′

𝑟) − 𝛼∇𝜃′
𝑓,𝜃

′
𝑟
ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑥𝑟,𝑘|𝜃′

𝑓)|𝜃′
𝑟), 𝑞)

8 end
9 compute the supervised loss 𝑙𝑘 = ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥𝑘|𝜃′

𝑓)|𝜃𝑑), 𝑦)
10 end
11 minimize the supervised loss (𝜃∗

𝑓, 𝜃∗
𝑑) ← (𝜃𝑓, 𝜃𝑑) − 𝛽∇𝜃𝑓,𝜃𝑑

∑𝑘∈𝐾 𝑙𝑘
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3.5 Experimental results

3.5.1 Datasets
We run an extensive experimental analysis considering several datasets.

Real-world (Pascal-VOC) Pascal-VOC [38] is one of the standard real-world image
datasets for object detection benchmarks. Its two versions VOC2007 and VOC2012 both
contain bounding boxes annotations of 20 common categories. VOC2007 has 5011 im-
ages in the train-val split and 4952 images in the test split, while VOC2012 contains
11540 images in the train-val split.

ArtisticMediaDatasets (AMD) Clipart1k, Comic2k, andWatercolor2k [57] are three
object detection datasets designed for benchmarking domain-adaptive detection meth-
ods when the source domain is Pascal-VOC. Clipart1k shares with it its 20 categories
and it is composed of 500 images in the training set and 500 images in the test set.
Comic2k and Watercolor2k both have the same 6 classes (a subset of the 20 classes of
Pascal-VOC), and 1000-1000 samples in the training-test splits each.

Cityscapes [31] It is an urban street scene dataset with pixel level annotations of 8
categories. It has 2975 and 500 images respectively in the training and validation splits.
We use the instance level pixel annotations to generate bounding boxes of objects.

Foggy Cityscapes [140] It is obtained by adding different levels of synthetic fog to
Cityscapes images. We only consider images with the highest amount of artificial fog,
thus training-validation splits have 2975-500 images respectively.

Social Bikes In order to accurately evaluate the performance of algorithms in the
novel one-shot unsupervised cross-domain detection setting, we collect a dedicated
dataset containing 530 images of scenes with persons/bicycles collected from Twitter
(now X ), Instagram, and Facebook by searching for #bike tags. The top part of Figure
3.1 shows some examples extracted from this collection. We designed this dataset to
be used as a target when the source domain is Pascal-VOC, indeed the two classes it
contains, i.e. person and bicycle, are shared with that dataset. With respect to the other
testbeds, Social Bikes covers a larger variety of visual styles related to the tastes and
preferences of each social media user.

3.5.2 Baselines and competitors
In order to build a comprehensive picture of the state-of-the-art, we compare OSHOT
and its variants with a number of different methods. For all the algorithms considered
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we use the same ResNet-50 [48] backbone pre-trained on ImageNet1k [34] with the goal
of performing fair comparisons.

Baselines Our main Baseline is Faster-RCNN trained on the source domain and de-
ployed on the target without further adaptation. We also build an alternative Tran-
Baseline, a variant obtained by applying at training time, over the original baseline, the
same data semantic-preserving transformations introduced in FULL-OSHOT. Its pur-
pose is to assess how much improvement is obtained due to data augmentation rather
than due to the training strategy.

Competitors Besides the baselines, we consider a set of literature methods. Div-
Match [68] is a cross-domain detection algorithm that, by exploiting target data, cre-
ates multiple randomized domains via CycleGAN and aligns their representations us-
ing an adversarial loss. SW (StrongWeak) [138] aligns source and target features by
balancing the weight of global and local adaptation. SW-ICR-CCR [171] adds on top
of SW an image-level multi-label classifier and a module imposing consistency be-
tween the image-level and instance-level predictions. ICCR-VDD [168] uses a vector-
decomposition technique to disentangle domain-invariant and domain-specific features.
This enables using only relevant features to extract object proposals in a cross-domain
setting.

3.5.3 Implementation details
For all the experiments the standard transformation pipeline includes resizing the shorter
image’s side to 600p and performing random horizontal flipping. When doing multi-
task pre-training we set the weight 𝜆 to 0.05. Our model is robust to the exact value of
this parameter in [0.01, 0.2]: the relevance of the rotation recognition objective should
be high enough for the auxiliary task to be learned, but low enough to not hijack the
main task learning.

The multi-task pre-training phase of OSHOT is carried out for 70k iterations using
SGD with momentum set at 0.9, the initial learning rate is 0.001, and decays by a factor
of 10 after 50k iterations. We use a batch size of 1, keep batch normalization layers fixed
for both pre-training and adaptation phases, and freeze the first 2 blocks of ResNet50,
as is standard practice in the field.

For what concerns FULL-OSHOT there are two pre-training steps. For the first
60k iterations, the training is identical to that of OSHOT, while in the last 10k iter-
ations, the meta-learning procedure is activated. The inner loop optimization on the
self-supervised task runs with 𝜂 = 5 iterations and the batch size is 2 to accommo-
date for two transformations of the original image. Specifically, we used gray-scale and
color-jitter with brightness, contrast, saturation, and hue all set to 0.4. All the other
hyperparameters remain unchanged w.r.t. OSHOT.
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Tran-OSHOT differs from OSHOT only for the last 10k learning iterations, where
the batch size is 2 and the network sees images augmented using the same transforma-
tions of FULL-OSHOT.

Meta-OSHOT is instead identical to FULL-OSHOT, with the only exception that
transformations are dropped, thus the batch size is 1 also in the last 10k pre-training
iterations.

3.5.4 Evaluation protocol
The performance evaluation is carried out mainly by reporting the mean Average Preci-
sion (mAP, see definition in Sec. A.2.2), with results averaged over three runs. We also
conduct a detailed error analysis using TIDE [8]. This is a toolbox designed to estimate
how much each type of detection failure contributes to the missing mAP. The main
reason for using TIDE is that it provides visualizations giving not only qualitative but
also quantitative insights, by counting False Positives, False Negatives, and identifying
six categories of errors:

• classification error (Cls): for objects localized correctly (𝐼𝑜𝑈 ≥ 0.5) but classi-
fied incorrectly;

• localization error (Loc): for objects classified correctly but localized incorrectly
(0.1 ≤ 𝐼𝑜𝑈 < 0.5);

• classification and localization error (Both): for objects mislocalized and mis-
classified at the same time;

• duplicate (Dupe): for correct detection of objects whose ground truth bounding
box has already been associated with another higher scoring detection;

• background (Bkg): for detection of background as foreground (𝐼𝑜𝑈 < 0.1);

• missed (Miss): for all the undetected ground truth boxes not covered by other
types of errors.

We also include some qualitative detection results in Figure 3.4.

Settings definition We compare the methods described before by evaluating their
performance in three main settings: i) adapting to social feeds, ii) adapting to large
distribution shifts, and iii) adapting to adverse weather. These are all cross-domain
settings, thus we use the notation Source → Target to identify them. Because the
state-of-the-art cross-domain detection algorithms that we use as reference were not
designed to manage adaptation on a single unlabeled target image and may fail in this
condition, we test them by following slightly different protocols w.r.t. OSHOT and its
variants:
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Figure 3.4: Some detection results examples of FULL-OSHOT and OSHOTwhen chang-
ing the number of adaptive iterations.

• for OSHOT and its variants, the training is carried out considering access to
source data only. At inference time a single test sample at a time is consid-
ered, the source model is adapted to it and then a prediction is performed before
considering the next sample;

• cross-domain detection algorithms need to access target data at training time,
so they operate from an advantaged position, having access to ten randomly se-
lected target samples (in the Ten-Shot Target scenario) or even to the entire target
set (in the Whole Target scenario) during training. We collect average precision
statistics during inference.
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Table 3.1: Results for VOC → Social Bikes

One-Shot Target
Method person bicycle mAP
Baseline 69.0 74.1 71.6

Tran-Baseline 71.4 74.2 72.8

𝛾 = 0

OSHOT 68.9 74.6 71.8
Tran-OSHOT 71.6 74.0 72.8
Meta-OSHOT 69.5 73.5 71.5
FULL-OSHOT 71.7 74.3 73.0

𝛾 = 5

OSHOT 72.1 74.9 73.5
Tran-OSHOT 73.0 74.7 73.9
Meta-OSHOT 72.6 74.5 73.6
FULL-OSHOT 73.3 75.1 74.2

Ten-Shot Target
DivMatch [68] 69.5 73.1 71.3

SW [138] 69.4 73.0 71.2
SW-ICR-CCR [171] 72.5 77.6 75.1
VDD-DAOD [168] 68.8 75.3 72.1

Whole Target
DivMatch [68] 73.6 77.1 75.4

SW [138] 68.6 70.3 69.5
SW-ICR-CCR [171] 72.0 72.8 72.4
ICCR-VDD [168] 71.1 71.9 71.5

Table 3.2: TIDE-based [8] detection error analysis for VOC → Social Bikes

Baseline OSHOT𝛾=0 OSHOT𝛾=5

Tran-OSHOT𝛾=5 Meta-OSHOT𝛾=5 FULL-OSHOT𝛾=5
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3.5.5 Adapting to social feeds
When the data comes from multiple providers, the assumption that all target images
originate from the same underlying distribution does not hold and standard cross-
domain detection methods are penalized regardless of the number of seen target sam-
ples. To analyze the performance in this setting we use Pascal-VOC as source domain
and Social Bikes as target.

In Table 3.1 the mAP results with 𝛾 = 0 allow us to compare the pre-training mod-
els before adaptation and already show the advantage of FULL-OSHOT over OSHOT,
as well as over the Tran and Meta variants. When 𝛾 = 5 all variants of OSHOT obtain
an improvement that ranges from 1.9 (OSHOT) to 2.6 (FULL-OSHOT) points over the
Baseline just by adapting on a single test sample for a small number of iterations. De-
spite granting them access to the whole set of adaptation samples, the reference domain
adaptive algorithms reach at best an advantage of 1.2 points over FULL-OSHOT. When
using ten target samples, half of the methods show a negative transfer with respect to
w.r.t. the Baseline.

By looking at the detection error analysis in Table 3.2 we can see that the adaptation
iterations allow OSHOT to reduce the number of false negatives. Moreover, both Tran-
OSHOT and FULL-OSHOT obtain a higher mAP than OSHOT thanks to lower Miss
errors. The performance of FULL-OSHOT confirms that the meta-learning strategy
with semantic-preserving data augmentations successfully prepares the model for the
test-time adaptation procedure.

3.5.6 Adapting to large distribution shifts
Artistic images represent a difficult testbed for cross-domain methods, as they show
perturbations in shape and color which are challenging for detectors trained only on
real-world photos. We investigate this setting by training on Pascal-VOC and testing on
the Artistic Media Datasets (AMD): Clipart, Comic, andWatercolor. The results in Table
3.3 show that OSHOT and its variants, by only exploiting one sample at a time, and few
adaptive iterations (𝛾 = 5), outperform the adaptive detectors which leverage on ten
target samples. It is interesting to notice that none of the adaptive detectors is able
to work in data-scarce conditions: indeed, they all obtain results comparable to those
of the Tran-Baseline and of the pre-training phase of our approach (𝛾 = 0). We also
highlight that when 𝛾 = 5, Meta-OSHOT obtains results higher than Tran-OSHOT and
only slightly lower on average than FULL-OSHOT. This proves that the meta-learning
strategy alone (without additional data augmentation) effectively prepares the detector
for test-time adaptation.

From the detection error analysis in Table 3.4, we see that the data augmentation of
Tran-OSHOT pushes for a lower number of errors of typeMiss, while the meta-learning
strategy of Meta-OSHOT gets a lower number of Classification errors. FULL-OSHOT
takes advantage of both, obtaining the best performance.

42



3.6 – Analysis

Table 3.3: Results for VOC → AMD

(a) VOC → Clipart

One-Shot Target
Method mAP
Baseline 26.4

Tran-Baseline 27.6

𝛾 = 0

OSHOT 28.8
Tran-OSHOT 28.6
Meta-OSHOT 29.4
FULL-OSHOT 28.6

𝛾 = 5

OSHOT 30.8
Tran-OSHOT 30.5
Meta-OSHOT 31.4
FULL-OSHOT 31.7

Ten-Shot Target
DivMatch [68] 26.3

SW [138] 26.4
SW-ICR-CCR [171] 27.2
ICCR-VDD [168] 27.6

(b) VOC → Comic

One-Shot Target
mAP
18.1
22.4
19.9
20.1
20.2
21.1
22.3
24.9
24.8
25.2

Ten-Shot Target
20.8
21.0
21.1
24.8

(c) VOC → Watercolor

One-Shot Target
mAP
42.8
46.3
45.7
45.4
45.8
46.4
48.1
47.7
49.0
48.9

Ten-Shot Target
45.4
42.0
45.3
43.1

3.5.7 Adverse weather
Some environmental conditions, such as the presence of fog, may be disregarded in
source data acquisition, yet generalization to these circumstances is crucial in real-
world applications. We test this scenario by considering the Cityscapes → FoggyCi-
tyscapes setting. We perform model selection on the Cityscapes validation split before
deployment.

The results in Table 3.5 show that domain adaptive detectors struggle in this sce-
nario. Only SW-ICR-CCR and VDD-DAOD are able to exploit the small adaptation set
and obtain a meaningful improvement over the Baseline. For what concerns OSHOT
and its variants, the pretraining alone (𝛾 = 0) helps in gaining a better generalization
ability: all variants but Meta-OSHOT show higher performance than the Baseline. By
looking at the error analysis in Table 3.6 we notice an improvement also in the Miss
error type which decreases when passing from the Baseline to OSHOT 𝛾 = 0, reaching
its lower value for FULL-OSHOT with 𝛾 = 5.

3.6 Analysis
We perform some additional analyses in order to provide a more complete picture of
the performance of OSHOT and its variants, and of their inner workings.
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Table 3.4: TIDE-based [8] detection error analysis for VOC → AMD

VOC → Clipart
Baseline OSHOT𝛾=0 OSHOT𝛾=5

Tran-OSHOT𝛾=5 Meta-OSHOT𝛾=5 FULL-OSHOT𝛾=5

VOC → Comic
Baseline OSHOT𝛾=0 OSHOT𝛾=5

Tran-OSHOT𝛾=5 Meta-OSHOT𝛾=5 FULL-OSHOT𝛾=5

VOC → Watercolor
Baseline OSHOT𝛾=0 OSHOT𝛾=5

Tran-OSHOT𝛾=5 Meta-OSHOT𝛾=5 FULL-OSHOT𝛾=5

3.6.1 Comparison with One-Shot Style Transfer
Although they are not designed for the one-shot cross-domain scenario, it is possible to
apply one-shot style transfer methods as an alternative solution in our setting. We ex-
periment with BiOST [30], using it to modify the style of the target sample towards that
of the source domain before performing inference. Due to the time-heavy requirements
to run this method on each test sample, we test it only on Social Bikes and on a random
subset of 100 Clipart images that we name Clipart100. We compare the performance
and time requirements of our approach w.r.t. BiOST on these two targets.

Table 3.7 shows that on Clipart100 the Baseline obtains 27.9 mAP and BiOST has
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Table 3.5: Results for Cityscapes → FoggyCityscapes

One-Shot Target
Method person rider car truck bus train mcycle bicycle mAP
Baseline 30.4 36.3 41.4 18.5 32.8 9.1 20.3 25.9 26.8

Tran-Baseline 32.1 35.2 42.9 17.8 31.0 4.3 22.6 30.0 27.0

𝛾 = 0

OSHOT 32.2 38.6 39.0 20.5 30.6 12.9 22.4 31.2 28.4
Tran-OSHOT 30.5 37.4 42.7 16.9 29.5 14.5 21.9 30.4 28.0
Meta-OSHOT 30.6 35.1 35.9 16.6 28.4 7.6 18.2 28.4 25.1
FULL-OSHOT 31.7 40.8 43.7 18.3 28.8 11.0 22.8 33.3 28.8

𝛾 = 5

OSHOT 32.7 39.3 41.1 21.1 33.1 12.6 22.7 31.9 29.3
Tran-OSHOT 30.9 38.5 43.0 17.5 32.1 13.9 21.6 30.5 28.5
Meta-OSHOT 32.1 38.2 39.9 17.4 30.9 7.5 21.0 29.2 27.0
FULL-OSHOT 32.0 39.7 43.8 18.8 31.8 10.6 22.1 33.2 29.0

Ten-Shot Target
DivMatch [68] 27.6 38.1 42.9 17.1 27.6 14.3 14.6 32.8 26.9

SW [138] 25.5 30.8 40.4 21.1 26.1 34.5 6.1 13.4 24.7
SW-ICR-CCR [171] 29.6 40.8 39.6 20.5 32.8 11.1 24.0 34.0 29.1
ICCR-VDD [168] 32.3 32.1 41.7 25.0 29.0 40.0 12.6 19.7 29.0

Table 3.6: TIDE-based [8] detection error analysis for Cityscapes → FoggyCityscapes

Baseline OSHOT𝛾=0 OSHOT𝛾=5

Tran-OSHOT𝛾=5 Meta-OSHOT𝛾=5 FULL-OSHOT𝛾=5

an advantage over it of 1.9 points. Conversely, on the Social Bikes dataset, BiOST in-
curs a slight negative transfer, which highlights its inability to effectively modify the
source’s style on this more challenging testbed. OSHOT improves over the baseline on
Clipart100 but its mAP remains lower than that of BiOST, while it outperforms both the
baseline and BiOST on Social Bikes. Finally, FULL-OSHOT shows the best results on
both the datasets. The last row of the table presents the time complexity of all the con-
sidered methods, which is identical for OSHOT and FULL-OSHOT since the number of
adaptive iterations is the same. BiOST instead, needs more than six hours to modify the
style of a single source instance. Moreover, we highlight that BiOST works under the
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Table 3.7: Comparison between baseline, one-shot style transfer and our approach
in the one-shot unsupervised cross-domain detection setting. Speed computed on an
RTX2080Ti with full precision settings

Baseline
BiOST OSHOT FULL-OSHOT
[30] 𝛾 = 5 𝛾 = 5

mAP on Clipart100 27.9 29.8 28.2 30.4
mAP on Social Bikes 71.6 71.4 73.5 74.2

Adaptation time (s per sample) - 2.4 × 104 1.3 1.3

Figure 3.5: Performance of OSHOT at different number of adaptive iterations.

strict assumption of accessing at the same time the entire source training set and the
target sample, while OSHOT and its variants do not need to access the source dataset
in the adaptation phase.

3.6.2 Increasing the number of Adaptive Iterations
The bi-level optimization process at the basis of meta-learning requires non-trivial com-
putational and memory burdens that might limit the feasible number of iterations 𝜂.
In FULL-OSHOT we use the same conditions for the meta-learning pre-training and
test-time adaptation phases, thus we set a small number of training steps with 𝛾 = 𝜂.
This choice, however, does not limit the effectiveness of the method, which becomes
clear when comparing it with OSHOT at an increasing number of iterations. We stud-
ied the mAP performance of OSHOT on the AMD dataset and collected the results in
Figure 3.5. We observe a positive correlation between the number of fine-tuning itera-
tions and the mAP of the model in the earliest steps, while the performance generally
reaches a plateau after about 30 iterations: increasing 𝛾 beyond this value does not
affect significantly the final results. From the plots, we can see that the performance
of FULL-OSHOT with just 5 adaptation iterations can be achieved and eventually sur-
passed by the standard OSHOT only at the cost of a much higher number of adaptation
iterations. This behavior is also reflected by the visualizations in Figure 3.4 where the
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Table 3.8: Rotating image vs rotating objects on OSHOT

𝐺𝑟(𝑖𝑚𝑎𝑔𝑒) 𝐺𝑟(𝑏𝑜𝑥)
VOC → Clipart 31.0 33.9
VOC → Comic 21.0 26.9

VOC → Watercolor 48.2 52.0
Cityscapes → Foggy Cityscapes 27.7 31.9

results obtained by FULL-OSHOT with 𝛾 = 5 are more similar to those obtained by OS-
HOT with 𝛾 = 30 than those obtained by OSHOT with 𝛾 = 5. These results highlight
that the meta-learning approach, at the cost of a higher train-time computational cost,
is able to produce a model that effectively adapts to the target sample domain with just
a few iterations, leading to an inference-time computational cost reduction and speed
improvement.

3.6.3 Rotation recognition localization
As described in Section 3.3 there are two main options when designing the strategy to
integrate the rotation recognition self-supervised task in an object detection pipeline:
either considering the whole image, or focusing on the object-level, by selecting box-
features obtained by applying ROI-pooling using the objects’ bounding boxes (ground
truth ones in the pre-training phase, and predicted ones as part of the cross-task pseudo-
labeling strategy in the adaptive phase).

We adopted the second strategy (box-rotation) in all the experiments presented till
here as we argue that, by solving the auxiliary task on object-level features, we prevent
the network from using background features for predictions, which may be misleading
or provide shortcuts for performing the tasks without learning anything useful (e.g. :
finding fixed patterns in images, exploiting watermarks). We validate our choice by
comparing it against using the rotation task on the entire image in both training and
adaptation phases. Table 3.8 shows results for Pascal-VOC → AMD and Cityscapes
→ Foggy Cityscapes using OSHOT with 𝛾 = 30. We observe that the choice of box-
rotation is critical for the effectiveness of the algorithm. Indeed, adopting this strategy
rather than whole-image rotation results in mAP improvements that range from 2.9 to
5.9 points, indicating that this approach leads to learning better features for the main
task.

In Figure 3.6 we visualize Grad-CAM [143] heatmaps for a set of samples from our
datasets, in order to see which image regions are attended by the network when per-
forming the rotation recognition task. By comparing the column on the left, which
shows results obtained by a network trained to perform rotation recognition on the
whole image, with the column on the right, which shows the results obtained by a net-
work trained using the box-rotation strategy, it is easy to notice some differences in the
behavior. In particular, the adoption of the box-rotation strategy leads the network to
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Figure 3.6: Grad-CAM [143] heatmaps highlight the parts of the images which are
mostly used by the network to perform rotation recognition. Comparison between
a network trained with 𝐺𝑟(𝑖𝑚𝑎𝑔𝑒) (left), and one trained with 𝐺𝑟(𝑏𝑜𝑥) (right).

focus more on local objects’ features, while the network trained with image-rotation
employs a more global focus attending to various parts of the image and thus also fo-
cusing on background features.
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3.7 Conclusions
This chapter has focused on the proposal and study of a new cross-domain analysis re-
search setting called one-shot unsupervised cross-domain detection. This novel research
problem is designed to study those real-world scenarios in which the deployment con-
ditions involve a non-homogeneous and continuously varying target visual domain,
for which traditional domain-adaptive object detection strategies may fail. An example
of this situation is the visual social media monitoring task, where a stream of user-
uploaded images has to be analyzed taking into account that every sample could come
from its own visual domain.

The chapter proposed a solution for the novel task built on top of a multi-task
joint self-supervised and supervised learning strategy. This approach enables a source-
trained model to be adapted on a single test sample at a time, right before the inference
step, in order to obtain predictions tailored for any target domain the model may face.
An improvement over this first solution has also been proposed, exploiting a meta-
learning-based pre-training phase designed explicitly to prepare the model for the test-
time adaptation procedure which is used at inference time. Thanks to this preparation
the model is able to improve the adaptation speed and the final performance.

The two proposed approaches are deeply analyzed through a comprehensive ex-
perimental evaluation which has not only proved their effectiveness in dealing with
the novel one-shot unsupervised cross-domain detection task but also their superiority
w.r.t. state-of-the-art domain-adaptive methods, which have shown to be extremely
brittle when they need to adapt in data-scarce scenarios.

These results highlight that the assumption of having access to a large set of target
samples at training time does not always hold, which points out the need to design
specific solutions to deal with this situation. In this context, OSHOT [33] has been one
of the first approaches proposed to perform adaptation at test time on a single target
sample, together with a concurrent work proposing a test time training procedure [150].
In the last years the research in this field has been particularly active, sparking the need
for the presentation of a survey on the topic [89].
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Chapter 4

Data augmentation and Domain
Generalization: an unbiased
perspective

In this chapter, we focus on Domain Generalization, in particular analyzing its re-
lationship with data augmentation. The latter is a standard practice applied during
the training of neural networks in order to reduce overfitting and regularize learning,
and it is particularly effective, especially in those cases in which the training dataset is
quite small. However, the impact that special data augmentation transformations could
have on the domain-shift robustness of the learned features is often neglected, and the
DG literature prefers focusing on the development of strategies that obtain domain in-
variance through more sophisticated approaches. We perform here a thorough analysis
of the situation, by first proposing a very simple style-transfer-based data augmentation
pipeline that enables obtaining a robust DG baseline outperforming previous state-of-
the-art approaches, and then experimenting with combinations of this augmentation
pipeline with DG algorithms that tackle the problem with seemingly orthogonal strate-
gies. The main outcome of our analysis is that many state-of-the-art methods are not
able to provide any advantage once they are applied on top of the improved baseline,
a phenomenon that should push for the development of novel strategies able to reach
this result, eventually providing even more robust cross-domain performances.

Part of the work described in this chapter has been previously published in:
[19] F. Cappio Borlino, A. D’Innocente, and T. Tommasi
Rethinking Domain Generalization Baselines
25th International Conference on Pattern Recognition, ICPR 2020
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4.1 Data augmentation enables generalization
Domain generalization is one of the most important among the research settings that
fall under the umbrella of cross-domain analysis, with the main reason being the fact
that it covers a wide number of real-world scenarios. Indeed, in many deployment
conditions, the target visual domain is different from the source one, which
makes it fundamental to adopt a deep model showing great robustness to visual domain
changes. Domain generalization is however a challenging task, as the target data is fed
to the system only after deployment. In order to build robust models a common solution
relies on the exploitation of multiple available sources during training, a strategy that
enables understanding which are the domain-invariant features that are really relevant
for the task, in the hypothesis that analogous invariances will hold for future
test domains. Towards this goal, most of the existing DG strategies try to incorporate
the observed data invariances, capturing them at the feature-level [84] or at the model
one, using meta-learning [82] or self-supervision [23, 172].

An alternative solution consists in extending the source domains by synthe-
sizing new images, with the aim of better spanning the data space and including a
larger variability in the training set. This is usually done by learning generative models
with the specific constraint of preserving the image content while varying its global
appearance. With the recent improvements in generative learning, the adoption of this
kind of approach for DG is becoming more and more viable, with results that seem to
be particularly effective [189]. However, the performance of this kind of solution tends
to grow together with the complexity of the employed learning procedure, which in
many cases may involve one or multiple generator modules and adversarial training
protocols.

The radical difference between the data augmentation-based strategies and the feature-
and model-based ones has initiated a particular trend in the most recent domain gen-
eralization research. Several papers focusing on data augmentation solutions discuss
their merit in comparison with feature and model-based techniques [189, 185]. Still,
newly introduced feature and model-based approaches avoid benchmarks against data
augmentation strategies, probably considering them unfair competitors due to the ex-
tended training set [56].

This trend has led to a split in the literature, which is a source of confusion about
the real state-of-the-art. With the analysis that we carry out in this chapter, we aim
at recomposing the field, by clarifying which are the potentialities of the data aug-
mentation strategy and which should be its relationship with model- and feature-based
techniques.

The main contributions of this chapter are:

• the proposal of a simple and effective style-transfer-based data augmenta-
tion approach for domain generalization. This method uses AdaIN [55], a
model for real-time style-transfer, by re-purposing it for data augmentation with
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the aim of combining semantic and texture information of the available sources
(see Figure 4.1)

• the design of tailored strategies to integrate style-transfer-based data augmenta-
tion with current state-of-the-art approaches;

• a comprehensive analysis of the DG performance of the novel approach of style-
transfer-based data augmentation both when used alone and in combination with
state-of-the-art methods. This analysis points out that the original advantage of
thosemethods almost always disappearswhen comparedwith the data-augmented
baseline.

The scenario described by this analysis clearly suggests the need for rethinking domain
generalization baselines. On one side, simple data augmentation strategies should be
envisaged to increase source data variability compatible with orthogonal feature and
model generalization approaches. On the other, new adaptive strategies should be de-
signed to build over images generated by style-transfer approaches.

4.1.1 Background and problem formalization
In this chapter, we focus on object recognition performed in the multi-source domain
generalization setting. For a general background presentation and a formal descrip-
tion of the problem we refer to Sec. 2.2.1. As presented there, the most adopted DG
approaches rely on complex training procedures, designed specifically to improve gen-
eralization by focusing on the feature-level, for example through an explicit domain-
invariance enforcement, or the model-level, when adopting self-supervised training
procedures or meta-learning based ones.

Besides these approaches, there is an alternative research line that focuses on a
potentially orthogonal paradigm, i.e. extending the training dataset through
data augmentation techniques designed specifically to increase the source diversity: a
model learned on the augmented samples gains robustness against the specific features
that they show. Several approaches have been proposed to generate new samples, from
the simple random changing of color or background in the case of synthetic objects and
robotics applications [153], to the more complex use of adversarial training [162, 189].
Domain Mixup can also be included in the data augmentation methods [174]: pairs of
examples from different domains are interpolated together with their label to learn on
a more continuous domain-invariant data distribution. In general, any approach for
pixel-level alignment can be used for data augmentation. Some of these are complex
GAN-based approaches that learn to replicate the visual appearance of a specific domain
or set of domains [193], while others focus on transferring the style of a single image
to another one, by using features statistics as a style summary, as proposed in AdaIN
[55]. This last method is not only flexible in terms of support of a wide variety of visual
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content images

style image stylized images

Figure 4.1: Source augmentation by style-transfer allows us to generate different vari-
ants of each image, borrowing the style from any other image and by keeping the orig-
inal semantic content. In this example the images come from the OfficeHome dataset
and the style-transfer is performed using AdaIN.

styles, but it is also able to perform style-transfer in a single forward pass, enabling
real-time performance and its integration in an online data augmentation pipeline.
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4.2 Source augmentation by style-transfer
Let’s consider a basic deep learning classifier 𝐶𝜃𝑐

(⋅), parametrized by 𝜃𝑐, and trained on
the source data in a supervised fashion:

argmin
𝜃𝑐

𝑛𝑆

∑
𝑖=1

𝑁𝑆𝑖

∑
𝑗=1

ℒ (𝐶𝜃𝑐 (𝑥
(𝑠)
𝑗 ) , 𝑦(𝑠)

𝑗 )

With the objective of increasing data variability, we study how to augment each sample
𝑥(𝑠) by keeping its semantic content and changing the image style, borrowing it from
the other available source data. The plethora of stylized samples �̃�(𝑠)

𝑘 (with 𝑘 identifying
a style image) obtained from 𝑥(𝑠) inherit the original label 𝑦(𝑠) and enrich the training
set, possibly making the model learned by optimizing on the original and augmented
data more robust to domain shifts. Thus, our analysis will consider a two-step process,
where a deepmodel 𝐴𝜃𝑎

parametrized by 𝜃𝑎 is first learned on the source data to perform
style transfer 𝑥(𝑠) → �̃�(𝑠) = 𝐴𝜃𝑎

(𝑥(𝑠)), and then it is used to perform data augmentation
online while 𝐶𝜃𝑐

learns to classify the image content.

4.2.1 Style Transfer Model
We adopt AdaIN [55] as a stylization method. It is a simple and effective encoder-
decoder-based approach that supports performing style-transfer in real-time, by trans-
ferring the visual style of a style image onto a content image, in a content-preserving
fashion. The idea at the basis of AdaIN is that the style of an image is encoded in the
statistics (mean and standard deviation) of its features.

Stylization strategy and architecture The encoder 𝐸 extracts representative fea-
tures from the content image 𝑐 and the style image 𝑠:

𝑓𝑐 = 𝐸(𝑐) ; 𝑓𝑠 = 𝐸(𝑠) ;

Content features 𝑓𝑐 are then re-normalized to have the same channel-wise mean and
standard deviation of the style features 𝑓𝑠:

𝑓𝑐𝑠 = 𝜎(𝑓𝑠) (
𝑓𝑐 − 𝜇(𝑓𝑐)

𝜎(𝑓𝑐) ) + 𝜇(𝑓𝑠) . (4.1)

where 𝜇(⋅) is the mean and 𝜎(⋅) the standard deviation.
Finally, the obtained features 𝑓𝑐𝑠 are mapped back to the image space through the

decoder 𝐷.
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Model training The overall learning objective exploited by AdaIN is composed of
two losses:

ℒ𝐴 = ℒ𝑐 + 𝜆ℒ𝑠. (4.2)

The content loss ℒ𝑐 is the euclidean distance between the stylization step output 𝑓𝑐𝑠
and a new encoding of the decoded output:

ℒ𝑐 = ‖𝐸(𝐷(𝑓𝑐𝑠)) − 𝑓𝑐𝑠‖2 (4.3)

The style loss ℒ𝑠 adopts a similar logic, but it is computed by measuring the difference
in terms of mean and standard deviation of the ReLU output of several encoder layers
{𝜙𝑖}𝐿

𝑖=1:

ℒ𝑠 =
𝐿

∑
𝑖=1

‖𝜇(𝜙𝑖(𝐷(𝑓𝑐𝑠))) − 𝜇(𝜙𝑖(𝑠))‖2 +
𝐿

∑
𝑖=1

‖𝜎(𝜙𝑖(𝐷(𝑓𝑐𝑠))) − 𝜎(𝜙𝑖(𝑠))‖2 (4.4)

In words, this loss pushes the network to produce features statistics as close as possible
for the original image and the stylized one.

The method has two main hyperparameters {𝜆, 𝛼}. The first controls the weight of
the style loss during training and is generally kept fixed at 𝜆 = 10. The second enables a
test-time control of a content-style trade-off by interpolating between the feature maps
that are fed to the decoder with

𝑓𝑐𝑠𝛼 = 𝐷((1 − 𝛼)𝑓𝑐 + 𝛼𝑓𝑐𝑠) (4.5)

4.2.2 Style Transfer as Data Augmentation

Figure 4.2: The classifier’s training pipeline. Each training sample is augmented by
borrowing the style from another image of the batch.

When training our object classifier 𝐶𝜃𝑐
we use data batches containing samples ex-

tracted from all the source domains. Before performing the network forward, the sam-
ples of the batch are augmented as depicted in Figure 4.2. In practice, each sample has

56



4.2 – Source augmentation by style-transfer

the role of content image for the stylization procedure, and any of the remaining in-
stances in the same batch can be selected randomly to work as a style provider. In this
scenario, stylization can happen both from images of the same source domain (e.g. two
photos) or from images of different domains (e.g. a photo and a painting). To regulate
this process we use a stochastic approach with the transformed image �̃�(𝑠) replacing its
original version 𝑥(𝑠) with probability 𝑝.

57



Data augmentation and Domain Generalization: an unbiased perspective

4.3 Experimental results
The purpose of this experimental analysis is to run a thorough evaluation of the impact
of style-transfer-based data augmentation on domain generalization. We are mainly
interested in observing how this data augmentation can improve the standard baseline
model, how it compares with the most recent state-of-the-art DG methods, and how
their combination performs. In the following we provide details on the chosen bench-
mark and state-of-the-art models, describing how the data augmentation strategy can
be integrated into each approach.

4.3.1 Datasets
We consider three standard benchmark datasets that differ in terms of number of classes
and covered domains.

PACS [81] This dataset contains images of 7 object classes spanning 4 visual domains:
Photo, Art painting, Cartoon, and Sketch. Given that the visual domains go from real-
world representations to artistic images, the style variability is quite large. We follow
the experimental protocol proposed in the original paper by training on the train splits
of three source domains (using the validation splits for model selection), and then test-
ing on the whole left-out domain which acts as unknown target.

OfficeHome [159] It is similar to PACS, it covers 4 domains (Art, Clipart, Product,
and Real-World) but shows a much larger set of 65 object classes. In the experiments,
we use a random 90-10 train-val split to select the training images for the 3 source
domains (once again, the validation images are used for model selection) and testing is
performed on the whole left-out target domain.

VLCS [154] It is built upon 4 different datasets: Pascal-VOC 2007, Labelme, Caltech,
and SUN. It contains 5 object categories. Differently from the other considered testbeds,
all the domains are composed of real-world photos with the shift mainly due to camera
type, illumination conditions, point of view, etc. Moreover, while Caltech is composed
of object-centered images, the other three datasets contain scene images. We apply
the same experimental protocol of [23]: the predefined full training data is randomly
partitioned in train and validation sets with a 90-10 ratio. The training is performed on
the train splits of the 3 source domains while the validation splits are used for model
selection. In the end, the model is tested on the predefined test split of the left-out
domain. This split has been defined randomly by selecting 30% of images of the overall
dataset.

All our results are obtained by performing the average over 3 runs. In the case of
both OfficeHome and VLCS, the random 90-10 train-val split was repeated for each run.
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4.3.2 Comparison methods
The main Baseline of our analysis is the standard approach usually adopted in DG: a
classification model trained on all the available source data together, a strategy often
called Deep All [23]. We indicate with Original the standard data augmentation proce-
dure, which includes horizontal flippling and random cropping, while we use Stylized
for the cases where we add style-transfer-based data augmentation. We evaluate under
both these augmentation settings the behavior of four among the most recent DGmeth-
ods. We dedicate particular attention to how we integrate the novel data augmentation
strategy with each of the considered approaches as we want to get the most out of them
without undermining their nature. In particular, considering that the style-transfer
leads to domain mixing, we avoid integrating it in procedures that need a separation
among source domains.

DG-MMLD [106] This algorithm is based on clustering and domain adversarial fea-
ture alignment. Since thismethod does not use the source domain labels, the integration
of the proposed style-transfer-based data augmentation is straightforward and follows
the strategy used for the Baseline: styles of random images are applied to content im-
ages (inside a batch) with probability 𝑝.

Epi-FCR [82] It is a meta-learning-based method that splits the network into two
modules, each one trained by pairing it with a partner that is badly tuned for the domain
considered in the current learning episode. These two modules are the feature extractor
and the classification head, which alternatively cover the two roles of learning part and
bad reference. In a second phase, a final model is learned by integrating the trained
modules together with a random classifier used as regularizer. As in the first phase
knowing the source domain labels is crucial to choosing and setting up the two network
modules, mixing the domains with style-transfer could degrade the model performance.
In the second stage, instead, all the data sources are considered together: we choose this
phase for the application of the style-transfer-based data augmentation procedure.

DDAIG [189] This approach belongs to the family of data augmentation strategies,
and it employs a transformation network that is trained to produce synthesized sam-
ples that keep the same label of the original image but fool a domain classifier. In the
adversarial learning procedure the transformation module, the label classifier, and the
domain classifier are iteratively updated. In particular, the label classifier is trained on
all the source samples, both original and synthetic. We can thus further extend this set
by introducing style-transfer augmented data.

Rotation The original paper [172] is one of the research publications that has shown
that self-supervised knowledge supports domain generalization when combined with
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supervised learning in amulti-taskmodel. We consider a self-supervised rotation recog-
nition task, similar to the one employed byOSHOT (see 3.3), where the orientation angle
of each image should be recognized among {0∘, 90∘, 180∘, 270∘}. The model minimizes
a linear combination of the supervised and self-supervised losses, with this second con-
tribution which is assigned a weight 𝜂 generally kept lower than 1 in order to let the
supervised model guide the learning process. In this case, the domain labels are not
used during training, so the application of the source augmentation by style-transfer is
straightforward, as for the Baseline.

Besides the methods described till here, which are used to evaluate how style-
transfer-based data augmentation can improve the performance of DG methods, we
consider a further reference which is an alternative strategy for data augmentation by
samples-mixing. In particular, we focus on Mixup [181] an approach originally defined
to improve generalization in standard in-domain learning: it interpolates samples and
their labels, regularizing a neural network so that it does not provide drastically chang-
ing predictions when evaluated on samples just outside the training distribution. The
purpose of the training strategy is to favor a simple linear behavior in the model predic-
tions between training examples. Its hyper-parameter 𝛾 ∈ {0,∞} controls the strength
of interpolation between data pairs, going back to the Baseline for 𝛾 = 0. Mixup has
already been used for cross-domain analysis [174], thus we follow the proposed path
testing both data mixing at pixel- and feature-level.

4.3.3 Training setup
Style-transfer model 𝐴 We train this model on source data before training the clas-
sification one. We adopt for it the original backbone used for AdaIN [55] which is a
VGG. We train the model for 20 epochs with a learning rate equal to 5𝑒 − 5. The hyper-
parameters 𝛼 and 𝑝 used in each experiment are specified in the caption of the respective
result tables. We also perform an in-depth analysis of the sensitivity of our strategy to
these parameters in Section 4.3.5.

Classification model 𝐶 For this model, we use AlexNet and ResNet18 backbones.
For the training of Baseline, Rotation, and Mixup we use SGD with 0.9 momentum for
30𝑘 iterations. The batch size is set to 32 images per source domain, whichmeans a total
of 96 training samples for each batch as all the testbeds considered have three source
domains. The learning rate and the weight decay are respectively fixed at 0.001 and
0.0001. Regarding the hyperparameters of the individual algorithms, we empirically
set the Rotation auxiliary weight to 𝜂 = 0.5 and for Mixup we set 𝛾 = 0.4.

We implement Rotation by adding a rotation recognition branch to our Baseline
architecture. For all the other competitors (DG-MMLD, Epi-FCR, and DDAIG) we use
the authors’ provided code and train by following the originally proposed protocols for
both the Original and Stylized versions. We simply integrate the original code with the
new style-transfer procedure and add different datasets/backbones where needed. We
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Table 4.1: PACS classification accuracy (%). We used AdaIN with 𝛼 = 1.0 and 𝑝 = 0.75
for AlexNet-based experiments and AdaIN with 𝛼 = 1.0 and 𝑝 = 0.90 for those based
on ResNet18.

AlexNet
Painting Cartoon Sketch Photo Average

Original

Baseline 66.83 70.85 59.75 89.78 71.80
Rotation 65.66 71.89 62.15 89.88 72.39

DG-MMLD 69.27 72.83 66.44 88.98 74.38
Epi-FCR 64.70 72.30 65.00 86.10 72.03
DDAIG* 62.77 67.06 58.90 86.82 68.89

Stylized

Baseline 71.96 72.47 76.47 88.34 77.31
Rotation 71.74 73.39 75.98 89.22 77.59

DG-MMLD 70.50 70.84 75.39 88.43 76.29
Epi-FCR 65.19 69.54 71.97 83.43 72.53
DDAIG 69.35 71.10 70.99 87.70 74.79

Mixup
pixel-level 66.03 68.00 51.18 88.90 68.53

feature-level 67.04 69.10 55.40 88.88 70.11
ResNet18

Original

Baseline 77.28 73.89 67.01 95.83 78.50
Rotation 78.16 76.64 72.20 95.57 80.64

DG-MMLD 81.28 77.16 72.29 96.06 81.83
Epi-FCR 82.10 77.00 73.00 93.90 81.50
DDAIG* 79.41 74.81 69.29 95.22 79.68

Stylized

Baseline 82.73 77.97 81.61 94.95 84.32
Rotation 79.51 79.93 82.01 93.55 83.75

DG-MMLD 80.85 77.10 77.69 95.11 82.69
Epi-FCR 80.68 78.87 76.57 92.50 82.15
DDAIG 81.02 78.75 79.67 95.07 83.63

Mixup
pixel-level 78.09 71.08 66.58 93.85 77.40

feature-level 81.20 76.41 69.67 96.31 80.90

report the previously published results whenever possible, while we indicate with a star
(∗) the results that we obtained by running the authors’ original code.

4.3.4 Numerical results
PACS results Table 4.1 shows the results obtained on the PACS benchmark with both
AlexNet and ResNet18. These results allow us to make two considerations:

• the style-transfer-based data augmentation produces an improvement of more
than 5 percentage points in the Baseline performance. Looking at the results for
the different domains we can see that improvement is higher for Art Painting,
Cartoon, and Sketch, than for Photo;
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Table 4.2: OfficeHome classification accuracy (%). We used AdaIN with parameters
𝛼 = 1.0 and 𝑝 = 0.1.

ResNet18
Art Clipart Product Real World Average

Original

Baseline 57.14 46.96 73.50 75.72 63.33
Rotation 55.94 47.26 72.38 74.84 62.61

DG-MMLD* 58.08 49.32 72.91 74.69 63.75
Epi-FCR* 53.34 49.66 68.56 70.14 60.43
DDAIG* 57.79 48.32 73.28 74.99 63.59

Stylized

Baseline 58.71 52.33 72.95 75.00 64.75
Rotation 57.24 52.15 72.33 73.66 63.85

DG-MMLD 59.24 49.30 73.56 75.85 64.49
Epi-FCR 52.97 50.14 67.03 70.66 60.20
DDAIG 58.21 50.26 73.81 74.99 64.32

Mixup feature-level 58.33 39.76 70.96 72.07 60.28

Table 4.3: VLCS classification accuracy (%). We usedAdaINwith parameters are 𝛼 = 1.0
and 𝑝 = 0.75.

AlexNet
CALTECH LABELME PASCAL SUN Average

Original

Baseline 94.89 59.14 71.31 64.64 72.49
Rotation 94.50 61.27 68.94 63.28 72.00

DG-MMLD* 96.94 59.10 68.48 62.06 71.64
Epi-FCR* 91.43 61.36 63.44 60.07 69.07
DDAIG* 95.75 60.18 65.48 60.78 70.55

Stylized

Baseline 96.86 60.77 68.18 63.42 72.31
Rotation 96.86 60.77 68.18 63.42 72.31

DG-MMLD 97.49 61.02 64.23 62.37 71.28
Epi-FCR 92.69 58.18 62.59 57.87 67.83
DDAIG 97.48 60.48 65.19 62.57 71.43

Mixup feature-level 94.73 62.15 69.82 62.98 72.42

• all the considered state-of-the-art DG methods seem to benefit from the source
augmentation as in absolute terms their performance grows. However, they sig-
nificantly lose in effectiveness in comparisonwith the baseline, as in their Stylized
versions they cannot outperform it anymore.

OfficeHome results Table 4.2 shows the results obtained on the OfficeHome dataset
with ResNet18 backbone. The numbers more or less confirm the observations done for
the PACS case, with the only difference that, in this case, the improvement produced by
the source augmentation by style-transfer is more limited. The Stylized Baseline obtains
again the best accuracy outperforming the competitors, even when those are improved
using the same source augmentation strategy.
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(a) Influence of 𝛼 (b) Influence of 𝑝

Figure 4.3: Average accuracy on PACS with AlexNet backbone when varying the style-
transfer model training’s hyperparameters

VLCS results Table 4.3 reports results obtained on theVLCS benchmarkwithAlexNet
backbone. This dataset is particularly challenging and shows a fundamental limit of
tackling DG through style-transfer data augmentation. Since in this benchmark the
domain shift is not due to style differences, source augmentation by style-transfer does
not support generalization.

Mixup for DG Focusing on Mixup we see that the results over all the considered
datasets show that it does not support generalization across domains and it might per-
form even worse than the Original Baseline. Between the two considered pixel and
feature variants, only the second shows some advantage on PACS, so we focused on it
for the other testbeds. Still, the results remain lower than those obtained by the DG
methods both with and without style-transfer-based data augmentation.

4.3.5 Additional analyses
AdaIN hyperparameters In Figure 4.3 we see how the PACS AlexNet performance
is influenced by changes in either 𝛼 or 𝑝 while keeping the other fixed. With a low
value of 𝛼 the style-transfer is too weak to produce an effective appearance change
and introduce extra variability. In general, the best results are obtained using 𝛼 = 1
regardless of the specific value of 𝑝. For what concerns the latter, we can see that, if 𝛼
is high enough, even a small 𝑝 allows to obtain good performance, with the best results
obtained with 𝑝 = 0.5 or 𝑝 = 0.75.

Style-transfer from external data vs source data The strategy that we propose for
the applications of AdaIN differs from what appeared in previous works. Indeed, both
the original approach [55] and its use for data augmentation in [185], exploit a style-
transfer model that has been trained using MS-COCO [92] as the source of content
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Figure 4.4: Example of application of style-transfer using AdaIN. The top left image
comes from the PACS Photo domain and is used as content while the top center image
comes from PACS Art Painting domain and is used as style image. On top right there
is the translation performed using AdaIN trained on MS-COCO and WikiArt images.
In the second row we see the translations performed using our AdaIN models trained
on source data only, respectively when the Art Paintings, Cartoon, Sketch and Photo
domains are left-out during model’s training.

Table 4.4: Comparison of AdaIN training strategies

Art Painting Cartoon Sketch Photo Average
Stylized Baseline 71.96 72.47 76.47 88.34 77.31 ± 1.1

MSCOCO-WikiArt Baseline 73.00 73.78 76.37 89.04 78.05 ± 0.9

images, and a dataset of paintings mostly collected from WikiArt [119] as the source
of style images. Our strategy, instead, avoids the use of extra datasets besides those
directly involved in the domain generalization task as source domains. The reason is
twofold: first, we want to keep the method as simple as possible, without the need to
rely on external data; second, in order to perform a fair comparison with competing DG
methods all of the algorithms should have access to the same source information.

Still, it may still be interesting to evaluate the difference between our approach
and the use for style-transfer of the original AdaIN model trained on MSCOCO and
WikiArt. We analyze this difference both at the qualitative and quantitative levels. Fig-
ure 4.4 shows an example of style-transfer obtained with the two strategies. Specifically
we consider a dog image drawn from the PACS Photo domain and we analyze the im-
ages obtained by borrowing the style from the represented Art Painting guitar image.
We compare the stylized sample produced with the MSCOCO-WikiArt AdaIN model
against the outcomes of the four AdaIN variants obtained by training in turn on three
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source domains and leaving the last as target.
As can be observed, the transformed images produced in output are not so different

in terms of image quality. In Table 4.4 we report the results of our quantitative anal-
ysis, which compare the performance of our Stylized Baseline on PACS AlexNet with
the analogous Baseline trained using the augmented data produced with the AdaIN
MSCOCO-WikiArt pretrained model. The last one shows a slightly better accuracy
which is though not significant if we consider the related standard deviation.
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4.4 Conclusions
This chapter has focused on analyzing a disconnection between two branches of the
research on DG. On one side there are solutions focusing on feature adaptation or
proposing tailored training procedures that try to bridge the visual domain shift at the
learning-level; on the other, data augmentation-based techniques that often adopt com-
putationally expensive generative approaches to tackle the problem at the data-level.
While the former group includes theoretically grounded approaches that are however
often characterized by a complex design and that often guarantee very slight perfor-
mance improvements, the latter is based on a much simpler idea which is often more
effective, i.e. the fact that a larger and more varied training dataset leads to a more
generalizable model. These two groups are often analyzed separately, as researchers
proposing solutions belonging to the first group avoid comparing themwith data-based
approaches, deeming unfair a comparison with methods having access to an extended
training dataset. The direct consequence is that it is often unclear which of the two
approaches is better in general or in specific situations, and if their apparent orthogo-
nality allows to combine them to further improve the generalization ability of trained
models.

The purpose of our analysis was thus to recompose the literature, by proposing a
very simple style-transfer-based data augmentation approach which we evaluated as
an auxiliary augmentation strategy both on top of a naïf baseline and of a number of
state-of-the-art methods for which we designed tailored integration strategies. The
experimental analysis has pointed out that the performance of the considered methods
improves over their original versions not including this augmentation, but surprisingly
the same methods also lose their original effectiveness, not showing any improvement
over the new data augmented baseline.

As other concurrent technical reports [47], our work suggests the need to shed new
light on domain generalization, with a special focus on a call for novel strategies able
to take advantage of the data variability introduced by cross-domain style-transfer. In
recent years, this call has been at least partially answered through the presentation of
many DG methods based on data augmentation strategies, as highlighted by an influ-
ential survey [190].

66



Chapter 5

Pushing the boundaries of
distribution shift analysis

The focus of this chapter is on two research settings characterized by a multitude of
challenges that have to be tackled all together in order to obtain dependable algorithms.
In particular, among these challenges, there is both a visual distribution and a seman-
tic shift, whose joint presence risks becoming an additional source of errors. The two
settings studied are multi-source open-set domain adaptation and cross-domain
open-world recognition and the two proposed solutions, called respectivelyHyMOS
andCOW, are connected not only because they are designed for problems characterized
by multiple challenges, but also because they both tackle these multiple challenges with
a single contrastive-based learning objective. This approach represents a paradigm
shift with respect to the standard practice, consisting in the design of algorithms ob-
tained as naive combinations of strategies designed to tackle individual challenges. We
argue here that a much more robust approach can be obtained by designing a joint so-
lution to all those individual challenges, and we propose to reach this result through
contrastive learning thanks to the interesting structural properties of its learned feature
space.

Part of the work described in this chapter has been previously published in two papers:

• [15] S. Bucci, F. Cappio Borlino, B. Caputo and T. Tommasi
Distance-based Hyperspherical Classification for Multi-source Open-Set Domain
Adaptation
Winter Conference on Applications of Computer Vision, WACV 2022

• [17] F. Cappio Borlino, S. Bucci, and T. Tommasi
Contrastive Learning for Cross-Domain Open World Recognition
The 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2022)
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5.1 The challenges of open-world learning
Vision systems are often trained in closed-world scenarios. This means that, in the
learning phase, they experience a narrow portion of the world, which includes a limited
set of semantics and a highly biased visual distribution. These models fail when pre-
sented with new environmental conditions, new data distributions, and novel classes
at deployment time. This limited generalization ability can be at least partially ex-
plained considering those downsides of deep networks that we have described in the
past, including the supervision collapse [36] and the tendency to provide overconfident
predictions [118].

Moving to open-world learning is the only way to obtain robustness to these situ-
ations. However, how to do this is a long-standing research question. Indeed, besides
the simple name, open-world learning is a complex problem which entails a number
of challenges, among which a significant portion is caused by the fact that train and
test data may be sampled from different distributions. For vision tasks, this means deal-
ing with datasets showing significant differences in appearance and style among each
other, but possibly also non completely overlapping sets of semantics, with novel classes
appearing after deployment.

When a single problem involves multiple challenges, one of the most common strat-
egy to deal with it consists in applying the divide et impera policy: specific solutions
are designed for specific aspects of the problem, with an overall strategy to tackle
all of them which can be obtained only by combining the aspect-specific solutions.
This approach has a number of downsides:

• when focusing on a specific challenge, it is necessary to make strong assumptions
about the others. E.g.:

– most cross-domain analysis scenarios are closed-set, which means that they
assume train and test distributions to have matching label sets;

– most open-set recognition studies are carried out in the closed-domain as-
sumption, which means considering train and test distributions differing
only in terms of semantics but not in terms of visual features;

• combining solutions defined for different aspect-specific challenges often leads
to an overall complex approach, based on a multitude of learning objectives and
a set of manually tuned hyperparameters which control their relationships.

We want here to propose a different paradigm to deal with some open-world re-
search scenarios, consisting in adopting a single learning objective able to tackle
multiple sub-problems at once. In order to reach this result we discard the standard
supervised cross-entropy-based learning framework in favor of one based on super-
vised contrastive-learning. This learning objective, which provides performances
similar to the cross-entropy when working in closed-world settings [66], poses some
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constraints on the structure of the learned feature space, which helps in making
models robust in open-world scenarios. In particular, the properties of its hyperspherical
feature space encourage cross-domain alignment, while enabling rejection of unknown
samples. We show how this result can be achieved in two open-world research settings,
which, in spite of some differences in their formal formulation, are both characterized
by the study of a joint occurrence of a visual domain and a semantic shift.

The contributions of this chapter are:

• the presentation and analysis of two open-world learning settings, namelymulti-
source open-set domain adaptation (MSOSDA) and cross-domain open-world
recognition (CD-OWR). These two research problems are presented in detail,
their challenges are highlighted, and the current state-of-the-art is presented;

• the proposal of HyMOS (Hyperspherical feature space for Multi-source Open-
Set domain adaptation), an algorithm designed to tackle the MSOSDA problem
by using a single contrastive learning objective, style-transfer for feature align-
ment, and statistics about the structure of the feature space to separate known
and unknown samples;

• the proposal of COW, a strategy designed for CD-OWR, similar to HyMOS, but
with the additional ability to support class incremental learning;

• an in detail quantitative analysis of these two methods, compared with previ-
ous state-of-the-art approaches, through large-scale comprehensive benchmarks
specifically designed for the two research settings.

In the rest of this section we introduce the two research settings on which the chapter
focuses and their related works.

5.1.1 Multi-source open-set domain adaptation
In many real-world learning scenarios dealing with multiple sources is more the rule
than an exception, as the annotated data available to train a model may be the result
of asynchronous multi-agent collection processes. This situation certainly represents
a challenge, as it can result in a misalignment between the representations of differ-
ent sources in a feature space which, as a consequence, will not support the definition
of robust decision boundaries. At the same time, the availability of multiple sources
can become a resource to support robust cross-domain performance if exploited in the
correct way. Indeed, as we have seen in Chapter 4, the access to a set of source do-
mains can be exploited to disentangle between domain-specific and domain-invariant
features, leading to more robust models that focus on the latter to make decisions. This
ability is fundamental when the visual domain met after deployment is different from
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the training ones, even when it is known a priori thanks to the availability of an unla-
beled set of samples collected from it. In this situation, feature alignment is one of the
most common choices of strategy [115].

At the same time, a naïf feature alignment application may not always help, espe-
cially if the target set of available samples is really unsupervised, which means that it is
an uncurated collection of samples coming from the target domain. Indeed, in this case,
it may happen that the target set contains representatives of classes not present in the
labeled source set, and, in the presence of a semantic shift of this kind, enforcing feature
alignment may lead to negative-transfer, as alignment of domains does not necessarily
involve alignment of classes [93].

This multi-source open-set domain adaptation scenario poses thus a multitude of
challenges, as it is typical of many open-world learning settings: i) multiple labeled
sources are available at training time, but they all come from different visual distribu-
tions which do not match the target one; ii) a set of unlabeled samples coming from
the target distribution is also available to support adaptation, still, its truly unsuper-
vised nature represents an additional challenge as this set could contain examples of
unknown classes.

The difficulty of dealing with all these challenges at the same time pushes the re-
searchers to focus only on specific aspects of the problem (e.g. multi-source closed-set
domain adaptation, or single-source open-set one), and the availability of only one pre-
vious work focusing on this setting [130] highlights the need for the development of
novel methods able to tackle all these challenges at once.

Our proposal exploits the power of contrastive learning and the properties of its hy-
perspherical feature space to correctly predict known labels on the target while reject-
ing samples belonging to any unknown class. HyMOS includes style-transfer among
the instance transformations of contrastive learning to obtain domain invariance while
avoiding the risk of negative-transfer. A self-paced threshold is defined on the basis
of the observed data distribution and updates online during training, enabling known-
unknown separation.

5.1.2 Cross-domain open-world recognition
Trustworthy autonomous agents should satisfy a number of requirements in order to
be deployable in open-world contexts. Among these, there is the ability to recognize
multiple objects in a variety of target conditions (e.g. change in viewpoint, camera
equipment, illumination, weather, country), while correctly detecting samples belong-
ing to novel categories. In many cases, however, this is not enough. For a practical
example let’s consider a home assistant robot: i.e. a robot designed to assist a human in
carrying out a number of domestic tasks. In order to be really helpful, and adapt itself
to the owner’s needs, such a robot cannot be limited to recognizing only a pre-defined
set of classes for which it was programmed: on the contrary, it should be able to in-
crementally learn to recognize new objects when its owner shows them to it, and then
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to locate those objects when they are naturally arranged in different rooms, without
getting confused by other objects for which it has not received instructions [69].

Indeed, the ability to evolve is fundamental for autonomous systems, whose knowl-
edge cannot remain limited to the one injected by the manufacturer. However, this
represents an additional challenge that needs to be tackled together with the others (i.e.
domain and semantic shift), but that is usually studied as a problem in its own right. The
setting that studies this aspect is called Class Incremental Learning (CIL): its focus is on
extending an original model to accommodate novel classes in subsequent incremental
tasks [132].

There have already been attempts of combiningCILwith other settings: someworks
study Open World Recognition (OWR), which combines open-set learning, i.e. the ability
to recognize a closed-set of categories while rejecting unknown samples, with CIL, but
mainly disregard domain shift conditions [107, 105, 40]. However, a change in domain
between training and test data can create confusion in the identification of the novel
categories, and consequently, make their inclusion in the training process even more
challenging.

The Cross-Domain Open-World Recognition setting (CD-OWR) has thus been pro-
posed in order to provide a wider point of view on all the challenges that an autonomous
agent has to face when deployed in an open-world setting [41]. This research problem,
which can be seen as the union of OWR and Domain Generalization, still has to take
hold, and no algorithm has been designed explicitly for it, with methods included in the
first proposed benchmark [41] that are obtained as naïve combinations of approaches
designed for sub-problems.

We thus propose to fill this gap by presenting COW (Contrastive Open-World), a
variant of HyMOS, adapted to the CD-OWR setting. We show how a single super-
vised contrastive objective is suitable for open-world recognition while also promoting
domain generalization. Specifically, in the hyperspherical feature space obtained via
contrastive learning, samples of the same class tend to cluster together regardless of
their domain, while novel categories appear in low-density regions. By considering the
Nearest Class Mean [107] logic which is the basis of many OWR methods, it becomes
clear that the described embedding is an ideal environment where a simple rejection
rule can be applied on sample-to-prototype distances in order to identify novel cate-
gories. Moreover, our approach does not need class-specific rejection thresholds as the
learned feature space pushes all clusters to have similar structures and distances, further
simplifying the task. At the same time, the use of prototypes on an hyperspherical fea-
ture space enables decoupling the network output dimensionality from the number of
classes that the network knows, and the chosen learning objectives naturally support
the introduction of novel classes which are automatically accommodated by pushing
existing class clusters apart.
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5.1.3 Related works
Cross-domain learning and semantic shift

Most DA and DG works consider the exact same class set shared by source and
target. This has started to change only recently with the emergence of the open-set
domain adaptation setting [123, 93, 75, 14]. Much lower interest was shown in a similar
open-set domain generalization setting, for which there is only one important work,
which however focuses only on the multiple sources case [144].

Open-set domain adaptation Most of the studies focusing on domain adaptation
consider the available target set to be unlabeled, but at the same time, they work under
the closed-set assumption. This choice does not reflect a realistic data collection process.
Indeed, with an uncurated target collection strategy, it’s impossible to be sure that the
target semantic content will perfectly match that of the source.

Open-Set domain adaptation tackles target domains which include new unknown
classes with respect to the source. After the definition of the problem in [123], a first
group of works focused on maximizing the separation between known and unknown
target samples while exploiting adversarial-based methods to align the known classes
[93]. More recently, different paradigms have started being proposed. In [75] a model
is directly trained on the source with an extra set of negative samples produced via the
suppression of class-specific feature activations. ROS [14] shows how to exploit the self-
supervised rotation recognition task to deal with both feature alignment and known-
unknown separation. PGL [102] exploits a graph neural network with episodic train-
ing to suppress the underlying conditional shift, while adversarial learning reduces the
marginal shift between the source and target distributions. The only published method
dealing with multi-source open-set domain adaptation is MOSDANET [130] which adds
a clustering objective on top of a standard supervised classification model to maximize
the similarity among samples of the same class but different domains. Moreover, it ex-
ploits adversarial learning for domain adaptation: a tailored margin loss penalizes cases
with a small difference in known and unknown prediction output, while potential target
samples are included in the training procedure via pseudo-labeling.

Universal Domain Adaptation The methods dealing with this setting cover a wide
range of scenarios with private classes included in the source and/or the target set.
In DANCE [139] a neighborhood clustering technique is integrated with the standard
cross-entropy loss to learn the structure of the target, while an entropy-based score is
used to align or reject the target samples. CMU [42] exploits a multi-classifier ensemble
together with an unknown scoring function that combines entropy, confidence, and
consistency measures.
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Open-World Recognition

Hard-coded recognition skills are clearly not enough for autonomous robots that oper-
ate in unconstrained environments. Class Incremental (or Continual) Learning provides
support with strategies that update pre-trained models by including new classes once
they are observed. In order to be really useful, this should be done with as little access
to the old data as possible (otherwise it would be more similar to a complete retraining),
while also avoiding forgetting previous knowledge. One of the early incremental ap-
proaches was based on the Nearest Class Mean (NCM, [107]) classifier, which computes
the per-class mean of the feature vectors of training samples, and each test sample is
assigned to the nearest among these class prototypes. In the more recent literature,
there are two main types of approaches. Some methods keep a small memory buffer of
previous data in order to replay it while learning new classes [132]. Other more com-
plex approaches do not require memory, but exploit extra objectives to avoid forgetting
previous knowledge, one example being distillation [87]. The growing interest in this
field is also testified by the ever-wider range of datasets designed for it [69, 98].

Dealing with unconstrained learning conditions means also not knowing a priori
which classes will be encountered at test time. Open Set Recognition approaches are
able to distinguish such unknown objects from the known ones while still classifying
the known objects, and have been extensively studied by both the Computer Vision and
robotics communities [180, 109]

Finally, Open World Recognition combines the two previous settings. It was first in-
troduced in [6] which proposed NNO, a simple extension of the standard NCM strategy
including an unknown rejection policy. More recent works are DeepNNO [105], the
deep version of NNO, and B-DOC [40] that includes clustering objectives and class-
specific rejection thresholds.

Contrastive Learning

Lately, self-supervised learning methods have shown that, by relying only on unlabeled
data, it is still possible to get representation learning performance similar to those of
the supervised approaches [49, 26, 24]. These models are all based on contrastive learn-
ing, a deepmetric learning strategy that builds over instance discrimination techniques,
treating every instance as a class of its own, and that aims at maximizing the agreement
among multiple augmentations of the same sample while pushing different instances
far apart. The effectiveness of the contrastive self-supervised learned embeddings is
generally evaluated by using the trained feature extractor as the starting point for a
downstream supervised task training. However, more direct ways to incorporate su-
pervision have been attracting attention [66] lately, and show how view-invariance and
semantic knowledge can be combined to tackle novelty detection [152], cross-domain
generalization [186], and class incremental learning [104].
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Learning on the Unit Hypersphere Fixed-norm representations have nice proper-
ties that support deep learning computational stability and their empirical success has
been demonstrated over several tasks [163, 108]. In particular, [108] shows how set-
ting class prototypes a priori on the unit hypersphere allows to free the output dimen-
sionality from a constrained number of classes. The uniform distribution of the class
centroids implies large margin separation among them and leaves space to include new
categories while maintaining a highly discriminative embedding. A recent work has
also highlighted how learning features uniformly distributed on the unit hypersphere
with compact positive pairs is a crucial component of the success of contrastive learning
[165].
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5.2 Problem formalization
The two settings of Multi-source open-set domain adaptation and Cross-domain open-
world recognition can be both described as designed to study open-world learning prob-
lems, i.e. research problems defined to study the challenges faced by CV systems de-
ployed in the open-world.

Still, these two settings present some differences and is thus necessary to provide a
formal definition for both.

5.2.1 Multi-source open-set domain adaptation
Formal problem definition:

• data available at training time:

– 𝑛𝑆 labeled source datasets 𝑆 = {𝑆𝑖}
𝑛𝑆
𝑖=1, each one consisting of a set of

image-label pairs: 𝑆𝑖 = {(𝑥
(𝑠)
𝑗 , 𝑦(𝑠)

𝑗 )}
𝑁𝑆𝑖

𝑗=1
∼ 𝑝𝑖. These sources share the

same label set 𝑦(𝑠) ∈ 𝒴𝑆, but are sampled from different visual distributions
𝑝𝑖 ≠ 𝑝𝑗, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗;

– an unlabeled target dataset 𝑇 = {𝑥(𝑡)
𝑖 }𝑁𝑇

𝑖=1 ∼ 𝑞, drawn from a different dis-
tribution: 𝑞 ≠ 𝑝𝑖, ∀𝑖 = 1,… , 𝑛𝑆. The target label set does not match the
source one, 𝒴𝑆 ⊂ 𝒴𝑇, but it contains additional classes 𝒴𝑇 ∖𝑆 which are
considered unknown

• goal: to correctly classify the samples in 𝑇 = {(𝑥
(𝑡)
𝑖 , 𝑦(𝑡)

𝑗 )}
𝑁𝑇

𝑖=1
, by assigning

them to the correct class if 𝑦(𝑡) ∈ 𝒴𝑆 or by marking them as unknown;

• data available at inference time: {𝑥(𝑡)
𝑖 }𝑁𝑇

𝑖=1.

Starting from this setup it may be difficult to bridge the domain shift while avoiding the
risk of negative-transfer, especially when the openness 𝕆 = 1 − |𝒴𝑆|

|𝒴𝑇| increases.
Note: for simplicity, we have formalized the problem with a single target set, used at
training time as an unsupervised source of information about the target domain and
at inference time as test set. This transductive setting is not the only one possible, and
a non-transductive one may equally occur, where the target data available at training
time does not match with the test data, as described in the generic UDA case, see Sec.
2.2.2.
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5.2.2 Cross-domain open-world recognition
The main differences with the previous setting are the fact that a single source dataset
is available, that the target domain is not known at training time (i.e. this is a domain
generalization setting, not a domain adaptation one), and most importantly that there
are multiple training episodes:

• data available at training time:

– base episode: 𝑆0 = {(𝑥
(𝑠)
𝑗 , 𝑦(𝑠)

𝑗 )}
𝑁𝑆0

𝑗=1
∼ 𝑝0, where 𝑦(𝑠) ∈ 𝒴𝑆0

;

– subsequent episodes 𝑆𝑖 = {(𝑥
(𝑠)
𝑗 , 𝑦(𝑠)

𝑗 )}
𝑁𝑆𝑖

𝑗=1
∼ 𝑝𝑖 with 𝑖 = 1,… ,𝐾 and

𝒴𝑆𝑖
∩ 𝒴𝑆𝑗

= ∅, ∀𝑖, 𝑗 ∈ [0,… ,𝐾] and 𝑖 ≠ 𝑗. All source samples come from
the same visual distribution: 𝑝𝑖 = 𝑝𝑗 = 𝑝𝑆, ∀𝑖, 𝑗

• goal: after episode 𝑘, to correctly classify the samples in 𝑇 = {(𝑥
(𝑡)
𝑖 , 𝑦(𝑡)

𝑗 )}
𝑁𝑇

𝑖=1
∼

𝑝𝑇, by assigning them to the correct class if 𝑦(𝑡) ∈ {⋃𝑘
𝑖=1 𝑌𝑆𝑖

} or by marking them
as unknown. We have 𝑝𝑇 ≠ 𝑝𝑆, and {⋃𝐾

𝑖=0 𝒴𝑆𝑖
} ⊂ 𝒴𝑇

• data available at inference time: {𝑥(𝑡)
𝑖 }𝑁𝑇

𝑖=1

The classes included in 𝑆0 are called base classes, as they are used to build an initial
knowledge base. Each incremental task (episode) has its own class set which does not
overlap with the previous ones. We call source domain the entire labeled training set
𝑆 = {⋃𝐾

𝑘=0 𝑆𝑘} that is drawn from data distribution 𝑝S. The unlabeled test set 𝑇 is not
seen during training and is drawn from the target distribution 𝑝𝑇, with 𝑝𝑆 ≠ 𝑝𝑇.

5.2.3 Contrastive Learning formulation
Weadopt a contrastive learning formulation that takes inspiration from the self-supervised
literature but includes supervision [66] in the learning objective. The rationale be-
hind this choice is that supervised contrastive learning imposes some constraints on
the structure of the learned feature space, constraints that are not shared with the stan-
dard supervised learning paradigm, i.e. cross-entropy loss.

In its training procedure, self-supervised contrastive learning [26, 49] takes two
augmented views of each input sample and propagates them through a feature encod-
ing network. The views are obtained via standard augmentation strategies such as
grayscale, random crop, and color jittering. All the encoded features 𝐸𝑛𝑐(𝑥(𝑠)

𝑘 ) in the
double batch 𝐵 = {𝑘 = 1,… ,2𝐾} enter then the contrastive head that further projects
them to a normalized embedding, producing 𝑧(𝑠)

𝑘 = 𝑃 𝑟𝑜𝑗(𝐸𝑛𝑐(𝑥(𝑠)
𝑘 )). On the obtained
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hyperspherical space, the samples are compared among each other: the training ob-
jective consists in maximizing the similarity between the representations of the aug-
mented views of the same instance (positive pairs), while minimizing that among the
representations of different instances (negative pairs).

In the supervised scenario, when semantic labels are available, the positive pairs
are identified considering the class label [66]. This means that given an anchor rep-
resentation with index 𝑘, all the representations of samples belonging to the anchor’s
category can be used to build positive pairs, and all the others to build negative pairs.
We indicate with 𝜈(𝑘) = 𝐵 ∖ {𝑘} the double batch without the anchor of index 𝑘: the
positive indices are 𝜋(𝑘) = {𝑘′ ∈ 𝜈(𝑘) ∶ 𝑦(𝑠)

𝑘′ = 𝑦(𝑠)
𝑘 }. The supervised contrastive loss

function [66] is:

ℒ𝑠𝑢𝑝𝑐𝑜𝑛 =
2𝐾

∑
𝑘=1

−1
|𝜋(𝑘)| ∑

𝑘′∈𝜋(𝑘)
log

exp(𝜎(𝑧(𝑠)
𝑘 , 𝑧(𝑠)

𝑘′ )/𝜏)

∑
𝑛∈𝜈(𝑘)

exp(𝜎(𝑧(𝑠)
𝑘 , 𝑧(𝑠)

𝑛 )/𝜏)
, (5.1)

where 𝜏 ∈ ℝ+ is a parameter called temperature, and 𝜎(⋅, ⋅) is the cosine similarity.
Adopting this learning objective ensures that, in the final feature space, the repre-

sentations of samples of the same class will be well clustered and far from representa-
tions belonging to different categories. The overall structure is thus a hypersphere with
compact and well-separated class clusters placed on its surface.
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Table 5.1: Comparison with existing open-set and universal domain adaptation ap-
proaches. HPs indicate the hyperparameters, |𝒴𝑠| the number of source categories,
|𝑆| is the number of source domains. Note that synthesizing new samples is a time-
consuming operation and any validation procedure requires at least a dedicated per-
dataset tuning.

Method
No. of No. of

Threshold
Losses HPs

Inheritable [75] 4 2 not used - synthesize unknown target
ROS [14] 6 4 reject a fixed portion of Target
CMU [42] 2 + |𝒴𝑠| 3 validated

DANCE [139] 3 3 fixed value depending on |𝒴𝑆|
PGL [102] 3 4 reject a fixed portion of Target

MOSDANET [130] 4 + |𝑆| 2 validated
HyMOS 1 1 self-paced, updates online while training

5.3 Contrastive learning formulti-source open-set do-
main adaptation

5.3.1 Preliminaries
In order to tackle multi-source open-set domain adaptation we aim at building a robust,
highly structured feature space with domain-aligned, compact, and well-separated class
clusters, where unknown target samples lay away from clusters’ centroids. We reach
this result by minimizing the supervised contrastive loss [66] and by paying particular
attention to how data is fed to the model.

Our strategy is based on:

• a domain- and class-balanced sampling approach for mini-batch definition.
Its purpose is to exploit the peculiarities of our learning objective in order to
obtain class-wise alignment among the different source domains;

• the inclusion of style-transfer among the standard semantic-preserving trans-
formations used to build sample pairs in contrastive learning. Taking this mea-
sure explicitly forces the model to ignore style-specific features in the learning
phase, effectively leading to learning domain-invariant representations;

• a refinement of source-target alignment obtained by progressively including
the target domain in the learning objective through self-training;

• the adoption of a self-paced threshold forknown-unknown separationwhich
depends directly on the learned data distribution and thus adapts automatically to
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5.3 – Contrastive learning for multi-source open-set domain adaptation

Figure 5.1: Schematic illustration of HyMOS (best viewed in color). We use the same
notation adopted in Algorithm 3, please refer to it to follow the flow of the method.

different tasks. This threshold is used both at inference time and during training,
to select known target samples for self-training.

The overall algorithm is calledHyMOS which stands forHyperspherical feature space for
Multi-source OpenSet domain adaptation. All its components take part and contribute to
the definition of a method that tackles all the challenges of the studied problem by ex-
ploiting a single learning objective. This keep-it-simple design approach to address such
a complex problem deeply contrasts with the paradigm followed by most of the alterna-
tive methods, which relies on decomposing the problem, designing different modules
and loss functions to address different challenges, and obtaining a complete solution
only by combining these modules through a multitude of hyperparameters and making
choices based on hard-to-validate heuristics. We summarize this situation in Tab. 5.1.

We focus now on presenting the components of HyMOS in detail. An overview
is also illustrated in Figure 5.1 and summarized in Algorithm 3, whereas Algorithm 4
focuses on the test-time procedure.

5.3.2 Sampling approach for mini-batch definition
The supervised contrastive loss aims at learning compact class clusters with large mar-
gins. We exploit this ability to obtain source-source class-wise domain alignment by
designing a specific procedure to build trainingmini-batches with samples coming from
different visual domains. In particular, we evenly divide each batch to cover all source
classes 𝒴𝑆, and, for each of them, we select an equal number of samples from all the
𝑛𝑆 source domains. The loss function of Eq. 5.1 takes care of the rest, providing an em-
bedding space where representations of samples of the same class are grouped in the
same region regardless of the domain, while different classes are kept far apart from
each other.
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5.3.3 Style-transfer as part of contrastive learning
In the self-supervised contrastive learning pipeline a fundamental role is played by the
semantic-preserving transformations used to obtain augmented views of input: they
are meant to force the model to focus on core semantic information while becoming
invariant to the irrelevant cues that these transformations introduce. When dealing
with data from different domains we desire a representation that is able to neglectmajor
differences in visual appearance that go beyond grayscale or color jittering. This calls
for dedicated semantic-preserving image transformations. We thus propose to extend
the original augmentation pipeline by the introduction of an additional transformation
based on style-transfer: this is perfectly suitable for our goal as it does not affect the
image content while modifying significantly the global image texture. Similarly to what
we proposed in Chapter 4, we adopt for this process an AdaIN [55] model, that we
trained jointly on source and target data. In this case we want to learn how to transfer
the style from target images into source ones. As this augmentation is applied randomly,
during learning the supervised loss function will explicitly compare original source
images with target-like ones and learn to ignore the style difference.

One of the main advantage of this strategy to obtain style invariance is that it is safe
from negative-transfer. This is one of the main issues usually faced in open-set domain
adaptation and sparks from the risk of aligning unknown target categories with known
source ones. As a result, the existing methods [14, 42, 139, 93] usually try to mitigate
the problem by directly avoiding the inclusion of unknown samples in the adaptation
process. However, this strategy depends on a correct identification of the unknown
samples even before the learning of a domain invariant model, which is clearly a com-
plex task. With style-transfer, instead, we learn a domain-agnostic representation since
the beginning of the training process, and given that this transformation disregards the
semantic content of the style image we can safely draw the style also from samples
belonging to unknown categories.

5.3.4 Domain alignment refinement via self-training
According to what we have seen so far, if target labels were available during training,
it would be possible to obtain a perfect source-target alignment by simply including
the target set as an additional source in the described learning pipeline. Of course,
this is not the case. Still, once the model trained on style-transfer-enriched source data
is robust enough, one could use it to produce pseudo-labels for target data by simply
exploiting its predictions. We follow this approach in an episodic fashion: the first step
is a source-only learning episode, afterwhichwe start progressively including the target
samples in our learning objective. In particular, we perform periodic evaluation steps
that we call self-training break-points. These allows us to select target samples which
are confidently recognized as known. Through this iterative technique, we propagate
label knowledge from source to target data, improving the compactness of our class
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Figure 5.2: Illustration of the distances used for the class prediction and the self-training
procedure.

clusters while progressively leaving unknown target data in low-density regions of our
hyperspherical feature space.

5.3.5 Semantic discrimination on the Hypersphere
The described learning procedure enables obtaining an embedding inwhich known class
clusters are compact and separated by large margins, while unknown samples are left
isolated. This embedding provides the ideal condition to perform distance-based classi-
fication, in a NCM fashion [107]. It should be noticed that this strategy to use the feature
space built via contrastive learning is fundamentally different from the one adopted in
previous literature [66, 152], where the contrastive objectives were used only as pretext
learning tasks and the projection head was later dropped before fine-tuning the model
with a standard cross-entropy loss (a procedure sometimes called Guillotine Regular-
ization [10]). In our case, we keep the projection head and exploit its hyperspherical
output for delivering the final predictions. In particular, for each source class 𝑦(𝑠), we
compute a prototype by re-projecting on the unit hypersphere the feature average of
the training samples belonging to it:

ℎ𝑦(𝑠) =

1
𝑁𝑦(𝑠)

∑𝑘∈𝑦(𝑠) 𝑧(𝑠)
𝑘

‖
1

𝑁𝑦(𝑠)
∑𝑘∈𝑦(𝑠) 𝑧(𝑠)

𝑘 ‖2

(5.2)

In the evaluation phase, for any target sample 𝑧(𝑡) we measure its cosine similarity 𝜎
with each source class prototype and we rescale it in [0,1] in order to define the distance
metric that we use as a confidence measure for label assignment:

𝑑ℎ𝑦(𝑠)(𝑧
(𝑡)) = {1 − 𝜎[0,1](𝑧(𝑡),ℎ𝑦(𝑠))} for 𝑦(𝑠) ∈ 𝒴𝑆

In this context of distance-based classification, in order to decide whether a sample
belongs to a known category or to an unknown one we need to define a threshold on
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the distance between this sample and the nearest known class prototype. The defini-
tion of this threshold is not easy and it’s therefore a widely discussed problem in the
open-set DA literature, with many methods choosing values a priori and keeping them
fixed while training [42, 139]. In contrast, our proposal is to define it as a function of
the observed data distribution, so that its value can change online during training
and adapt to different tasks. In order to obtain this result we define two metrics that
summarize a description of the data distribution. We start from the class sparsity:

𝜃 = 1
|𝒴𝑆| ∑

𝑦(𝑠)∈𝒴𝑆

𝑑ℎ∗
(ℎ𝑦(𝑠)) (5.3)

whereℎ∗ is the closest prototype to eachℎ𝑦(𝑠) . Thismetric is the average of the prototype-
to-prototype minimal distances and provides a measure of inter-class separation. The
second metric is the class compactness:

𝜙 = 1
|𝒴𝑆| ∑

𝑦(𝑠)∈𝒴𝑆
{

1
𝑁𝑦(𝑠) ∑

𝑘∈𝑦(𝑠)

𝑑ℎ𝑦(𝑠)(𝑧
(𝑠)
𝑘 )

}
(5.4)

which evaluates whether the samples of each class are grouped tight around the corre-
sponding prototype (see Figure 5.2).

Given these metrics, we can easily notice that a training performed on a dataset
with a large number of categories, each with small intra-class variability, results in a
feature scenario with high compactness but low sparsity, for which a low threshold is
needed. On the other extreme, a training performed on a dataset with a limited number
of categories showing large intra-class variability corresponds to a low compactness
and high sparsity condition, for which a higher threshold may be preferred.

We thus compute our threshold by:

𝛼 = 𝜙 ⋅
[

𝑙𝑜𝑔
(

𝜃
2𝜙)

+ 1
]
, (5.5)

where 𝜃
2𝜙 estimates the average ratio between the distance of two adjacent prototypes

and the radii of the respective clusters. The application of this kind of threshold at
inference time is straightforward:

̂𝑦(𝑡) =
⎧⎪
⎨
⎪⎩

argmin
𝑦(𝑠)

(𝑑ℎ𝑦(𝑠)(𝑧
(𝑡))) if min 𝑦(𝑠)(𝑑ℎ𝑦(𝑠)(𝑧

(𝑡))) < 𝛼

unknown if min 𝑦(𝑠)(𝑑ℎ𝑦(𝑠)(𝑧
(𝑡))) ≥ 𝛼

(5.6)

The same threshold is applied also for the self-training break-points phases described
before. In this case, however, it is important to be particularly cautious, as a wrong
classification of unknown samples as known may lead to error propagation through
the self-training step. We thus include a multiplier 𝛼𝑚 that allows us to keep a more
conservative threshold: 𝛼𝑐 = 𝛼𝑚 ⋅ 𝛼. This multiplier is fixed to 0.5 and it is the only
hyperparameter of HyMOS.
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5.3.6 Implementation details
We implement HyMOS with an architecture composed of an encoder and a contrastive
head, where the former is a standard ResNet-50 backbone, while the latter is a simple
MLP composed of two fully connected layers (of size 2048 and 128) The network is
trained end-to-end byminimizing the supervised contrastive loss of Equation 5.1, where
we set 𝜏 = 0.07 as in [152]. Our final distance-based classification strategy is applied
in the hyperspherical space produced by the model. Given that the output dimension
is not constrained by the number of classes the architecture remains exactly the same
for all our experiments.

We initialize the backbone network with an ImageNet1k pre-trained SupClr model
[66] and train HyMOS for 40k iterations with the balanced data mini-batch definition
strategy described before. We use a linear warm-up schedule for the learning rate,
starting from 0 and going up to 0.05 at iteration 2500, after which we transition to cosine
annealing, decreasing the learning rate back to zero through the rest of the training. We
use LARS as optimizer [178], with momentum 0.9 and weight decay 10−6.

As mentioned in Sec. 5.3.4, the training is performed in an episodic fashion. The
first 20k training iterations are necessary to build a dependable model that can be later
used for self-training. As a result, in this first training stage, the target data is used ex-
clusively for the style-transfer-based data augmentation. After 20k iterations we start
performing evaluation steps that we call self-training break-points, one every 5k iter-
ations. After each break-point we include in the training dataset the target samples
classified as known with a confidence higher than 𝛼𝑐. This procedure allows us to pro-
gressively include more and more target data in the training dataset.

5.3.7 Experimental protocol
Datasets In order to evaluate our approach we adopt the benchmark proposed in
[130], that is built on top of three image classification datasets in which the set of avail-
able domains is split into sources and target, with a single domain considered in turn
as target.

Office31 [136] comprises three domains: Webcam (W), Dslr (D), and Amazon (A)
each containing 31 object categories. We set as known the first 20 classes in alphabetic
order, while the remaining 11 are considered unknown.

Office-Home [159], already mentioned in Chapter 4, is composed of four domains:
Art (Ar), Clipart (Cl), Product (Pr), and RealWorld (Rw) with 65 classes. The first 45
categories in alphabetic order are considered known, and the remaining 20 unknown.

DomainNet [127] is a significantly more challenging testbed than the previous
ones: it contains six domains and 345 classes. We consider only the domains Infograph
(I), Painting (P), Sketch (S), and Clipart (C), selecting randomly 50 samples per class or
using all the images in case of lower cardinality. The first 100 classes in alphabetic order
are known, while the remaining 245 are unknown.
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Table 5.2: Results averaged over three runs for each method on the DomainNet, Of-
fice31, and Office-Home datasets.

Method
DomainNet

→ S → C Avg.

H
O
S Source Combine

Inheritable [75] 34.8 44.0 39.4
ROS [14] 44.5 52.4 48.5
CMU [42] 38.1 35.5 36.8

DANCE [139] 30.0 37.6 33.8
PGL [102] 18.5 19.4 19.0

Multi-Source
MOSDANET [130] 40.0 39.3 39.6

HyMOS 57.5 61.0 59.3

A
U
RO

C Source Combine ROS [14] 63.9 68.0 66.0
Multi-Source HyMOS 71.9 75.8 73.9

Office31
→ W → D → A Avg.
76.6 79.5 70.0 75.4
81.8 80.1 64.7 75.5
61.4 64.0 56.4 60.6
38.5 59.7 58.0 52.0
43.3 37.7 35.6 38.9
60.5 71.5 73.9 68.6
90.2 89.9 60.8 80.3
93.9 95.2 73.5 87.5
96.9 96.1 71.0 88.0

Office-Home
→ Rw → Cl → Ar → Pr Avg.
63.2 52.6 48.7 60.7 56.3
73.0 57.3 61.6 69.1 65.3
70.8 50.0 58.1 69.3 62.1
12.4 16.1 18.6 22.9 17.5
40.0 31.5 31.8 42.2 36.4
65.0 51.1 54.3 65.9 59.1
71.0 64.6 62.2 71.1 67.2
80.8 69.6 73.7 79.4 75.9
81.1 76.4 75.3 79.6 78.1

Competitors We compare HyMOS with several state-of-the-art baselines proposed
for single-source open-set (Inheritable [75], ROS [14], PGL [102]), multi-source open-set
(MOSDANET [130]), and universal domain adaptation (CMU [42], DANCE [139]).

For all these baseline methods the original implementations are publicly available,
with the only exception ofMOSDANET [130] forwhichwe obtained the code via private
communications with the authors. As a consequence, for all the experiments we use the
codebases provided by the original authors. For the methods that do not specify how
to manage multiple sources, we simply combine all of them building a single source
dataset (Source Combine).

Performance metrics For a fair comparison, we adopt the HOS evaluation metric
as described in Sec. A.4.2 and defined in Equation A.4.

5.3.8 Experimental results
Main benchmark

In Table 5.2 we collect our evaluation results, which show that HyMOS outperforms all
the baselines. Its gain with respect to the best competitor ROS, varies from 1.9% points
on OfficeHome, up to 10.8% on DomainNet. Besides being simpler than the reference
approaches, HyMOS proves to be robust to the significantly different scenarios covered
by the three datasets in terms of the number of shared and private classes, as well the
as nature and extent of the domain gap. These peculiarities make HyMOS the most
suitable approach for a variety of real-world applications.

We also benchmark HyMOS, against the best competitor ROS, in terms of the AU-
ROC out-of-distribution detection metric (see Sec. A.3.2). This metric is relevant as,
thanks to its threshold-independent nature, it us allows to disentangle the quality of
the normality evaluation function from the one of the thresholding strategy.

In our case, the normality score used to evaluate whether a sample is known or
unknown is its distance from the nearest source class prototype, while ROS exploits
a combination of entropy and probability output of an auxiliary rotation recognition
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Figure 5.3: Analysis on the dynamic threshold 𝛼 at different training iterations.

classifier. Even in this case HyMOS significantly outperforms ROS, proving that its
better HOS results do not spark only from a sane thresholding approach, but are also a
direct consequence of the high quality of the learned hyperspherical embedding space.

Analysis on the threshold

As described in Sec. 5.3.5 the dynamic threshold 𝛼 is computed as a function of the data
distribution. In Figure 5.3 we provide an overview of 𝛼 value at different training itera-
tions: for Office31 and Office-Home the value decreases over time while for DomainNet
it increases. These different trends evidence how the data clusters move: as the training
proceeds they become more compact and their reciprocal distance increases towards a
more uniform class distribution on the hypersphere. For DomainNet the second event
occurs faster than the first: this trend is correlated with the number of classes which is
higher with respect to that of other datasets. In all cases the threshold converges to a
stable value towards the end of the training.

The 𝛼𝑚 multiplier used as part of the break-point evaluation strategy to compute a
conservative threshold is the only hyperparameter of HyMOS: its goal is to have a high
precision in the recognition of known classes, even if the recall may be low. Table 5.3
shows that 𝛼𝑚 = 0.5 is a safe choice regardless of the dataset. Moreover, by tuning this
multiplier, the HOS performance of HyMOS remains always competitive with ROS, and
can even increase as in the case of DomainNet for 𝛼𝑚 = 1.

Increasing the Openness Level

In many real-world scenarios, it is not possible to have direct control over the number
of unknown classes in the unlabeled target, and it is natural to expect more unknown
categories than known ones. In order to study how HyMOS reacts to different openness
levels, we consider the DomainNet dataset and exploit its large class cardinality. The
plot in Figure 5.4 shows the HOS accuracy of HyMOS and how it outperforms its best
competitor ROS at different openness values 𝕆 ∈ {0.5,1}.
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Figure 5.4: Performance of HyMOS and ROS [14] at different openness (𝕆) levels.

Table 5.3: Average performance (HOS) when changing the train-time multiplier 𝛼𝑚 for
the self-paced threshold 𝛼.

Method DomainNet Office31 Office-Home

HyMOS

𝛼𝑚 = 0.3 55.1 79.2 65.8
𝛼𝑚 = 0.5 59.3 80.3 67.2
𝛼𝑚 = 0.7 60.8 78.2 66.8
𝛼𝑚 = 1.0 61.4 74.1 65.8

ROS [14] 48.5 75.7 65.3

5.3.9 Ablation Analysis
The main idea behind the development of HyMOS is that a robust method designed for
the multi-source open-set domain adaptation task should be able to tackle all of this
problem’s challenges at once.

In the following, we focus on each of these challenges, providing a detailed ablation
analysis that sheds light on the inner functioning of our method. The results of this
analysis are collected in Table 5.4.

Source-Source Alignment

As widely proved in the domain generalization vast literature (see Sec. 2.2.1), reducing
the domain shift among the available sources improves model generalization. For this
reason, a dedicated source alignment component is included in the only existing multi-
source Open-Set method MOSDANET [130].

In the HyMOS training phase, cross-source adaptation is obtained by combining
the supervised contrastive learning loss with an accurately designed balanced batch
sampling strategy, thanks to which the learning objective provides a strong class-wise
alignment by, regardless of the domain, pulling together samples of the same class and
pushing away samples of different classes. HyMOS shows a gain in performance of
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Table 5.4: Ablation Study, HOS results.

Method
Office-Home

→ Rw → Cl → Ar → Pr Avg.
HyMOS 71.0 64.6 62.2 71.1 67.2

w/o Source Balance 69.2 58.4 60.6 70.2 64.6
Style Tr. Target Known (Oracle) 70.7 63.7 62.5 71.2 67.0

w/o Style Transfer 69.5 56.4 60.0 68.3 63.6
w/o Self-Training 72.2 55.0 58.6 71.5 64.3

Improved Cross-Entropy 61.5 61.2 58.1 57.1 59.5
ROS [14] 73.0 57.3 61.6 69.1 65.3

+ Source Balance 75.2 55.5 62.6 66.9 65.0
+ Style Transfer 62.6 46.3 52.0 60.1 55.2
+ Self-Training 69.6 59.1 61.5 60.5 62.7

+ S. Balance, Style Tr., Self-Train. 62.0 40.4 52.2 62.4 54.3

2.6% over its version without this balancing strategy (see row w/o Source Balance).

Source-Target Adaptation

HyMOS obtains source-target alignment through the joint work of two of its compo-
nents: the style-transfer-based augmentation strategy and the auto-regulated progres-
sive self-training procedure.

We highlight the importance of both components:

• the style-transfer-based data augmentation approach allows to bootstrap themodel’s
style-invariancewithout incurring in negative-transfer. This is proved by the neg-
ligible difference between HyMOS’s results and those in the table row Style Tr.
Target Known (Oracle), for which an Oracle version of our approach is used to
extract target style only from known target categories. Moreover, the effective-
ness of this augmentation approach is proved by the performance drop that is
obtained if it gets disabled (row w/o Style Transfer );

• the self-training procedure further improves source-target alignment by integrat-
ing known target samples in the learning procedure effectively obtaining an in-
crease in compactness of the known class clusters. Also in this case, disabling
this strategy involves a significant performance drop (row w/o Self-Training).

Comparison with improved baselines

Source balance, style-transfer, and self-training appear as simple strategies that can be
combined with any supervised learning model to improve its effectiveness in the multi-
source open-set domain adaptation scenario. Still, we state that leveraging supervised
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contrastive learning and its related hyperspherical embedding is crucial for the effec-
tiveness of these strategies in the task at hand. To support our claim we substitute the
contrastive loss of HyMOS with the standard cross-entropy loss. The row Improved
cross-entropy reports the obtained results, showing that this baseline approach is sig-
nificantly worse than HyMOS.

We perform a similar exercise by enriching our best competitor ROS [14] with
source balancing, style transfer, and self-training:

• the source-balancing (row + Source Balance) does not provide any improvement
for ROS, mainly because this method is based on the cross-entropy loss which
does not have the same clustering effect as the supervised contrastive one;

• the style-transfer produces a drop in performance (row + Source Balance): by
checking the non-aggregated predictions it is possible to observe a slight advan-
tage in the recognition accuracy of the known classes, but a significant drop in the
unknown accuracy which causes a decrease in the overall result. Once again this
is probably due to the different behaviors between the two learning objectives;

• the self-training, implemented following [130], produces again a performance
drop, which in this case is probably caused by an error propagation phenomenon
induced by the cross-entropy well-known overconfidence issue [118].

Finally, when applying all the strategies at once, the results are similar to those obtained
with style transfer alone. This last technique clearly steers the whole method towards
a low performance.
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Algorithm 3: HyMOS training procedure
Input: 𝛼𝑚, AdaIN model
Data: {𝑥(𝑠), 𝑦(𝑠)} ∈ 𝑆, 𝑥(𝑡) ∈ 𝑇
Output: 𝐸𝑛𝑐, 𝑃 𝑟𝑜𝑗

1 Function transform(𝑥):
2 𝑠𝑡𝑦𝑙𝑒𝐴𝑢𝑔𝑚𝑒𝑛𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑇 𝑟𝑢𝑒,𝐹 𝑎𝑙𝑠𝑒)
3 𝑥′ = 𝑟𝑎𝑛𝑑𝑜𝑚𝐶𝑟𝑜𝑝(𝑥)
4 if 𝑠𝑡𝑦𝑙𝑒𝐴𝑢𝑔𝑚𝑒𝑛𝑡 then
5 return 𝑠𝑡𝑦𝑙𝑒𝑇 𝑟𝑎𝑛𝑠𝑓(𝑥′) ▷ target style
6 else
7 return 𝑔𝑟𝑎𝑦𝑆𝑐𝑎𝑙𝑒(𝑗𝑖𝑡𝑡𝑒𝑟((𝑥′)))
8 end
9 Function createBatch(𝑆):
10 𝑏𝑎𝑡𝑐ℎ = [ ] ▷ balance domains and categories
11 for each 𝑦(𝑠) in 𝒴𝑆 do
12 for each 𝑆𝑖 in 𝑆 do
13 𝑥′

(𝑦(𝑠),𝑆𝑖)
= 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑥(𝑦(𝑠),𝑆𝑖))

14 𝑏𝑎𝑡𝑐ℎ.𝑎𝑝𝑝𝑒𝑛𝑑(𝑥(𝑦(𝑠),𝑆𝑖),𝑥
′
(𝑦(𝑠),𝑆𝑖)

)
15 end
16 end
17 return 𝑏𝑎𝑡𝑐ℎ ▷ 𝑙𝑒𝑛(𝑏𝑎𝑡𝑐ℎ) = |𝒴𝑆| × |𝑆| × 2
18 Function main():
19 ̂𝑇 = [ ]
20 for 𝑖𝑡 in 𝑟𝑎𝑛𝑔𝑒(0, 𝑒𝑛𝑑) do
21 if 𝑖𝑡 in 𝑏𝑟𝑒𝑎𝑘-𝑝𝑜𝑖𝑛𝑡𝑠 then
22 ̂𝑇 = [ ]
23 𝛼 ← (Eq. 5.5) ; 𝛼𝑐 = 𝛼𝑚 ⋅ 𝛼
24 for 𝑥(𝑡) in 𝑇 do
25 𝑧𝑡 = 𝑃 𝑟𝑜𝑗(𝐸𝑛𝑐(𝑥𝑡))
26 ℎ𝑦(𝑠) ← closest prototype to 𝑧(𝑡)

27 if 𝑑ℎ𝑦(𝑠)(𝑧
(𝑡)) < 𝛼𝑐 then

28 ̂𝑦(𝑡) = 𝑦(𝑠) ; ̂𝑇.append((𝑥(𝑡), ̂𝑦(𝑡))) ▷ self-training
29 end
30 end
31 end
32 𝐵 = 𝑐𝑟𝑒𝑎𝑡𝑒𝐵𝑎𝑡𝑐ℎ(𝑆.𝑐𝑜𝑛𝑐𝑎𝑡( ̂𝑇 ))
33 𝑧 = 𝑃 𝑟𝑜𝑗(𝐸𝑛𝑐(𝐵))
34 𝑙𝑜𝑠𝑠 = 𝑆𝑢𝑝𝐶𝑙𝑟(𝑧) (Eq. 5.1)
35 Update 𝐸𝑛𝑐,𝑃 𝑟𝑜𝑗 ← ∇𝑙𝑜𝑠𝑠
36 end
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Algorithm 4: HyMOS evaluation procedure
Input: 𝐸𝑛𝑐, 𝑃 𝑟𝑜𝑗
Data: T
Output: Predictions on 𝑇

1 𝛼 ← Eq. 5.5
2 for each 𝑥𝑡 in 𝑇 do
3 𝑧(𝑡) = 𝑃 𝑟𝑜𝑗(𝐸𝑛𝑐(𝑥(𝑡)))
4 ℎ𝑦(𝑠) ← nearest prototype to 𝑧(𝑡)

5 if 𝑑ℎ𝑦(𝑠)(𝑧
(𝑡)) < 𝛼 then

6 ̂𝑦(𝑡) = 𝑦(𝑠)

7 else
8 ̂𝑦(𝑡) = unknown
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Table 5.5: Comparison with existing OWR (OS+CIL), DG and CIL approaches. HPs
indicate the hyperparameters.

Method
No. of No. of Open-Set Domain Class Incremental
Losses HPs Recognition Generalization Learning

NNO [6] 1 1
DeepNNO [105] 2 1
B-DOC [40] 3 2
SS-IL [2] 2 0
RR [97] 2 1
SC [56] 1 1

RSDA [161] 2 1
SagNet [117] 3 2

COW 1 2

5.4 Contrastive learning for cross-domain open-world
recognition

5.4.1 Preliminaries
As was the case of MSOSDA, the cross-domain open-world recognition (CD-OWR) task
involves a multitude of challenges: cross-domain learning (i.e. domain generalization),
open-set learning, and incremental learning. These challenges are usually tackled in-
dividually, with complete strategies that are built by combining challenge-specific so-
lutions. Indeed, this is the case for all the algorithms included in the first benchmark
designed to study this problem [41]. As we believe that this approach is not robust, we
propose once again a paradigm shift, in particular by designing an algorithm that, by
exploiting a single learning objective, tackles all of the problem’s challenges at once.
Similarly to what we have done before, we reach this result by relying on the super-
vised contrastive loss function, and we take inspiration from this choice to choose a
name for our method, which we call COW, standing for Contrastive Open-World. We
summarize a comparison between the structures of COW and the other methods used
for CD-OWR in Table 5.5.

COW takes vast inspiration from HyMOS, but includes some additions specifically
designed for the incremental nature of the CD-OWR task, in particular a tailored stop-
ping criterion for the incremental learning protocol, and a modified thresholding
strategy. For both these components we rely on the stats about the structure of the fea-
ture space introduced for HyMOS: the class sparsity 𝜃 (Eq. 5.3) and the class compactness
𝜙 (Eq. 5.4).
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5.4.2 Incremental learning protocol
When performing incremental learning, the greatest risk is to run into the phenomenon
called catastrophic forgetting, i.e. the forgetting of the knowledge learned up until task
𝑡−1, when performing the training on task 𝑡. Complex approaches have been proposed
to prevent this from happening, in our case, however, we want to keep the focus on the
effectiveness of the chosen learning objective, thus we adopt a very simple incremental
protocol based on two principles:

• as done by other incremental learning algorithms we keep a (limited- and fixed-
size) replay buffer containing a subselection of samples from previous tasks;

• we perform class-balancing at the batch level, by putting in each training mini-
batch at least two samples of each class. In this case, class-balancing is particu-
larly important as it enables balancing novel and old classes, pushing for learning
without forgetting.

We expect our learning objective to manage the available data and progressively make
room on the hyperspherical feature space to accommodate new classes while exploiting
replay samples to maintain the space reserved for the old ones.

Stop-training criterion

Intuitively, class clusters in our feature space cannot bewell separated if 𝜃 < 2𝜙. Indeed,
𝜙 can be considered as a measure of the radius of clusters, thus if the distance between
two class centroids is lower than the sum of their radii the two clusters will inevitably
overlap. This situation should be avoided as, with overlapping regions, the samples of
the two classes cannot be distinguished, but avoiding an overlap may not be enough:
we want some empty space between class clusters to accommodate unknown data.

In order to reach this result, we impose a constraint on the quality of the structure
of the feature space for our output model. We obtain this result by exploiting the fact
that the compactness and separation of known class clusters increase during training,
which allows us to enforce the described relation between 𝜃 and 𝜙 by using a specific
stopping criterion in the learning procedure. In particular, we consider each learning
task as converged (and thus finished) only when

𝜆 > 1 + 𝜀, with 𝜆 =
𝜃

2𝜙
and 𝜀 ≥ 0 (5.7)

Here 𝜀 can be seen as a minimum desired margin between two clusters, and is one of
the two hyperparameters of our method.
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e.g.setting  
b = 5

Figure 5.5: Visualization of two data clusters on the learned hyperspherical embedding
and of the corresponding threshold value. Tuning 𝑏 means tuning 𝑣 in {1,2}

5.4.3 Threshold definition
By adopting the NCM [107] logic, each test sample is processed by computing its dis-
tance from the known class prototypes. This approach is particularly suitable in the
OWR setting as it enables the use of a threshold on the distance to perform known-
unknown separation, exactly as we did in HyMOS:

̂𝑦(𝑡) =
⎧⎪
⎨
⎪⎩

argmin
𝑦(𝑠)

(𝑑𝑎(ℎ𝑦(𝑠), 𝑧(𝑡))) if min 𝑦(𝑠)(𝑑𝑎(h𝑦(𝑠), z(𝑡))) < 𝜏

unknown otherwise
(5.8)

The value of the threshold 𝜏 is one of the most important choice for an open-world
approach (see Table I in [41]). In our case, we can take advantage of the feature space
statistics to define the threshold:

𝜏 = [sigmoid (𝜆 − 𝑏) + 1] ⋅ 𝜙 ⋅ (ln (𝜆) + 1) (5.9)

Differently from HyMOS’ case, here we have the constraint imposed through Eq. (5.7)
which makes the result of the logarithm always positive. We introduce the hyperpa-
rameter 𝑏 in the first term of the formula (between squared brackets) to provide a way
to control the importance of unknown data w.r.t. known one. This hyperparameter
allows us to obtain a good known-unknown balancing in all the testbeds considered
in the following experimental analysis. We summarize the meaning of our threshold
definition in Figure 5.5.

5.4.4 Experimental protocol
We assess the performance of COW by mainly relying on the benchmark proposed in
[41], but we also extend it in order to include more recent literature and additional
datasets that are relevant to the studied problem and to its possible real-world applica-
tions.
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Datasets

We focus on five datasets, all of them representing collections of daily-life objects (span-
ning from fruits and vegetables to tools and containers) captured under very different
acquisition conditions.

RGB-D Object dataset (ROD) [76] is one of the most used RGB-D datasets in the
literature studying object categorization for robotics. It represents objects placed on a
table and captured with different viewpoints. Data collection has been performed in
a strictly controlled environment without any source of noise i.e. without clutter, and
with a fixed illumination and background.

Synthetic ROD (synROD) [97] is a synthetic version of ROD, designed to analyze
the synthetic-to-real domain shift problem in a robotic context. It has been defined
using publicly available 3D models rendered through a ray-tracing engine in Blender
to simulate photorealistic lighting.

Autonomous Robot Indoor Dataset (ARID) [96] is a challenging dataset of pic-
tures of objects captured in a cluttered environment: the same objects appear with
different backgrounds, scales, views, lighting conditions, and levels of occlusions. The
purpose of this dataset is to evaluate the robustness of a recognition model when deal-
ing with difficult but realistic scenarios.

Continual Open Set Domain Adaptation for Home Robot (COSDA-HR) [69]
is a dataset composed of a source domain with pictures of hand-held objects placed in
front of a uniform background and a target domain with pictures of the same and other
objects captured in various natural locations in a home environment.

ContinuousObject Recognition 50 (CORe50) is a collection of photos of domestic
objects, captured while being held by the operator in 11 distinct sessions (8 indoor and
3 outdoor).

For the first three datasets we follow the experimental protocol proposed in [41]:
among the 51 object categories that they share, we randomly choose 26 to act as known
while the rest are kept as unknown. The incremental protocol is composed of an ini-
tial set of 11 base categories and three incremental steps each one including additional
five categories. For COSDA-HR instead, we follow [69]: its 160 known categories are
learned incrementally 10 at a time for a total of 16 tasks. There is also a single unknown
category composed of a heterogeneous set of objects. In the case of CORe50, which was
designed to perform instance classification on 50 objects, we consider 10 of them in the
first learning episode and add 5 in each of the subsequent three, keeping the last 25 as
unknown. We consider the indoor → outdoor domain shift.

In order to better assess the performances of the methods, for all the experiments,
we consider five different random class orders and we report the obtained average.
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Metrics

For the evaluation we select the metrics employed in [41], which are described in Sec.
A.5.2.

Competitors

In [41], Fontanel et al. analyze the performance on the CD-OWR task of a number
of state-of-the-art OWR methods, enhanced with single-source DG approaches to deal
with the domain-shift.

We thus adopt the same approach to build comparisons and assess the performance
of COW, but besides the methods originally considered in [41], we also include an ad-
ditional CIL state-of-the-art method and an additional DG state-of-the-art method. The
methods considered are thus:

• NNO [6] a non-parametric approach that exploits the Nearest-Class Mean (NCM)
algorithm [107] to compute the class centroids with features extracted through a
pre-trained deep architecture;

• DeepNNO [105], an improved version of NNO in which the feature extractor is
trained end-to-end and the rejection threshold is not fixed but updated during
training,

• B-DOC [40], an algorithm that includes two clustering constraints in the opti-
mization process and proposes a class-specific rejection threshold;

• SS-IL [2], a state-of-the-art CIL method that uses separate softmax output layers
combined with task-wise knowledge distillation to mitigate the bias toward the
new classes. Considering that SS-IL has not been designed for OWR, but for CIL,
it does not include a known-unknown separation procedure. In order to adapt
it to our scenario we thus exploit the standard Maximum Softmax Probability
approach [50] for defining a normality score and we define a threshold using the
logic proposed in [77].

For what concerns the DG literature we consider three methods used in [41]: RSDA
[161] a data augmentation-based technique,RR [97] a self-supervised-based technique,
and SC [56] a regularization-based strategy. Moreover, we include the more recent DG
approach SagNet [117] that disentangles the sample content and style to let the network
focus more on the first than on the second.

Implementation Details

We implement COW reproducing the protocol adopted for all our competitors: we use
a ResNet18 backbone trained from scratch using images of size 64 × 64. When learning
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Table 5.6: Results (%) averaged over five random class orders.

OWR/CIL DG

NNO [6]

-
DeepNNO [105]
B-DOC [40]
SS-IL [2]
NNO [6]

+ RR [97]
DeepNNO [105]
B-DOC [40]
SS-IL [2]
NNO [6]

+ SC [56]
DeepNNO [105]
B-DOC [40]
SS-IL [2]
NNO [6]

+ RSDA [161]
DeepNNO [105]
B-DOC [40]
SS-IL [2]
NNO [6]

+ SagNet [117]
DeepNNO [105]
B-DOC [40]
SS-IL [2]

COW

ROD → ARID
Acc-WR Acc OWR-H

18.4 3.1 5.9
21.3 7.3 13.4
22.3 10.0 17.5
17.6 14.7 16.4
27.1 13.6 21.7
33.5 16.0 25.8
32.2 11.7 20.4
17.3 13.0 17.9
14.1 9.8 15.5
20.9 15.9 22.0
19.6 13.1 20.4
15.2 12.9 14.7
25.0 12.8 20.7
33.3 14.9 24.6
31.9 12.2 21.1
29.9 24.4 24.1
19.1 3.9 7.4
22.5 8.7 15.5
23.7 10.7 18.2
24.9 19.4 21.8
34.0 18.8 28.6

synROD → ARID
Acc-WR Acc OWR-H

16.2 7.8 13.7
15.9 5.4 10.0
16.5 2.2 4.3
21.3 9.6 16.1
15.8 7.2 12.5
14.2 4.9 9.3
15.7 2.2 4.3
19.7 6.6 11.6
16.0 11.6 16.9
15.5 8.4 14.6
16.5 10.0 16.1
19.0 7.9 13.2
16.3 8.6 14.4
15.3 4.2 8.0
16.3 2.5 4.9
20.3 7.6 12.8
15.2 7.3 12.7
13.7 4.7 8.8
18.2 4.6 8.5
20.9 8.9 14.9
29.8 21.3 28.1

synROD → ROD
Acc-WR Acc OWR-H

21.3 13.3 21.1
24.4 9.6 17.0
27.6 5.2 9.9
29.3 16.9 22.9
25.9 17.1 23.8
34.1 15.4 25.2
35.9 9.7 17.3
30.9 16.2 23.7
21.9 18.8 21.2
25.9 17.0 25.3
26.7 18.0 23.2
26.8 14.6 21.0
26.7 18.4 24.5
34.2 14.0 23.5
37.9 10.8 19.1
38.7 23.6 30.3
20.3 12.4 19.4
17.9 7.1 12.8
28.9 9.1 16.1
32.8 17.7 24.5
34.1 24.0 30.7

COSDA-HR
Acc-WR Acc OWR-H

8.2 3.7 7.0
15.1 8.2 12.8
13.2 0.7 1.3
8.4 5.0 6.2
8.2 3.2 6.5
13.8 6.9 11.0
12.3 0.5 1.0
7.8 1.4 2.6
6.4 4.6 7.2
15.3 11.7 15.5
13.0 1.9 3.3
9.0 5.5 6.6
8.9 2.1 3.9
18.4 10.9 17.1
18.2 0.6 1.0
17.8 8.3 12.6
8.1 3.2 6.4
8.5 3.9 7.2
11.3 0.5 1.1
8.3 3.7 6.1
20.1 16.2 21.4

CORe50
Acc-WR Acc OWR-H

15.0 0.6 1.2
17.0 4.5 8.1
15.7 2.2 3.8
23.2 16.8 18.6
14.5 0.4 0.9
17.5 5.0 8.9
19.5 4.5 7.1
20.2 9.7 12.8
13.3 2.9 5.3
18.2 8.8 13.6
17.1 4.7 6.8
19.3 14.7 16.0
22.1 13.1 16.1
38.0 20.8 30.7
41.4 9.8 15.9
38.1 25.9 30.6
15.9 2.5 4.7
19.3 7.6 12.4
17.3 3.6 5.9
27.3 17.6 23.5
33.9 23.9 32.9

a new task we keep a fixed-size memory buffer to store 𝑀 = 2000 randomly selected
samples of the classes of previous tasks. We train each task until our stop training
condition (Eq. 5.7) is matched. COW has only two hyperparameters, 𝜀 and 𝑏, and is
robust to their value as discussed in Sec. 5.4.5.

5.4.5 Experimental analysis
In our experiments, we use the source → target notation to identify the various sce-
narios. The results reported in the tables and plots show how existing OWR and CIL
solutions are far from solving the task of cross-domain open-world recognition even
if enhanced with DG approaches to bridge the domain gap. On the contrary, COW,
using a single loss function and without any dedicated cross-domain module, is able to
mitigate the domain shift and outperform the current state-of-the-art.

Main results

We start analyzing the performance of vanilla state-of-the-art OWR andCIL approaches
on the CD-OWR task without the help of DG methods, reporting the results in the
upper part of Table 5.6. As already reported by Fontanel et al. in [41] these methods
perform poorly in a cross-domain scenario. The second block of the table presents the
results obtained by combining the same approaches with single-source DG ones. We
reproduced the experiments originally included in [41], enriching them with the more
recent methods SS-IL and SagNet.
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Figure 5.6: Performance analysis at subsequent learning episodes for synROD → ARID.
The number of known classes |𝒴𝑆| increases and the plots show how COW maintains
a consistent gain over all the competitors.

We discuss the results focusing on the OWR-Hmetric that was shown to be themost
appropriate to evaluate open-set approaches [41], as was the case fot HOS in open-set
domain adaptation [14]. For what concerns the ROD → ARID and synROD → ROD
domain shifts, as well as the CORe50 dataset, we can generally see an improvement
after adding each one of the DG approaches. In general, the non-negligible average
improvement gained when exploiting a DG strategy confirms the generalization failure
of the original OWR/CIL approaches. Moreover, among the considered DG strategies
the one that most often produces the highest results is the data augmentation-based
approach RSDA, which confirms the great advantage that a strong data augmentation
can provide in knowledge generalization, as largely discussed in Chapter 4. In some
edge cases, however, even this approach is not enough. If we focus on the synROD →
ARID shift, and on the COSDA-HR dataset, we see that all the DG strategies do not seem
to provide a significant and consistent improvement. In both these cases, the domain
shift is quite severe since it includes a (realistic) target domain with images recorded in
a cluttered environment, very different from the neat (and possibly synthetic) training
set. The considered DG strategies are clearly not suited to reduce such a large domain
gap.

Anyway, the table shows that COWobtains the best results over all the experiments,
proving its effectiveness.

Domain Generalization through Contrastive Learning

Contrastive learning relies on data augmentation to create augmented views of the
training samples and learn invariance to those augmentations. The employed augmen-
tation techniques are more or less the same used in RSDA [161], with the addition of
random resized crop (RC). In order to assess whether the good results of COW origi-
nate mainly from this augmentation pipeline, or from the specific way in which it is
used by the contrastive loss, we propose an analysis in which we provide other base-
lines with the additional RC transformation. In Table 5.7 we consider the synROD →
ARID domain shift. We compare against our best competitor for this shift, which is
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Table 5.7: Contrastive learning vs Data augmentation.

OWR/CIL DG synROD → ARID
Acc-WR Acc OWR-H

NNO [6] + SC [56] + RC 16.5 13.8 14.6
NNO [6]

+ RSDA [161] + RC

17.3 12.5 14.5
DeepNNO [105] 20.4 10.7 17.7
B-DOC [40] 23.8 13.3 20.1
SS-IL [2] 27.0 11.2 17.9

COW 29.8 21.3 28.1

NNO+SC, but also against the methods that already use the strong augmentations of
RSDA. We observe that the performance of the considered competitors does not always
increase with the considered addition, highlighting that this augmentation can hurt the
performance of methods that are not designed to manage it. Nevertheless, even when
the performance of the competitors increases, COW still keeps the best results. This
evidences that data augmentation is not enough by itself to enable generalization and
thus that the contrastive logic plays a fundamental role in this sense.

Incremental learning performance

The performance over multiple incremental steps is a fundamental element to consider
when comparing incremental learning methods. We analyze it by reporting the scores
for subsequent learning episodes in Figure 5.6 on the synROD → ARID domain shift.
On this specific shift, the Self Challenging (SC) approach is the DG method providing
the higher mean improvement to COW’s competitors, thus we focus on it for the com-
parison. For all three metrics, we can see that COW keeps a large performance gap over
the other approaches for all the incremental steps. After a natural decrease in accuracy
following the first task, in the subsequent learning episodes COW is able to maintain
a quite stable ACC and OWR-H performance showing a great ability to balance the
accuracy on known and unknown samples. We remark here that COW does not in-
clude any sophisticated incremental learning technique, which means that its excellent
results come from the judicious combination of contrastive learning with a fixed-size
replay buffer and class-balanced sampling for mini-batches.

Sensitivity Analysis

COW exploits two hyperparameters, 𝜀 and 𝑏, to balance the training and the infer-
ence process in order to obtain a well-structured feature space that supports known-
unknown separation. Their influence on the model’s performance is different and de-
pends on the value of 𝜆, which in turn depends on the statistics of the training dataset.
We analyze the situation considering two different shifts representing two extreme
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Figure 5.7: OWR-H results when varying 𝜀 and 𝑏.

cases: for synROD → ARID we have 𝜆 ≈ 1 + 𝜀 (a situation similar to Fig. 5.5 left),
while for ROD → ARID we have 𝜆 ≫ 1 (Fig. 5.5 right). We report the results of this
analysis in Fig. 5.7.

The value of 𝜀 controls the minimummargin between known class clusters imposed
through the stop training criterion of Eq. (5.7). As a consequence, a larger 𝜀 pushes the
training towards a larger margin by increasing clusters compactness and separation.
While this condition may seem always desirable, a too-high value may in practice lead
to overfitting, without considering the very long training times necessary to reach the
stop training criterion. As the plot on the left shows, the value of 𝜀 does not influence
the performance on ROD → ARID as for this shift the margin is naturally quite high.

The hyperparameter 𝑏 tunes our known-unknown separation threshold 𝜏 (see Eq.
(5.9)), and it allows us to find a good balance between known and unknown accuracy.

The main outcome of this analysis is the proof that the results obtained by COW are
stable and high (≥ 26%) for a reasonable range of hyperparameters’ values, and always
outperform the best competitor (e.g. for synROD → ARID, NNO + SC obtains 16.9, for
ROD → ARID, DeepNNO + RR obtains 25.8).
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5.5 Conclusions
In this chapter, we have studied two different open-world learning settings, both char-
acterized by a multitude of challenges including a semantic and a visual distribu-
tion shift. The concurrent occurrence of these two types of distribution shift makes
it even more difficult to obtain robust performance after deployment, considering that
this means ignoring completely one shift type while detecting all the occurrences of
the other. The solutions that we have proposed are based on the idea that the correct
choice in terms of learning objective allows us to simplify significantly the man-
agement of these complex problems. Indeed, the adoption of supervised contrastive as
the main learning function enables overcoming some of the problems of the standard
cross-entropy one, such as the prediction overconfidence and the attention to local
features, ultimately leading to a reduction of the supervision collapse issue. Indeed,
the explicit invariance to a bunch of semantic-preserving transformations obtained by
contrastive learning forces the network to focus on global features, while the obtained
strongly structured feature space enables the definition of sensible strategies for clas-
sification and known-unknown separation. The significant impact of this structure on
OOD performance has been later noted also in several other works [112, 85].

This first analysis of the advantages that can be obtained bymodifying our approach
to representation learning opens the way for a broader discussion on this topic. Up to
this point, we have always focused on strategies that learn representations directly on
the task on which they are applied, by training from scratch or fine-tuning a model on
the data of the task at hand. This approach may be suboptimal w.r.t. representation
learning paradigms with wider scopes applied on huge data collections at scale. These
are the topics under analysis in the next chapter, where for the first time we analyze
the impact of foundation models on distribution shift problems. For what concerns
these models, it is interesting to note that, despite a significant scale difference, founda-
tion models designed for the Computer Vision field have in common with HyMOS and
COW the adoption of contrastive-based learning objectives [122, 129], demonstrating
one more time the superiority of this learning paradigm in terms of knowledge gener-
alization.
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Chapter 6

Out-Of-Distribution detection
beyond fine-tuning

The standard practice for tacklingOut-Of-Distribution detection relies on full train-
ing, or at least a fine-tuning of a pre-trained model, on the in-distribution data of the
task at hand. This approach has a number of disadvantages, the first of which is the
poor out-of-distribution representation capabilities it provides, caused by supervision
collapse and forgetting of any general pre-trained knowledge. In spite of this, this ap-
proach has certainly been the most suitable to deal with OOD detection for a long time,
but we argue that the situation has recently started to change. Indeed, the recent evo-
lutions in terms of neural network architectures, distributed and large-scale training,
and availability of very large data collections have begun to make competitive an alter-
native approach that in the past would have only guaranteed poor results: the direct
use of pre-trained knowledge to tackle downstream tasks without model fine-tuning.
The purpose of this chapter is to deeply explore this alternative approach. We start by
proposing a relational reasoning-based representation learning paradigm, which acts as
a proof-of-concept of the possibility of performing Out-Of-Distribution detection with-
out fine-tuning. Indeed, the semantic similarity measure it provides has wide applica-
bility, and thanks to a thorough analysis of alternative learning objectives, it also shows
great generalization capabilities. We then frame this approach in the bigger picture of
a large-scale experimental comparison between fine-tuning-free and fine-tuning-based
OOD detection strategies, for which we consider a wide number of pre-training solu-
tions in order to assess their applicability to the studied problem. In this context, for
the first time, we consider also foundation models, in order to assess the impact that
these novel general-purpose feature extractors can have on a whole research field.

Part of the work described in this chapter has been previously published in two papers:

• [18] F. Cappio Borlino, S. Bucci, and T. Tommasi
Semantic Novelty Detection via Relational Reasoning
European Conference on Computer Vision, ECCV 2022
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• [101] L. L. Lu, G. D’Ascenzi, F. Cappio Borlino, and T. Tommasi
Large Class Separation is not what you need for Relational Reasoning-based OOD
Detection
International Conference on Image Analysis and Processing, ICIAP 2023

• [20] L. L. Lu, F. Cappio Borlino, and T. Tommasi
Foundation Models and Fine-Tuning: A Benchmark for Out Of Distribution
Detection
IEEE Access, 2024
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6.1 Out-Of-Distribution detectionwith pre-trained rep-
resentations

Deep learning-based solutions are increasingly been chosen for integration in real-
world Computer Vision applications, thanks to the excellent performance they pro-
vide w.r.t. traditional algorithms. As we have seen, this deployment often leads to the
emergence not only of visual distribution shifts but also of semantic ones. Indeed, any
deployment in an open-world scenario may lead an autonomous agent to face samples
belonging to semantic categories it doesn’t know and that it shouldn’t confuse with
known classes. This situation is associated with safety risks whose severity depends on
the application, but that can reach critical levels in some specific cases, for example for
autonomous driving. For this reason, it has started attracting the interest of researchers,
who have defined a number of research settings that take this scenario into account (see
Sec. 2.3.1). Among these settings, the one that formulates and studies the problem in
the most general way is Out-Of-Distribution detection.

The research in this field has, very recently, started recording a paradigm shift,
in the wake of what is happening in the CV world in general with the rise of vision-
based foundation models [129, 122]. These are deep models trained at scale on huge
amounts of data, able to provide all-purpose representations [9]. Despite being gen-
erally based on standard self-supervised learning strategies, simply applied at a scale
not previously possible, foundation models learn task-agnostic representations, which
can be used “as they are” on downstream tasks, often outperforming the results ob-
tained by task-specific models [122]. After conquering the Natural Language Process-
ing field, foundation models have recently begun reaching the CV one. One of the
first consequences of their appearance is that the traditional strategy of using a model
pre-trained on ImageNet1k [34] as a starting point for doing transfer learning through
fine-tuning on downstream data, is becoming obsolete, with more and more research
papers focusing on developing strategies to exploit the knowledge encoded by foun-
dation models [191, 188, 111]. Indeed, a significant challenge when using a large-scale
pre-trained network for a downstream task is to fully exploit the knowledge it encodes,
without damaging it. The traditional full network fine-tuning, which is designed to
obtain good performance on the downstream task training data distribution, leads the
model to overfit that same distribution while forgetting all the knowledge not necessary
for the fine-tuning task. The obvious consequence is that the model’s representation
capabilities on OOD data fall considerably [74]. Of course, if the pre-trained model is
not powerful enough to provide acceptable performance on In-Distribution (ID) data,
model fine-tuningmay still be the best solution to exploit its knowledge and this is often
the case when relying on traditional ImageNet1k classification pre-trainings. However,
with the rise of foundation models, this forced trade-off between ID and OOD perfor-
mance may need a renegotiation, especially in those cases in which OOD performance
is particularly important, as it happens for the OOD detection task.
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Indeed, traditional solutions designed for this task explicitly require complete
training, or at least fine-tuning on the downstream task ID data (we call them fine-
tuning-based strategies). For a long time, this training step has been considered nec-
essary, in order for the model to automatically learn, by embedding it into its weights,
the train data distribution, and later be able to detect samples deviating from it. Re-
cently, however, there have been some efforts to develop a more general approach,
by exploiting pre-trained models directly for comparing test data with a support set
of samples representing the normality, hence completely discarding the fine-tuning
step [111, 164, 18, 101] (thus the name fine-tuning-free approaches). This strategy is
flexible and computationally efficient as it allows using the same pre-trained model for
different OOD detection tasks. Moreover, the same generic feature extractor is used to
represent both ID and OOD data, which means that its representation capabilities are
not restricted to the ID classes.

The simultaneous emergence of foundation models, with their excellent general-
purpose representation capabilities, and the appearance of the first fine-tuning-free
OOD detection algorithms, raises the question of what real performance can be ex-
pected when these two elements are combined.

In this chapter, we aim to answer this question. We will start by presenting a repre-
sentation learning strategy specifically designed to build amodel that supports OOD de-
tection without fine-tuning. We later show how distance-based evaluation approaches
can be applied on top of any feature extractor, thus enabling the exploitation of both
traditional pre-trained and foundation models for OOD detection. We then proceed by
performing a comparison between all these solutions and approaches coming from the
literature, with the aim of building a comprehensive picture of the state-of-the-art in
fine-tuning-free OOD detection.

In detail, the key contributions of this chapter are:

• the presentation of a novel representation learning paradigm, based on rela-
tional reasoning, which aims at training a model to provide a measure of semantic
similarity. This measure can be used to distinguish between semantic classes and
thus naturally supports an application to OOD detection without needing fine-
tuning. Through an analysis of alternative solutions for the learning objective of
this approach we also highlight how a characteristic of common loss functions,
usually deemed a quality, can on the contrary represent an obstacle to features
re-use;

• the design of a novel comprehensive benchmark for OOD detection on 2D
data, which includes five intra-domain settings designed to evaluate the semantic
novelty detection ability on a wide variety of categorization tasks (from object-
centric images to aerial ones, from textures classification to fine-grained car recog-
nition and scene categorization), and a set of cross-domain scenarios, designed to
evaluate the models’ performance in a realistic deployment setting in which se-
mantic and domain shift appear together;
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• a large scale comparison, carried out on the novel benchmark, between fine-
tuning-free approaches and traditional fine-tuning-based ones, which high-
lights the advantages and disadvantages of the two strategies.

Our comparison involves both algorithms specifically designed to tackle the OOD de-
tection task, and pre-trainedmodels that on the contrary have been designed with other
goals in mind. These models are thus considered mainly as general-purpose feature ex-
tractors, and it’s on the features that they provide that OOD detection is performed.
Our analysis aims to discover which of these pre-trainings provides the most suitable
representations to support the considered task.
Note: We generally use the term “pre-training” meaning “training from scratch with
a representation learning objective”. Hence the “pre-training objective” and the “pre-
training dataset” represent precisely the adopted learning objective and the dataset on
which it is applied, while the “pre-trained model” is the deep network output of this
process, in most cases used as a feature extractor, i.e. as a module that allows to extract
representations from images.

6.1.1 Related works
Representation learning

It is probably the most important difference between the classic shallow and the modern
deep machine learning approaches. Indeed, the former exploited handcrafted features,
manually designed by experts to support various CV applications, while the latter is
based on the automatic learning of representations, obtained as part of the process of
training a model on a specific task. This deep networks’ ability has enabled the solution
of more complex problems, but at the same time has paved the way for the emergence
of phenomena like supervision collapse [36].

In the beginning, representation learning was mainly performed through super-
vised learning approaches, generally involving quite large labeled datasets such as Im-
ageNet1k [34]. During the last years, significant attention has also been devoted to
learning representations from unsupervised datasets, through the development of self-
supervised representation learning paradigms [44, 121]with a particular focus on contrastive-
based approaches [49, 26, 24]. In all cases, however, the usual approach to exploit the
learned representations for a downstream application was through a transfer learning
procedure involving a fine-tuning on annotated data of this downstream task. In most
cases, this could not be avoided, as the representations extracted by pre-trained mod-
els were not powerful enough to support their direct use. The situation has started to
improve with the introduction of larger pre-training solutions, which became neces-
sary with the continual growth in size of deep networks. Part of this process involved
starting to use larger datasets, such as ImageNet21k [34], and the switch from convolu-
tional networks to vision transformers [37]. In other cases, the representation learning
paradigm has been modified explicitly to support transfer learning [70].
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More recently, the improvements in terms of contrastive learning and scalability
of deep networks training have enabled the presentation of large vision-language pre-
training solutions such as CLIP [129] and ALIGN [60], but also of purely vision-based
self-supervised pre-trainings as DINO [24] and DINOv2 [122]. The huge scale of some
of these pre-training solutions enables the obtained models to provide high-quality
general-purpose representations that can be used for downstream tasks directly. For
this reason, they can be seen as the first foundation models [9] for Computer Vision.

Relational reasoning

It is a hallmark of human intelligence and it can be seen as the ability to quantify the
relationship between a set of objects. Even before the appearance of large scale vision-
language models such as CLIP, this paradigm has attracted attention for the combina-
tion of vision and language for scene description [63, 141]. However, it has also been
applied in different fields, as in few-shot learning [151] and vision-only self-supervised
learning [125]. In particular, this last paper showed that relational reasoning can repre-
sent an alternative paradigm to the contrastive approach for effectively learning pow-
erful representations in a self-supervised fashion. It should be noticed that, even if both
these paradigms base their learning on building comparisons between pairs of samples,
there is a fundamental difference between them: contrastive learning aims at building
a feature space in which single points represent individual samples, while relational
reasoning obtains representations in which each point is a sample pair.

Out-Of-Distribution detection without fine-tuning

Most of the literature studying OOD detection focuses on approaches requiring com-
plete training or at least fine-tuning of a neural network on the downstream task in-
distribution data; this is the case for the papers presented in Sec. 2.3.1. Given the high
cost in terms of data and computational resources of performing this fine-tuning step,
which adds to the aforementioned disadvantages in terms of forgetting any broader
pre-trained knowledge, some recent works have started proposing strategies to avoid
it completely. In particular, besides the relational reasoning based approach that we
will describe in more detail later and that was presented in [18], significant efforts in
this sense have been directed at the development of strategies exploiting large vision-
language pre-trainings like CLIP [129]. In particular, MCM [111] proposed to use con-
cept prototypes, created using ID class names and CLIP’s text encoder, as a summary
of task normality. By adopting this approach, the computation of a normality score
for a test sample is as simple as extracting its visual embedding through CLIP’s im-
age encoder and computing its similarity with the nearest known class prototype. This
strategy is in practice a naïf application of CLIP’s zero-shot capabilities to the OOD
detection task. More sophisticated approaches have been proposed in [164] and [110],
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which study parameter-efficient algorithms to adapt CLIP to downstream OOD detec-
tion tasks. While these methods need an adaptation phase which may require some
gradient descent steps for updating a set of parameters, this is significantly more ef-
ficient than performing a full network fine-tuning and it does not involve any risk of
knowledge forgetting. Besides methods specifically designed to perform OOD detec-
tion without fine-tuning, in [101], Lu et al. pointed out that some distance-based OOD
detection methods presented initially to be used on top of a fine-tuned model [149, 79]
may equally be applied on top of pre-trained models, sometimes even obtaining sur-
prisingly good results.

6.1.2 Problem formalization
In this chapter, we focus on the Out-Of-Distribution detection problem as presented
and formalized in Sec. 2.3.1.
In the context of fine-tuning-free OOD detection, the support set 𝒮, even if not used to
perform an actual training, clearly still represents and summarizes the normality of a
given task, which detectors should be able to exploit in order to identify test samples
that deviate from it. The strategy of use of the support set is an important part of the
definition and design of an OOD detector.
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Figure 6.1: A visual comparison of relational reasoning-based representation learning
w.r.t. the traditional supervised categorization approach

6.2 Relational reasoning supports fine-tuning-freeOOD
detection

6.2.1 Representation learning via Relational Reasoning
Representation learning is the task of learning how to represent complex data struc-
tures in order to support the solution of a specific problem. The innate representation
learning capabilities of deep neural networks are considered one of their main advan-
tages w.r.t. traditional shallowmachine learning. This ability is innate as representation
learning is obtained as a byproduct of the training of the network on a specific task. For
example, in the most common scenario, a deep network is trained for categorization in
a supervised manner, which means that it is trained to associate each training sample
to a specific semantic category, learning to answer the question what is the name of this
object? One of the consequences of this approach is that the learned representations
are not generic, but are rather task-specific, which means that they are perfectly suited
to solve the task on which the model has been trained, but may not generalize to other
tasks.

The traditional approach used for Out-Of-Distribution detection involves training
a model from scratch, or fine-tuning a large pre-trained model, on the data of the task
at hand in order to push the model to embed in its weights the concept of normality for
the considered task. In many cases, for example for the discriminative approaches (see
Sec 2.3.1), this training is performed with a categorization learning objective applied
to known data. As a consequence, the learned representations are perfectly suited to
categorize nominal samples but may be unsuited to correctly represent OOD ones [74].

We propose thus to apply a different paradigm for the choice of the representation
learning strategy that should be adopted when the final goal is to perform OOD de-
tection. In particular, we choose a relational reasoning learning objective in which a
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model is trained to recognize if two samples in a pair come from the same semantic cat-
egory, learning to answer the question are they the same object or not? We summarize
the difference between this approach and the traditional supervised categorization one
in Figure 6.1.

The output provided by these two representation learning strategies is radically
different. When considering a categorization learning objective we can imagine the
learned feature space as a space where each input sample is represented as a single
point, with its position identified through a vector. Samples of the same class are
grouped in a cluster and the categorization task is performed by identifying decision
boundaries that separate clusters referring to different semantic classes.

On the other hand, if we consider a relational reasoning-based learning objective,
the final feature space hosts points that represent input sample pairs. The position of
a point, identified through a vector, indicates whether the two samples composing the
pair belong to the same semantic class or not. This space can be seen as the output of
a training performed on a binary categorization task, where the two classes summa-
rize the concepts of same category and different categories. A model trained on this
objective is thus capable of providing a measure of semantic similarity between pairs
of samples.

6.2.2 Relational reasoning applied to OOD detection
The main advantage of the adoption of a relational reasoning-based learning objective
is that the learned concepts are much more generic than the ones learned through a cat-
egorization approach, provided, of course, that the training is performed on a dataset
large enough to support generalization. Indeed, the feature space obtained as the out-
put of representation learning is suited only to represent samples belonging to the cat-
egories encountered during training, and in this case, same and different are generic
concepts that can be applied even when the members of a pair come from previously
unseen classes.

We propose to exploit this genericness to perform OOD detection. With this goal in
mind, we exploit the ability of our model to measure semantic similarity to compare the
support set samples, which represent the normality, with the test ones. A test sample
normality score can thus be estimated by using its maximum similarity with a repre-
sentative of known data. If the support set contains a large number of samples for each
known class, a prototype for each class can be chosen in order to reduce the number of
comparisons that need to be performed at inference time.

We dub the overall OOD detection algorithm that we obtain ReSeND: Relational
reasoning for Semantic Novelty Detection.
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Figure 6.2: Schematic illustration of our relational reasoning network architecture

6.2.3 Design of a network for relational reasoning
A network designed for relational reasoning must be able to process pairs of input
samples jointly. We consider a model composed of three main modules (see Fig. 6.2):

• a feature encoder/extractor 𝑓𝜃. This module takes in input individual samples
and provides as output vectorial representations for them: 𝑧 = 𝑓𝜃(𝑥). It can be
implemented by adopting a standard CNN-based encoder, in our case we use the
backbone of a ResNet18 pre-trained on ImageNet1k;

• a relational module 𝑟𝛾. This module is tasked to aggregate the representations
extracted for a pair of input samples and provide in output a single representation
for the pair;

• a semantic similarity head 𝑐𝜇, which takes in input the output of the relational
module and provides as output a single scalar value representing the measure of
semantic similarity 𝜎𝑖𝑗 = 𝑐𝜇(𝑟𝛾(𝑧𝑖, 𝑧𝑗)). If we restrict 𝜎𝑖𝑗 ∈ [0,1] we can inter-
pret this value as the probability that the two input samples belong to the same
semantic category.

The tuple {𝜃, 𝛾,𝜇} collects all the trainable parameters of our network.

Relational module It is the most important module of our network, as it processes a
pair of samples to provide in output a single representation aggregating the information
of the pair. It can be implemented in various ways with the simplest one being a Multi-
Layer Perceptron (MLP) taking in input a concatenation of the features of the pair.
We propose a slightly more sophisticated solution that builds on the transformer [157]
architecture, because of its well-known capability of comparing multiple inputs and
its natural permutation invariance. In particular, our relational module consists of 𝐵
identical blocks, each one composed of a Multi-Head Self-Attention (MSA) and a MLP,
both preceded by Layer-Norm (LN) modules and bypassed by residual skip connections
as shown in the right part of Fig. 6.2. We provide in input to the first block a sequence
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[𝑧𝑙, 𝑧𝑖, 𝑧𝑗], where 𝑧𝑙 is a learnable token, and get as output from the last block a similar
sequence [𝑣𝑙, 𝑣𝑖, 𝑣𝑗]. In this architecture, each input image 𝑥, encoded as 𝑧 by the
feature extractor, represents a single input token for the transformer, as done in [28].
From the output sequence, we select only the token 𝑣𝑙 as output of the whole relational
module which is later passed to the semantic similarity head 𝑐𝜇. It should be noted that
the output of a good relational module should be invariant to the order of appearance
of the two samples composing a pair so that the final similarity measure provided by
the overall network is symmetric. Specifically, to obtain this characteristic we avoid the
inclusion in our network of any kind of positional encoding, which is on the contrary
a standard practice when using transformers to process sequences in which the order
of token matters.

Inference procedure One of the main advantages of the proposed architecture is
that, besides providing as main output a semantic similarity measure for a pair of sam-
ples, it naturally also provides as intermediate output individual representations for the
input samples, which can be extracted by the feature encoder 𝑓𝜃. This ability can be
exploited at inference time to preprocess the support set and extract a compact encod-
ing of the normality. This is done by obtaining the feature representation of all support
samples and then performing a per-class feature average to compute class prototypes.
When performing inference on a test sample 𝑥𝑡 its representation 𝑧𝑡 is paired with all
known class prototypes in turn, and the pairs obtained are processed through the rela-
tional module and the semantic similarity head. The final normality score for the test
sample is simply the maximum value among the similarity scores obtained in this way.

6.2.4 Training of a relational reasoning network
The relational reasoning task can be framed both as a binary classification and a re-
gression problem. In the former case, we can see the model as a classifier over the
{same, different} class set, in the latter as a regressor for a continuous semantic similar-
itymeasure. From a conceptual point of view, this framing is not particularly important,
as what we want at the end of the day is just a module able to estimate the semantic
similarity of sample pairs. A much more practical problem is represented by the choice
of the learning objective, whether this comes from the field of regression or classifica-
tion. Indeed, our main interest here is to maximize the generalization ability of the final
model as we aim to apply it to a possibly wide range of OOD detection tasks without
fine-tuning it. The choice of a learning objective is particularly sensible as this ele-
ment has the power to shape the structure of the final feature space [71], thus greatly
impacting the generalizability of the trained model.

We thus analyze a number of possible alternative loss functions and study how they
impact on the learned feature space.
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Figure 6.3: Toy example of feature space structures characterized by high or low 𝑅2

index

Class Compactness and Separation As we have already pointed out, the final fea-
ture space learned by a relational reasoning model is analogous to the feature space
learned by a binary classification task training, characterized by the presence of two
class clusters, representing the same and different semantic concepts. In order to ana-
lyze the characteristics of such feature space we leverage the 𝑅2 index originally intro-
duced in [71].

This metric is designed to provide a relative measure of the sparsity of the represen-
tations composing class clusters in a given embedding space, in particular, it depends on
the ratio between the average within-class and global cosine distance between feature
vectors:

𝑅2 = 1 − ̄𝑑𝑤𝑖𝑡ℎ𝑖𝑛/ ̄𝑑𝑡𝑜𝑡𝑎𝑙 (6.1)

Where:

̄𝑑𝑤𝑖𝑡ℎ𝑖𝑛 =
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In our case we have only 𝐾 = 2 classes, and the indices 𝑖, 𝑗 ∈ {1,… ,𝑀𝑘} are used to
iterate over the pairs 𝑝(𝑘) of each of these two classes. In this context 𝑝 is a feature vector
representation of a pair, for example the token 𝑣𝑙 provided in output by our relational
module. The measure adopted for estimating the similarity between two vectors is the
cosine similarity:

sim(𝑝𝑖,𝑝𝑗) =
𝑝𝑇

𝑖 𝑝𝑗

‖𝑝𝑖‖‖𝑝𝑗‖
(6.2)

A feature space has a high 𝑅2 index if the class clusters are relatively compact and well
separated, the 𝑅2 is low when they are less compact or overlapping. We provide in
Figure 6.3 a visualization that should clarify the difference between these two cases.
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Loss functions for relational reasoning

We consider a number of learning objectives that can be used for binary problems.
In our equations we use 𝜎 to refer to the score produced as output by the semantic
similarity head 𝑐𝜇 for a sample pair 𝑝. Some of the analyzed loss functions (e.g. the
Softmax Cross Entropy) need a score to be produced for both classes, in this case we
suppose that 𝑐𝜇 has an output of size two, whose values we interpret as classification
logits. In all the other cases the single score produced by 𝑐𝜇 can be directly interpreted
as a measure of semantic similarity, i.e. the score for the class same. We use 𝑙 to indicate
the ground truth for the computation of the loss, in other words, this is an indicator of
whether the two samples of the pair come from the same semantic class.

Binary Cross-Entropy The Cross-Entropy (CE) loss is one of the most used loss
functions when dealing with categorization tasks. Its general formulation is:

ℒCE = −
𝑀

∑
𝑚=1

𝐾

∑
𝑘=1

𝑡𝑚,𝑘 log( ̂𝑡𝑚,𝑘) (6.3)

where 𝐾 is the number of classes, while 𝑡𝑚,𝑘 is the target value and ̂𝑡𝑚,𝑘 the predicted
probability of the class 𝑘 for the sample 𝑚. In particular, for the target value, a one-hot
encoding is used so that 𝑡𝑚,𝑘 = 0 when the considered category does not correspond
with the GT one (𝑘 ≠ 𝑙𝑚).

The binary version of this loss function is:

ℒBCE = −
𝑀

∑
𝑚=1

(𝑡𝑚,1 log(1 − ̂𝑡𝑚,2) + 𝑡𝑚,2 log( ̂𝑡𝑚,2)) (6.4)

where ̂𝑡𝑚,2 is obtained by applying the sigmoid function to the model output:

𝑓(𝜎) =
1

1 + 𝑒−𝜎

Impact on the class separation: given that this loss is non-zero even for already correctly
classified samples the intra-class compactness and inter-class separation keep increas-
ing for the whole training procedure, making the 𝑅2 index value progressively higher.

Softmax Cross-Entropy It is the CE loss version that is used most often for multi-
class categorization problems and it is obtained by applying the CE of Eq. 6.3 only after
passing the model output through the softmax function:

𝑓(𝜎)𝑘 = 𝑒𝜎𝑘/
𝐶

∑
𝑐=1

𝑒𝜎𝑐
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Considering the one-hot nature of the labels, it is possible to rewrite the Softmax Cross-
Entropy as:

ℒSCE = −
𝑀

∑
𝑚=1

log 𝑒𝜎𝑚,𝑙𝑚

∑𝐾
𝑘=1 𝑒𝜎𝑚,𝑘

(6.5)

where 𝜎𝑚,𝑘 is the score corresponding to the class 𝑘 for the sample 𝑚 and 𝑙𝑚 represents
its ground truth label. In the binary case we suppose 𝑘, 𝑙 ∈ {1,2}.
Impact on the class separation: as was the case for the BCE, this loss takes non-zero
values even for correctly classified samples. A number of papers have shown that the
final effect of the trend of increasing values for intra-class compactness and inter-class
separation leads to badly calibrated classifiers [80, 116, 166], i.e. classifiers for which
the prediction confidence is not a robust indication of the probability associated to the
predicted class. The overall effect of this phenomenon is that the provided predictions
are overconfident [118].

Focal Loss Many solutions have been proposed to mitigate the miscalibration issue
of the CE, one of them consists in adjusting the weight of the contribution of a sample
to the overall loss based on the network’s predicted probability for its GT class [116],
as done through the Focal Loss [91]:

ℒfocal = −
𝑀

∑
𝑚=1

𝐾

∑
𝑘=1

𝑡𝑚,𝑘(1 − ̂𝑡𝑚,𝑘)𝛾 log( ̂𝑡𝑚,𝑘) (6.6)

where 𝛾 is a hyperparameter controlling the rescaling strength.
Impact on the class separation: the hyperparameter 𝛾 enables tuning the magnitude of
the weight rescaling, effectively bringing the loss value for correctly classified samples
near zero and therefore mitigating the miscalibration and the growth of 𝑅2.

Loss proposals for controlling the class separation

Besides the loss functions presented till here, it is clearly possible to design novel ones
which, as is the case of the Focal Loss, provide hyperparameters allowing to control
directly or indirectly the class separation. We make two proposals along this line and
plot them in Fig. 6.4 to illustrate how they work.

MSE with a compressed sigmoid If we formalize our problem as a regression task
we can use theMean-Squared Error (MSE) loss function and compute it between ground
truth values 𝑙𝑚 ∈ {−1, 1} and the output of the network passed through a sigmoid
rescaled in the [−1, 1] range. In order to have a hyperparameter that enables tuning the
effect of our loss function we modify the slope of the sigmoid using a factor 𝑐 obtaining
the overall loss:

ℒMSE =
𝑀

∑
𝑚=1

( ̂𝑠𝑐(𝜎𝑚) − 𝑙𝑚)2 with ̂𝑠𝑐(𝜎𝑚) = 2
1 + 𝑒−𝑐𝜎𝑚

− 1 (6.7)
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(a) Compressed sigmoid (b) Hinge loss trend

Figure 6.4: (a) Increasing 𝑐 in the MSE compressed sigmoid transforms it into a Heav-
iside step function: the loss is zero when the output score has the correct sign. (b) H
loss trend for positive (𝑙𝑚 = 1) and negative (𝑙𝑚 = −1) pairs (𝛿 = 1).

Impact on the class separation: the hyperparameter 𝑐 tunes the loss value associated
with different scores. With higher 𝑐 values the sigmoid is more horizontally compressed
becoming more and more similar to the Heaviside step function. The consequence is
that the loss of already correctly classified samples goes towards zero.

Hinge Loss with controllable margin Instead of using a hyperparameter that al-
lows us to only decrease the impact of the already correctly classified values on the
overall loss function, as is the case of the previous proposal and of the Focal loss, we
consider directly zeroing it when a specified condition is met. In particular, we assume
that the score 𝜎𝑚 produced by our network can take positive or negative values indi-
cating whether the network is more confident for the same or different class. We use
zero as the threshold and impose a margin 𝛿 around it. Incorrectly classified samples,
together with correctly classified ones that lie within the margin, linearly contribute
to the overall loss, while the impact of the others is null, which means that the loss
cancels out for 𝜎𝑚 > 𝛿 for positive samples and 𝜎𝑚 < −𝛿 for negative ones. This way it
is possible to directly control the distance between the two classes by choosing a value
for 𝛿. This formulation corresponds to a hinge loss applied on the scalar score 𝜎𝑚:

ℒH =
𝑀

∑
𝑚=1

max(0, 𝛿 − 𝑙𝑚𝜎𝑚) with 𝑙𝑚 ∈ {−1, 1} (6.8)

6.2.5 The choice of a learning objective
Before embarking on a comprehensive quantitative analysis able to draw the state-of-
the-art of fine-tuning-free OOD detection, we undertake a preliminary analysis to un-
derstand which of the learning objectives that can be used for ReSeND provides the
best performance. In particular, for simplicity, we consider a subset of the settings of
the intra-domain benchmark track that we will describe later, and for them, we analyze
how the loss function shapes the feature space structure and we investigate how this
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Figure 6.5: Analysis of the OOD performance of a relational reasoning-based model
trained with different learning objectives: plot of the AUROC (AUC) against the 𝑅2

index computed on the learned feature space. The scatter-plot shows that lowerAUROC
results are generally associated with higher 𝑅2 values. This implies that a stronger class
separation negatively impacts generalization

(a) SCE (b) H, 𝛿=0.1 (c) H, 𝛿=0.01

Figure 6.6: Example of distributions of normality scores for ID and OOD samples pro-
vided by models trained with different loss functions. The Hinge loss with low margin
pushes the model to provide more conservative scores, which are very close to each
other (see the horizontal axis’ scale) but more discernible.

structure impacts the final OOD detection performance. We report average AUROC
results plotted against the corresponding 𝑅2 index values in the scatter plot of Fig. 6.5.

The plot highlights a clear trend: learning objectives imposing a higher inter-class
separation generally provide lower performance. This behavior may seem counter-
intuitive, as it means that loss functions that push for a lower and less clear separation
of the features belonging to different classes obtain better overall performance. In order
to understand why this happens wemust keep into account the fact that we are measur-
ing performance in a fine-tuning-free scenario. This means that the samples processed
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by our models may belong to semantic classes that have never been seen by the model
during training. From this point of view, in each of the OOD detection tasks that we
consider, both support and test samples are equally novel to the model used to process
them. As a result, the models that obtain better results are those that generalize better
the knowledge learned during training. Therefore, we can reformulate the conclusion
just drawn from the plot and affirm that what it shows is that the models that gener-
alize better are those that impose a lower inter-class separation; this is not an entirely
unexpected outcome [71].

The described phenomenon is even more evident when focusing on one of those
loss functions that provide a hyperparameter that tunes the final inter-class separation.
For example, if we consider the MSE, the impact of 𝑐 is quite evident with better results
obtained with higher values. Clearly, there is a limit to the performance gain that can
be obtained in this way, because after a certain point, the features start losing their
discriminative power (see the point referring to MSE with 𝑐 = 50).

An alternative visualization of the impact of reducing the inter-class separation on
the final OOD detection performance can be obtained by visualizing the distribution
of normality score values for ID and OOD data. We do this exercise in Fig. 6.6, which
clearly shows that, when using theHinge losswith a small margin, the predictions of the
network become more conservative but at the same time they simplify distinguishing
between the two classes.

Given the results recorded in this preliminary analysis, in the rest of the chapter we
will focus only on the two ReSeND variants that provide the best results, which are the
one with MSE with 𝑐 = 10, indicated simply as ReSeND from now on, and the one with
the Hinge Loss with 𝛿 = 0.01, indicated as ReSeND-H.
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6.3 A benchmark and framework for OOD detection

6.3.1 Benchmark definition
Starting from [50], which for the first time introduced the OOD detection task in deep
learning-based CV research, most of the papers focusing on this problem have used
evaluation benchmarks based on quite small datasets, both in terms of image resolu-
tion and number of classes: CIFAR [73] and MNIST [78]. Empirical results evaluated
with this protocol, however, were found to not transfer to large-scale settings by Huang
et al. [54], who thus proposed to discard that benchmark in favor of a larger scale one.
This novel evaluation bed exploits ImageNet1k [34] as an In-Distribution dataset, with
its train split used as the support set, and its validation split as the ID part of the test
set. Subsets of iNaturalist [156], SUN [170], Places [187], and Textures [29] datasets
are then used as sources of test OOD samples. While this benchmark certainly solves
the scale problem of previous ones, we argue that the results it provides may still not
perfectly reflect the real-world performance of the analyzed methods. Indeed, its defi-
nition involves ID and OOD data which may differ not only in terms of semantic class
but also of data type (e.g. objects vs scenes or textures) and visual domain (these are far
OOD settings). However, real-world problems (e.g. an autonomous vehicle confronting
an uncommon object on its way) are much more difficult as they involve ID and OOD
test samples representing objects of the same type, coming from the same visual do-
main, and differing only in terms of semantic class. The direct consequence of using
the benchmark proposed in [54] is that the OOD detection tasks it defines are not only
a bit unrealistic but also not particularly difficult, as highlighted by the exceptionally
good results obtained by most methods on them [111].

Given these considerations, we propose a novel benchmark following the path pro-
posed in [18, 3], where ID and OOD test samples are of the same type and come from the
same visual domain. We design a large and comprehensive evaluation bed, composed
of an intra-domain track and a cross-domain one.

Intra-domain analysis

This track is designed to evaluate specifically the semantic novelty detection ability of
the analyzed models, which means that the support and test sets belong to the same
visual distribution and the only shift considered is a semantic one. The track is built on
top of 5 different datasets, chosen in order to represent a wide variety of different cate-
gorization tasks. Tab. 6.1 shows some examples of images coming from our benchmark
and visually describes how the various OOD detection tasks are built. The available
samples for each class of each dataset are divided into a train and a test split. Each
OOD detection task is then built by randomly dividing the classes of the considered
dataset into two groups: the train samples of ID classes are used as the support set,
while the test samples for both ID and OOD classes compose the test set. In order to
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Table 6.1: Examples of images and settings definition for our OOD detection bench-
mark. As a reference we also present the dataset benchmark from [54] where the OOD
samples are drawn from a different dataset than the ID samples.

Setting Support (ID) Test
ID OOD

Intra-domain

Textures

PatternNet

SUN

Stanford Cars

Real (DomainNet)

Cross-domain

Real (SS) Painting

No Painting (MS)

Benchmark from [54]

ImageNet-1k iNaturalist

SUN

Places

Textures

improve the statistical significance of our analysis we repeat the random split of each
dataset’s classes into ID and OOD groups three times and report average results in our
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tables. We introduce below the datasets that we have selected for this analysis.
Textures [29] is a dataset containing 5640 images of textural patterns belonging to

47 different classes. We randomly select 23 of them as ID classes and keep the remain-
ing as OOD ones. We define train and test splits following the first fold provided by
the original paper’s authors for their cross-validation strategy, and merging train and
validation data. This dataset has already been used in the OOD detection literature, as
part both of the standard benchmark initially proposed by Huang et al. [54] introduced
before, and of a benchmark defined similarly to ours [18], but smaller.

PatternNet [192] is a dataset of aerial high resolution images that contains 38
classes with 800 images each. We select 19 classes as ID and keep the others as OOD.We
use the train-test split provided by the original authors. To the best of our knowledge,
this is the first time that this dataset is used as part of an OOD detection benchmark.
We chose it as remote sensing categorization is an important task for many real-world
applications and at the same time because it is based on images that differ significantly
from the object-centric ones that aremost used for lab research on visual categorization.

SUN [170] is a scene database containing 397 classes and 130k images in total. We
select 198 classes as ID, and keep the rest as OOD.We use the train-test split provided by
the original authors. This dataset has already been used in the OOD detection literature
[54], but this is the first time it is used with a class split in ID and OOD groups.

Stanford Cars [72] is a dataset designed for fine-grained car classification. It in-
cludes more than 16k images divided into 196 classes. We adopt the train-test split
provided by the original authors. We select 98 classes as ID and use the remaining 98
as OOD. This dataset has already been used as part of an OOD detection benchmark
[111], but only as a whole to define ID classes.

DomainNet [127] is a large-scale dataset of common objects from 6 different visual
domains. Considering that it contains object-centric images it is the dataset with the
most similar object type to ImageNet1k. We use it in a similar way to the one proposed
in [18], but extend its use to all of its 6 domains. Moreover, we go from 50 to 100
classes, chosen using the Natural Language Toolkit [7] to identify the classes having
the smallest semantic overlap with ImageNet1k’s. From those 100 classes we randomly
select 50 as ID, and keep the others as OOD. We use the original authors’ provided
train-test splits. In the intra-domain experiments, both the support and the test data
come from the same visual domain. There are therefore 6 different intra-domain tasks
defined on DomainNet for which we directly report the average results in our tables.

Cross-domain analysis

In many open-world deployment scenarios, it is impossible to avoid the occurrence of
visual domain shifts, which may happen simultaneously with semantic ones. We thus
consider also this situation in our benchmark, as we want to perform an analysis as
relevant as possible and that allows us to make considerations on what real-world per-
formances should be expected when adopting a specific approach rather than another.
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Figure 6.7: An OOD detection algorithm is composed of a feature extractor and an OOD
evaluator. The former is obtained by choosing a backbone which is usually pre-trained
on a dataset with a specific objective and can be further fine-tuned on the ID support
data. The latter defines how to compute a normality score using the learned represen-
tations. The right part of the figure illustrates possible choices for each component.

Specifically, we consider cases in which there is a visual distribution shift between
the support and the test set, which means that OOD test samples differ from ID support
ones both in terms of appearance and semantics. This double difference makes their
separation from ID test samples even more difficult as even the latter come from a
different visual domain w.r.t. support data. We consider two settings inside this cross-
domain benchmark track, both built on top of the DomainNet [127] dataset, for which
we use the same ID-OOD and train-test splits of the intra-domain case.

Single-Source → Single-Target (SS → ST). We adopt a single visual domain’s
ID train data as the support set while using another domain’s test set. Considering
that DomainNet contains 6 domains, we can create 30 different settings and we report
average results in our tables.

Multi-Source → Single-Target (MS → ST). We use 5 domains’ ID train data to-
gether to build the support set and use test data from the kept-out domain. There are 6
different settings that can be defined in this way, once again we report average results
over the available settings in our tables.

6.3.2 Framing OOD algorithms
The literature focusing on the OOD detection task is quite broad and includes papers
proposing a wide variety of algorithms that can differ significantly, as we have seen
when presenting the various families of methods in Chap. 2. Given that we are in-
terested in drawing a comprehensive picture of the state-of-the-art, we include in our
experimental analysis a large number of methods and we propose here to collect all of
them under a common framework, which simplifies their comparison.

We consider an OOD detection algorithm to be composed of two main parts: a
feature extractor and anOOD evaluator. The former is tasked to provide representations
for the samples in analysis, and the latter to use those representations to estimate the
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normality of test samples. We illustrate this structure in Fig. 6.7 left, while on the right
we list some of the choices that can be taken for each component, in particular those
that allow us to build fine-tuning-free OOD algorithms. We proceed by providing more
details on each of these two components and listing and contextualizing the methods
that we include in our experimental analysis.

OOD evaluator

The evaluator is the component on which OOD detection algorithms generally base
their individuality and on which they differ the most. It defines how the normality of a
test sample is evaluated and this definition is the core of the task. Indeed, OODdetection
in general requires the ability to extract a concept of normality from the support data
and to encode it in a way that supports performing comparisons, so that it is possible to
estimate deviations from it. The traditional way to perform these steps involves training
a model on the support data so that the normality is automatically encoded in the model
weights, and later defining an evaluator by looking for differences in the treatment
of normal and abnormal data by the model itself. Any fine-tuning-free approach, on
the other hand, requires the normality encoding to be explicit: support samples are
used to create a normality compendium which is then used to identify OOD samples by
using an evaluator exploiting some kind of distance metric, or other concept-matching
approaches.

Fine-tuning-free evaluators The easiest way to compare test samples with support
ones is to compute distances between their representations. A really naïf approach to
OOD detection is thus to use the average distance from the 𝐾 nearest support neigh-
bors (KNN) as a measure of normality. A simple variant to this strategy has actually
been proposed in KNN_norm [149], by introducing as the only addition a feature nor-
malization step applied before computing Euclidean distances. Clearly, these strategies
have the disadvantage of requiring storing the feature representations of all the support
samples as the normality compendium. This can represent a serious limitation in terms
of memory and computational footprint when the support dataset has high cardinality.
A possible mitigation of this issue consists in reducing the cardinality of the normality
compendium, by computing per-class feature averages in order to obtain known class
prototypes. Indeed, using the distance from the nearest prototype to compute a nor-
mality score, allows one not only to reduce the computational cost, but potentially also
to avoid making wrong decisions that may be influenced by the presence of outliers
in the support data. Besides the Euclidean distance, other metrics could be used with
the same comparison purpose. One option consists in using the Mahalanobis [79]
distance, which relies on a modeling of the normality through multivariate Gaussian
distributions fitted on support classes.

Other approaches rely on specific architectures or learning objectives adopted in
the pre-training phase. We have already seen that one possibility is to learn a similarity
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metric directly in the pre-training phase through a relational reasoning objective, as
done by ReSeND and ReSeND-H. Another option consists in adopting a multi-modal
pre-training like CLIP [129] and exploiting an auxiliary modality to create the normality
compendium. This is the path followed by Maximum Concept Matching (MCM), which
uses known class prototypes obtained by using the names of those classes as part of tex-
tual prompts provided as input to the CLIP’s text encoder. These text-originated pro-
totypes are then compared directly with visual representations of test samples through
cosine similarity. This approach has both advantages and disadvantages, on one side
it allows to avoid completely the need for visual support samples, on the other side
it needs to access names for known classes, which should also belong to object types
similar to the ones met during the pre-training.
Note: both KNN_norm and Mahalanobis have been proposed as fine-tuning-based
OOD detection methods, respectively in [149] and [79]. However, the distance-based
evaluators they propose do not really have requirements linked to their use only with
fine-tuned models. We thus follow Lu et al. [101] in using them also as fine-tuning-free
approaches.

Fine-tuning-based evaluators Our main focus in this chapter is to draw a compre-
hensive picture of the state-of-the-art of the fine-tuning-free OOD detection field. This
kind of picture, however, cannot be considered complete if it does not involve some
comparisons with the orthogonal fine-tuning-based research line. We thus include also
some fine-tuning-based approaches in our analysis, by selecting some examples that
we find relevant from a literature that, in this field, is particularly extensive.

First of all, we adopt the standard baseline that is used in this context, the Maximum
Softmax Probability (MSP). It is based on the idea that when a model is trained for clas-
sification on a bunch of semantic classes, after deployment it will provide predictions
with higher confidence for ID samples than for OOD ones. Even if this is not always
the case because of the overconfidence of classifiers [118], this approach is still a good
baseline that should never be neglected. Various approaches have then been proposed
to improve over MSP while adopting the same simple fine-tuning strategy. ReAct [148]
uses a rectification operation on neural activations which is designed to avoid spikes
in their values that could cause high-confidence predictions for OOD samples. On a
similar line, ASH [35] filters out a majority of the activations keeping only the amount
corresponding to a specific 𝑝-percentile. Both ReAct and ASH support a number of
evaluators, ranging from the standard MSP to more advanced approaches, like the one
based on energy scores [95].

The algorithms listed till here belong to the post-hoc family, as they can be applied
to anymodel that has been trained for classification with a standard CE-based objective.
As was the case for fine-tuning-free approaches, however, even in the fine-tuning-based
world some methods require specific training paradigms. Among them, a promising
line of research proposes to adopt hybrid generative-discriminative models that are
able to perform classification and likelihood estimation jointly. From this family, we
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adopt a Flow-based approach inspired by the OSR method OpenHybrid [180].

Feature extractor

The feature extractor may seem a component of only secondary importance in the def-
inition of an OOD detection algorithm. However, the quality of the representations
used by an OOD evaluator significantly impacts the overall performance of the algo-
rithm, making the choice of how to choose or build a good feature extractor particu-
larly important. In most cases, the starting point is a standard neural network back-
bone trained with a representation learning objective on a specific dataset. The choice
of the network architecture, but even more of the pre-training objective and pre-
training dataset, is sometimes of minor significance for fine-tuning-based approaches,
that in one way or in another will overwrite most of the knowledge encoded by the pre-
trained model, but it is of primary importance for fine-tuning-free strategies.

Pre-training dataset In our analysis, we consider two macro-groups of OOD detec-
tion algorithms, differing on the basis of the pre-training dataset. On one side we
have approaches that adopt a pre-training based on ImageNet1k, which with its 1.2M
of samples spanning 1000 semantic classes, has been the standard pre-training dataset
for a long time. Pre-trainings of this kind were primarily exploited for transfer-learning
and thus always followed by a fine-tuning phase. Also ReSeND is trained on this dataset,
exploiting the very large number of possible same and different class sample pairs that
its size enables creating. As ReSeND does not require fine-tuning, we evaluate also
other ImageNet1k’s pre-trainings to understand if they support OOD detection with-
out fine-tuning. The second macro-group is intended to accommodate more modern
representation learning paradigms designed for extremely large-scale data collections.
Indeed, the exponential growth in size of the deep neural networks in the last years has
made even ImageNet1k too small to perform an effective training. This necessitated on
the one hand the construction of ever larger datasets and on the other hand the defini-
tion of sophisticated large-scale training strategies. We include in this group algorithms
using as pre-training dataset ImageNet21k with its 14M of images, WebImageText,
the dataset behind CLIP [129], which counts 400M of image-text pairs, and LVD-142M,
the unsupervised but curated dataset used for the training of DINOv2 [122].

Pre-training objective It is the second element necessary to build a good feature ex-
tractor, and from this point of view, it is impossible to not adopt the standardCE as a ref-
erence. We also investigate contrastive-based self-supervised and supervised objectives
like SimCLR [26] and SupCon [66]. We consider then their variants designed specifi-
cally for semantic novelty detection thanks to the introduction of semantically shifting
transformations i.e. CSI and SupCSI [152]. We also take into account somemore recent
self-supervised approaches, in particular DINO [24], which uses contrastive learning
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and knowledge self-distillation, and its variantDINOv2 [122] that adds to the other ob-
jectives a masked-image modeling one. The latter, by adopting an extremely large-scale
training procedure, both in terms of data cardinality and computation distribution, is
able to provide general-purpose representations of quality high enough to consider the
model as the first vision-only foundation model. As last pre-training objective we con-
sider CLIP [129], which uses a vision-language contrastive learning objective designed
to train jointly a text and a vision encoder so that they provide similar representa-
tions for images and textual descriptions in pairs. This objective, when applied to a
sufficiently large dataset such as WebImageText, is able to provide a vision-language
multi-modal foundation model.

Network architecture As far as this element is concerned we try to cover a set of
options that allow us to provide a picture as comprehensive as possible. We start by
considering both CNN and transformer-based backbones since these are the two most
common architectures adopted in the literature. Specifically, from the first groupwe use
aResNet101 [48] with 44M of parameters and themuch largerBiT [70] with 380M. The
latter is a wide ResNet with some changes introduced to make its representations more
transferable, for example by substituting the Bath Normalization layers with Group
Normalization [169] and Weight Standardization [128] ones. From the second family,
we consider both a ViT-B with 86M of parameters and a ViT-L [37] with 307M. The
only exception to this list is done for ReSeND, which is based on its own architecture
designed to support relational reasoning.

Algorithms included in our experimental analysis

In general, we do not consider all possible combinations for pre-training datasets, ob-
jectives, and network architectures, but only a limited set of relevant ones. In particular,
the smaller networks are trainedwith ImageNet1k, while for the big ones larger datasets
are preferred. When possible and especially for large models we rely on publicly avail-
able checkpoints such as the one provided by PyTorch and HuggingFace. A similar
selection strategy based on relevance and compatibility is performed to pair feature
extractors and OOD evaluators.
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Table 6.2: Training-free OOD detection results. We consider the experiments on Im-
ageNet1k and those on larger datasets as separate settings, displayed in the two hori-
zontal subparts of the table (top and bottom). For each of them, we use the bold font to
highlight the best result per column

Pretraining
Dataset

Backbone
Pretraining
Objective

OOD
Evaluator

Intra-domain track
Textures PatterNet SUN Stanford Cars DomainNet Intra AVG

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet1k

ReSeND
ReSeND

ReSeND
0.667 0.881 0.871 0.550 0.582 0.911 0.494 0.947 0.612 0.900 0.645 0.838

ReSeND-H 0.679 0.867 0.909 0.463 0.586 0.910 0.496 0.951 0.628 0.894 0.660 0.817

ResNet101

CE

KNN_norm 0.758 0.789 0.936 0.296 0.639 0.874 0.571 0.929 0.696 0.815 0.720 0.740
Mahalanobis 0.641 0.885 0.850 0.550 0.574 0.908 0.544 0.936 0.609 0.893 0.643 0.835

KNN 0.698 0.851 0.878 0.542 0.601 0.899 0.566 0.932 0.650 0.871 0.678 0.819
prototypes 0.667 0.884 0.827 0.684 0.615 0.887 0.540 0.938 0.609 0.906 0.652 0.860

SimCLR
KNN 0.504 0.941 0.663 0.877 0.501 0.953 0.500 0.945 0.498 0.950 0.533 0.933

prototypes 0.496 0.948 0.564 0.956 0.498 0.951 0.498 0.941 0.499 0.947 0.511 0.949

SupCon
KNN 0.563 0.931 0.838 0.653 0.510 0.952 0.513 0.945 0.536 0.939 0.592 0.884

prototypes 0.528 0.948 0.647 0.872 0.492 0.953 0.503 0.947 0.515 0.947 0.537 0.933

CSI
KNN 0.652 0.870 0.884 0.553 0.575 0.920 0.520 0.943 0.583 0.914 0.643 0.840

prototypes 0.613 0.903 0.790 0.782 0.546 0.937 0.499 0.948 0.543 0.937 0.598 0.902

SupCSI
KNN 0.618 0.896 0.877 0.528 0.578 0.917 0.533 0.939 0.604 0.911 0.642 0.838

prototypes 0.590 0.912 0.783 0.708 0.561 0.928 0.511 0.944 0.565 0.930 0.602 0.885

ViT-B
CE

KNN_norm 0.725 0.804 0.914 0.380 0.628 0.892 0.575 0.928 0.686 0.836 0.705 0.768
Mahalanobis 0.610 0.915 0.795 0.742 0.590 0.931 0.542 0.940 0.602 0.905 0.628 0.887

KNN 0.595 0.919 0.842 0.644 0.552 0.932 0.550 0.941 0.620 0.901 0.632 0.867
prototypes 0.538 0.916 0.810 0.665 0.568 0.911 0.530 0.945 0.592 0.898 0.608 0.867

DINO
KNN 0.763 0.758 0.956 0.227 0.664 0.838 0.566 0.929 0.700 0.811 0.730 0.713

prototypes 0.764 0.775 0.932 0.325 0.683 0.801 0.530 0.938 0.664 0.843 0.714 0.736

ImageNet21k

ViT-L CE

KNN_norm 0.726 0.810 0.812 0.674 0.726 0.828 0.571 0.933 0.699 0.793 0.707 0.808
Mahalanobis 0.706 0.830 0.664 0.843 0.783 0.746 0.553 0.939 0.668 0.802 0.675 0.832

KNN 0.710 0.850 0.809 0.675 0.711 0.859 0.565 0.934 0.689 0.832 0.697 0.830
prototypes 0.675 0.865 0.758 0.758 0.782 0.791 0.553 0.930 0.676 0.855 0.689 0.840

CE

KNN_norm 0.832 0.635 0.938 0.303 0.760 0.775 0.582 0.923 0.724 0.766 0.767 0.680
BiT Mahalanobis 0.709 0.871 0.756 0.723 0.653 0.891 0.524 0.942 0.614 0.892 0.651 0.864

(Res101x3) KNN 0.804 0.729 0.950 0.254 0.734 0.808 0.578 0.922 0.721 0.788 0.757 0.700
prototypes 0.740 0.812 0.897 0.487 0.748 0.787 0.545 0.932 0.668 0.853 0.720 0.774

WebImageText
ViT-L

CLIP MCM 0.701 0.861 0.776 0.851 0.766 0.742 0.517 0.944 0.817 0.698 0.716 0.819

LVD-142M DINOv2
KNN 0.795 0.735 0.911 0.378 0.775 0.736 0.720 0.848 0.791 0.684 0.798 0.676

prototypes 0.803 0.722 0.904 0.430 0.834 0.593 0.626 0.902 0.784 0.687 0.790 0.667

Cross-domain track
SS → ST MS → ST

AUROC↑ FPR95↓ AUROC↑ FPR95↓

0.560 0.930 0.581 0.924
0.553 0.933 0.575 0.927
0.576 0.915 0.617 0.888
0.540 0.934 0.555 0.929
0.551 0.936 0.580 0.924
0.537 0.942 0.540 0.941
0.488 0.954 0.487 0.955
0.500 0.950 0.506 0.951
0.503 0.947 0.509 0.946
0.502 0.949 0.506 0.950
0.516 0.944 0.532 0.936
0.511 0.949 0.510 0.948
0.525 0.942 0.543 0.934
0.518 0.944 0.517 0.945
0.562 0.922 0.597 0.905
0.530 0.941 0.542 0.934
0.522 0.943 0.546 0.932
0.518 0.943 0.520 0.938
0.575 0.906 0.616 0.869
0.558 0.918 0.573 0.907

0.600 0.902 0.622 0.881
0.590 0.903 0.626 0.868
0.586 0.922 0.611 0.903
0.563 0.931 0.588 0.915
0.589 0.899 0.643 0.845
0.545 0.935 0.576 0.917
0.581 0.912 0.636 0.864
0.550 0.928 0.567 0.919
0.817 0.698 0.817 0.698
0.676 0.836 0.713 0.808
0.670 0.851 0.722 0.786
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Figure 6.8: KNN vs KNN_norm performance for ImageNet1k-based pre-trainings on
the intra-domain track

In this section, we report and describe the results that the OOD detection algorithms

126



6.4 – Benchmarking fine-tuning-free OOD detectors

Table 6.3: Analysis of the CLIP visual encoder when using KNN and prototypes eval-
uators vs the CLIP text encoder exploited by the MCM evaluator. We also report the
same DINOv2 results presented in Tab. 6.2 as reference.

Pretraining
Dataset

Backbone
Pretraining
Objective

OOD
Evaluator

Intra-domain
AVG

AUROC↑ FPR95↓

WebImageText
ViT-L

CLIP
MCM 0.716 0.819
KNN 0.812 0.658

prototypes 0.798 0.699

LVD-142M DINOv2
KNN 0.798 0.676

prototypes 0.790 0.667

Cross-domain
SS → ST MS → ST

AUROC↑ FPR95↓ AUROC↑ FPR95↓

0.817 0.698 0.817 0.698
0.648 0.915 0.695 0.894
0.636 0.928 0.677 0.921
0.676 0.836 0.713 0.808
0.670 0.851 0.722 0.786

that we have described obtain when they are applied to our novel large-scale bench-
mark. We evaluate those algorithms according to the OOD detection metrics presented
in Sec. A.3.2.

6.4.1 Main results
We report the main results in Tab. 6.2. We discuss them in detail below focusing first on
methods of the top group, based on pre-trainings of smaller size, and then on methods
of the second one, where also foundation models are considered.

ImageNet1k-based pre-trainings

The two top-performing algorithms are clearly KNN_norm applied on a CE-based
ResNet101, and KNN applied on a DINO-based ViT-B. Both these results are particularly
significant for their own reasons. The first is an interesting finding because the orig-
inal paper proposing KNN_norm [149] did not consider applying it without
fine-tuning the model on the support data, thus the exceptional performance high-
lighted here may be novel even for the original authors. Moreover, the significant dif-
ference in performance between KNN_norm and standard KNN when applied on the
same models, indicates that the normalization trick of KNN_norm contributes
significantly to the final performance of the approach. The reason is that when using
CE to train the model, the loss is non-zero even in the case of correct predictions, which
pushes the feature norms to grow indefinitely during training. The consequence of this
behavior is that the norms lose their relevance, thus discarding them through the nor-
malization step means discarding a misleading component. The same behavior is not
recorded when using other learning objectives which do not influence the norms of the
features in the sameway. These claims are confirmed by Fig. 6.8 which contains a direct
comparison between KNN and KNN_norm with different pre-trainings. For what con-
cerns DINO, the interesting thing to note is that its good results are obtained thanks
to representations learned in a completely self-supervised fashion. The clear
improvement between DINO and older self-supervised methods like SimCLR testifies
to the significant progress made by the research in this field in the last years and paves
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the way for even stronger improvements that can be obtained by scaling self-supervised
strategies.

The performances of ReSeND in its two variants are quite interesting, even if they
do not reach the state-of-the-art among methods trained only on ImageNet1k and with
a comparable number of parameters. Indeed,ReSeND-H is the top-performingmethod
among those that perform comparisons using known class prototypes as normality
compendium, a strategy that is far less computationally expensive than those based
on KNN. In particular, ReSeND outperforms all contrastive-based approaches, which,
despite some differences, adopt a similar comparison-based logic in the training phase.

By comparing intra-domain and cross-domain results, we immediately notice that
average performances are significantly lower in the second case, highlighting that all
the considered pre-training strategies provide representations that are clearly domain-
dependent.

Larger pre-trainings

The first two rows of this group show that applying a traditional CE-based pre-training,
even if on top of a larger supervised dataset like ImageNet21k, does not seem to improve
much the performance w.r.t. the ImageNet1k case. A greater improvement can be ob-
tained with a pre-training designed explicitly for transfer learning as is the case of BiT.
Still, even in this case, the cross-domain results are pretty poor, highlighting that
the ImageNet-based representation learning approaches are still significantly affected
by the visual distribution of the training data. A completely different picture is drawn
by the results of MCM. This approach, thanks to its multimodal vision-language pre-
training, obtains exceptionally good results when the data type of test samples is the
same as that of the pre-training ones, i.e. object-centric images, such as the ones in Do-
mainNet. Results are not as good, instead, for very different data types (e.g. for textures
in DTD), image points of view (PatternNet), and fine-grained classification cases (Stan-
ford Cars), showing that the CLIP image encoder, or the corresponding text encoder,
may not be able to extract significant representations for the considered class types
and names. Overall, however, even if its results in the intra-domain benchmarks are
not the top-performing ones, this method is particularly relevant as its cross-domain
performance represents the state-of-the-art by a large margin. Nevertheless, it should
be noted that there’s an important difference between how the CLIP-based MCM
strategy and all the other ones use the support data to represent the normality. Indeed,
MCM extracts the normality for any given OOD detection problem from textual inputs
built on class names, while all the other approaches use visual support data. As a conse-
quence, MCM cannot be influenced by any visual distribution shift appearing between
support data and test data. In order to disentangle the impact of the text encoder from
that of the visual encoder, we perform an additional analysis in Tab. 6.3, in which we
test also the latter alone using the KNN and prototypes evaluators. What we can no-
tice is that in the intra-domain case discarding the language cues brings a significant
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improvement in performance. On the other hand in the cross-domain case the effect is
the opposite, and the CLIP’s vision encoder is outperformed by DINOv2. These results
highlight the fact that language can represent a significant asset in many scenarios, but
blindly relying on it in every setting may be deleterious.

In the intra-domain benchmark, the top overall performance is obtained by DI-
NOv2, highlighting again the robustness of self-supervised representation learning ap-
proaches, especially when applied at scale. Interestingly, this pre-training obtains ex-
tremely similar results when tested with KNN or ID prototypes, showing that it is able
to build compact known class clusters for which the centroids are not far away from
the cluster boundaries. This capability may represent a significant selling point, as it
allows to discard the KNN approach in favor of the prototypes-based one, decreasing
significantly the computational cost, without sacrificing good performance. If we con-
sider unimodal methods only, even in the cross-domain case this method obtains the
top-performing results, highlighting the greater visual domain-invariance of DINOv2
w.r.t. its competitors.

To sum up, DINOv2 obtains the best overall performance between vision-only
approaches and this is the first time that the fine-tuning-free OOD detection abilities
of this model are proven. This outcome, however, is not completely unexpected, as it
fits perfectly in the context of the wide applicability of the representations provided by
foundation models, further proving their potential to induce a significant change in the
research field.

6.4.2 Comparison with Fine-tuning-based state-of-the-art
As previously discussed, a comprehensive picture of the state-of-the-art in the fine-
tuning-free OOD detection field cannot be considered complete if it does not include a
comparison with fine-tuning-based methods that is necessary to understand in which
situations it is still preferable to adopt one solution instead of the other.

We thus consider models using ViT-B, ViT-L, and BiT as the backbone, originally
pre-trained on ImageNet1k, ImageNet21k, and LVD-142M, and fine-tune them with the
standard CE learning objective or with the Flow-based hybrid objective of [180]. Once
fine-tuned, we test these models with the fine-tuning-based evaluators listed in Sec.
6.3.2.

Results on our OOD detection benchmark

We test the fine-tuning-based OOD detection methods and compare their results with
the top-performing fine-tuning-free approaches in Tab. 6.4.

The results as a whole show how fine-tuning provides a clear advantage in the intra-
domain track (left part of the table), while in the cross-domain track (right part of the
table) it produces mixed results. For instance, the AUROC of the fine-tuned DINOv2
KNN_norm is 0.748 for MS→ST, with a clear improvement over the corresponding
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Table 6.4: Fine-tuning-free vs Fine-tuning-based OOD detection results on our bench-
mark. For each setting we use the bold font to highlight the best result per column.

Pretraining
Dataset

Backbone
Pretraining
Objective

OOD
Evaluator

Intra-domain track
Textures PatterNet SUN Stanford Cars DomainNet Intra AVG

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

training-free methods

ImageNet21k CE

KNN_norm 0.832 0.635 0.938 0.303 0.760 0.775 0.582 0.923 0.724 0.766 0.767 0.680
BiT Mahalanobis 0.709 0.871 0.756 0.723 0.653 0.891 0.524 0.942 0.614 0.892 0.651 0.864

(Res101x3) KNN 0.804 0.729 0.950 0.254 0.734 0.808 0.578 0.922 0.721 0.788 0.757 0.700
prototypes 0.740 0.812 0.897 0.487 0.748 0.787 0.545 0.932 0.668 0.853 0.720 0.774

WebImageText
ViT-L

CLIP MCM 0.701 0.861 0.776 0.851 0.766 0.742 0.517 0.944 0.817 0.698 0.716 0.819

LVD-142M DINOv2
KNN 0.795 0.735 0.911 0.378 0.775 0.736 0.720 0.848 0.791 0.684 0.798 0.676

prototypes 0.803 0.722 0.904 0.430 0.834 0.593 0.626 0.902 0.784 0.687 0.790 0.667
training-based methods

ImageNet1k ViT-B

CE

MSP 0.793 0.748 0.985 0.063 0.771 0.789 0.867 0.604 0.816 0.732 0.847 0.587
ReAct+energy 0.814 0.691 0.986 0.061 0.801 0.734 0.863 0.644 0.837 0.662 0.860 0.558
KNN_norm 0.808 0.692 0.992 0.043 0.785 0.768 0.861 0.621 0.842 0.661 0.858 0.557
ASH+energy 0.488 0.959 0.466 0.958 0.511 0.949 0.496 0.947 0.482 0.949 0.489 0.952

Flow 0.785 0.753 0.992 0.048 0.776 0.764 0.829 0.736 0.833 0.679 0.843 0.596

DINO

MSP 0.778 0.788 0.973 0.097 0.762 0.803 0.862 0.647 0.807 0.754 0.836 0.618
ReAct+energy 0.799 0.741 0.977 0.090 0.785 0.772 0.853 0.728 0.830 0.697 0.849 0.606
KNN_norm 0.786 0.725 0.986 0.073 0.759 0.801 0.824 0.746 0.825 0.695 0.836 0.608
ASH+energy 0.519 0.940 0.493 0.939 0.497 0.951 0.500 0.944 0.508 0.948 0.503 0.944

Flow 0.764 0.773 0.974 0.127 0.710 0.845 0.729 0.858 0.799 0.763 0.795 0.673

ImageNet21k
BiT

(Res101x3)
CE

MSP 0.760 0.805 0.945 0.188 0.760 0.823 0.861 0.662 0.802 0.773 0.826 0.650
ReAct+energy 0.787 0.750 0.941 0.181 0.783 0.784 0.859 0.652 0.828 0.681 0.840 0.609
KNN_norm 0.797 0.730 0.986 0.077 0.789 0.765 0.857 0.676 0.842 0.653 0.854 0.580
ASH+energy 0.780 0.751 0.869 0.615 0.778 0.768 0.852 0.652 0.813 0.695 0.818 0.696

Flow 0.757 0.763 0.977 0.111 0.753 0.812 0.803 0.849 0.826 0.703 0.823 0.648

LVD-142M ViT-L DINOv2

MSP 0.820 0.732 0.969 0.092 0.797 0.767 0.910 0.408 0.844 0.686 0.868 0.537
ReAct+energy 0.842 0.627 0.973 0.093 0.826 0.681 0.919 0.322 0.867 0.582 0.885 0.461
KNN_norm 0.840 0.616 0.986 0.060 0.822 0.703 0.913 0.350 0.867 0.574 0.886 0.461
ASH+energy 0.508 0.944 0.491 0.913 0.481 0.959 0.504 0.947 0.522 0.934 0.501 0.939

Flow 0.813 0.683 0.978 0.096 0.808 0.726 0.884 0.534 0.862 0.600 0.869 0.528

Cross-domain track
SS → ST MS → ST

AUROC↑ FPR95↓ AUROC↑ FPR95↓

training-free methods
0.589 0.899 0.643 0.845
0.545 0.935 0.576 0.917
0.581 0.912 0.636 0.864
0.550 0.928 0.567 0.919
0.817 0.698 0.817 0.698
0.676 0.836 0.713 0.808
0.670 0.851 0.722 0.786
training-based methods
0.620 0.910 0.708 0.861
0.632 0.898 0.730 0.840
0.644 0.899 0.735 0.840
0.480 0.957 0.464 0.961
0.636 0.900 0.730 0.847
0.609 0.915 0.695 0.875
0.627 0.904 0.717 0.862
0.638 0.897 0.712 0.863
0.503 0.950 0.509 0.948
0.617 0.909 0.694 0.888
0.609 0.916 0.692 0.882
0.622 0.909 0.716 0.865
0.640 0.900 0.721 0.843
0.612 0.911 0.711 0.860
0.643 0.897 0.721 0.845
0.665 0.878 0.723 0.851
0.686 0.855 0.747 0.831
0.696 0.847 0.748 0.832
0.511 0.942 0.514 0.939
0.691 0.847 0.735 0.858

Table 6.5: Fine-tuning-free vs Fine-tuning-based OOD detection results on the bench-
mark from [54]. ID dataset: ImageNet1k. The column titles indicate the OOD dataset.
We use the bold font to highlight the best result per column and training setting.

Pretraining
Dataset

Backbone
Pretraining
Objective

OOD
Evaluator

iNaturalist SUN Places Texture AVG
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

training-free methods

ImageNet21k
BiT

(Res101x3)
CE

KNN_norm 0.935 0.376 0.841 0.696 0.826 0.717 0.911 0.397 0.878 0.547
Mahalanobis

KNN 0.958 0.226 0.743 0.905 0.743 0.890 0.955 0.180 0.850 0.550
prototypes 0.973 0.154 0.792 0.804 0.766 0.808 0.963 0.169 0.873 0.484

WebImageText
ViT-L

CLIP
MCM 0.950 0.283 0.941 0.286 0.923 0.343 0.831 0.625 0.911 0.384
KNN 0.810 0.952 0.718 0.954 0.733 0.922 0.807 0.844 0.767 0.918

prototypes 0.846 0.866 0.768 0.921 0.761 0.896 0.820 0.797 0.799 0.870

LVD-142M DINOv2
KNN 0.922 0.333 0.808 0.742 0.828 0.696 0.859 0.561 0.854 0.583

prototypes 0.983 0.044 0.916 0.372 0.894 0.449 0.906 0.400 0.925 0.316
training-based methods

ImageNet21k
BiT

(Res101x3)
CE

MSP 0.884 0.583 0.787 0.775 0.785 0.776 0.785 0.750 0.810 0.721
ReAct+energy 0.909 0.717 0.839 0.775 0.830 0.739 0.771 0.916 0.837 0.787
KNN_norm 0.932 0.424 0.825 0.746 0.814 0.758 0.940 0.228 0.878 0.539
ASH+energy 0.936 0.453 0.852 0.673 0.834 0.677 0.843 0.748 0.866 0.637

Flow 0.915 0.490 0.848 0.643 0.803 0.743 0.977 0.114 0.886 0.497

LVD-142M ViT-L DINOv2

MSP 0.931 0.408 0.831 0.687 0.825 0.694 0.833 0.657 0.855 0.611
ReAct+energy 0.970 0.157 0.882 0.505 0.867 0.538 0.885 0.464 0.901 0.416
KNN_norm 0.950 0.310 0.864 0.623 0.864 0.601 0.839 0.633 0.879 0.542
ASH+energy 0.577 0.958 0.695 0.824 0.593 0.914 0.754 0.729 0.655 0.856

Flow 0.960 0.240 0.909 0.427 0.885 0.503 0.864 0.602 0.904 0.443

not-fine-tuned result of KNN which is 0.713. However, the trend inverts if we consider
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Figure 6.9: Distribution of normality scores for ID and OOD test samples on the All
(MS) → Clipart (ST) set of the cross-domain track, using the pre-trained DINOv2 model
(top) and the corresponding fine-tuned one (bottom). Note how the range of score
values, represented by the blue-ID / black-OOD horizontal bars over the x-axis, become
similar in the bottom figure. Despite the peaks of the two distributions moving apart,
the separating threshold for TPR95 decreases, causing a worse FPR95 score.

FPR95 (for which lower is better), which is 0.832 for the fine-tuned KNN_norm and
0.808 for the not-fine-tuned KNN. A similar behavior holds for the SS→ST case. The
interesting element here is that this inconsistency between AUROC and FPR95 results is
a direct consequence of the use of a biased feature extractor resulting from the adoption
of a fine-tuned model. Indeed, in this case, OOD samples are represented with features
that have been adapted to ID support data. As a result, in the fine-tuned feature space
the unknown classes appear close to the known ones, and specifically, they appear
closer than what they used to do in the non-fine-tuned one. The direct consequence
of this phenomenon is that the ranges of normality scores provided for ID and OOD
test samples become more similar, as shown in Fig. 6.9 (see the black/blue colored bars
over the horizontal axis), and thus even if the peaks of the two distributions move apart
improving the AUROC score, a lower threshold has to be chosen to have a TPR of 95%,
which leads to a worse FPR95 score.

Regardless of these details, in the cross-domain track, the best performance remains
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that of the not-fine-tuned MCM that exploits the text-encoder. Overall, it is worth not-
ing that when fine-tuning is performed, the effect of the size of the original pre-training
datasets becomes less evident than in the fine-tuning-free case. Specifically, the differ-
ence between the best AUROCwhen using ImageNet1k or ImageNet21k/LVD142M can
get up to 0.1 in the training-free case and it is instead below 0.06 in the fine-tuned case.
As a final remark, we highlight that the very recent ASH approach performs well only
when applied on top of convolutional backbones (BiT), while it obtains poor results
when using transformer-based backbones, as was already noted in [183].

Results on MOS [54] benchmark

As mentioned in Sec 6.3, the most commonly used testbed in the recent OOD detec-
tion literature is the one proposed in [54], which covers only far OOD settings using
ImageNet1k as ID data. In order to provide a more complete performance overview we
consider also this benchmark in our comparison between fine-tuning-based and fine-
tuning-free approaches, and report results in Tab. 6.5. Here the support set covers all
the 1000 classes of ImageNet1k, which means that a fine-tuning is particularly expen-
sive and avoiding it would preferable, as already observed in [111].

In general here the top-performing fine-tuning-based method is Flow. Still, if we
look at the detailed results we notice that when the pre-training is on ImageNet21k Flow
gets a higher average AUROC than the not-fine-tuned BiT CE prototypes, while the
corresponding FPR95 values show an opposite trend. Moreover, when the pre-training
dataset is LVD-142M, the best fine-tuned results produced by Flow are still worse than
those of the not-fine-tuning DINOv2.

The best-performing method overall is once again DINOv2, which outperforms also
MCM that used to hold the lead on this benchmark.

When looking at these results it is also important to keep in mind the difference
in terms of computational cost between the fine-tuning-based methods and the fine-
tuning-free ones. Indeed, with fine-tuning, we refer in practice to a full-network train-
ing session which may require a significant amount of time and has to be repeated for
each OOD detection problem. This means that to obtain the numbers of a single row in
Tab 6.4, fine-tuning-based methods perform 48 training sessions (considering the three
random data orders for each experiment), while fine-tuning-free methods use the same
fixed pre-trained model for all the experiments.

6.4.3 A Wise way to use fine-tuning
We have stated multiple times that the fine-tuning process may lead to forgetting part
of the general knowledge that was originally present in the pre-trained model in favor
of the new information collected from the fine-tuning data, a phenomenon that can
be particularly problematic in the presence of a semantic shift between support data,
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Table 6.6: Comparison between fine-tuning-based, fine-tuning-free models and WiSE-
FT, using the KNN_OOD evaluator. We use the bold font to highlight the best result
per column.

Pretraining
Dataset

Backbone
Pretraining
Objective

Fine-tuning
Intra-domain track

Textures PatterNet SUN Stanford Cars DomainNet Intra AVG
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet1k ViT-B

CE
no 0.725 0.804 0.914 0.380 0.628 0.892 0.575 0.928 0.686 0.836 0.705 0.768
yes 0.808 0.692 0.992 0.043 0.785 0.768 0.861 0.621 0.842 0.661 0.858 0.557

WiSE-FT 0.783 0.742 0.982 0.091 0.711 0.821 0.644 0.897 0.801 0.713 0.784 0.653

DINO
no 0.762 0.765 0.953 0.237 0.659 0.845 0.566 0.928 0.702 0.815 0.728 0.718
yes 0.786 0.725 0.986 0.073 0.759 0.801 0.824 0.746 0.825 0.695 0.836 0.608

WiSE-FT 0.780 0.728 0.983 0.091 0.719 0.811 0.709 0.898 0.797 0.723 0.797 0.650

ImageNet21k
BiT

(Res101x3)
CE

no 0.832 0.635 0.938 0.303 0.760 0.775 0.582 0.923 0.724 0.766 0.767 0.680
yes 0.797 0.730 0.986 0.077 0.789 0.765 0.857 0.676 0.842 0.653 0.854 0.580

WiSE-FT 0.830 0.622 0.989 0.051 0.813 0.699 0.803 0.769 0.853 0.601 0.858 0.548

LVD-142M ViT-L DINOv2
no 0.790 0.759 0.912 0.386 0.772 0.744 0.716 0.852 0.789 0.685 0.796 0.685
yes 0.840 0.616 0.986 0.060 0.822 0.703 0.913 0.350 0.867 0.574 0.886 0.461

WiSE-FT 0.846 0.610 0.986 0.069 0.846 0.606 0.905 0.384 0.874 0.517 0.891 0.437

Cross-domain track
SS → ST MS → ST

AUROC↑ FPR95↓ AUROC↑ FPR95↓

0.562 0.922 0.597 0.905
0.644 0.899 0.735 0.840
0.625 0.901 0.711 0.839
0.575 0.907 0.617 0.873
0.638 0.897 0.712 0.863
0.624 0.895 0.703 0.842
0.589 0.899 0.643 0.845
0.640 0.900 0.721 0.843
0.671 0.870 0.746 0.815
0.678 0.835 0.711 0.812
0.696 0.847 0.748 0.832
0.738 0.794 0.786 0.751

used for fine-tuning, and test data [74]. Recently, the authors of WiSE-FT [167] have
suggested linearly combining pre-trained models with fine-tuned ones, showing that
this process greatly increases the robustness to distribution shifts of the latter while
retaining their performance on the fine-tuning data distribution. This study is particu-
larly relevant to our whole analysis as we deal with distribution-shifted scenarios and
till here we have performed a comparison between fine-tuning-free and fine-tuning-
based methods treating them as irreconcilable approaches. We decide thus to test the
proposed linear combination technique in our benchmark, both in the intra-domain
and cross-domain tracks. While the original analysis of WiSE-FT specifically focused
on CLIP-based models [129], which allow for a zero-shot straightforward classification
by leveraging the text encoder, we instead consider the vision-only based models that
produced the best results in Tab. 6.4. Specifically, we choose the KNN_norm evalua-
tor for our comparison. Regarding the models’ combination, we adopt equal weights
(0.5), following the authors’ recommendation. The obtained results are presented in
Tab. 6.6 from which we can observe two different trends: on smaller models (i.e. , ViT-
B CE and DINO) WiSE-FT obtains considerably worse performance compared to the
sole fine-tuned networks, both in the intra-domain and in the cross-domain settings.
Meanwhile, more complex models trained on larger datasets seem to benefit from the
interpolation, with both BiT-CE and ViT-L-DINOv2 showing a significant advantage
in the cross-domain scenario, while also slightly improving in the intra-domain one.
These results seem to suggest that large models have enough representational capacity
to benefit both from the general knowledge coming from the pre-training and from the
detailed one acquired with the fine-tuning.
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6.5 Conclusions
In this chapter, we have focused on a rather new research topic, carrying out experi-
ments involving recent advancements in the field.

We started by discussing two aspects of the current research: on one side the stan-
dard practice, in the OOD detection literature, of training deep networks on the in-
distribution data of the task at hand, a procedure that is considered necessary in order
to learn the normal distribution and obtain good performance on the ID data, but that is
inevitably connected to the risk of hurting the out-of-distribution representation capa-
bilities. On the other side, we have described the significant recent improvements
achieved in the literature studying representation learning on large data collections.

Starting from these considerations we have decided to carry out a thorough anal-
ysis on the potentialities of adopting OOD detection algorithms able to exploit pre-
trained representations. We have presented the first representation learning paradigm
designed explicitly to support OOD detection without fine-tuning. This algorithm acts
as a proof-of-concept of the feasibility of the novel OOD detection paradigm, based
on an explicit modeling of the normality and on direct comparisons between this nor-
mality and the test samples. With the aim to perform a large-scale experimental com-
parison between fine-tuning-free and fine-tuning-based OOD detection algorithms, we
have designed anovel benchmark, after highlighting the disadvantages of the testbeds
usually adopted in literature, which focus on very small datasets or consider only far
OOD scenarios. Our novel benchmark consists of two tracks, the purpose of the intra-
domain one is to enable studying specifically the ability of models to detect semantic
shifts, while the cross-domain one is designed to reproduce a more realistic deployment
scenario in which semantic and visual distribution shifts occur together. Our experi-
mental evaluation of a wide range of algorithms on this novel benchmark allowed us
to draw some conclusions about the performance of fine-tuning-free approaches w.r.t.
fine-tuning-based ones. We have seen that the latter still keep the lead when there is no
domain shift between support and test data, while their advantage resets to zero when
the two distribution shift types occur, providing further proof of the reduced OOD rep-
resentation capabilities of models fine-tuned on in-distribution data. The most relevant
outcome of this chapter is however the empirical proof, for the first time, of the superi-
ority of the foundation models w.r.t. traditional representation learning paradigms,
in terms of direct applications of their representations to the OOD detection task. This
finding fits perfectly into the context of the recent studies about the potentialities of
foundation models which often highlight their advantages and thus focus on how to
make the best use of the knowledge that they encode [191, 184].
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Chapter 7

Conclusions and future
opportunities

7.1 Summary
This thesis focused on the study of two significant issues that often arise when trying to
move deep learning techniques from lab settings to real-world applications. Both issues
appear in scenarios where it is not possible to control the data distribution met after de-
ployment. Visual domain shifts occur when the visual distribution changes, because of
different data acquisition conditions, while semantic shift happens when novel seman-
tic categories are met after deployment. In our analysis, we have first of all described
these problems, their causes, and their impacts on deep learning algorithms (Chap. 1),
and then provided formal formulations for their most studied settings, and some back-
ground on the literature tackling them (Chap 2). In the subsequent chapters, the focus
moved to more specific scenarios, for which we try to propose novel approaches, often
adopting unconventional points of view.

In Chapter 3 we have analyzed the scenario encountered by a Computer Vision
algorithm that is tasked to perform social media monitoring. In this research setting,
whichwe call one-shot unsupervised cross-domain detection, traditional domain-adaptive
detectors fail as they are not able to adapt to a continuously varying target domain. The
problem should thus be tackled by performing adaptation on a single target sample at
a time.

In Chapter 4 we carried out an attempt to recompose the Domain Generalization re-
search field, which is split into two research lines apparently irreconcilable: on one side
papers that study learning-level approaches to improve generalization, on the other,
studies focusing on strategies to obtain generalization by increasing data variability.
We find out that a very simple approach belonging to the second group can represent
a novel strong baseline in the field, which should push for the development of novel
algorithms able to make the most out of the enriched data.

Chapter 5 is devoted to the study of two different open-world learning settings,
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both characterized by multiple challenges including the simultaneous presence of both
a semantic and a visual distribution shift. The traditional paradigm applied here con-
sists in building solutions obtained as combinations of methods designed for specific
sub-problems. Our proposal is based on an opposite paradigm as we argue that, when
dealing with a complex task, a dependable algorithm should tackle all its challenges at
once.

Chapter 6 focuses on the Out-Of-Distribution detection task, proposing to discard
the usual approach based on carrying out a training on the in-distribution data of the
task at hand. Indeed, this procedure has a number of disadvantages and the recent
improvements in terms of learning of general-purpose representations enable adopting
a different approach based on the use of pre-trained feature representations. We analyze
this novel direction, comparing it with the traditional one andwe draw a comprehensive
picture of the state-of-the-art in order to guide future research efforts.

7.2 Limitations and future opportunities
The knowledge presented in the thesis is the result of a long research journey that
progressed hand-in-hand with the evolutions of the literature studying the distribution
shift. For this reason, some of the insights provided and techniques proposed in the
first chapters may appear less relevant with respect to the research outcomes of the
last one. If we adopt a birds-eye view to look at the topics discussed in the thesis we
notice that behind the innovations presented in each chapter, there has been a slow but
steady change in perspective.

Initially (Chapters 3 and 4) we have focused on techniques to bridge the visual do-
main shift problem. They operate at the learning protocol level, putting more at-
tention on the training strategy than on the learned representations. Moving for-
ward (Chapter 5) we focused on the structure of the learned feature space. In this
context, we observed how the choice of the learning objective impacts the learned fea-
tures as well as the non-learned ones. Specifically, the joint effect of self-supervision
and full-supervision in supervised contrastive learning provides models that generalize
better. Our conclusions share insights with [36] that defined the notion of supervision
collapse. Among the implications of this phenomenon, is the fact that representations
learned on a specific task and dataset are necessarily unsuited to be applied to
out-of-distribution data. This consideration prompted the studies that finally led to
applying a broader perspective on distribution shift analysis (Chapter 6), by focusing
on pre-trained representations as a way to provide fair treatment to in-distribution and
out-of-distribution data.

Building on this result means transitioning from studying how to train a model to
solve a specific task, to how to query the knowledge encoded through a large-scale pre-
training to solve the same task. Indeed, while foundation models represent the latest
innovation in terms of large-scale learning, exploiting them is not necessarily trivial,
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and there is the serious risk of damaging the knowledge they encode when they are
naively used as a starting point for transfer learning.

Considering this novel paradigm there are two main open lines of research: on one
side the continuous improvement of pre-trained representations, which could be ob-
tained through innovative learning objectives or the inclusion of ever-growing datasets
or additional modalities, on the other side the design of specialized techniques to exploit
those pre-trainings. The first point is today more and more under the control of very
few entities that have access to the resources needed to undertake that large-scale effort,
while the second aspect leaves more doors open and has already given birth to a new
world of research directions including prompt learning, the introduction of adapters,
and the use of low-rank reparametrization methods [88].

Some of these innovations may be suited to be applied to the distribution-shifted
scenarios studied in this thesis, effectively obtaining approaches that can fully exploit
foundationmodels, while still providing away to adapt them to downstream tasks. If we
consider for example cross-domain scenarios as the one-shot unsupervised cross-domain
detection problem or the multi-source open-set domain adaptation one, a promising line
of research would be to apply the adapters logic to the transformer-based architec-
tures of foundation models. Indeed adapters were originally designed specifically for
multiple-domain learning [131] but applied to traditional convolutional networks. An
alternative strategy based on a similar rationale is the adoption of visual prompts [61].
Both approaches could be seen as strategies to enrich a frozen network with a small set
of learnable parameters, that can be adapted to the target visual domain for example
through self-supervised learning or entropy minimization [147]. An additional advan-
tage of this paradigm w.r.t. full network fine-tuning is that the limited number of train-
able parameters makes the adaptationmuch cheaper in terms of computational cost and
size of data. Prompt learning can also be used for designing OOD detection techniques,
for example through the introduction of negative prompts that enable measuring the
dissimilarity with known classes [120].

While focusing on these novel research lines is certainly promising it is also impor-
tant to always keep a critical eye on the whole framework, because even if the most
recent findings seem to prove the superiority of pre-trained representations, as shown
in the last sections of Chapter 6 there may always be situations in which the traditional
approach of fine-tuning those representations provides better results.
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Appendix A

Tasks and performance metrics

A.1 Object recognition

A.1.1 Task definition and goal
Object recognition, also known as object classification or categorization, is probably the
most simple and common among the tasks studied in the Computer Vision research
field. In its most common formulation, it consists in the task of correctly assigning an
image to a predefined and closed set of categories, assuming that each image contains
and represents a single subject that can be unambiguously assigned to a single cate-
gory. In this context, a classification model is generally trained on a supervised dataset
containing pairs of image samples and labels, where the latter simply identifies one of
the known categories. At test time this classifier receives a test image and produces in
output a scalar score for each category, which represents the model’s computed prob-
ability that the image’s subject belongs to the considered category. In most cases, the
predicted class is the one with the highest associated probability, and the corresponding
probability value is called classification confidence.

A.1.2 Performance metrics
The main performance metric used for categorization tasks is the so called classification
accuracy:

accuracy =
number of correctly classified test samples

total number of test samples
(A.1)

This metric is really simple and pretty common, given its significant interpretability.
At the same time, it is important to keep in mind that its results may be misleading,
especially in case of highly unbalanced classification tasks, for which other metrics may
be preferred. One solution in this case consists in using the average per-class accuracy.
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A.2 Visual object detection

A.2.1 Task definition and goal
Visual object detection consists in recognizing in an image all the objects that belong
to a predefined set of categories, by also pointing out where they are by framing them
in bounding boxes. This task can be seen as a specific formulation of a set prediction
problem: each image contains a finite set of objects that belong to the known categories,
and a detector should be able to correctly locate and classify all of them. The training
dataset in this case contains image-label pairs where the label is a set of pairs (𝑐, 𝑏),
where 𝑐 indicates a specific class and 𝑏 the coordinates of a bounding box. A similar set
of (𝑐, 𝑏) pairs is the expected output of a good detector. In order to compute performance
metrics, in many cases a predictive model also needs to provide a confidence score for
each of its predictions, which is a scalar value with a similar meaning to the one of the
object recognition’s case.

A.2.2 Performance metrics
Differently from the classification case, evaluating visual object detection requires defin-
ingmuchmore complex performancemetrics, due to the complex structure of the task’s
expected outputs. A direct consequence of this is that there are different metrics that
have been proposed by different entities and employed in different cases.

All the works included in this thesis dealing with the object detection task adopt
benchmarks involving the Pascal-VOC dataset, which was introduced as part of the
same named challenge [38]. As a result, we adopt the performance metrics defined as
part of that challenge, the most important one being the Average Precision (AP), which
is however obtained as a function of a number of other metrics. The AP is computed on
a per-class basis and thus also the metrics on which it is based are computed following
the same strategy. This means that when evaluating the performance of an object de-
tector we consider a class at a time and evaluate the detector’s ability to detect it. After
considering all the classes we can provide a summary of the performance by comput-
ing the mean Average precision (mAP), which is simply the average of the per-class AP
values.

Intersection over Union It is a measure of the overlap between 2 bounding boxes
and is usually used to evaluate how well a proposed bounding box matches the corre-
sponding ground truth (GT). It is computed as the ratio of the surface of the intersection
between the two boxes and the surface of their union.

IoU =
Intersection’s surface

Union’s surface
(A.2)

The IoU takes values in [0,1] and it is used together with a threshold to decide if a
predicted bounding box matches a GT object or the background.
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Precision-Recall curve The IoU allows to classify predicted and GT boxes as True
Positives (TP, predicted box with IoU with a GT box higher than a threshold), False
Positives (FP, IoU lower than the threshold, or GT box already matched with another
prediction), and False Negatives (FN, a GT box not detected).
By counting instances of the various types it is possible to compute the Precision and
the Recall:

Precision =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃
; Recall =

𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁

; (A.3)

Both these metrics take values in [0,1]. Considering they are connected, with efforts of
improving on one leading to a decrease in performance on the other, an overall perfor-
mance evaluation can be performed by drawing the Precision-Recall curve, which shows
the levels of precision for various levels of recall. This curve is obtained by varying the
confidence threshold, i.e. the confidence value that the predictions have to reach in
order to be included in the computation. The more the curve resembles the Heaviside
step function the more the detector’s performance is good.

Average Precision Because the Precision-Recall curve does not allow to easily com-
pare the performance of two different models, a numeric value is usually preferred. This
is obtained by measuring the area under the curve, whose value in [0,1] is called Av-
erage Precision (AP). The AP performance results reported in this thesis are computed
with an IoU threshold of 0.5.

A.3 Out-Of-Distribution detection

A.3.1 Task definition and goal
Out-Of-Distribution detection is a categorization problem that involves a semantic shift.
In this case, the task consists in associating each test image either to the known cat-
egories or to the unknown one. The task can thus be seen as a binary classification
problem on the {known, unknown} class set, where a full prediction output can be pro-
vided as a single scalar value often called normality score, which represents the predic-
tion’s confidence for the known class. The main difference and peculiarity of Out-Of-
Distribution detection with respect to many other binary classification problems is that
in its most used formulation, the training dataset contains samples of only one of the
two classes involved in the task (the known one), while the other class is not clearly
defined and simply corresponds to the set of all semantics that do not appear in the
known set.

A.3.2 Performance metrics
Given the fact that Out-Of-Distribution detection can be considered a binary classifi-
cation task, the performance metrics usually employed in papers studying this task are
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based on the concepts of True Positive (TP, known samples detected as known), False
Positive (FP, unknown samples detected as known), True Negative (TN, unknown
samples detected as unknown) and False Negative (FN, known samples detected as
unknown).

AUROC It is the Area Under the Receiver Operating Characteristic (ROC) curve,
which plots the True Positive Rate (TPR = TP/TP + FN) against the False Positive Rate
(FPR = FP/FP + TN) when varying the decision threshold applied on the normality
scores. This metric takes value in [0,1] (the higher the better) and can be interpreted as
the probability that a known test sample has to receive a higher normality score than
an unknown one. One of the main advantages of this metric is that it is threshold-free
so it provides an unbiased evaluation of the ability of an Out-Of-Distribution detection
method to separate known and unknown samples.

FPR95 It represents the False Positive Rate when the True Positive Rate is 95%, for
this reason, it is sometimes indicated ad FPR@TPR𝑥 with 𝑥 = 95%. As the AUROC,
it takes values in [0,1], but in this case, a lower value is better. Moreover, this is not
a threshold-free metric, but it is based on the choice of the normality threshold that
guarantees that 95% of positive samples are predicted as positives.

A.4 Open-set domain adaptation

A.4.1 Task definition and goal
Open-set domain adaptation is an object recognition problem that considers both a vi-
sual domain and a semantic shift. The classification model in this case is trained both
on a supervised source dataset and on an unsupervised target one. At test time the clas-
sifier receives a single target sample at a time and must provide for it a classification
prediction over the {known classes} ⋃{unknown} class set.

A.4.2 Performance metrics
Algorithms designed for the open-set domain adaptation task are usually evaluated
considering their ability to both classify known samples correctly while detecting un-
known samples. We indicate with OS∗ the average class accuracy over known classes
and withUNK the classification accuracy for the unknown class (considered as a whole
as if it was a single uniform semantic class).

The traditional [93, 75] approach to aggregate these two metrics consists in com-
puting an overall average of per-class accuracies:

OS =
|𝒴𝑆|

|𝒴𝑆| + 1
⋅ OS∗ +

1
|𝒴𝑆| + 1

⋅ UNK
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where |𝒴𝑆| represents the cardinality of the known class set. This metric however
gives all the classes the same importance and consider the unknown one not different
from the others. As a result it is possible to obtain a really high OS even with a low
UNK if the known class accuracy is high and |𝒴𝑆| is also high.

A more fair aggregation metric has been proposed in [14, 42]: it is the harmonic
mean between the average class accuracy over the known classesOS∗ and the accuracy
over the unknown class UNK:

HOS = 2 ⋅
OS∗ ⋅ UNK
OS∗ + UNK

(A.4)

With this metric any method that shows good classification ability only towards one
among known and unknown samples cannot obtain a good overall score.

A.5 Open-world recognition

A.5.1 Task definition and goal
Open-world recognition (OWR) is a categorization task based on an incremental learn-
ing paradigm. After each learning episode, an OWR model should be able to correctly
recognize all the test samples belonging to the classes learned till that point, while re-
jecting all the samples belonging to other semantic categories. Similarly to open-set do-
main adaptation, and differently w.r.t Out-Of-Distribution detection, this task requires
a model not only to provide a normality score for each test sample but also to propose a
known-unknown separation threshold. The model is thus evaluated both on its ability
to correctly classify known samples and to correctly detect unknown ones.

A.5.2 Performance metrics
The performance metrics that we adopt for this task are the one proposed in [41]:

• Acc (Accuracy) measures the ability of the model to correctly classify the known
target samples.

• Acc-WR (AccuracyWithout Rejection) is similar to Acc, but the accuracy is com-
puted without rejecting the target samples identified as unknown. In practice,
this metric is computed considering all known test samples as known, even if
they have a normality score lower than the normality threshold. As a result, w.r.t
to Acc., it focuses only on the closed set classification accuracy of the model;

• OWR-H (Open World Harmonic Mean) evaluates the performance of the model
as a whole, it is the harmonic mean between Acc-WR and the model’s accuracy
in unknown sample detection. Similarly to the HOS score of open-set domain

143



Tasks and performance metrics

adaptation task, it is the only metric that summarizes the overall performance
of the model in a single value and thus the most important to be used when
comparing different approaches.
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