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We present an implicit-explicit finite volume scheme for the compressible two-phase model in all-Mach number 
regimes. In order to solve model equations efficiently and accurately in the low Mach regime, the convective term 
is split in a stiff part associated to fast acoustic waves, and a non-stiff part corresponding to mean flow advection. 
A Implicit-Explicit Runge-Kutta (IMEX-RK) method is used to integrate the stiff part implicitly, while non-stiff 
terms are treated explicitly. This leads to a predictor-corrector scheme, where the contribution of pressure waves 
is accounted for by solving a system of non-linear elliptic equations for the phasic pressures. The resulting 
numerical scheme is well-balanced and stable under a CFL condition based on the macroscopic velocity only and 
is capable of simulating two-phase flows in both the incompressible limit and in the highly compressible regime. 
The asymptotic preserving property of the scheme is also proven.
1. Introduction

Two-phase flows are encountered in a wide range of scenarios both 
in nature and industrial processes. Some examples of natural flows in-

clude sedimentation and groundwater flows. In industrial applications, 
two-phase flows are encountered in fluidized bed, nuclear reactors, 
pipelines for crude oil transport, micro-mixers for drug synthesis, and 
trickle bed reactors in chemical industry, just to name a few. Depend-

ing on the flow rate of each phase, different types of regimes can be 
observed, ranging from dispersed bubbly flow to separated stratified 
flow. Such a variability poses an intrinsic challenge in modeling. Even 
for the simplest cases, there is not an uniquely accepted formulation of 
the governing equations.

Our target application is the numerical simulation of Trickle Bed 
Reactors (TBR) for biological methanation. This is a relatively new ap-

plication which is gaining momentum due to the increasing demand of 
energy from renewable sources [1]. In TBRs for biological methanation, 
renewable hydrogen and carbon dioxide are converted into methane 
as the result of the biological Sabatier reaction happening inside mi-

croorganisms of the Archaea family. Gaseous reactants are introduced 
inside a reactor together with an aqueous phase (either co-currently 
or counter-currently). Hydrogen and carbon dioxide dissolve in the liq-

uid phase and are harvested by microorganisms living on the surface 
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of a packed bed. After the Sabatier reaction takes place, methane is re-

leased as a gaseous phase. Performances of these reactors are measured 
in terms of production rate and degree of purity of methane, and are 
heavily influenced by operating conditions (temperature and pressure), 
and by the wetting efficiency. The latter is related to the percentage of 
solid surface covered by the liquid phase. Therefore, accurate simula-

tions of hydrodynamics in TBRs are of paramount importance during 
the design phase and for scale-up.

From the computational point of view, the main challenges are 
related to the accurate simulation of the trickle regime, which is char-

acterized by strong inhomogeneities of phase distribution and complex 
geometry of the interface between phases. As a consequence, direct nu-

merical simulations and interface tracking methods would require pro-

hibitive grid resolutions and computational times not compatible with 
industrial turn-overs. Furthermore, due to volume variations resulting 
from the heterogeneous Sabatier reaction, incompressible solvers can-

not be readily used. Instead, one has to resort to compressible solvers, 
where the main challenge is the efficient and accurate simulation of the 
slow flow dynamics. For such reasons, the use of all-Mach numerical 
schemes appears compelling, as these methods are capable of maintain-

ing a good accuracy in the incompressible limit and do not suffer from 
time step restrictions typical of explicit solvers.
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Most of the model equations available in the literature for compress-

ible multiphase flows refer to the Baer-Nunziato model [2], where each 
phase has a different velocity and is governed by its own equation of 
state (EOS). In order to derive the governing equations for the Baer-

Nunziato model, volume averaging is applied to single-phase conserva-

tion laws using the procedure described in [3]. The resulting averaged 
equations describe balance laws for mass, momentum and energy of 
each phase, and include coupling terms for interphase friction forces, 
and pressure relaxation terms. The latter describe the relaxation of each 
phase towards a thermodynamic equilibrium shared among all phases. 
Simpler models can be derived from Baer-Nunziato equations under the 
assumption that all phases share the same velocity (six equations mod-

els, see [4], [5], [6]), the same pressure and velocity (five equations

models, see [7], [8], [9], [10], [11], [12]) or the same pressure, veloc-

ity and temperature (four equations models, see [13]). Another class of 
six-equations models is based on the assumption that all phases share 
the same pressure but have separate velocities. These models are known 
to be ill-posed as discussed in [14].

Our ultimate goal is the numerical simulation of a TBR for biologi-

cal methanation including dissolution processes and chemical reactions. 
However, in the present work, we focus solely on the development of 
an all-Mach scheme for compressible two-phase flows. This represents 
the very first step towards efficient numerical simulations of TBRs.

The design of an efficient all-Mach numerical schemes is still an 
active area of research, with most of the research effort focusing on 
single-phase flows. The basic idea behind an all-Mach numerical scheme 
is to resolve acoustic perturbations implicitly, while an explicit method 
is used to integrate model equations for the mean flow (see for instance, 
[15], [16], [17], [18] and [19]). The advantage of such a strategy is 
two-fold. On one hand, the time step restriction due to the fast-traveling 
acoustic waves is avoided rendering the numerical solution of these 
equations efficient in the low-Mach regime. On the other hand, the 
simplicity and robustness of explicit methods is retained in the com-

pressible regime. This idea has been extended to two-phase flows in 
[20] for the isentropic case and in [21]. However, to our knowledge, 
this is one of the first attempts to apply the all-Mach philosophy to the 
complete Baer-Nunziato model.

Our numerical scheme is based on the well-known Implicit-Explicit 
(IMEX) Runge-Kutta (RK) time integration scheme [22], which is used 
to integrate implicitly the stiff part of the convective term, while the 
non-stiff part of the convective term is treated explicitly. Although 
the structure of conservative terms allows to re-use much of the well-

established numerical methods for conservation laws, proper discretiza-

tion of non-conservative terms is required to obtain a well-balanced 
scheme, that is a numerical scheme capable of preserving steady states 
also at the discrete level. Furthermore, special care is required for the 
numerical treatment of pressure coupling terms, as discussed in [23]. 
The well-balancing strategy proposed in this work is novel to the best 
of our knowledge and generalizes the idea of Abgrall and Saurel in the 
framework of an IMEX-RK numerical scheme. The balancing procedure 
results in a non-trivial discretization of the volume fraction equation.

Even though in our target application both phases are in the same 
Mach regime, our numerical scheme generalizes well also to the less 
common cases where a phase is approaching the low Mach limit and 
the other is in the compressible regime. In this regard, we propose a 
proof of the asymptotic preserving property valid for both cases.

The reminder of this paper is organized as follows. In section 2, 
model equations for compressible two-phase flows are presented. Non-

dimensional analysis is carried out in section 2.2 to identify stiff and 
non-stiff terms while in section 2.3 the low-Mach limit of the system 
and well-prepared initial data are derived. In section 3, we introduce 
the IMEX-RK semi-discrete scheme and we derive a non-linear elliptic 
equation for the implicit pressure step. In section 4 we present the fully 
discrete scheme and introduce the balancing procedure. In section 5, 
we prove that our numerical scheme is Asymptotic Preserving (AP) in 
2

the sense introduced in [24], and discussed in [25] and [19]. Lastly, in 
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section 6, we present several numerical experiments which demonstrate 
the capability of our scheme to accurately simulate two-phase flows 
both in the compressible regime and in the incompressible limit.

2. Model equations

2.1. Compressible two-phase flow model

Our model equations are the volume averaged equations for com-

pressible two-phase flows as derived by Abgrall and Saurel in [23]. 
Details on the averaging procedure can be found in [26] and [3].

For the one-dimensional case, the equations read as follows:

𝜕𝑡𝛼𝑘 + 𝑢𝐼𝜕𝑥𝛼𝑘 =
∑
𝑗≠𝑘

𝜈𝑘,𝑗 (𝑝𝑘 − 𝑝𝑗 )

𝜕𝑡(𝛼𝑘𝜌𝑘) + 𝜕𝑥
(
𝛼𝑘𝜌𝑘𝑢𝑘

)
= 0

𝜕𝑡(𝛼𝑘𝜌𝑘𝑢𝑘) + 𝜕𝑥
(
𝛼𝑘𝜌𝑘𝑢

2
𝑘
+ 𝛼𝑘𝑝𝑘

)
= 𝑝𝐼𝜕𝑥𝛼𝑘 +

∑
𝑗≠𝑘

𝐹𝑘,𝑗

𝜕𝑡(𝛼𝑘𝜌𝑘𝐸𝑘) + 𝜕𝑥
(
𝑢𝑘
(
𝛼𝑘𝜌𝑘𝐾𝑘 + 𝛼𝑘𝜌𝑘𝐻𝑘

))
= 𝑝𝐼𝑢𝐼𝜕𝑥𝛼𝑘 + 𝑢𝐼

∑
𝑗≠𝑘

𝐹𝑘,𝑗

−
∑
𝑗≠𝑘

𝜈𝑘,𝑗𝑝𝐼 (𝑝𝑘 − 𝑝𝑗 )

(1)

where (𝑡, 𝑥) ∈ [0, 𝑇 ] × Ω, Ω is the computational domain and 𝑇 is the 
final integration time. Subscript 𝑘 = 1, 2 is the phase index, and 𝐼 is 
used for quantities evaluated at the material interface.

As mentioned in the introduction, the focus of this work is on the 
derivation of an all-Mach numerical scheme for two-phase flows. There-

fore in the above equations, we omit terms accounting for dissolution 
processes and heterogeneous chemical reactions which would appear 
as source terms in mass, momentum and energy equations. Further-

more, we omit terms related to viscous forces in the bulk of each phase, 
namely the stress tensor and the deviatoric stress tensor. While these 
terms play a significant role in the simulation of TBR hydrodynamics, 
from a numerical point of view they do not pose a significant chal-

lenge and standard numerical techniques can be used to discretize these 
terms.

The first eq. in (1) describes advection of volumetric fractions (𝛼𝑘) 
with interface velocity 𝑢𝐼 . Volumetric fractions obey the compatibility 
condition 

∑
𝑘 𝛼𝑘 = 1. The l.h.s. of the remaining equations describe bal-

ance laws for mass, momentum and energy of each individual phase 
weighted by the volumetric fraction. Notation is standard. 𝜌𝑘, 𝑢𝑘, 𝑝𝑘, 
represent density, velocity, pressure for phase 𝑘 averaged over a refer-

ence volume centered at (𝑥, 𝑡). Specific kinetic energy, total energy, and 
total enthalpy are related to primitive variables as follows:

𝐾𝑘 =
1
2
𝑢2
𝑘
, 𝐸𝑘 = 𝑒𝑘 +𝐾𝑘, 𝐻𝑘 = 𝑒𝑘 +

𝑝𝑘

𝜌𝑘
(2)

where 𝑒𝑘 is the (specific) internal energy and is related to pressure and 
density by the equation of state 𝑝𝑘 = 𝑝𝑘(𝑒𝑘, 𝜌𝑘). Although our derivation 
can be generalized to more complex equations of state, in this paper we 
consider the following EOS:

Perfect gas: 𝜌𝑒 = 𝑝

𝛾 − 1
(3a)

Stiffened EOS: 𝜌𝑒 =
𝑝+ 𝛾𝑝∞
𝛾 − 1

= 𝑝
𝛽
+ 𝜂
𝛽
. (3b)

On the r.h.s. of equations (1), 𝐹𝑘,𝑗 represents the drag force acting 
at the interface between phases 𝑘 and 𝑗. Non-conservative term 𝑝𝐼𝜕𝑥𝛼𝑘
(and its counterpart in the energy equation) models the force (work) re-

sulting from spatial variations of the volumetric fraction. Lastly, term 
𝜈𝑘,𝑗 (𝑝𝑘 − 𝑝𝑗 ) is introduced to account for thermodynamic (pressure) re-

laxation for the pair of phases (𝑘, 𝑗) at rate 𝜈𝑘,𝑗 .
To avoid spurious contributions to total energy and momentum, the 
following compatibility conditions must hold:
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𝑘

𝑝𝐼𝜕𝑥𝛼𝑘 +
∑
𝑗≠𝑘

𝐹𝑘,𝑗 = 0∑
𝑘

𝑝𝐼𝑢𝐼𝜕𝑥𝛼𝑘 + 𝑢𝐼
∑
𝑗≠𝑘

𝐹𝑘,𝑗 −
∑
𝑗≠𝑘

𝜈𝑘,𝑗𝑝𝐼 (𝑝𝑘 − 𝑝𝑗 ) = 0

𝐹𝑘,𝑗 = −𝐹𝑗,𝑘

(4)

which describe force equilibrium and the energy conservation across 
the interface between phase 𝑘 and 𝑗.

In order to close the above system of equations, relationships for 
drag forces and relaxation rates must be specified. Closure relationships 
strongly depend on the test case and regime under consideration. With-

out loss of generality, we assume that the drag force is proportional to 
the relative velocity between two phases, that is:

𝐹𝑘,𝑗 = 𝜏𝑘,𝑗 (𝑢𝑘 − 𝑢𝑗 ),

where 𝜏𝑘,𝑗 represents the rate at which both velocities are homogenized 
towards a common value. Other examples of interfacial drag forces are 
available in [27] and references therein.

Similarly, a closure relationship for the pressure relaxation rate, 𝜈𝑘,𝑗 , 
must be provided. In this work, we assume that pressure relaxation is 
instantaneous (as in [23]), which corresponds to the case of thermo-

dynamic processes happening on a time scale much smaller than the 
characteristic convective time. This is approximately true for slow flows 
characterized by weak pressure imbalances between phases. However, 
more general relaxation models can be incorporated in our numerical 
scheme.

Finally, 𝑝𝐼 and 𝑢𝐼 represent the average pressure and velocity at the 
interface between phases. In this paper, we adopt the common choice 
of setting:

𝑝𝐼 =
∑
𝑘

𝛼𝑘𝑝𝑘, 𝑢𝐼 =
∑
𝑘 𝛼𝑘𝜌𝑘𝑢𝑘∑
𝑘 𝛼𝑘𝜌𝑘

. (5)

Knowing conservative and primitive quantities for each phase, mix-

ture density, velocity and pressure can be expressed as follows:

𝜌 =
∑
𝑘

𝛼𝑘𝜌𝑘, 𝑢 = 1
𝜌

∑
𝑘

𝛼𝑘𝜌𝑘𝑢𝑘, 𝑝 =
∑
𝑘

𝛼𝑘𝑝𝑘 (6)

It is easy to show that the system of equations (1) is hyperbolic with 
eigenvalues for phase 𝑘 given by:

𝜆𝐼 = 𝑢𝐼 ,

𝜆+
𝑘
= 𝑢𝑘 + 𝑐𝑘, 𝜆0

𝑘
= 𝑢𝑘, 𝜆−

𝑘
= 𝑢𝑘 − 𝑐𝑘,

(7)

where 𝑐𝑘 is the speed of sound and can be computed as follows:

𝑐2
𝑘
=

𝑝𝑘

𝜌2
𝑘

− 𝜕𝑒𝑘
𝜕𝜌𝑘

||||𝑝𝑘
𝜕𝑒𝑘
𝜕𝑝𝑘

||||𝜌𝑘
(8)

𝜆±
𝑘

are the eigenvalues associated to (fast) acoustic waves, 𝜆0
𝑘

is the 
eigenvalue associated to the mean flow velocity and 𝜆𝐼 is the eigenvalue 
corresponding to the interface velocity, that is the velocity at which the 
material interface is advected throughout the domain.

For a standard explicit time integration method, the CFL condition 
is given by:

Δ𝑡 ≤ 𝐶 Δ𝑥
𝜆max

≤
𝐶 Δ𝑥

max𝑘,Ω(|𝑢𝑘|+ 𝑐𝑘) ≤ 𝐶min𝑘,Ω(𝑀𝑘)Δ𝑥
max𝑘,Ω(|𝑢𝑘|(𝑀𝑘 + 1))

(9)

where 𝑀𝑘 = 𝑢𝑘∕𝑐𝑘 and 𝐶 ≤ 1 is the Courant number. Note that the max-

imum time step allowed is governed by the Mach number of the least 
compressible phase and becomes computationally prohibitive when 
3

simulating flows characterized by slow dynamics.
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2.2. Non-dimensional equations

The starting point for the derivation of the all-Mach scheme is the 
non-dimensional form for equations (1). To this end, we assume that 
material velocities and pressures for each phase are roughly in the same 
order of magnitude. This assumption holds true for flows characterized 
by slow dynamics as those encountered in TBRs.

Let 𝑢𝑟 = 𝑥𝑟∕𝑡𝑟 and 𝑝𝑟 be the reference velocity and pressure, where 
𝑥𝑟 and 𝑡𝑟 are a reference length and time scales. Even though we assume 
similar pressures and velocities for both phases, it is necessary to allow 
for big differences in densities (as it happens, for instance, in gas-liquid 
mixtures). To this end, we denote the reference mixture density by 𝜌𝑟
and the reference phase densities as 𝜌𝑟1 = 𝜚1𝜌

𝑟, 𝜌𝑟2 = 𝜚2𝜌
𝑟 as done in 

[20], where 𝜚1, 𝜚2 ∈ℝ are scaling constants. Using the above reference 
quantities, the reference speeds of sound and Mach number for phase 
𝑘 = 1, 2 are given by:

(𝑐𝑟
𝑘
)2 = 𝑝𝑟

𝜚𝑘𝜌
𝑟
, 𝑀𝑟

𝑘
= 𝑢

𝑟

𝑐𝑟
𝑘

. (10)

The resulting non-dimensional quantities denoted by (⋅̃) are:

𝜌𝑘 = 𝜌̃𝑘𝜚𝑘𝜌𝑟, 𝜌 = 𝜌𝑟
∑
𝑘

𝛼𝑘𝜌̃𝑘𝜚𝑘 = 𝜌̃𝜌𝑟,

𝑢𝑘 = 𝑢̃𝑘𝑢𝑟, 𝑢𝐼 = 𝑢𝑟
∑
𝑘 𝛼𝑘𝜌̃𝑘𝜚𝑘𝑢̃𝑘

𝜌̃
,

𝑝𝑘 = 𝑝̃𝑘𝑝𝑟, 𝑝𝐼 = 𝑝𝑟
∑
𝑘

𝛼𝑘𝑝̃𝑘

𝑒𝑘 = 𝑒𝑘
𝑝𝑟

𝜌𝑟
𝑘

, 𝐸̃𝑘 = 𝑒𝑘 +
1
2
𝑀2
𝑘
𝑢̃2
𝑘

(11)

Finally, we write the non-dimensional relaxation rate, 𝜈𝑘,𝑗 , as:

𝜈̃𝑘,𝑗 =
𝜈𝑘,𝑗

𝑡𝑟𝜌𝑟𝑢𝑟𝑢𝑟
. (12)

Adimensionalization of (1) yields to the following system of equations:

𝜕𝑡𝛼𝑘 + 𝑢𝐼𝜕𝑥𝛼𝑘 =
∑
𝑗≠𝑘

𝜈𝑘,𝑗 (
𝜚𝑘𝑝𝑘

𝑀2
𝑘

−
𝜚𝑗𝑝𝑗

𝑀2
𝑗

)

𝜕𝑡(𝛼𝑘𝜌𝑘) + 𝜕𝑥
(
𝛼𝑘𝜌𝑘𝑢𝑘

)
= 0

𝜕𝑡(𝛼𝑘𝜌𝑘𝑢𝑘) + 𝜕𝑥

(
𝛼𝑘𝜌𝑘𝑢𝑘𝑢𝑘 +

𝛼𝑘𝑝𝑘

𝑀𝑟
𝑘
2

)
=
𝑝𝐼

𝑀𝑟
𝑘
2 𝜕𝑥𝛼𝑘 +

∑
𝑗≠𝑘

𝐹𝑘,𝑗

𝜕𝑡(𝛼𝑘𝜌𝑘(𝑒𝑘 +𝑀𝑟
𝑘
2𝐾𝑘)) + 𝜕𝑥

(
𝑢𝑘

(
𝑀𝑟
𝑘
2𝛼𝑘𝜌𝑘𝐾𝑘 + 𝛼𝑘𝜌𝑘𝐻𝑘

))
= 𝑝𝐼𝑢𝐼𝜕𝑥𝛼𝑘

+𝑀𝑟
𝑘
2𝑢𝐼

∑
𝑗≠𝑘

𝐹𝑘,𝑗 −
∑
𝑗≠𝑘

𝜈𝑘,𝑗𝑝𝐼 (
𝜚𝑘𝑝𝑘

𝑀2
𝑘

−
𝜚𝑗𝑝𝑗

𝑀2
𝑗

)

(13)

where (⋅̃) has been omitted for clarity and 𝑘, 𝑗 = 1, 2.

The above adimensional equations show that pressure terms in the 
momentum equation scale with 1∕𝑀𝑟

𝑘
2. Moreover in the energy equa-

tion, time derivative of internal energy, space derivatives of total en-

thalpy, the interface pressure scale and pressure relaxation terms all 
scale as 1∕𝑀𝑟

𝑘
2. These terms represent the stiff part of our model equa-

tions in the low Mach limit.

2.3. Low Mach limit and well-prepared initial data

In this section we derive the limiting equations for the Baer-

Nunziato model in the low-Mach number limit. We focus our analysis 
on the following cases:

• Case 1: All phases are approaching the (low) Mach regime simul-

taneously (𝑀1 =𝑀2 =𝑀).

• Case 2: One phase is compressible (𝑀1 = 1), while the other is 

approaching the low Mach limit (𝑀2≪ 1).
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Case 1 Let both phases be in the same Mach regime, i.e. 𝑀1 ≈𝑀2. 
We expand primitive variables, with respect to the common Mach num-

ber 𝑀 as follows:

𝜌𝑘 = 𝜌𝑘,0 +𝑀𝜌𝑘,1 +𝑀2𝜌𝑘,2,

𝑢𝑘 = 𝑢𝑘,0 +𝑀𝑢𝑘,1 +𝑀2𝑢𝑘,2,

𝑝𝑘 = 𝑝𝑘,0 +𝑀𝑝𝑘,1 +𝑀2𝑝𝑘,2,

𝑢𝐼 = 𝑢𝐼,0 +𝑀𝑢𝐼,1 +𝑀2𝑢𝐼,2,

𝑝𝐼 = 𝑝𝐼,0 +𝑀𝑝𝐼,1 +𝑀2𝑝𝐼,2,

and we assume 𝛼𝑘 = 𝛼𝑘,0 +𝑂(𝑀). Note that when both Mach numbers 
are in the same order, we have:

𝑀2
1 =

𝜌𝑟𝜚1𝑢
𝑟𝑢𝑟

𝑝𝑟
=
𝜌𝑟𝜚2𝑢

𝑟𝑢𝑟

𝑝𝑟
=𝑀2

2 ⟹ 𝜚1 = 𝜚2. (14)

Substituting the above expansions in the volume fraction equation, we 
immediately obtain:

𝑂(1∕𝑀2) 𝑝1,0 = 𝑝2,0 = 𝑝0
𝑂(1∕𝑀) 𝑝1,1 = 𝑝2,1 = 𝑝1

(15)

and at order 𝑂(1):

𝜕𝑡𝛼𝑘,0 + 𝑢𝐼,0𝜕𝑥𝛼𝑘,0 = 𝜈𝑘,𝑗 (𝜚𝑘𝑝𝑘,2 − 𝜚𝑗𝑝𝑗,2), 𝑘, 𝑗 = 1,2, 𝑘 ≠ 𝑗. (16)

Next, we substitute variable expansions in the momentum equation. We 
obtain (order 𝑂(1∕𝑀2)):

𝜕𝑥(𝛼𝑘,0𝑝0) = 𝑝𝐼,0𝜕𝑥𝛼𝑘,0 𝑘 = 1,2 (17)

and (order 𝑂(1∕𝑀)):

𝜕𝑥(𝛼𝑘,0𝑝1) = 𝑝𝐼,1𝜕𝑥𝛼𝑘,0 𝑘 = 1,2. (18)

By adding eqs. (17) written for both phases, we obtain:

𝜕𝑥(𝑝0(𝛼1,0 + 𝛼2,0)) = 𝑝𝐼,0𝜕𝑥(𝛼1,0 + 𝛼2,0)

Next, we assume that 𝛼1,0 + 𝛼2,0 = 1, from which we immediately 
deduce:

𝜕𝑥𝑝0 = 0.

Similarly, we obtain that 𝜕𝑥𝑝1 = 0 from terms at order 𝑂(1∕𝑀).
If instead we subtract eqs. (17) written for each phase, we obtain:

𝜕𝑥(𝑝0(𝛼1,0 − 𝛼2,0)) = 𝑝𝐼,0𝜕𝑥(𝛼1,0 − 𝛼2,0)

Using the fact that 𝜕𝑥𝑝0 = 0, we get 𝑝0 = 𝑝𝐼,0. Analogously, from term 
at order 𝑂(1∕𝑀), we obtain 𝑝1 = 𝑝𝐼,1.

The full system at order 𝑂(1) reads:

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡(𝛼𝑘,0𝜌𝑘,0) + 𝜕𝑥
(
𝛼𝑘,0𝜌𝑘,0𝑢𝑘,0

)
= 0

𝜕𝑡(𝛼𝑘,0𝜌𝑘,0𝑢𝑘,0)+𝜕𝑥
(
𝛼𝑘,0𝜌𝑘,0𝑢𝐼,0𝑢𝐼,0+𝛼𝑘,0𝑝𝑘,2

)
= 𝑝𝐼,2𝜕𝑥𝛼𝑘,0+

∑
𝑘≠𝑗 𝐹𝑘,𝑗

𝜕𝑡(𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0)+𝜕𝑥
(
𝑢𝑘,0(𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0+𝛼𝑘,0𝑝0)

)
= 𝑝0𝑢𝐼,0𝜕𝑥𝛼𝑘,0
−𝜈𝑘,𝑗𝑝0(𝜚𝑘𝑝𝑘,2−𝜚𝑗𝑝𝑗,2)

𝜕𝑡𝛼𝑘,0 + 𝑢𝐼,0𝜕𝑥𝛼𝑘,0 = 𝜈𝑘,𝑗 (𝜚𝑘𝑝𝑘,2 − 𝜚𝑗𝑝𝑗,2),
(19)

which suggests that when both phases are in the same Mach regime, 
pressure perturbations are second order effects and are due to pressure 
imbalances across the material interface. Therefore, we can write:

𝑝𝑘(𝑥, 𝑡) = 𝑝(𝑡) +𝑀2𝑝𝑘,2(𝑥, 𝑡) 𝑘 = 1,2 (20)

𝑝𝐼 (𝑥, 𝑡) = 𝑝(𝑡) +𝑀2𝑝𝐼,2(𝑥, 𝑡) (21)

where 𝑝 = 𝑝(𝑡) changes in time only due to boundary conditions.

From now on, we assume that both phases are governed by the equa-
4
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𝑝𝑘 = (𝛾 − 1)𝜌𝑘𝑒𝑘
The expansion for internal energy is:

𝑒𝑘 =
𝑝0
𝜌𝑘,0

+𝑀
(

𝑝1
𝛽𝑘𝜌𝑘,0

+
𝑝𝑘,2

𝛽𝑘𝜌𝑘,1

)
+𝑂(𝑀2). (22)

Assuming for simplicity that boundary conditions are constant in time 
and that 𝑢𝑘,0 = 𝑢𝐼,0 = 𝑢0, we obtain from energy equation in (19):

𝑝0𝜕𝑡𝛼𝑘,0+𝑝0𝜕𝑥(𝛼𝑘,0𝑢0+𝛼𝑘,0𝑢0) = 𝑝0𝑢0𝜕𝑥𝛼𝑘,0−𝜈𝑘,𝑗𝑝0(𝜚𝑘𝑝𝑘,2−𝜚𝑗𝑝𝑗,2) (23)

Subtracting the volumetric fraction equation in (19) multiplied by 𝑝0, 
we obtain:

𝛼𝑘,0𝜕𝑥(𝑢0) = −𝜈𝑘,𝑗 (𝜚𝑘𝑝𝑘,2 − 𝜚𝑗𝑝𝑗,2). (24)

From eq. (24), we note that in the bulk of the fluid 𝜕𝑥𝑢0 = 0, since the 
relaxation term on the right hand side vanishes. Instead, at the material 
interface, we have that 𝜕𝑥𝑢0 ≠ 0 since in general pressure across the 
material interface might be different.

This is coherent with the physical behavior of the system. When an 
acoustic wave propagates across the material interface, pressure relax-

ation triggers a volume variation in each phase (see volumetric fraction 
equation) to compensate for the pressure imbalance between phases. 
In most practical situations however, pressure relaxation is faster than 
advection phenomena. Thus, we can assume an instantaneous pressure 
relaxation which leads to 𝑝𝑘,2 = 𝑝𝑗,2 and the incompressibility condition 
is recovered also at the material interface.

It is worth noticing that in the one-dimensional setting, the above 
derivation implies that the leading term of the velocity field is constant 
in space. Instead, in higher spatial dimensions, it leads to a divergence-

free velocity field.

To summarize, the set of model equations in the limit 𝑀 → 0 (as-

suming instantaneous pressure relaxation) is:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡(𝛼𝑘,0𝜌𝑘,0) + 𝑢0𝜕𝑥

(
𝛼𝑘,0𝜌𝑘,0

)
= 0

𝜕𝑡(𝛼𝑘,0𝜌𝑘,0𝑢0) + 𝑢0𝜕𝑥
(
𝛼𝑘,0𝜌𝑘,0𝑢0

)
+𝜕𝑥(𝛼𝑘,0𝑝𝑘,2) = 𝑝𝐼,2𝜕𝑥𝛼𝑘,0 +

∑
𝑘≠𝑗 𝐹𝑘,𝑗

𝜕𝑡𝛼𝑘,0 + 𝑢0𝜕𝑥𝛼𝑘,0 = 0
𝜕𝑥𝑢0 = 0

(25)

and the well-prepared initial data is given by:

Ψ𝑤𝑝
𝑀

=
{
𝜓 ∈ℝ2𝑑+3 ∶ 𝑝𝑘,0 = 𝑝0, 𝑝𝑘,1 = 𝑝1, 𝑢𝑘,0 = 𝑢𝐼,0 = 𝑢0,

𝜕𝑥𝑢0 = 0, for 𝑘 = 1,2
}

(26)

Case 2 We now consider the case when one phase is compressible 
(𝑀1 = 1) while the other is approaching the low Mach limit 𝑀2 → 0.

Primitive variables for the phase approaching the low Mach limit 
are expanded as follows:

𝜌2 = 𝜌2,0 +𝑀2𝜌2,1 +𝑀2
2𝜌2,2,

𝑢2 = 𝑢2,0 +𝑀2𝑢2,1 +𝑀2
2 𝑢2,2,

𝑝2 = 𝑝2,0 +𝑀2𝑝2,1 +𝑀2
2 𝑝2,2,

𝛼2 = 𝛼2,0 +𝑀2𝛼2,1 +𝑀2
2𝛼2,2,

𝑢𝐼 = 𝑢𝐼,0 +𝑀2𝑢𝐼,1 +𝑀2
2 𝑢𝐼,2,

(27)

while primitive variables for the other phase are set as follows:

𝜌1 = 𝜌1,0 +𝑂(𝑀2),

𝑢1 = 𝑢1,0 +𝑂(𝑀2),

𝑝1 = 𝑝1,0 +𝑂(𝑀2),
(28)
𝛼1 = 𝛼1,0 +𝑀2𝛼1,1 +𝑀2
2𝛼1,2.
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Given that 𝑝𝐼 = 𝛼1𝑝1 +𝛼2𝑝2, the interface pressure, 𝑝𝐼 , can be expanded 
in turn as:

𝑝𝐼 = 𝛼1,0𝑝1,0 + 𝛼2,0𝑝2,0 +𝑀2(𝛼2,0𝑝2,1 + 𝛼2,1𝑝2,0 + 𝛼1,1𝑝1,0)

+𝑀2
2 (𝛼2,0𝑝2,2 + 𝛼2,2𝑝2,0 + 𝛼2,1𝑝2,1 + 𝛼1,2𝑝1,0) = 𝑝𝐼,0 +𝑀2𝑝𝐼,1 +𝑀2

2 𝑝𝐼,2.

(29)

Inserting variable expansions in the volumetric fraction equation for 
phase 𝑘, we obtain:

𝑂(1∕𝑀2
2 ) 𝑝2,0 = 0

𝑂(1∕𝑀2) 𝑝2,1 = 0
(30)

while at the 0th order for phase 2 we have:

𝜕𝑡𝛼2,0 + 𝑢𝐼,0𝜕𝑥𝛼2,0 = 𝜈2,1(𝜚2𝑝2,2 − 𝜚1𝑝1,0) (31)

and for phase 1:

𝜕𝑡𝛼1,0 + 𝑢𝐼,0𝜕𝑥𝛼1,0 = 𝜈1,2(𝜚1𝑝1,0 − 𝜚2𝑝2,2) (32)

From the above relationships, it follows that 𝑝2 = 𝑝2,2𝑀2
2 . We now sub-

stitute variable expansions in the momentum equation of phase 2. By 
using the above results, we obtain:

𝑂(1∕𝑀2
2 ) ∶ 0 = 𝜕𝑥(𝛼2,0𝑝2,0) = 𝑝𝐼,0𝜕𝑥𝛼2,0

𝑂(1∕𝑀2) ∶ 0 = 𝜕𝑥(𝛼2,0𝑝2,1 + 𝛼2,1𝑝2,0) = 𝑝𝐼,1𝜕𝑥𝛼2,0 + 𝑝𝐼,0𝜕𝑥𝛼2,1
(33)

where we have 𝑝𝐼,0 = 𝛼1,0𝑝1,0. In domain regions where only one phase 
is present, we retrieve the single phase Euler equations for which the 
asymptotic limit is well known. So we focus on those regions where 
both phases are simultaneously present, i.e. 𝛼1,0 ≠ 0. Furthermore, we 
assume 𝑝1,0(𝑥, 𝑡) ≠ 0, so that eqs. (33) give 𝜕𝑥𝛼2,0 = 0 and 𝜕𝑥𝛼2,1 = 0.

Energy equation for the weakly compressible phase at order 0, can 
be written as follows:

𝜕𝑡(𝛼2,0𝜌2,0𝑒2,0) + 𝛼2,0𝜕𝑥(𝑢2,0𝜌2,0𝑒2,0) = −𝜈2,1𝑝𝐼,0(𝜚2𝑝2,2 − 𝜚1𝑝1,0). (34)

From the previous equations, we have that 𝑝2,0 = 0, which means that 
at the 0th order the state of the weakly compressible phase is formally 
a near-vacuum state. For an ideal gas law this would lead to 𝜌2,0 = 0. 
Since we are interested in regions containing both phases, we assume 
the stiffened gas EOS for phase 2. By replacing the expanded variables, 
we obtain the expansion for the internal energy:

𝑒2 =
𝜂2
𝛽2𝜌2,0

+𝑂(𝑀2). (35)

We can now substitute this expansion in eq. (34) to obtain:

𝜂2
𝛽2
𝜕𝑡(𝛼2,0) +

𝛼2,0𝜂2

𝛽2
𝜕𝑥(𝑢2,0) = −𝜈2,1𝑝𝐼,0(𝜚2𝑝2,2 − 𝜚1𝑝1,0) (36)

Next we add the 𝑂(1) terms of the volume fraction equation (31) for 
phase 2 multiplied by 𝑝𝐼,0 which gives:

(
𝜂2
𝛽2

+ 𝑝𝐼,0
)
𝜕𝑡(𝛼2,0) +

𝛼2,0𝜂2

𝛽2
𝜕𝑥(𝑢2,0) =

− 𝜈2,1
(
𝑝𝐼,0 − 𝑝𝐼,0

)
(𝜚2𝑝2,2 − 𝜚1𝑝1,0) (37)

From equation (37), we deduce that if 𝜕𝑥𝑢2,0 = 0, 𝛼2,0 can change only 
due to boundary conditions. Assuming again periodic or fixed boundary 
conditions, we retrieve the incompressibility constraint for the weakly 
compressible phase.

To summarize, in the limit 𝑀2 → 0 we obtain the following limiting 
5
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝛼1,0 + 𝑢𝐼,0𝜕𝑥𝛼1,0 = 𝜈1,2(𝜚1𝑝1,0 − 𝜚2𝑝2,2)
𝜕𝑡(𝛼1,0𝜌1,0) + 𝜕𝑥

(
𝛼1,0𝜌1,0𝑢1,0

)
= 0

𝜕𝑡(𝛼1,0𝜌1,0𝑢1,0) + 𝜕𝑥
(
𝛼1,0𝜌1,0𝑢1,0𝑢1,0 +𝛼1,0𝑝1,0

)
= 𝑝𝐼,0𝜕𝑥𝛼1,0 + 𝐹1,2

𝜕𝑡(𝛼1,0𝜌1,0𝐸1,0) + 𝜕𝑥
(
𝑢1,0(𝛼1,0𝜌1,0𝐸1,0 + 𝛼1,0𝑝1,0)

)
= 𝑝𝐼,0𝑢𝐼,0𝜕𝑥𝛼1,0

+𝑢𝐼,0𝐹1,2 − 𝜈1,2𝑝𝐼,0(𝜚1𝑝1,0−𝜚2𝑝2,2)
𝜕𝑡𝛼2,0 = 𝜈2,1(𝜚2𝑝2,2 − 𝜚1𝑝1,0)
𝜕𝑡(𝛼2,0𝜌2,0) + 𝑢2,0𝛼2,0𝜕𝑥

(
𝜌2,0

)
= 0

𝜕𝑡(𝛼2,0𝜌2,0𝑢2,0) + 𝛼2,0𝑢2,0𝜕𝑥
(
𝜌2,0𝑢2,0) + 𝛼2,0𝜕𝑥(𝑝2,2

)
= 𝑝𝐼,0𝜕𝑥𝛼2,2 + 𝐹2,1

𝜕𝑥𝑢2,0 = 0,

(38)

for which the set of well-prepared initial data is:

Ψ𝑤𝑝
𝑐−𝑖 =

{
𝜓 ∈ℝ2𝑑+3 ∶𝑝2,0 = 𝑝2,1 = 0, 𝜕𝑥𝑢2,0 = 0

}
(39)

It is worth noting that the interface pressure expansion is now:

𝑝𝐼 = 𝛼1,0𝑝1,0 +𝑀2𝛼1,1𝑝1,0 +𝑀2
2 (𝛼2,0𝑝2,2 + 𝛼1,2𝑝1,0) (40)

which suggests that at the interface pressure is governed by the com-

pressible phase (at order 𝑂(1) and 𝑂(𝑀2)), while secondary effects 
(order 𝑂(𝑀2

2 )) are again present due to small imbalances between pha-

sic pressures.

3. All-Mach numerical scheme

In this section, we present the all-Mach numerical scheme which 
we derive starting from the dimensional form of the equations (1). The 
derivation of the numerical scheme is articulated in three main steps. 
First, we introduce a implicit-explicit semi-discretization in time for the 
stiff and non-stiff part of our equations. Next, we introduce an operator 
splitting to separate pressure and velocity relaxations from the convec-

tive terms, similarly to what is done in [23]. This is presented shortly in 
sect. 3.2. We show that this leads to a predictor-corrector scheme where 
first the non-stiff part is solved using an explicit method (predictor), 
and then a pressure correction is added to recover the contribution of 
acoustic waves (corrector). The pressure correction is found by solving 
a non-linear elliptic equation for each phasic pressure and is described 
in sect. 3.2. After introducing the spatial discretization, the resulting 
numerical scheme is not well-balanced in the sense that steady solu-

tions of continuous equations are not preserved at the discrete level. In 
order to preserve steady states also in the discrete model, a special dis-

cretization for non-conservative terms is introduced in sect. 4.2.1 and 
4.2.2.

3.1. IMEX Runge-Kutta time discretization

The first step in the derivation of the all-Mach scheme is the intro-

duction of a suitable time discretization for the convective step, which 
in compact and dimensional form can be rewritten for any phase 𝑘 as 
follows:

𝜕𝑡𝑈𝑘 + 𝜕𝑥𝐹 (ns)(𝑈𝑘) −𝐺(ns)(𝑈𝑘) + 𝜖
(
𝜕𝑥𝐹

(s)(𝑈𝑘) −𝐺(s)(𝑈𝑘)
)

+ (1 − 𝜖)
(
𝜕𝑥𝐹

(s)(𝑈𝑘) −𝐺(s)(𝑈𝑘)
)
=𝑅(s)(𝑈𝑘)

where 𝐹 (s) and 𝐹 (ns) represent the stiff and non-stiff part of the con-

vective term, 𝐺(s) and 𝐺(ns) are the stiff and non-stiff part of non-

conservative products and 𝑅(s) =𝑅(s)

(𝑢) +𝑅
(s)

(𝑝) are the relaxation terms.

𝐹 (ns) =
⎡⎢⎢

0
𝛼𝑘𝜌𝑘𝑢𝑘
𝛼𝑘𝜌𝑘𝑢𝑘𝑢𝑘

⎤⎥⎥, 𝐹 (s) =
⎡⎢⎢

0
0
𝛼𝑘𝑝𝑘

⎤⎥⎥, 𝐺(ns) =
⎡⎢⎢
−𝑢𝐼𝜕𝑥𝛼𝑘

0
0

⎤⎥⎥,
⎢⎣𝛼𝑘𝜌𝑘𝑢𝑘𝐾𝑘 ⎥⎦ ⎢⎣𝛼𝑘𝑢𝑘(𝜌𝑘𝑒𝑘 + 𝑝𝑘)⎥⎦ ⎢⎣ 0
⎥⎦
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𝐺(s) =
⎡⎢⎢⎢⎣

0
0

𝑝𝐼𝜕𝑥𝛼𝑘
𝑝𝐼𝑢𝐼𝜕𝑥𝛼𝑘

⎤⎥⎥⎥⎦, 𝑅(s)

(𝑢) =

⎡⎢⎢⎢⎢⎢⎣

0
0∑

𝑗≠𝑘

𝐹𝑘,𝑗

𝑢𝐼
∑
𝑗≠𝑘

𝐹𝑘,𝑗

⎤⎥⎥⎥⎥⎥⎦
𝑅(s)

(𝑝) =

⎡⎢⎢⎢⎢⎢⎣

∑
𝑗≠𝑘

𝜈𝑘,𝑗 (𝑝𝑘 − 𝑝𝑗 )

0
0

−
∑
𝑗≠𝑘

𝜈𝑘,𝑗𝑝𝐼 (𝑝𝑘 − 𝑝𝑗 )

⎤⎥⎥⎥⎥⎥⎦
.

Note that in the above equations, we add and subtract the stiff 
part of the convective term weighted by a global parameter, 𝜖 ∶=
min(max𝑘,Ω(𝑀2

𝑘
(𝑥, 𝑡), 1)).

The general idea of our all-Mach derivation is to treat terms mul-

tiplied by (1 − 𝜖) and relaxation terms in an implicit fashion, while 
terms multiplied by 𝜖 and non-stiff terms are kept explicit. Using this 
device, when the most compressible phase approaches the incompress-

ible limit (i.e. 𝜖→ 0) the contribution of stiff terms to the explicit part 
of the scheme vanishes and we are left with a fully implicit treatment of 
acoustic waves. On the contrary, when 𝑀2

𝑘
≥ 1, the contribution from 

stiff terms to the implicit part of the scheme disappears, and we revert 
to fully explicit scheme for compressible flows.

In theory, one could resort to a more standard implicit-explicit dis-

cretization where only the stiff terms are treated implicitly while non-

stiff terms are kept fully explicit. In practice, we observed that such 
a numerical scheme possesses poor stability properties. When one (or 
both phases) enter a transitional regime, spurious oscillations appear in 
the numerical solution. The reason of this behavior is yet to be fully 
understood.

To obtain a semidiscrete scheme for the convective step, we inte-

grate in time the above system of equations using an IMEX-RK method 
([22]). For a general IMEX-RK scheme with 𝑠 stages we obtain:

𝑈𝑛+1
𝑘

=𝑈𝑛
𝑘

−Δ𝑡
𝑠∑
𝑙=1
𝑏̃𝑙

[
𝜕𝑥𝐹

(ns)(𝑈 (𝑙)
𝑘
) −𝐺(ns)(𝑈 (𝑙)

𝑘
) + 𝜖

(
𝜕𝑥𝐹

(s)(𝑈 (𝑙)
𝑘
) −𝐺(s)(𝑈 (𝑙)

𝑘
)
)]

−Δ𝑡
𝑠∑
𝑙=1
𝑏𝑙

[
(1 − 𝜖)

(
𝜕𝑥𝐹

(s)(𝑈 (𝑙)
𝑘
) −𝐺(s)(𝑈 (𝑙)

𝑘
)
)
−𝑅(s)(𝑈 (𝑙)

𝑘
)
]

(41)

where the solution at intermediate stages, 𝑈 (𝑙)
𝑘

(𝑙 = 1, … , 𝑠) is given by:

𝑈
(𝑙)
𝑘

=𝑈𝑛
𝑘

−Δ𝑡
𝑙−1∑
𝑚=1

𝑎̃𝑙,𝑚

[
𝜕𝑥𝐹

(ns)(𝑈 (𝑚)
𝑘

) −𝐺(ns)(𝑈 (𝑚)
𝑘

)

+𝜖
(
𝜕𝑥𝐹

(s)(𝑈 (𝑚)
𝑘

) −𝐺(s)(𝑈 (𝑚)
𝑘

)
)]

−Δ𝑡
𝑙∑

𝑚=1
𝑎𝑙,𝑚

[
(1 − 𝜖)

(
𝜕𝑥𝐹

(s)(𝑈 (𝑚)
𝑘

) −𝐺(s)(𝑈 (𝑚)
𝑘

)
)
−𝑅(s)(𝑈 (𝑚)

𝑘
)
]

(42)

Here, 
(
𝑎̃𝑙,𝑚, 𝑏̃𝑙

)
and 

(
𝑎𝑙,𝑚, 𝑏𝑙

)
are the coefficients for the explicit and 

implicit part of the Butcher’s tableaux:

𝑐 𝑎̃

𝑏̃

𝑐 𝑎

𝑏
(43)

With the above choices, the CFL condition becomes:

Δ𝑡 ≤ 𝐶 Δ𝑥
max𝑘,Ω(|𝑢𝑘|+ 𝜖𝑐𝑘) , (44)

which depends only on the macroscopic velocity when all the phases 

3.2. 
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Splitting and elliptic equation for the implicit step

qs. (42) require to solve a system of non-linear equations in the un-

n conservative variables at each time step for each intermediate 
 of the RK method. Obviously, this has almost the same computa-

l complexity of a fully implicit method. In this section, we show 
under some mild assumptions, a predictor-corrector scheme can be 
ed from (41) and (42).

iven 𝑈 (𝑚), 𝑚 = 1, … , 𝑙 − 1, our task is to compute the intermediate 
ion 𝑈 (𝑙) at stage 𝑙. Since the stiff part of the convective term for 
ass equation is identically zero, (𝛼𝜌)(𝑙)

𝑘
can be readily obtained as 

ws:

𝑙) = (𝛼𝜌)𝑛
𝑘
−Δ𝑡

𝑙−1∑
𝑚=1

𝑎̃𝑙,𝑚𝜕𝑥𝐹
(𝑛𝑠,𝛼𝜌)(𝑈 (𝑚)

𝑘
) (45)

e 𝐹 (𝑛𝑠,𝛼𝜌) is used to indicate the component of the non-stiff part of 
onvective term corresponding to the mass equation.

ext, equations for momentum and energy can be rewritten as:

)(𝑙)
𝑘

= (𝛼𝜌𝑢)∗
𝑘
−Δ𝑡 𝑎𝑙,𝑙(1 − 𝜖)

(
𝜕𝑥𝐹

(𝑠,𝛼𝜌𝑢)(𝑈 (𝑙)
𝑘
) −𝐺(𝑠,𝛼𝜌𝑢)(𝑈 (𝑙)

𝑘
)
)

+Δ𝑡 𝑎𝑙,𝑙𝑅(𝑠,𝛼𝜌𝑢)(𝑈 (𝑙)
𝑘
)

(46a)

)(𝑙)
𝑘

= (𝛼𝜌𝐸)∗
𝑘
−Δ𝑡 𝑎𝑙,𝑙(1 − 𝜖)

(
𝜕𝑥𝐹

(𝑠,𝛼𝜌𝐸)(𝑈 (𝑙)
𝑘
) −𝐺(𝑠,𝛼𝜌𝐸)(𝑈 (𝑙)

𝑘
)
)

+Δ𝑡 𝑎𝑙,𝑙𝑅(𝑠,𝛼𝜌𝐸)(𝑈 (𝑙)
𝑘
)

(46b)

e:

)∗
𝑘
∶= (𝛼𝜌𝑢)𝑛

𝑘
−Δ𝑡𝑆(𝑙−1,𝛼𝜌𝑢)

)∗
𝑘
∶= (𝛼𝜌𝐸)𝑛

𝑘
−Δ𝑡𝑆(𝑙−1,𝛼𝜌𝐸)

(47)

𝑆(𝑙−1, ∙ ) is a shorthand notation for:

, ∙ ) ∶=
𝑙−1∑
𝑚=1
𝑎̃𝑙,𝑚

[
𝜕𝑥𝐹

(𝑛𝑠, ∙ )(𝑈 (𝑚)
𝑘

) −𝐺(𝑛𝑠, ∙ )(𝑈 (𝑚)
𝑘

)

+𝜖
(
𝜕𝑥𝐹

(𝑠, ∙ )(𝑈 (𝑚)
𝑘

) −𝐺(𝑠, ∙ )(𝑈 (𝑚)
𝑘

)
)]

+
𝑙−1∑
𝑚=1
𝑎𝑙,𝑚

[
(1 − 𝜖)

(
𝜕𝑥𝐹

(𝑠, ∙ )(𝑈 (𝑚)
𝑘

) −𝐺(𝑠, ∙ )(𝑈 (𝑚)
𝑘

)
)

−𝑅(𝑠, ∙ )(𝑈 (𝑚)
𝑘

)
]

(48)

an now rewrite the full system for the implicit step as follows:

−𝑈∗
𝑘

𝑡
= −𝑎𝑙,𝑙(1 − 𝜖)

(
𝜕𝑥𝐹

(𝑠)(𝑈 (𝑙)
𝑘
) −𝐺(𝑠)(𝑈 (𝑙)

𝑘
)
)
+ 𝑎𝑙,𝑙𝑅(𝑠)(𝑈 (𝑙)

𝑘
) (49)

ote that at stage 𝑙, 𝑆(𝑙−1, ∙ ) only depends on the (known) solution 
evious Runge-Kutta stages, 𝑚 = 1, … , 𝑙 − 1. Additionally, note that 
 𝑈∗
𝑘
= (𝛼∗

𝑘
, (𝛼𝜌)(𝑙)

𝑘
, (𝛼𝜌𝑢)∗

𝑘
, (𝛼𝜌𝐸)∗

𝑘
) is completely determined except 

∗. For now, we assume that 𝛼∗ is known. In later sections, we will 
 that the choice of state 𝛼∗ cannot be arbitrary if one wishes to 

ver a well-balanced scheme.

t this point, we apply a succession of operators (Strang splitting 
) to the semi-discrete system (49). Given the solution vector 𝑈∗

𝑘
, 

ompute 𝑈 (𝑙)
𝑘

as follows:

= Δ𝑡Δ𝑡𝑈∗
𝑘

(50)

e firstly apply the relaxation operator Δ𝑡, and then we use the 
ion of the relaxation step as the initial condition to solve the con-

ve operator. In (50), we introduced a first order operator splitting. 
nd order accuracy in time can be achieved using Strang’s splitting 
([28]):
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𝑈
(𝑙)
𝑘

=Δ𝑡∕2Δ𝑡Δ𝑡∕2𝑈∗
𝑘
.

The relaxation step, in turn, is split into velocity and pressure relax-

ation steps, i.e.:

Δ𝑡 ∶=Δ𝑡
(𝑢)

Δ𝑡
(𝑝)

Denoting 𝑈 (𝑛𝑟)
𝑘

a general non-relaxed state before any operator and 
𝑈

(𝑟)
𝑘

the relaxed state after the operator, the velocity and pressure re-

laxations are given by:

(𝑢) ∶
𝑈

(𝑟)
𝑘

−𝑈 (𝑛𝑟)
𝑘

Δ𝑡
= 𝑎𝑙,𝑙𝑅

(s)

(𝑢)(𝑈
(𝑟)
𝑘
) (51)

and:

(𝑝) ∶
𝑈

(𝑟)
𝑘

−𝑈 (𝑛𝑟)
𝑘

Δ𝑡
= 𝑎𝑙,𝑙𝑅

(s)

(𝑝)(𝑈
(𝑟)
𝑘
) (52)

Note that both (51) and (52) represent a system of discrete (non)lin-

ear ODEs that are integrated locally in each computational cell with an 
implicit scheme.

At this point, we can proceed with the solution of the convective 
operator Δ𝑡. We denote with 𝑈∗∗

𝑘
the vector of conserved variables 

after relaxation operators and write Δ𝑡 as follows:

𝑈
(𝑙)
𝑘

=𝑈∗∗
𝑘

−Δ𝑡𝑎𝑙,𝑙(1 − 𝜖)
(
𝜕𝑥𝐹

(𝑠)(𝑈 (𝑙)
𝑘
) −𝐺(𝑠)(𝑈 (𝑙)

𝑘
)
)

(53)

As pointed out in the introduction, we are mostly interested in 
two-phase flows characterized by slow transient dynamics and weak 
thermodynamic disequilibrium. Therefore, in the energy equation the 
contribution of kinetic energy on the l.h.s., total enthalpy flux and the 
work done by interface pressure forces can be linearized around state 
𝑈∗∗
𝑘

= (𝛼∗∗
𝑘
, (𝛼𝜌)(𝑙)

𝑘
, (𝛼𝜌𝑢)∗∗

𝑘
, (𝛼𝜌𝐸)∗∗

𝑘
).

Eq. (46b) can now be written as:

(𝛼𝜌𝑒)(𝑙)
𝑘

+ (𝛼𝜌𝐾)(𝑙)
𝑘

= (𝛼𝜌𝐸)∗∗
𝑘

−Δ𝑡 𝑎𝑙,𝑙(1 − 𝜖)
[
𝜕𝑥(𝐻

(𝑙)
𝑘
(𝛼𝜌𝑢)(𝑙)

𝑘
) − 𝑢(𝑙)

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

]
(54)

and applying the linearization, we obtain:

(𝛼𝜌𝑒)(𝑙)
𝑘

+ 1
2
(𝛼𝜌𝑢)∗∗

𝑘

(𝛼𝜌)∗∗
𝑘

(𝛼𝜌𝑢)(𝑙)
𝑘

= (𝛼𝜌𝐸)∗∗
𝑘

−Δ𝑡 𝑎𝑙,𝑙(1 − 𝜖)
[
𝜕𝑥(𝐻∗∗

𝑘
(𝛼𝜌𝑢)(𝑙)

𝑘
) − 𝑢∗∗

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

∗∗
𝑘

]
. (55)

Next, we write momentum equation for the convection operator as:

(𝛼𝜌𝑢)(𝑙)
𝑘

= (𝛼𝜌𝑢)∗∗
𝑘

−Δ𝑡 𝑎𝑙,𝑙(1 − 𝜖)
[
𝜕𝑥(𝛼

(𝑙)
𝑘
𝑝
(𝑙)
𝑘
) − 𝑝(𝑙)

𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

]
(56)

and substituting it in equation (55) and rearranging terms, we get:

(𝛼𝜌𝑒)(𝑙)
𝑘

+ 1
2
𝜒 𝑢∗∗

𝑘

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
𝑘

+ 𝑝(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

)
− 𝜒 𝑢∗∗

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

∗∗
𝑘

+ 𝜒2 𝜕𝑥

[
𝐻∗∗
𝑘

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
𝑘

+ 𝑝(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

)]
= (𝛼𝜌𝑒)∗∗

𝑘
− 𝜒 𝜕𝑥

(
(𝛼𝜌𝑢)∗∗

𝑘
𝐻∗∗
𝑘

)
(57)

where 𝜒 = 𝑎𝑙,𝑙Δ𝑡(1 − 𝜖).
Assuming a general form for the EOS of each phase, (57) represents a 

system of non-linear elliptic equations in the unknown phasic pressures, 
𝑝𝑘, 𝑘 = 1, 2 which are coupled through the interface pressure, 𝑝𝐼 . The 
above system of equations can be solved efficiently using, for instance, 
Picard’s method. In case of perfect gasses (or stiffened EOS) the above 
system of equations become linear, and can be solved by resorting to 
any numerical method for linear elliptic equations.

Note that the procedure outlined in this section represents de-facto

a predictor-corrector scheme. First conservative variables are computed 
by neglecting the implicit part of the convective term as shown by eqs. 
7

(45) and (47) (predictor). Next relaxation operators are applied to the 
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system. Then, new values for phasic pressures are obtained by solving a 
system of coupled non-linear elliptic equations (corrector). Finally, the 
pressure correction is applied as shown by eqs. (56) and (55).

Lastly, note that the above linearizations do not play any role in the 
highly compressible regime, as the implicit part vanishes for 𝜖→ 1. In 
practice, we were able to simulate flows characterized by moderate to 
fast transient dynamics. In a few cases, we observed spurious oscilla-

tions in the numerical solution which were dealt with using a device 
similar to the one employed in fully implicit schemes. We started the 
computation with 𝜖 = 1 (fully explicit scheme), resulting in a CFL condi-

tion based on the speed of acoustic perturbations, and then we increased 
𝜖 to min(max𝑘(maxΩ𝑀

2
𝑘
(𝑥, 𝑡)), 1) over few dozens of iterations.

The above procedure can be further simplified when relaxation rates 
are either instantaneous or equal to zero (no relaxation applied). This 
is a relevant and common assumption for practical problems. In par-

ticular, when interfaces are present in the problem, if relaxation rates 
are not assumed to be instantaneous, the model would fail at the sec-

ond time step since boundary conditions would not be guaranteed at 
the interface (see [23] for a more detailed discussion).

In the case relaxations of pressures or velocities are absent, we have 
𝜏𝑘,𝑗 = 0 and/or 𝜈𝑘,𝑗 = 0. It follows that in all the equations the cor-

responding source terms disappear. On the other hand, in the case of 
instantaneous relaxation rates, we have 𝜏𝑘,𝑗 →∞ and/or 𝜈𝑘,𝑗 →∞ and 
the solution procedure can be simplified as detailed in the following 
paragraphs.

It is worth mentioning that when instantaneous pressure relaxation 
is applied, we obtain the 6-equation model with single pressure and 
two-velocities mentioned in the introduction. In some circumstances, 
the 6-equation model presents complex eigenvalues and is ill-posed. In 
those cases, instabilities can arise in the solution. However, it is possible 
to solve our system with very large values of 𝜈𝑘,𝑗 , which formally leads 
to a well-posed system and approximates the instantaneous relaxation 
procedure. At the numerical level this does not pose a particular chal-

lenge, since an implicit scheme is used to advance in time both velocity 
and pressure relaxation operators.

Instantaneous pressure relaxation

When 𝜈𝑘,𝑗 → ∞ (instantaneous pressure relaxation), thermodynamic 
relaxation is characterized by a time scale much smaller than the advec-

tion time scale. In such cases, eqs. (52) reduce to a system of non-linear 
algebraic equations which are solved to obtain the common pressure 
value, 𝑝𝑟, and a new value for volumetric fractions (details can be found 
in [23]):⎧⎪⎪⎨⎪⎪⎩

𝑒𝑟
𝑘
= 𝑒𝑛𝑟

𝑘
− 1

2
(𝑝𝑟+𝑝𝑛

𝐼
)

(𝛼𝜌)𝑛𝑟
𝑘

(𝛼𝑟
𝑘
− 𝛼𝑛𝑟

𝑘
)

𝑝𝑟 = 𝑝𝑘(𝑒𝑟𝑘, 𝜌
𝑟
𝑘
)

𝛼𝑟
𝑘
𝜌𝑟
𝑘
= (𝛼𝜌)𝑛𝑟

𝑘∑
𝑘 𝛼

𝑟
𝑘
= 1

, ∀𝑘 = 1,… , 𝑛𝑝 (58)

Moreover, we can solve equation (57) for a common pressure value. 
This is done performing summation over 𝑘 obtaining:∑
𝑘

(𝛼𝜌𝑒)(𝑙)
𝑘

−
𝜒

2
∑
𝑘

(𝑢∗∗
𝑘
𝛼
(𝑙)
𝑘
𝜕𝑥𝑝

(𝑙)) − 𝜒2
∑
𝑘

[
𝜕𝑥

(
𝐻∗∗
𝑘
𝛼
(𝑙)
𝑘
𝜕𝑥𝑝

(𝑙)
)]

=
∑
𝑘

[
(𝛼𝜌𝑒)∗∗

𝑘
− 𝜒 𝜕𝑥(𝛼𝜌𝑢)∗∗𝑘 𝐻

∗
𝑘

] (59)

which requires to solve only a single (non-linear) elliptic equation at 
each stage of the RK method to compute the common pressure, 𝑝(𝑙), at 
the 𝑙-th stage of the Runge-Kutta method. As for (57), in case of perfect 
gasses (or stiffened EOS), the above system of equations become linear. 
Finally, momentum can be updated using equation (56), from which 
we retrieve the values of the velocities and update also the total energy 
using its definition.

Instantaneous velocity relaxation

The case when 𝜏𝑘,𝑗 → ∞ (instantaneous velocity relaxation), corre-
sponds to large friction forces acting at the interface between phases 



S. Malusà and A. Alaia

𝑘 and 𝑗. In such situations, the solution of velocity relaxation operator 
(51) becomes trivial and both velocities 𝑢𝑛𝑟

𝑘
and 𝑢𝑛𝑟

𝑗
are instantaneously 

homogenized to the common value 𝑢𝑟 (see [23]):

𝑢𝑟
𝑘
= 𝑢𝑟𝑗 = 𝑢

𝑟 =
(𝛼𝜌𝑢)𝑛𝑟

𝑘
+ (𝛼𝜌𝑢)𝑛𝑟

𝑗

(𝛼𝜌)𝑛𝑟
𝑘
+ (𝛼𝜌)𝑛𝑟

𝑗

. (60)

In this case, elliptic pressure equation (57) is employed to evaluate 
the pressure fields at state 𝑙. At this point, using the fact that (𝛼𝑘𝜌𝑘)(𝑙) =
(𝛼𝑘𝜌𝑘)∗∗, we rewrite the equation for the momentum update (56) as:

(𝛼𝑘𝜌𝑘)∗∗𝑢(𝑙) = (𝛼𝑘𝜌𝑘𝑢𝑘)∗∗ − 𝜒
(
𝜕𝑥(𝛼𝑘𝑝𝑘)(𝑙) − 𝑝

(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

)
. (61)

We now add momentum equations for phase 1 and 2 to solve for a 
common velocity. Rearranging, we obtain:

𝑢(𝑙) =
(𝛼1𝜌1𝑢1)∗∗ + (𝛼2𝜌2𝑢2)∗∗ − 𝜒𝜕𝑥(𝛼

(𝑙)
1 𝑝

(𝑙)
1 + 𝛼(𝑙)2 𝑝

(𝑙)
2 )

(𝛼1𝜌1)∗∗ + (𝛼2𝜌2)∗∗
. (62)

Finally, knowing all the primitive variables at state 𝑙, we can update 
energy using its definition.

4. Fully discrete model

The last ingredient required for the numerical resolution of eqs. (41)

and (42) is the space discretization. To keep notation compact, we fo-

cus on the one-dimensional case, where the domain of interest Ω is 
discretized in 𝑁 cells of width Δ𝑥, indexed by 𝑗.

4.1. Spatial discretization

Discretization of the explicit part of (41) follows the standard finite 
volume formalism, where we denote by 𝑈𝑛

𝑘,𝑗
the vector of cell averages 

of conservative variables for phase 𝑘 at cell 𝑗 at time step 𝑡𝑛. The fully 
discrete version of eq. (41) reads as follows:

𝑈𝑛+1
𝑘,𝑗

=𝑈𝑛
𝑘,𝑗

−Δ𝑡
𝑠∑
𝑙=1
𝑏̃𝑙

⎡⎢⎢⎣
( (𝑛𝑠),(𝑙)
𝑘,𝑗+1∕2 −

(𝑛𝑠),(𝑙)
𝑘,𝑗−1∕2)

Δ𝑥
−𝐺(𝑛𝑠),(𝑙)

𝑘,𝑗

+𝜖
( (𝑠),(𝑙)
𝑘,𝑗+1∕2 −

(𝑠),(𝑙)
𝑘,𝑗−1∕2)

Δ𝑥
− 𝜖𝐺(𝑠),(𝑙)

𝑘,𝑗

⎤⎥⎥⎦
−Δ𝑡

𝑠∑
𝑙=1
𝑏𝑙

⎡⎢⎢⎣(1 − 𝜖)
(𝐹 (𝑠),(𝑙)
𝑘,𝑗+1 − 𝐹 (𝑠),(𝑙)

𝑘,𝑗−1 )

2Δ𝑥
− (1 − 𝜖)𝐺(𝑠),(𝑙)

𝑘,𝑗
−𝑅(𝑠),(𝑙)

𝑘,𝑗

⎤⎥⎥⎦

(63)

where  𝑙
𝑘,𝑗+1∕2 is the numerical flux function evaluated at cell inter-

face 𝑗 ±1∕2 using the solution at stage 𝑙 of the IMEX-RK method, while 
𝐺

(𝑠)
𝑘,𝑗
=𝐻 (𝑠)

𝑘,𝑗
Δ𝑤𝑏
𝑘,𝑗

, 𝐻 (𝑠)
𝑘,𝑗

= (0, 0, 𝑝𝐼 , 𝑝𝐼𝑢𝐼 )𝑇 and 𝐺(𝑛𝑠)
𝑘,𝑗

= ((−𝑢𝐼𝜕𝑥𝛼𝑘)𝑗 , 0, 0, 0)𝑇

are the discrete counterpart of the stiff and non-stiff part of non-

conservative terms.

Here, we introduce Δ𝑤𝑏 to indicate a suitable discretization of 𝜕𝑥𝛼𝑘. 
Both Δ𝑤𝑏 and the discretization of the volumetric fraction equation 
must be chosen in such a way that the resulting numerical scheme is 
well-balanced. As shown in the next section, a well-balanced discretiza-

tion of non-conservative terms strongly depends on the numerical flux 
function chosen for the convective term. Although the derivation pre-

sented in the next sections can be applied to more general flux func-

tions, for the sake of brevity, we focus only on Rusanov’s and HLL 
(Harten, Lax and van Leer [29]) numerical fluxes.

Rusanov’s fluxes are given by:

Rusanov
𝑘,𝑗+1∕2 = 1

2
[𝐹 (𝑈𝑘,𝑗+1∕2+ ) + 𝐹 (𝑈𝑘,𝑗+1∕2−) − 𝑠𝑗+1∕2(𝑈𝑗+1∕2+ −𝑈𝑗+1∕2− )]
8

(64)
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where 𝑈𝑗+1∕2± denotes the value of the solution reconstructed at the 
right/left of cell interface 𝑗 + 1∕2, and 𝑠𝑗+1∕2 is an estimate of the 
wave speed. In this work, we adopt 𝑠𝑗+1∕2 = max(𝑠𝑗+1∕2− , 𝑠𝑗+1∕2+ ), 
where 𝑠𝑗+1∕2− = max𝑘 max(∣ 𝜆−

𝑘,𝑗+1∕2− ∣, ∣ 𝜆+
𝑘,𝑗+1∕2− ∣) and 𝑠𝑗+1∕2+ =

max𝑘 max(∣ 𝜆−
𝑘,𝑗+1∕2+ ∣, ∣ 𝜆+

𝑘,𝑗+1∕2+ ∣) (see [30]).

HLL numerical fluxes are given by:

𝐻𝐿𝐿
𝑘,𝑗+1∕2 =

𝑠+
𝑗+1∕2𝐹 (𝑈𝑘,𝑗+1∕2− ) − 𝑠

−
𝑗+1∕2𝐹 (𝑈𝑘,𝑗+1∕2+ )

𝑠+ − 𝑠−

+
𝑠+
𝑗+1∕2𝑠

−
𝑗+1∕2(𝑈𝑘,𝑗+1∕2+ −𝑈,𝑗+1∕2− )

𝑠+ − 𝑠−
(65)

where the following estimates for 𝑠+
𝑗+1∕2 and 𝑠−

𝑗+1∕2 are used (see [29]

or [31]):

𝑠+
𝑗+1∕2 = max𝑘 max

{
0, 𝜆+

𝑘,𝑗+1∕2+ , 𝜆
+
𝑘,𝑗+1∕2−

}
,

𝑠−
𝑗+1∕2 = min𝑘 min

{
0, 𝜆−

𝑘,𝑗+1∕2+ , 𝜆
−
𝑘,𝑗+1∕2−

}
As usual, values of conservative variables at right/left of the cell inter-

face are reconstructed from cell averages. For a first order scheme, a 
piece-wise constant reconstruction is employed, that is:

𝑈𝑗 (𝑥, 𝑡𝑛) =𝑈𝑛𝑗 for 𝑥𝑗−1∕2 < 𝑥 < 𝑥𝑗+1∕2. (66)

Second order accuracy in space can be achieved by using a piece-

wise linear reconstruction, i.e.:

𝑞𝑗 (𝑥, 𝑡𝑛) = 𝑞𝑛𝑗 + 𝜎
𝑛
𝑗 (𝑥− 𝑥𝑗 ) for 𝑥𝑗−1∕2 < 𝑥 < 𝑥𝑗+1∕2, (67)

where 𝑞 is the reconstructed variable, and the slope of the reconstruc-

tion is estimated from cell average quantities as follows:

𝜎𝑛𝑗 =
(𝑞𝑛
𝑗+1 − 𝑞

𝑛
𝑗
)

Δ𝑥
𝜙(𝜃𝑛𝑗 ) with 𝜃𝑛𝑗 =

𝑞𝑛
𝑗
− 𝑞𝑛

𝑗−1

𝑞𝑛
𝑗+1 − 𝑞

𝑛
𝑗

(68)

As customary, we introduced a slope limiter function, 𝜙, to ensure 
that the resulting scheme is total variation diminishing (TVD). In our 
numerical experiment, we reconstructed primitive variables and we 
considered the minmod limiter function:

𝜙minmod(𝜃) =

{
min(𝜃,1) if 𝜃 > 0
0 if 𝜃 ≤ 0

(69)

or the van Leer’s slope limiter:

𝜙van Leer(𝜃) =
𝜃 + |𝜃|
1 + |𝜃| . (70)

Lastly, in the elliptic pressure equation (57) (or (59)), we use central 
finite differences to approximate first and second order derivatives as 
follows:

𝜕𝑥𝑞|𝑗 ≈ (Δ𝑞)𝑗 =
𝑞𝑗+1 − 𝑞𝑗−1

2Δ𝑥

𝜕𝑥(𝑧𝜕𝑥𝑞)|𝑗 ≈ (Δ(𝑧Δ𝑞))𝑗 =
1

2Δ𝑥2
[
𝑞𝑗+1(𝑧𝑗 + 𝑧𝑗+1) − 𝑞𝑗 (𝑧𝑗−1 + 2𝑧𝑗 + 𝑧𝑗+1)

+ 𝑞𝑗−1(𝑧𝑗−1 + 𝑧𝑗 )
]
.

(71)

4.2. Well-balancing

A naive discretization of non-conservative terms leads to a numeri-

cal scheme which is incapable of preserving steady states. The problem 
of balancing equations has been studied in literature for various model 
equations (see for instance, [32], [33], [34], [35], [36] and [37]). How-

ever, in the case of Baer-Nunziato model, a well balanced discretization 
of non-conservative terms is particularly tricky as it appears that it is 
not possible to recover a well-balanced scheme capable of preserving 

all classes of steady state solutions.
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In this work, we focus only on one class of steady solutions, which 
is defined by the following relationships:

𝜕𝛼𝑘

𝜕𝑡
+ 𝑢
𝜕𝛼𝑘

𝜕𝑥
= 0,

𝜕𝜌𝑘

𝜕𝑡
+ 𝑢
𝜕𝜌𝑘

𝜕𝑥
= 0,

𝜕𝑢𝑘

𝜕𝑡
= 0,

𝜕𝑝𝑘

𝜕𝑡
= 0,

(72)

which is derived from the original model of equations (1) in the case 
𝑢1 = 𝑢2 = 𝑢𝐼 = 𝑢 and 𝑝1 = 𝑝2 = 𝑝𝐼 = 𝑝. The above conditions imply that a 
contact discontinuity between two phases moving with a constant flow 
velocity is preserved. Note that the case of fixed contact discontinuity 
(the so-called lake-at-rest condition) is a special case corresponding to 
𝑢 ≡ 0. In order to recover a well-balanced scheme, the explicit part of 
our numerical scheme (i.e. stiff and non-stiff terms multiplied by 𝜖) 
and the implicit part (stiff terms multiplied by (1 − 𝜖)) are balanced 
independently. For the sake of clarity, in what follows we assume that 
primitive variables are reconstructed at first order and that all phases 
are governed by the stiffened gas EOS. Moreover, pressure and velocity 
relaxation terms are not involved in the balancing procedure since they 
are identically zero. This is due to the fact that for the class steady-states 
of interest 𝑢1 = 𝑢2 = 𝑢 and 𝑝1 = 𝑝2 = 𝑝. Consequently 𝜈(𝑝1 − 𝑝2) = 0 and 
𝜏(𝑢1 − 𝑢2) = 0 and also 𝑈∗∗ =𝑈∗. The same derivation can be followed 
also for second order reconstruction.

In what follows, we omit the phase index 𝑘 for clarity. The same 
procedure can be carried out for each phase independently.

4.2.1. Explicit step balancing

The derivation of a well-balanced discretization for non conservative 
terms in the explicit part of the numerical scheme follows the same steps 
as in [23], so we omit the details here. In short, to balance the explicit 
terms in eq. (42) for any intermediate stage 𝑈 (𝑙) (𝑙 = 1, … , 𝑠), we write 
the discrete explicit part of eq. (42) as follows:

𝑈
(𝑙)
𝑗

=𝑈𝑛𝑗 −Δ𝑡
𝑙−1∑
𝑚=1

𝑎̃𝑙,𝑚

⎡⎢⎢⎣
( (𝑛𝑠),(𝑚)
𝑗+1∕2 −

(𝑛𝑠),(𝑚)
𝑗−1∕2 )

Δ𝑥
−𝐺(𝑛𝑠),(𝑚)

𝑗

+𝜖
( (𝑠),(𝑚)
𝑗+1∕2 −

(𝑠),(𝑚)
𝑗−1∕2 )

Δ𝑥
− 𝜖𝐺(𝑠),(𝑚)

𝑗

⎤⎥⎥⎦
(73)

and we define:

𝑈
(𝑖)
𝑗

=𝑈𝑛𝑗 −Δ𝑡𝑆(𝑖−1)
𝑗

(74)

where 𝑆(𝑖−1)
𝑗

depends only on the solution computed at the previous 
stages of a Runge-Kutta method, that is:

𝑆
(𝑖−1)
𝑗

∶=
𝑖−1∑
𝑚=1

𝑎̃𝑙,𝑚

⎡⎢⎢⎣
( (𝑛𝑠),(𝑚)
𝑗+1∕2 −

(𝑛𝑠),(𝑚)
𝑗−1∕2 )

Δ𝑥
−𝐺(𝑛𝑠),(𝑚)

𝑗

+𝜖
( (𝑠),(𝑚)
𝑗+1∕2 −

(𝑠),(𝑚)
𝑗−1∕2 )

Δ𝑥
− 𝜖𝐺(𝑠),(𝑚)

𝑗

⎤⎥⎥⎦ .
(75)

Using this notation, 𝑈 (𝑖)
𝑗

can be written as follows:

𝑈
(𝑖)
𝑗

=𝑈 (𝑖−1)
𝑗

−Δ𝑡 𝑎̃𝑙,𝑖−1
⎡⎢⎢⎣
( (𝑛𝑠),(𝑖−1)
𝑗+1∕2 −

(𝑛𝑠),(𝑖−1)
𝑗−1∕2 )

Δ𝑥
−𝐺(𝑛𝑠),(𝑖−1)

𝑗

+𝜖
( (𝑠),(𝑖−1)
𝑗+1∕2 −

(𝑠),(𝑖−1)
𝑗−1∕2 )

Δ𝑥
− 𝜖𝐺(𝑠),(𝑖−1)

𝑗

⎤⎥⎥⎦
(76)

Next, we substitute the discrete mass equation into the discrete mo-

mentum equation and we use the fact that in the class of steady state 
9
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𝑢
(𝑖)
𝑘,𝑗

= 𝑢(𝑖)
𝐼,𝑗

= 𝑢 ∀𝑘, 𝑗, 𝑖

𝑝
(𝑖)
𝑘,𝑗

= 𝑝(𝑖)
𝐼,𝑗

= 𝑝 ∀𝑘, 𝑗, 𝑖
(77)

Using the above conditions, one obtains a different expression for 
Δwb depending on the particular choice of the numerical flux function.

For Rusanov fluxes, we obtain:

Δ𝑤𝑏𝑗 =

(
𝛼
(𝑖−1)
𝑗+1 − 𝛼(𝑖−1)

𝑗−1

)
2Δ𝑥

. (78)

While for HLL fluxes, Δ𝑤𝑏 reads as follows:

Δ𝑤𝑏𝑗 = 1
Δ𝑥

{
𝑠+
𝑗+1∕2𝛼

(𝑖−1)
𝑗

− 𝑠−
𝑗+1∕2𝛼

(𝑖−1)
𝑗+1

𝑠+
𝑗+1∕2 − 𝑠

−
𝑗+1∕2

−
𝑠+
𝑗−1∕2𝛼

(𝑖−1)
𝑗−1 − 𝑠−

𝑗−1∕2𝛼
(𝑖−1)
𝑗

𝑠+
𝑗−1∕2 − 𝑠

−
𝑗−1∕2

}

(79)

Discretization of non conservative terms given by (78) (and (79)) 
is not sufficient alone to obtain a well-balanced scheme. When substi-

tuting (78) (or (79)) and the discrete momentum equation inside the 
discrete energy equation, one finds that in order to preserve a steady 
pressure (i.e. 𝑝(𝑖)

𝑗
= 𝑝(𝑖−1)

𝑗
= 𝑝), volumetric fractions must be updated as 

follows (Rusanov fluxes):

𝛼
(𝑖)
𝑗

= 𝛼(𝑖−1)
𝑗

− 𝑎̃𝑙,𝑖−1
Δ𝑡
2Δ𝑥

[
𝜖𝑢

(𝑖−1)
𝑗

(
𝛼
(𝑖−1)
𝑗+1 − 𝛼(𝑖−1)

𝑗−1

)
− 𝑠𝑗+1∕2

(
𝛼
(𝑖−1)
𝑗+1 − 𝛼(𝑖−1)

𝑗

)
+ 𝑠𝑗−1∕2

(
𝛼
(𝑖−1)
𝑗

− 𝛼(𝑖−1)
𝑗−1

)]
,

(80)

or using (HLL fluxes):

𝛼
(𝑖)
𝑗

= 𝛼(𝑖−1)
𝑗

− 𝑎̃𝑙,𝑖−1
Δ𝑡
Δ𝑥{

𝑢
(𝑖−1)
𝑗

[
𝜖
(
𝑠+
𝑗+1∕2𝛼

(𝑖−1)
𝑗

− 𝑠−
𝑗+1∕2𝛼

(𝑖−1)
𝑗+1

)
+ 𝑠+

𝑗+1∕2𝑠
−
𝑗+1∕2

(
𝛼
(𝑖−1)
𝑗+1 − 𝛼(𝑖−1)

𝑗

)]
𝑠+
𝑗+1∕2 − 𝑠

−
𝑗+1∕2

− 𝑢(𝑖−1)
𝑗

[
𝜖
(
𝑠+
𝑗−1∕2𝛼

(𝑖−1)
𝑗−1 −𝑠−

𝑗−1∕2𝛼
(𝑖−1)
𝑗

)
+𝑠+
𝑗−1∕2𝑠

−
𝑗−1∕2

(
𝛼
(𝑖−1)
𝑗

−𝛼(𝑖−1)
𝑗−1

)]
𝑠+
𝑗−1∕2 − 𝑠

−
𝑗−1∕2

}
.

(81)

Note that in (80) (and (81)), an additional numerical diffusion term 
appears, which seems to be unavoidable in order to obtain a well-

balanced scheme.

Discretization of non conservative terms given by eqs. (78) (or (79)) 
and (80) (or (81)) ensures that for each intermediate stage of the 
Runge-Kutta method the explicit part is well-balanced. From here, it 
is straightforward to show that the overall explicit part of the numeri-

cal scheme is also well-balanced. In the next subsection, we verify that, 
with the discrete operators introduced so far, the steady states of inter-

est are preserved also for the elliptic pressure equation and the implicit 
part of the scheme.

4.2.2. Elliptic equation and implicit step balancing

In order to recover a well-balanced scheme, also the implicit part of 
the numerical scheme must be balanced. We now verify that, using the 
discretization introduced in subsection 4.1, the class of steady states of 
interest are preserved also for the elliptic equation and for the implicit 
step. The discrete pressure equation for a generic phase 𝑘 at the steady 

state reads as follows (phase subscript omitted):
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(𝛼𝜌𝑒)(𝑙)
𝑗

⏟⏟⏟
𝐼

+ 𝜒
𝑢∗∗
𝑗

2

(
−𝑝(𝑙)

𝑗
(Δ𝛼(𝑙))𝑗 + 𝑝

(𝑙)
𝐼,𝑗

(Δ𝛼(𝑙))𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝐼

+ 𝜒2
[
−(Δ(𝐻∗∗𝑝(𝑙)Δ𝛼(𝑙)))𝑗 + (Δ(𝐻∗∗𝑝(𝑙)

𝐼
Δ𝛼(𝑙)))𝑗

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐼𝐼𝐼

− 𝜒𝑢∗∗
𝐼,𝑗
𝑝
(𝑙)
𝐼,𝑗

(Δ𝛼∗∗)𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐼𝑉

= (𝛼𝜌𝑒)∗∗𝑗
⏟⏟⏟

𝑉

−𝜒
(
Δ(𝛼𝜌𝑢)∗∗𝑒∗∗

)
𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉 𝐼

− 𝜒
(
Δ(𝛼𝜌𝑢)∗∗ 𝑝

∗∗

𝜌∗∗

)
𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉 𝐼𝐼

.

(82)

Using the fact that at steady state 𝑝(𝑙)
𝑗

= 𝑝(𝑙)
𝐼,𝑗

= 𝑝∗∗
𝑗

= 𝑝 and 𝑢(𝑙)
𝑗

=
𝑢
(𝑙)
𝐼,𝑗

= 𝑢∗∗
𝑗

= 𝑢, terms 𝐼𝐼 and 𝐼𝐼𝐼 are equal to zero and also 𝐼𝑉 cancels 
out with 𝑉 𝐼𝐼 . So we are left with:

(𝛼𝜌𝑒)(𝑙)
𝑗

= (𝛼𝜌𝑒)∗∗𝑗 − 𝑎𝑙,𝑙Δ𝑡(1 − 𝜖)𝑢∗∗𝑗
((𝛼𝜌𝑒)∗∗

𝑗+1 − (𝛼𝜌𝑒)∗∗
𝑗−1)

2Δ𝑥
. (83)

Substituting the equation of state for stiffened gasses, we have:

(𝑝
(𝑙)

𝛽
+ 𝜂
𝛽
)𝛼(𝑙)
𝑗

= (𝑝
∗∗

𝛽
+ 𝜂
𝛽
)𝛼∗∗𝑗 − (𝑝

∗∗

𝛽
+ 𝜂
𝛽
)𝑎𝑙,𝑙Δ𝑡(1 − 𝜖)𝑢∗∗𝑗

(𝛼∗∗
𝑗+1 − 𝛼

∗∗
𝑗−1)

2Δ𝑥
,

(84)

which shows that in order to preserve the steady state solution, volu-

metric fractions must be updated as follows:

𝛼
(𝑙)
𝑗

= 𝛼∗∗𝑗 − 𝑎𝑙,𝑙Δ𝑡(1 − 𝜖)𝑢∗∗𝑗
(𝛼∗∗
𝑗+1 − 𝛼

∗∗
𝑗−1)

2Δ𝑥
. (85)

Summing up eqs. (80) (or (81)) and (85), we obtain the numeri-

cal scheme which must be used to update volumetric fractions. If the 
Rusanov scheme is used to compute conservative fluxes, we obtain:

⎧⎪⎪⎨⎪⎪⎩
𝛼∗𝑗 = 𝛼

𝑛
𝑗 −Δ𝑡

𝑙−1∑
𝑚=1
𝑎̃𝑙,𝑚

{
− 1

2Δ𝑥
[
𝜖𝑢

(𝑚)
𝑗

(
𝛼
(𝑚)
𝑗+1 − 𝛼

(𝑚)
𝑗−1

)
− 𝑠𝑗+1∕2

(
𝛼
(𝑚)
𝑗+1 − 𝛼

(𝑚)
𝑗

)
+ 𝑠𝑗−1∕2

(
𝛼
(𝑚)
𝑗

− 𝛼(𝑚)
𝑗−1

)]}
,

𝛼
(𝑙)
𝑗

= 𝛼∗∗
𝑗

− 𝑎𝑙,𝑙
Δ𝑡
2Δ𝑥 (1 − 𝜖)𝑢

∗∗
𝑗
(𝛼∗∗
𝑗+1 − 𝛼

∗∗
𝑗−1).

(86)

For the case of HLL fluxes, the rule to update volumetric fraction be-

comes:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼∗𝑗 = 𝛼
𝑛
𝑗 −Δ𝑡

𝑙−1∑
𝑚=1

𝑎̃𝑙,𝑚{
− 1

Δ𝑥

[
𝑢
(𝑚)
𝑗

[𝜖(𝑠+
𝑗+1∕2𝛼

(𝑚)
𝑗

− 𝑠−
𝑗+1∕2𝛼

(𝑚)
𝑗+1) + 𝑠

+
𝑗+1∕2𝑠

−
𝑗+1∕2(𝛼

(𝑚)
𝑗+1 − 𝛼

(𝑚)
𝑗

)]

𝑠+
𝑗+1∕2 − 𝑠

−
𝑗+1∕2

− 𝑢(𝑚)
𝑗

[𝜖(𝑠+
𝑗−1∕2𝛼

(𝑚)
𝑗−1 − 𝑠

−
𝑗−1∕2𝛼

(𝑚)
𝑗

) + 𝑠+
𝑗−1∕2𝑠

−
𝑗−1∕2(𝛼

(𝑚)
𝑗

− 𝛼(𝑚)
𝑗−1)]

𝑠+
𝑗−1∕2 − 𝑠

−
𝑗−1∕2

]}
,

𝛼
(𝑙)
𝑗

= 𝛼∗∗
𝑗

− 𝑎𝑙,𝑙
Δ𝑡
2Δ𝑥 (1 − 𝜖)𝑢

∗∗
𝑗
(𝛼∗∗
𝑗+1 − 𝛼

∗∗
𝑗−1).

(87)

Eq. (86) (or (87)) gives also the value 𝛼∗ introduced in sect. 3.2 that 
must be used to obtain a well-balanced scheme. In other words, with 
the particular linearizations introduced in sect. 3.2 and given the nu-

merical flux function (either Rusanov, or HLL), the only way to obtain a 
well-balanced scheme is to use the value 𝛼∗, discretize non-conservative 
terms using (78) (or (79)), and update the volumetric fraction accord-

ing to (86) (or (87)). With the discretizations introduced for all the non 
10

conservative terms is easy to verify that also the pressure correction 
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equations (56) and (55) preserve the steady state solution in the sense 
that pressure and velocity remain constant.

4.3. Numerical scheme structure

To summarize, we now present the main steps required to update 
the solution of eqs. (1) from time 𝑡𝑛 to 𝑡𝑛+1.

Assuming that the solution vector of conservative variables at time 
step 𝑡𝑛 is known, the all-Mach numerical scheme boils down to the fol-

lowing steps.

1. Using the solution of the previous time step, 𝑈𝑛, for each stage of 
the Runge-Kutta method, 𝑙 = 1, … , 𝑠
(a) Compute (𝛼𝜌)(𝑙)

𝑘
using eq. (45) and Rusanov (or HLL) fluxes for 

the explicit part of the convective term.

(b) Compute the prediction for momentum and energy, (𝛼𝜌𝑢)∗
𝑘

and 
(𝛼𝜌𝐸)∗

𝑘
using eq. (47) and the well balanced discretization of 

non-conservative terms (78) (or (79), depending on the numer-

ical flux function).

(c) Compute a prediction for volumetric fractions, 𝛼∗
𝑘
, using the first 

eq. in (86) (or (87), depending on the numerical flux function).

(d) Velocity relaxation. Compute the solution of the velocity relax-

ation step by solving the system of ODEs (51).

(e) Pressure relaxation. Using the solution of the velocity relaxation, 
solve the system of ODEs (52). In the special case of instanta-

neous pressure relaxation, this amounts to solving the system 
of non-linear equations (58).

(f) Solve the system of non-linear elliptic equations for phasic pres-

sures (57) (or a single equation (59) in case of instantaneous 
pressure relaxation).

(g) Correct the prediction for momentum using eq. (56) (or (62) in 
case of instantaneous velocity relaxation) to compute (𝛼𝜌𝑢)(𝑙)

𝑘

and for energy using eq. (55) to compute (𝛼𝜌𝐸)(𝑙)
𝑘

.

(h) Update volumetric fraction 𝛼(𝑙)
𝑘

using the second eq. in (86) (or 
(87) depending on the numerical flux function).

2. Update the solution using equation (63).

5. Asymptotic preserving property

In this section, we prove that our numerical scheme is asymptotic 
preserving (AP) in the sense that we recover the correct asymptotic 
limit also at the discrete level in the limit 𝑀 → 0. Formally, let 𝑀
be the continuous Baer-Nunziato model, which depends on the Mach 
number 𝑀 , and let 0 be the continuous model obtained in the limit 
𝑀 → 0. Let 𝑀Δ be a consistent discretization of 𝑀 with discretization 
parameters Δ ∶= (Δ𝑥, Δ𝑡). The scheme 𝑀Δ is asymptotic preserving if 
its stability condition is independent of 𝑀 and the limiting discrete 
model 0

Δ is consistent with 0.

𝑀Δ 0
Δ

𝑀 0

𝑀→0

Δ→0 Δ→0

𝑀→0

In order to prove the AP property, there are three steps to follow.

• First, we derive the continuous model in the asymptotic limit, that 

is 𝑀
𝑀→0
←←←←←←←←←←←←←←←←←←←←←←→ 0. This was presented in subsection 2.3,

• Second, we derive the limit of the discrete scheme 𝑀Δ
𝑀→0
←←←←←←←←←←←←←←←←←←←←←←→ 0

Δ,
• Third, we show that 0
Δ is a consistent discretization of 0.
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5.1. Asymptotic analysis of the numerical scheme

We start noticing that the numerical flux functions used throughout 
this work are a consistent discretization of the continuous flux function, 
i.e.  (𝑈, 𝑈 ) = 𝐹 (𝑈 ) for any 𝑈 . Furthermore, it is easy to show that 
discretizations of space derivative used in the elliptic pressure equation 
and in the stiff part of the convective fluxes are also consistent in the 
limit Δ𝑥 → 0. Therefore, we only need to prove the AP property for the 
semi-discrete model. To this end, we derive the limit for 𝑀 → 0 of the 
semi-discrete system 𝑀Δ assuming that the IMEX Runge-Kutta scheme 
is consistent with the model equations in the limit Δ𝑡 → 0. This holds 
true if the usual conditions on the Butcher’s tableau are fulfilled (see 
for instance [22]). As done in subsection 2.3, we consider first the case 
where both phases are in the same Mach regime (𝑀1 =𝑀2 =𝑀), then 
the case of one compressible (𝑀1 =𝑂(1)) and one weakly compressible 
(𝑀2≪ 1) phase.

Case 1 We assume the initial data at time 𝑡𝑛 is well-prepared in the 
sense defined in subsection 2.3 (case 1). Next, we expand discrete vari-

ables with respect to the common Mach number 𝑀1 =𝑀2 =𝑀 , that 
is:

𝜌𝑘 = 𝜌𝑘,0 +𝑀𝜌𝑘,1 +𝑀2𝜌𝑘,2,

𝑢𝑘 = 𝑢𝑘,0 +𝑀𝑢𝑘,1 +𝑀2𝑢𝑘,2,

𝑢𝐼 = 𝑢𝐼,0 +𝑀𝑢𝐼,1 +𝑀2𝑢𝐼,2, 𝑢𝑘,0 = 𝑢𝐼,0 = 𝑢0, 𝜕𝑥𝑢0 = 0,

𝑝𝑘 = 𝑝𝑘,0 +𝑀𝑝𝑘,1 +𝑀2𝑝𝑘,2,

𝑝𝐼 = 𝑝𝐼,0 +𝑀𝑝𝐼,1 +𝑀2𝑝𝐼,2, 𝑝𝑘,0 = 𝑝0, 𝑝𝑘,1 = 𝑝1,

𝛼𝑘 = 𝛼𝑘,0 +𝑂(𝑀)

(88)

We start the analysis from the implicit step of an intermediate stage 𝑙
of the RK method and consider the non-dimensional relaxations systems 
for phase 𝑘. Given the vector of conserved variables at the previous time 
step, 𝑈𝑛, at the first stage of the IMEX-RK scheme we have 𝑈∗ = 𝑈𝑛. 
Regarding pressure relaxation (equation (52)), we denote with (⋅)(𝑝𝑟) the 
state after the relaxation procedure. We see that at order 𝑂(1∕𝑀2) we 
have 𝑝(𝑝𝑟)1,0 = 𝑝(𝑝𝑟)2,0 and similarly at order 𝑂(1∕𝑀) we have 𝑝(𝑝𝑟)1,1 = 𝑝(𝑝𝑟)2,1 ; 
both in accordance with the well-prepared initial data. Finally at order 
𝑂(1) equations read:

⎧⎪⎪⎨⎪⎪⎩

(𝛼𝜌)(𝑝𝑟)
𝑘,0 = (𝛼𝜌)∗

𝑘,0
(𝛼𝜌𝑢)(𝑝𝑟)

𝑘,0 = (𝛼𝜌𝑢)∗
𝑘,0

(𝛼𝜌𝑒)(𝑝𝑟)
𝑘,0 = (𝛼𝜌𝑒)∗

𝑘,0 − Δ𝑡𝑎𝑙,𝑙𝜈𝑘,𝑗𝑝
(𝑝𝑟)
𝐼,0 (𝑝

(𝑝𝑟)
𝑘,2 − 𝑝(𝑝𝑟)

𝑗,2 )
𝛼
(𝑝𝑟)
𝑘,0 = 𝛼∗

𝑘,0 + Δ𝑡𝑎𝑙,𝑙𝜈𝑘,𝑗 (𝑝
(𝑝𝑟)
𝑘,2 − 𝑝(𝑝𝑟)

𝑗,2 )

(89)

from which we see that the velocity does not change at any order 
through this step (𝑢(𝑝𝑟)

𝑘
= 𝑢∗

𝑘
).

Moving to the velocity relaxation step (equation (51)), using values 
at state (⋅)(𝑝𝑟) as input and denoting as (⋅)(𝑣𝑟) the state after homogeniza-

tion of velocities, we can write the system at order 𝑂(1):

⎧⎪⎪⎨⎪⎪⎩

(𝛼𝜌)(𝑣𝑟)
𝑘

= (𝛼𝜌)(𝑝𝑟)
𝑘

(𝛼𝜌𝑢)(𝑣𝑟)
𝑘

= (𝛼𝜌𝑢)(𝑝𝑟)
𝑘

+Δ𝑡𝑎𝑙,𝑙𝜏𝑘,𝑗 (𝑢
(𝑣𝑟)
𝑘,0 − 𝑢(𝑣𝑟)

𝑗,0 )
(𝛼𝜌𝐾)(𝑣𝑟)

𝑘
= (𝛼𝜌𝐾)(𝑝𝑟)

𝑘
+Δ𝑡𝑎𝑙,𝑙𝜏𝑘,𝑗𝑢

(𝑣𝑟)
𝐼,0 (𝑢

(𝑣𝑟)
𝑘,0 − 𝑢(𝑣𝑟)

𝑗,0 )
𝛼
(𝑣𝑟)
𝑘

= 𝛼(𝑝𝑟)
𝑘
,

(90)

where form the momentum equation we have:

𝑢
(𝑣𝑟)
𝑘

= 𝑢(𝑝𝑟)
𝑘

+Δ𝑡𝑎𝑙,𝑙𝜏𝑘,𝑗 (𝑢
(𝑣𝑟)
𝑘,0 − 𝑢(𝑣𝑟)

𝑗,0 )∕(𝛼𝜌)(𝑝𝑟)
𝑘

(91)

therefore, we have 𝑢(𝑣𝑟)
𝑘

= 𝑢(𝑝𝑟)
𝑘

+ 𝑂(Δ𝑡) and consequently 𝜕𝑥𝑢
(𝑣𝑟)
𝑘

=
𝑂(Δ𝑡).

Being 𝑈∗∗ the state after both relaxations we now consider the 
non-dimensional elliptic pressure equation written for phase 𝑘 at an 
11

intermediate stage 𝑙 of the RK method:
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(𝛼𝜌𝑒)(𝑙)
𝑘

+ 1
2
𝜒 𝑢∗∗

𝑘

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
𝑘

+ 𝑝(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

)
− 𝜒 𝑢∗∗

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

∗∗
𝑘

+ 𝜒2 𝜕𝑥

[
𝐻∗∗
𝑘

(
− 1
𝑀2 𝜕𝑥(𝛼𝑝)

(𝑙)
𝑘

+ 1
𝑀2 𝑝

(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
𝑘

)]
=

(𝛼𝜌𝑒)∗∗
𝑘

− 𝜒 𝜕𝑥
(
(𝛼𝜌𝑢)∗∗

𝑘
𝐻∗∗
𝑘

)
.

(92)

Expanding all variables we obtain (at order 𝑂(1∕𝑀2)):

𝜕𝑥(𝛼𝑘,0𝑝0)(𝑙) = 𝑝
(𝑙)
𝐼,0𝜕𝑥𝛼

(𝑙)
𝑘,0 (93)

and at order 𝑂(1∕𝑀):

𝜕𝑥(𝛼𝑘,0𝑝1)(𝑙) = 𝑝
(𝑙)
𝐼,1𝜕𝑥𝛼

(𝑙)
𝑘,0. (94)

Following the same step of sect. 2.3, adding eqs. (93) written for 
each phase gives:

𝜕𝑥(𝑝
(𝑙)
0 (𝛼(𝑙)1,0 + 𝛼

(𝑙)
2,0)) = 𝑝

(𝑙)
𝐼,0𝜕𝑥(𝛼

(𝑙)
1,0 + 𝛼

(𝑙)
2,0) (95)

which implies 𝜕𝑥𝑝
(𝑙)
0 = 0 because as for the derivation of the low-Mach 

limit we assume 𝛼(𝑙)1,0 +𝛼
(𝑙)
2,0 = 1 so that 𝜕𝑥(𝛼

(𝑙)
1,0 +𝛼

(𝑙)
2,0) = 0. Similarly, sub-

tracting eqs (93) written for each phase and using the fact that 𝜕𝑥𝑝
(𝑙)
0 = 0

leads to 𝑝(𝑙)
𝐼,0 = 𝑝

(𝑙)
0 . By repeating the same algebraic manipulations for 

terms at order 𝑂(1∕𝑀), we obtain 𝜕𝑥𝑝
(𝑙)
1 = 0 and 𝑝(𝑙)

𝐼,1 = 𝑝
(𝑙)
1 . From these, 

we deduce that pressure is constant in space up to fluctuations of order 
𝑀2 at each intermediate stage of the RK method. We now analyze the 
corrector step and the equation used to update volumetric fractions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑙)
𝑘

= (𝛼𝜌)∗∗
𝑘

(𝛼𝜌𝑢)(𝑙)
𝑘

= (𝛼𝜌𝑢)∗∗
𝑘

+Δ𝑡𝑎𝑙,𝑙
1−𝑀2

𝑀2

[
− 𝜕𝑥 (𝛼𝑝)

(𝑙)
𝑘

+
(
𝑝𝐼𝜕𝑥𝛼𝑘

)(𝑙) ]
(𝛼𝜌𝐸)(𝑙)

𝑘
= (𝛼𝜌𝐸)∗∗

𝑘
+Δ𝑡𝑎𝑙,𝑙

1 −𝑀2

𝑀2

[
− 𝜕𝑥

(
𝐻∗∗
𝑘

(𝛼𝜌𝑢)(𝑙)
𝑘

)
+
(
𝑝
(𝑙)
𝐼
𝑢∗∗
𝐼
𝜕𝑥𝛼

∗∗
𝑘

)]
𝛼
(𝑙)
𝑘

= 𝛼∗∗
𝑘

−Δ𝑡𝑎𝑙,𝑙(1 −𝑀2)(𝑢𝐼𝜕𝑥𝛼𝑘)∗∗

(96)

Expanding each variable and using previous results in momentum 
equation, we obtain at order 𝑂(1∕𝑀2):

𝜕𝑥(𝛼𝑘,0𝑝0)(𝑙) = 𝑝
(𝑙)
0 𝜕𝑥𝛼

(𝑙)
𝑘,0 (97)

and at order 𝑂(1∕𝑀):

𝜕𝑥(𝛼𝑘,0𝑝1)(𝑙) = 𝑝
(𝑙)
1 𝜕𝑥𝛼

(𝑙)
𝑘,0, (98)

which are trivially satisfied because 𝜕𝑥𝑝
(𝑙)
0 = 0 and 𝜕𝑥𝑝

(𝑙)
1 = 0. Finally, 

expanding variables in (96), we obtain at the 0th order:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝛼𝑘,0𝜌𝑘,0)(𝑙) = (𝛼𝑘,0𝜌𝑘,0)∗∗

(𝛼𝑘,0𝜌𝑘,0𝑢0)(𝑙) = (𝛼𝑘,0𝜌𝑘,0𝑢0)∗∗ − Δ𝑡𝑎𝑙,𝑙𝜕𝑥
(
𝛼𝑘,0𝑝𝑘,2

)(𝑙)
+ Δ𝑡𝑎𝑙,𝑙(𝑝𝐼,2𝜕𝑥𝛼𝑘,0)(𝑙)

(𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0)(𝑙) = (𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0)∗∗ − Δ𝑡𝑎𝑙,𝑙𝜕𝑥
(
𝐻∗∗
𝑘,0
(
𝛼𝑘,0𝜌𝑘,0𝑢𝑘,0

)(𝑙))
+Δ𝑡𝑎𝑙,𝑙(𝑝

(𝑙)
0 𝑢

∗∗
0 𝜕𝑥𝛼

∗∗
𝑘,0)

𝛼
(𝑙)
𝑘,0 = 𝛼

∗∗
𝑘,0 − Δ𝑡𝑎𝑙,𝑙(𝑢0𝜕𝑥𝛼𝑘,0)∗∗

(99)

We now use the state law 𝑝𝑘 = (𝛾 −1)(𝜌𝑘𝑒𝑘) and expand the internal 
energy as follows:

𝑒
𝑘
=
𝑝0
𝜌
𝑘,0

+𝑀

(
𝑝1

𝛽𝑘𝜌𝑘,0
+
𝑝
𝑘,2

𝛽𝑘𝜌𝑘,1

)
+𝑂(𝑀2). (100)

Subtracting the volume fraction equation in eq. (99) multiplied by 𝑝(𝑙)0
from the energy equation and assuming well-prepared initial data, we 
obtain that 𝑢(𝑙)0 = 𝑢∗∗0 . From previous relations thus we have 𝜕𝑥𝑢

(𝑙)
0 =
𝑂(Δ𝑡).
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To summarize, the asymptotic limit of the implicit step is:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑥𝑝
(𝑙)
0 = 0

𝜕𝑥𝑝
(𝑙)
1 = 0

(𝛼𝑘,0𝜌𝑘,0)(𝑙) = (𝛼𝑘,0𝜌𝑘,0)∗∗

(𝛼𝑘,0𝜌𝑘,0𝑢0)(𝑙) = (𝛼𝑘,0𝜌𝑘,0𝑢0)∗∗ − Δ𝑡𝑎𝑙,𝑙𝜕𝑥
(
𝛼𝑘,0𝑝𝑘,2

)(𝑙)
+ Δ𝑡𝑎𝑙,𝑙(𝑝𝐼,2𝜕𝑥𝛼𝑘,0)(𝑙)

𝜕𝑥𝑢
(𝑙)
0 =𝑂(Δ𝑡)

𝛼
(𝑙)
𝑘,0 = 𝛼

∗∗
𝑘,0 − Δ𝑡𝑎𝑙,𝑙(𝑢0𝜕𝑥𝛼0)∗∗

(101)

which shows that pressure is constant in space up to fluctuations of 
order 𝑀2 and the velocity field is divergence-free in the limit Δ𝑡 → 0
at each stage of the IMEX-RK method.

We now analyze the explicit part of the numerical scheme.

The explicit part of the scheme for phase 𝑘 at stage 𝑖 reads as follows 
in non-dimensional form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑖)
𝑘

= (𝛼𝜌)(𝑖−1)
𝑘

−Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥 (𝛼𝜌𝑢)
(𝑖−1)
𝑘

(𝛼𝜌𝑢)(𝑖)
𝑘

= (𝛼𝜌𝑢)(𝑖−1)
𝑘

−Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
[
(𝛼𝜌𝑢𝑢)(𝑖−1)

𝑘
+ (𝛼𝑝)(𝑖−1)

𝑘

]
+Δ𝑡𝑎̃𝑙,𝑖−1

(
𝑝𝐼𝜕𝑥𝛼𝑘

)(𝑖−1)
(𝛼𝜌𝐸)(𝑖)

𝑘
= (𝛼𝜌𝐸)(𝑖−1)

𝑘

−Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
[
𝑀2 (𝑢𝛼𝜌𝐾)(𝑖−1)

𝑘
+𝑀2

(
(𝑢𝛼𝜌𝑒)(𝑖−1)

𝑘
+ (𝑢𝛼𝑝)(𝑖−1)

𝑘

)]
+Δ𝑡𝑎̃𝑙,𝑖−1𝑀2 (𝑝𝐼𝑢𝐼𝜕𝑥𝛼𝑘)(𝑖−1)

𝛼
(𝑖)
𝑘

= 𝛼(𝑖−1)
𝑘

−Δ𝑡𝑎̃𝑙,𝑖−1𝑀2(𝑢𝐼𝜕𝑥𝛼𝑘)(𝑖−1)

(102)

where 𝐸𝑘 = 𝑒𝑘 + 1∕2𝑀2𝑢2
𝑘
. Substituting the asymptotic expansion of 

each variable and using (101), we find (order 𝑂(1)):

⎧⎪⎪⎨⎪⎪⎩
(𝛼𝑘,0𝜌𝑘,0)(𝑖) = (𝛼𝑘,0𝜌𝑘,0)(𝑖−1) − Δ𝑡𝑎̃𝑙,𝑖−1𝑢

(𝑖−1)
0 𝜕𝑥

(
𝛼𝑘,0𝜌𝑘,0

)(𝑖−1)
(𝛼𝑘,0𝜌𝑘,0𝑢0)(𝑖) = (𝛼𝑘,0𝜌𝑘,0𝑢0)(𝑖−1) − Δ𝑡𝑎̃𝑙,𝑖−1𝑢

(𝑖−1)
0 𝜕𝑥

(
𝛼𝑘,0𝜌𝑘,0𝑢0

)(𝑖−1)
(𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0)(𝑖) = (𝛼𝑘,0𝜌𝑘,0𝑒𝑘,0)(𝑖−1)

𝛼
(𝑖)
𝑘,0 = 𝛼

(𝑖−1)
𝑘,0 ,

(103)

which shows that (at the 0th order) volumetric fraction remains con-

stant. From the energy equation we deduce that also the leading term of 
pressure remains unchanged as obtained for the continuous case. Since 
both spatial and temporal discretization are consistent, it follows that 
our numerical scheme is consistent with model equations in the limits 
𝑀 → 0 and Δ𝑡 → 0. Thus, we conclude that our scheme is AP.

Case 2 We assume that 𝑀1 = 1 and 𝑀2≪ 1. Let the initial data at time 
𝑡𝑛 be well-prepared (𝜓 ∈ Ψ𝑤𝑝

𝑐−𝑖). We have for the compressible phase 
𝜌1 = 𝜌1,0 +𝑂(𝑀2), 𝑢1 = 𝑢1,0 +𝑂(𝑀2) and 𝑝1 = 𝑝1,0 +𝑂(𝑀2). The other 
variables are expanded as follows:

𝛼1 = 𝛼1,0 +𝑀2𝛼1,1 +𝑀2
2𝛼1,2,

𝜌2 = 𝜌2,0 +𝑀2𝜌2,1 +𝑀2
2𝜌2,2,

𝑢2 = 𝑢2,0 +𝑀2𝑢2,1 +𝑀2
2 𝑢2,2, 𝜕𝑥𝑢2,0 = 0, 𝑢2,0 = 𝑢1,0

𝑝2 =𝑀2
2 𝑝2,2,

𝛼2 = 𝛼2,0 +𝑀2𝛼2,1 +𝑀2
2𝛼2,2,

𝑢𝐼 = 𝑢𝐼,0 +𝑀2𝑢𝐼,1 +𝑀2
2 𝑢𝐼,2.

(104)

Given that 𝑝𝐼 = 𝛼1𝑝1 + 𝛼2𝑝2, and assuming well-prepared initial data, 
the interface pressure 𝑝𝐼 is expanded as:

𝑝𝐼 = 𝛼1,0𝑝1,0 +𝑀2𝛼1,1𝑝1,0 +𝑀2
2 (𝛼2,0𝑝2,2 + 𝛼1,2𝑝1,0)

= 𝑝𝐼,0 +𝑀2𝑝𝐼,1 +𝑀2
2 𝑝𝐼,2.

(105)

We start again the analysis from the implicit step of a generic stage 𝑙 of 
12

the RK method. At the first stage of the scheme, we have 𝑈∗ = 𝑈𝑛. As 
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done for case 1, we begin considering the pressure relaxation operator 
(equation (52)). Denoting (⋅)(𝑝𝑟) the state after pressure relaxation, we 
have from the volume fraction equations that at order 𝑂(1∕𝑀2

2 ) we 
obtain 𝑝(𝑝𝑟)2,0 = 0 and similarly from order 𝑂(1∕𝑀2) terms 𝑝(𝑝𝑟)2,1 = 0, in 
accordance with the well-prepared initial data. Finally, at order 𝑂(1):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑝𝑟)1 = (𝛼𝜌)∗1
(𝛼𝜌𝑢)(𝑝𝑟)1 = (𝛼𝜌𝑢)∗1
(𝛼𝜌𝐸)(𝑝𝑟)1 = (𝛼𝜌𝐸)∗1 − Δ𝑡𝑎𝑙,𝑙𝜈1,2𝑝

(𝑝𝑟)
𝐼,0 (𝑝

(𝑝𝑟)
1,0 − 𝑝(𝑝𝑟)2,2 )

𝛼
(𝑝𝑟)
1 = 𝛼∗1 + Δ𝑡𝑎𝑙,𝑙𝜈1,2(𝑝

(𝑝𝑟)
1,0 − 𝑝(𝑝𝑟)2,2 )

(𝛼𝜌)(𝑝𝑟)2 = (𝛼𝜌)∗2
(𝛼𝜌𝑢)(𝑝𝑟)2 = (𝛼𝜌𝑢)∗2
(𝛼𝜌𝑒)(𝑝𝑟)2 = (𝛼𝜌𝑒)∗2 − Δ𝑡𝑎𝑙,𝑙𝜈2,1𝑝

(𝑝𝑟)
𝐼,0 (𝑝

(𝑝𝑟)
2,2 − 𝑝(𝑝𝑟)1,0 )

𝛼
(𝑝𝑟)
2 = 𝛼∗2 + Δ𝑡𝑎𝑙,𝑙𝜈2,1(𝑝

(𝑝𝑟)
2,2 − 𝑝(𝑝𝑟)1,0 ).

(106)

We note that velocities do not change at any order through this step, 
consequently 𝑢(𝑝𝑟)

𝑘
= 𝑢∗

𝑘
which implies 𝜕𝑥𝑢

(𝑝𝑟)
2,0 = 𝜕𝑥𝑢∗2,0 = 0. Looking now 

at the velocity relaxation, denoting with (⋅)(𝑣𝑟) the state after the ho-

mogenization of the velocities, we write the system at order 𝑂(1):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑣𝑟)1 = (𝛼𝜌)(𝑝𝑟)1
(𝛼𝜌𝑢)(𝑣𝑟)1 = (𝛼𝜌𝑢)(𝑝𝑟)1 + Δ𝑡𝑎𝑙,𝑙𝜏1,2(𝑢

(𝑣𝑟)
1,0 − 𝑢(𝑣𝑟)2,0 )

(𝛼𝜌𝐸)(𝑣𝑟)1 = (𝛼𝜌𝐸)(𝑝𝑟)1 + Δ𝑡𝑎𝑙,𝑙𝜏1,2𝑢
(𝑣𝑟)
𝐼,0 (𝑢

(𝑣𝑟)
1,0 − 𝑢(𝑣𝑟)2,0 )

𝛼
(𝑣𝑟)
1 = 𝛼(𝑝𝑟)1

(𝛼𝜌)(𝑣𝑟)2 = (𝛼𝜌)(𝑝𝑟)2
(𝛼𝜌𝑢)(𝑣𝑟)2 = (𝛼𝜌𝑢)(𝑝𝑟)2 + Δ𝑡𝑎𝑙,𝑙𝜏2,1(𝑢

(𝑣𝑟)
2,0 − 𝑢(𝑣𝑟)1,0 )

(𝛼𝜌𝐾)(𝑣𝑟)2 = (𝛼𝜌𝐾)(𝑝𝑟)2 + Δ𝑡𝑎𝑙,𝑙𝜏2,1𝑢
(𝑣𝑟)
𝐼,0 (𝑢

(𝑣𝑟)
2,0 − 𝑢(𝑣𝑟)1,0 )

𝛼
(𝑣𝑟)
2 = 𝛼(𝑝𝑟)2 .

(107)

We note from the momentum equation for phase 2 that 𝑢(𝑣𝑟)2,0 = 𝑢(𝑝𝑟)2,0 +
𝑂(Δ𝑡) thus 𝜕𝑥𝑢

(𝑣𝑟)
2,0 =𝑂(Δ𝑡).

As done for case 1, being 𝑈∗∗ the variables after both relaxations, 
we consider the non-dimensional pressure equation (92) for a generic 
stage 𝑙 of the RK method. The pressure equation written for phase 1 is:

(𝛼𝜌𝑒)(𝑙)1 + 1
2
𝜒 𝑢∗∗1

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
1 + 𝑝(𝑙)

𝐼
𝜕𝑥𝛼

(𝑙)
1

)
− 𝜒 𝑢∗∗

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

∗∗
1

+ 𝜒2 𝜕𝑥

[
𝐻∗∗

1

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
1 + 𝑝(𝑙)

𝐼
𝜕𝑥𝛼

(𝑙)
1

)]
=

(𝛼𝜌𝑒)∗∗1 − 𝜒 𝜕𝑥
(
(𝛼𝜌𝑢)∗∗1 𝐻

∗∗
1
) (108)

which holds true at any order of the expansion since all terms are in the 
same order of magnitude.

Equation (92) written for phase 2 is:

(𝛼𝜌𝑒)(𝑙)2 + 1
2
𝜒 𝑢∗∗2

(
−𝜕𝑥(𝛼𝑝)

(𝑙)
2 + 𝑝(𝑙)

𝐼
𝜕𝑥𝛼

(𝑙)
2

)
− 𝜒 𝑢∗∗

𝐼
𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

∗∗
2

+ 𝜒2 𝜕𝑥

[
𝐻∗∗

2

(
− 1
𝑀2

2

𝜕𝑥(𝛼𝑝)
(𝑙)
2 + 1

𝑀2
2

𝑝
(𝑙)
𝐼
𝜕𝑥𝛼

(𝑙)
2

)]
=

(𝛼𝜌𝑒)∗∗2 − 𝜒 𝜕𝑥
(
(𝛼𝜌𝑢)∗∗2 𝐻

∗∗
2
)
.

(109)

Expanding variables as in (104), we obtain:

𝑂(1∕𝑀2
2 ) ∶ 0 = 𝑝(𝑙)

𝐼,0𝜕𝑥𝛼
(𝑙)
2,0

𝑂(1∕𝑀2) ∶ 0 = 𝑝(𝑙)
𝐼,1𝜕𝑥𝛼

(𝑙)
2,0 + 𝑝

(𝑙)
𝐼,0𝜕𝑥𝛼

(𝑙)
2,1

(110)

We are interested in regions where both phases are present, so we as-

sume 𝛼(𝑙)1,0 ≠ 0 and 𝑝(𝑙)1,0(𝑥, 𝑡) ≠ 0. Using the fact that 𝑝(𝑙)
𝐼,0 = 𝛼

(𝑙)
1,0𝑝

(𝑙)
1,0, (110)

gives 𝜕𝑥𝛼
(𝑙)
2,0 = 0 at order 𝑂(1∕𝑀2

2 ). The same argument can be applied 

to terms of order 𝑂(1∕𝑀2) to obtain 𝜕𝑥𝛼

(𝑙)
2,1 = 0.



S. Malusà and A. Alaia

With these results, we now analyze the corrector step for both 
phases:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑙)1 = (𝛼𝜌)∗∗1
(𝛼𝜌𝑢)(𝑙)1 = (𝛼𝜌𝑢)∗∗1 + Δ𝑡𝑎𝑙,𝑙

1−𝑀2
1

𝑀2
1

[
− 𝜕𝑥 (𝛼𝑝)

(𝑙)
1 +

(
𝑝𝐼𝜕𝑥𝛼1

)(𝑙) ]
(𝛼𝜌𝐸)(𝑙)1 = (𝛼𝜌𝐸)∗∗1 + Δ𝑡𝑎𝑙,𝑙

1 −𝑀2
1

𝑀2
1

[
− 𝜕𝑥

(
𝐻∗∗

1 (𝛼𝜌𝑢)(𝑙)1
)

+
(
𝑝
(𝑙)
𝐼
𝑢∗∗
𝐼
𝜕𝑥𝛼

∗∗
1

)]
𝛼
(𝑙)
1 = 𝛼∗∗1 − Δ𝑡𝑎𝑙,𝑙(1 −𝑀2

1 )(𝑢𝐼𝜕𝑥𝛼1)
∗∗

(𝛼𝜌)(𝑙)2 = (𝛼𝜌)∗∗2
(𝛼𝜌𝑢)(𝑙)2 = (𝛼𝜌𝑢)∗∗2 + Δ𝑡𝑎𝑙,𝑙

1−𝑀2
1

𝑀2
2

[
− 𝜕𝑥 (𝛼𝑝)

(𝑙)
2 +

(
𝑝𝐼𝜕𝑥𝛼2

)(𝑙) ]
(𝛼𝜌𝐸)(𝑙)2 = (𝛼𝜌𝐸)∗∗2 + Δ𝑡𝑎𝑙,𝑙

1 −𝑀2
1

𝑀2
2

[
− 𝜕𝑥

(
𝐻∗∗

2 (𝛼𝜌𝑢)(𝑙)2
)

+
(
𝑝
(𝑙)
𝐼
𝑢∗∗
𝐼
𝜕𝑥𝛼

∗∗
2

)]
𝛼
(𝑙)
2 = 𝛼∗∗2 − Δ𝑡𝑎𝑙,𝑙(1 −𝑀2

1 )(𝑢𝐼𝜕𝑥𝛼2)
∗∗.

(111)

Since 𝑀1 = 1 and since the splitting is based on the Mach number of 
the most compressible phase, we have that all the conserved quantities 
remain unchanged during the corrector step at the 0th order. Further-

more, momentum equation for phase 2 gives (at order 𝑂(1)) 𝑢∗∗2,0 = 𝑢
(𝑙)
2,0, 

which implies 𝜕𝑥𝑢∗∗2,0 = 𝜕𝑥𝑢
(𝑙)
2,0 = 𝑂(Δ𝑡). From the energy equation writ-

ten for phase 2, we obtain 𝑝∗∗2 = 𝑝(𝑙)2 which implies 𝑝(𝑙)2 =𝑀2
2 𝑝

(𝑙)
2,2, that is 

the solution at stage 𝑙 is a well-prepared initial datum for the next stage 
of the RK method.

To summarize, at the end of the implicit step of our scheme, we 
have:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝛼1,0𝜌1,0)(𝑙) = (𝛼1,0𝜌1,0)∗∗

(𝛼1,0𝜌1,0𝑢1,0)(𝑙) = (𝛼1,0𝜌1,0𝑢1,0)∗∗

(𝛼1,0𝜌1,0𝐸1,0)(𝑙) = (𝛼1,0𝜌1,0𝐸1,0)∗∗

𝛼
(𝑙)
1,0 = 𝛼

∗∗
1,0

(𝛼2,0𝜌2,0)(𝑙) = (𝛼2,0𝜌2,0)∗∗

(𝛼2,0𝜌2,0𝑢2,0)(𝑙) = (𝛼2,0𝜌2,0𝑢2,0)∗∗2
𝛼
(𝑙)
2,0 = 𝛼

∗∗
2,0

𝜕𝑥𝑢
(𝑙)
2,0 = 𝜕𝑥𝑢

∗∗
2,0 =𝑂(Δ𝑡)

𝑝
(𝑙)
2 =𝑀2

2 𝑝
(𝑙)
2,2.

(112)

We now analyze the explicit part of the scheme for phase 1. Using 
previous results, at order 𝑂(1) we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝛼1,0𝜌1,0)(𝑖) = (𝛼1,0𝜌1,0)(𝑖−1) − Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
(
𝛼1,0𝜌1,0𝑢1,0

)(𝑖−1)
(𝛼1,0𝜌1,0𝑢1,0)(𝑖) = (𝛼1,0𝜌1,0𝑢1,0)(𝑖−1)

− Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
[(
𝛼1,0𝜌1,0𝑢1,0𝑢1,0

)(𝑖−1) + (𝛼1,0𝑝1,0)(𝑖−1)]
+Δ𝑡𝑎̃𝑙,𝑖−1

(
𝑝𝐼,0𝜕𝑥𝛼1,0

)(𝑖−1)
(𝛼1,0𝜌1,0𝐸1,0)(𝑖) = (𝛼1,0𝜌1,0𝐸1,0)(𝑖−1) − Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥

(
𝑢1,0𝛼1,0𝜌1,0𝐾1,0

)(𝑖−1)
− Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥

((
𝑢1,0𝛼1,0𝜌1,0𝑒1,0

)(𝑖−1)
+
(
𝑢1,0𝛼1,0𝑝1,0

)(𝑖−1))
+Δ𝑡𝑎̃𝑙,𝑖−1

(
𝑝𝐼,0𝑢𝐼,0𝜕𝑥𝛼1,0

)(𝑖−1)
𝛼
(𝑖)
1,0 = 𝛼

(𝑖−1)
1,0 − Δ𝑡𝑎̃𝑙,𝑖−1(𝑢𝐼,0𝜕𝑥𝛼1,0)(𝑖−1).

(113)

For phase 1, all the terms appearing in the above equations are in 
the same order of magnitude, while the explicit part of the numerical 
13

scheme written for phase 2 becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝛼𝜌)(𝑖)2 = (𝛼𝜌)(𝑖−1)2 − Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥 (𝛼𝜌𝑢)
(𝑖−1)
2

(𝛼𝜌𝑢)(𝑖)2 = (𝛼𝜌𝑢)(𝑖−1)2 − Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥

[
(𝛼𝜌𝑢𝑢)(𝑖−1)2 + 1

𝑀2
2

(𝛼𝑝)(𝑖−1)2

]

+Δ𝑡𝑎̃𝑙,𝑖−1

(
1
𝑀2

2

𝑝𝐼𝜕𝑥𝛼2

)(𝑖−1)

(𝛼𝜌𝐸)(𝑖)2 = (𝛼𝜌𝐸)(𝑖−1)2

− Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
[
𝑀2

2 (𝑢𝛼𝜌𝐾)(𝑖−1)2 + (𝑢𝛼𝜌𝑒)(𝑖−1)2 + (𝑢𝛼𝑝)(𝑖−1)2

]
+Δ𝑡𝑎̃𝑙,𝑖−1

(
𝑝𝐼𝑢𝐼𝜕𝑥𝛼2

)(𝑖−1)
𝛼
(𝑖)
2 = 𝛼(𝑖−1)2 − Δ𝑡𝑎̃𝑙,𝑖−1𝑀2(𝑢𝐼𝜕𝑥𝛼2)(𝑖−1)

(114)

where 𝐸𝑘 = 𝑒𝑘 + 1∕2𝑀2
2 𝑢

2
𝑘
. Expanding variables and using the results 

obtained from the implicit part of the scheme in the momentum equa-

tion, we get:

𝑂(1∕𝑀2
2 ) ∶ 0 = 𝑝(𝑖−1)

𝐼,0 𝜕𝑥𝛼
(𝑖−1)
2,0

𝑂(1∕𝑀2) ∶ 0 = 𝑝(𝑖−1)
𝐼,1 𝜕𝑥𝛼

(𝑖−1)
2,0 + 𝑝(𝑖−1)

𝐼,0 𝜕𝑥𝛼
(𝑖−1)
2,1

(115)

Both equalities are satisfied since we already obtained 𝜕𝑥𝛼
(𝑖−1)
2,0 =

𝜕𝑥𝛼
(𝑙)
2,0 = 0 and 𝜕𝑥𝛼

(𝑖−1)
2,1 = 𝜕𝑥𝛼

(𝑙)
2,1 = 0 from the implicit step. Next, from 

the energy equation (at order 𝑂(1)), we get:

(𝛼2,0𝜌2,0𝑒2,0)(𝑖) = (𝛼2,0𝜌2,0𝑒2,0)(𝑖−1)

− Δ𝑡𝑎̃𝑙,𝑖−1𝜕𝑥
((
𝑢2,0𝛼2,0𝜌2,0𝑒2,0

)(𝑖−1) + (𝑢2,0𝛼2,0𝑝2,0)(𝑖−1))
+Δ𝑡𝑎̃𝑙,𝑖−1

(
𝑝𝐼,0𝑢𝐼,0𝜕𝑥𝛼2,0

)(𝑖−1)
,

(116)

where non-conservative terms vanish because 𝜕𝑥𝛼
(𝑖−1)
2,0 = 𝜕𝑥𝛼

(𝑙)
2,0 = 0. 

From the implicit step we also have that pressure for the weakly com-

pressible phase is given by 𝑝(𝑖−1)2 =𝑀2
2 𝑝

(𝑖−1)
2,2 , therefore at the 0th order, 

𝑝
(𝑖−1)
2,0 = 0. As discussed in subsection 2.3, this means that the 0th order 

solution for phase 2 is approaching a near-vacuum state. Using again 
the stiffened gas EOS for phase 2 in place of the perfect gas EOS, inter-

nal energy can be expanded as follows:

𝑒2 =
𝜂2
𝛽2𝜌2,0

+𝑂(𝑀2). (117)

After expanding all the variables in eq. (116), we obtain:

𝜂2
𝛽2
𝛼
(𝑖)
2,0 =

𝜂2
𝛽2
𝛼
(𝑖−1)
2,0 − Δ𝑡𝑎̃𝑙,𝑖−1

𝜂2
𝛽2
𝛼
(𝑖−1)
2,0 𝜕𝑥𝑢

(𝑖−1)
2,0 (118)

From this, assuming periodic (or fixed) boundary conditions, we obtain 
the asymptotic limit for the explicit part of our scheme for the weakly 
compressible phase:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(𝛼2,0𝜌2,0)(𝑖) = (𝛼2,0𝜌2,0)(𝑖−1) − Δ𝑡𝑎̃𝑙,𝑖−1𝛼
(𝑖−1)
2,0 𝑢

(𝑖−1)
2,0 𝜕𝑥𝜌

(𝑖−1)
2,0

(𝛼2,0𝜌2,0𝑢2,0)(𝑖) = (𝛼2,0𝜌2,0𝑢2,0)(𝑖−1)−Δ𝑡𝑎̃𝑙,𝑖−1𝛼
(𝑖−1)
2,0 𝑢

(𝑖−1)
2,0 𝜕𝑥

(
𝜌2,0𝑢2,0

)(𝑖−1)
− Δ𝑡𝑎̃𝑙,𝑖−1𝛼

(𝑖−1)
2,0 𝜕𝑥𝑝

(𝑖−1)
2,2

+ Δ𝑡𝑎̃𝑙,𝑖−1𝑝
(𝑖−1)
𝐼,0 𝜕𝑥𝛼

(𝑖−1)
2,2

𝛼
(𝑖)
2,0 = 𝛼

(𝑖−1)
2,0 − Δ𝑡𝑎̃𝑙,𝑖−1𝑢

(𝑖−1)
𝐼,0 𝜕𝑥𝛼

(𝑖−1)
2,0

𝜕𝑥𝑢
(𝑖−1)
2,0 =𝑂(Δ𝑡).

(119)

Since spatial and temporal discretizations are consistent, we con-

clude that given a well-prepared initial data at time step 𝑛, our numer-
ical scheme is asymptotic preserving.
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Fig. 1. Peak test case. Results at time 𝑇 = 0.0039 computed with different grid resolutions. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
6. Numerical experiments

In this section we present a collection of numerical experiments in 
both one and two-dimensions. In order to demonstrate the capabilities 
of our all-Mach scheme, numerical experiments are conducted both in 
the highly compressible regime and in the incompressible (low-Mach) 
limit.

Unless otherwise stated, all simulations are performed using a sec-

ond order scheme with HLL numerical fluxes, piecewise linear recon-

struction of primitive variables, minmod slope limiter and the Courant 
number is 𝐶 = 0.8.

6.1. Single phase flow

We start presenting some numerical results for single phase flows. 
In our numerical scheme, single phase flows can be simulated by using 
the same fluid properties, by assigning the same initial condition to all 
phases and setting volumetric fraction to a constant value in whole com-

putational domain. In such cases, it is trivial to show that each phase 
and mixture quantities obey the standard compressible Euler equations. 
Since our numerical method is consistent with model equations, this 
behavior is maintained also at the discrete level, and our numerical 
scheme becomes de-facto an all-Mach solver for single-phase compress-

ible flows.

6.1.1. Peak

The first test in the highly compressible regime consists of a Rie-

mann problem whose solution is characterized by a narrow density peak 
which is hard to capture accurately. The initial condition is given by:
14

𝜌𝐿 =0.1261192, 𝑢𝐿 =8.9047029, 𝑝𝐿 =782.92899,
Table 1

Errors computed in 𝐿1 norm and estimates of spatial conver-

gence rate.

N 𝜌 𝑝 𝜌𝑢

error order error order error order

400 0.313 — 4.962 — 3.778 —

800 0.241 0.373 2.976 0.737 2.874 0.394

1600 0.174 0.468 1.703 0.805 2.058 0.482

3200 0.122 0.513 0.962 0.823 1.434 0.520

6400 0.084 0.540 0.515 0.901 0.982 0.546

𝜌𝑅 =6.591493, 𝑢𝑅 =2.2654207, 𝑝𝑅 =3.1544874,

and the initial discontinuity is located at 𝑥0 = 0.5.

In Fig. 1 the numerical solutions at time 𝑇 = 0.0039 are com-

pared with the exact solution. Numerical solution is computed using 
a first order scheme (Rusanov fluxes) and free-flow boundary condi-

tions. In Table 1, we report the order of convergence of our method 
for density, momentum and pressure computed on computational grids 
of different sizes (from 400 to 6400 computational cells). The error 
(𝑒) between the numerical and exact solutions is computed in 𝐿1
norm. The (asymptotic) order of convergence is estimated as: 𝜃𝑖 =
log(e𝑖∕e𝑖+1)∕log(Δ𝑥𝑖∕Δ𝑥𝑖+1) and is reported in Table 1.

6.1.2. Colella blast wave

The second test case in the highly compressible regime is the 
Woodward-Colella blast wave ([31] and [38]). Due to the strong inter-

action between shocks and rarefaction waves, this test case represents 
a golden standard to assess the robustness of a numerical scheme. This 

problem is characterized by the interaction between shock/rarefaction 
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Fig. 2. Colella Blast Wave test case. Results at time 𝑇 = 0.038 for different grid resolutions.
waves resulting from two Riemann problems solved in the interval 
𝑥 ∈ [0, 1]. The initial conditions are:

𝜌𝐿 =1.0, 𝑢𝐿 =0.0, 𝑝𝐿 =1000., if 0.0 ≤ 𝑥 ≤ 0.1

𝜌𝐶 =1.0, 𝑢𝐶 =0.0, 𝑝𝐶 =0.01, if 0.1 < 𝑥 ≤ 0.9

𝜌𝑅 =1.0, 𝑢𝑅 =0.0, 𝑝𝑅 =100. if 0.9 < 𝑥 ≤ 1.0

For this test case we use a first order scheme (Rusanov fluxes) and 
reflective boundary conditions. Fig. 2 shows the numerical solution at 
final integration time 𝑇 = 0.038 computed on several computational 
grids with a resolution ranging from 100 to 1600 computational cells.

As shown in Fig. 2, our numerical scheme is able to robustly simulate 
all the (non-linear) interactions between waves and wall reflections. 
From a qualitatively point of view our numerical solution agrees very 
well with benchmark results reported in [38] as the computational grid 
is refined.

6.1.3. Gresho vortex

To demonstrate the accuracy of our method in the incompressible 
limit, we now present a numerical experiment in the low-Mach regime. 
We compute the numerical solution of the Gresho vortex ([39], [40]

and [41]), a known stationary solution of the compressible Euler equa-

tions. This test case consists of a rotating vortex where centripetal forces 
are balanced exactly by pressure gradients. The vortex is centered at 
(0.5, 0.5) and the computational domain is [0, 1]2. The steady solution 
is given by:

𝐮 = 𝐞𝜃

⎧⎪⎨5𝑟, 𝑟 ≤ 0.2
2 − 5𝑟, 0.2 < 𝑟 < 0.4 (120)
15

⎪⎩0, otherwise
𝑝 =
⎧⎪⎨⎪⎩
𝑝𝑐 + 25𝑟2∕2, 𝑟 ≤ 0.2
𝑝𝑐 + 4ln(5𝑟) + 4 − 20𝑟+ 25𝑟2

2 , 0.2 < 𝑟 < 0.4
𝑝𝑐 + 4ln(2) − 2, otherwise

(121)

The density is uniform 𝜌 = 1, 𝑝𝑐 =
1

𝛾𝑀2 − 1
2 , 𝛾 = 5∕3 and 𝑟 =√

𝑥2 + 𝑦2 is the radial coordinate. The flow regime (low vs. high 
compressible) can be controlled by adjusting the numerical value of 
the Mach number, 𝑀 . Numerical solution is computed using periodic 
boundary conditions and a computational grid of 80 × 80 cells. Fig. 3a 
shows the numerical solution obtained for 𝑀 = 0.01 at the final inte-

gration time, 𝑇 = 3 compared to the initial condition. Fig. 3b shows 
the vortex profile along the horizontal center-line of the computational 
domain at different final times.

As can be observed in Fig. 3, despite a small amount of numerical 
dissipation, the second order numerical scheme is capable of maintain-

ing the vortex profile almost intact, even for long integration times. To 
further check the quality of the solution, we monitor the loss of kinetic 
energy. In Fig. 4 we show the ratio between the initial kinetic energy 
𝐸𝑘𝑖𝑛,0 and the kinetic energy at different times 𝐸𝑘𝑖𝑛,𝑡. The ratio between 
the initial and the final value is 0.8576 meaning that around 14% of the 
kinetic energy is dissipated due to the numerical integration. In Table 2, 
we report an estimate of the convergence order of our scheme. The er-

ror is computed by comparing the numerical solution at time 𝑇 = 1 with 
the exact solution (120) and (121).

6.2. Two-phase flow

In this section, we present some numerical experiment for two-phase 

flows both in the compressible and incompressible regime.
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Fig. 3. Temporal evolution of the Gresho vortex.
Fig. 4. Time evolution of the loss of kinetic energy.

Table 2

Errors computed in 𝐿1 norm and estimates of the spatial convergence rate.

N 𝑀𝑎𝑐ℎ 𝑝 𝐸

error order error order error order

20 × 20 0.001 — 1.080e-1 — 1.736e-1 —

40 × 40 4.790e-4 1.196 1.641e-2 2.719 2.968e-2 2.548

80 × 80 2.317e-4 1.047 5.308e-3 1.628 9.140e-3 1.699

160 × 160 1.078e-4 1.102 1.675e-3 1.663 3.750e-3 1.285

320 × 320 4.072e-5 1.405 4.375e-4 1.937 8.593e-4 2.125

6.2.1. Water air shock tube

The first test case is taken from [23] and consists of a tube filled with 
highly pressurized liquid water (left-hand side of the computational do-

main) and air (right-hand side). Due to the strong pressure imbalance 
between phases, numerical methods which do not account for pressure 
relaxation fail after few time steps. In this scenario, when phasic pres-

sures are estimated with poor accuracy, spurious oscillations appear 
in the numerical solution which may lead to negative values for pres-

sure and therefore cause numerical instabilities. For these reasons, the 
water-air shock tube problem represents a good benchmark to assess 
both accuracy and robustness of our numeric scheme.

Each phase is governed by the equation of state for stiffened gas. The 
initial data and constants for liquid water (subscript 𝑙) and air (subscript 
16

𝑔) are:
𝜌𝑙 =1000kg/m3, 𝑝𝑙 =109 Pa, 𝑢𝑙 =0m/s, 𝛽𝑙 =3.4,

𝜂𝑙 =2.64 ⋅ 109 Pa, 𝜌𝑔 =1kg/m3, 𝑝𝑔 =105 Pa,

𝑢𝑔 =0m/s, 𝛽𝑔 =0.4, 𝜂𝑔 =0Pa

Volumetric fractions at the initial time are given by:

𝛼𝑙 =

{
1 − 𝜀, if 𝑥 < 0.7
𝜀 otherwise

where 𝜀 = 10−8 and 𝛼𝑔 = 1 − 𝛼𝑙 .
Note that, in addition to the strong pressure and density difference 

between phases, right and left states at initial time contain almost pure 
phases. This represents the equivalent of near-vacuum states in the stan-

dard compressible Euler equations. For this test case, we use free-flow 
boundary conditions and instantaneous velocity and pressure relax-

ations. Fig. 5 shows the numerical solution at time 𝑇 = 229 𝜇s computed 
on a computational grid of 1600 cells.

Our numerical solution is characterized by a significant numerical 
dissipation at the material interface (Fig. 5a). This is due to the fact 
that in the highly compressible regime our numerical scheme is equiva-

lent to a standard explicit finite volume method, where the time step is 
controlled by the speed of fastest waves (typically associated to the least 
compressible phase). Consequently, waves traveling at a much smaller 
speed (e.g. contact discontinuities) are affected by significant numerical 
dissipation. Nonetheless, results obtained with our numerical scheme 
are consistent with those in [23].

6.2.2. Sedimentation

This test case represents a simplified setup for the separation process 
of a heavy and a light phase (subscript 𝑙 and 𝑔, respectively) under 
the effect of gravity (see [42] and [43]). The goal of this test case is 
to assess the capabilities of our numerical scheme to resolve counter-

current flows in regions characterized by small volumetric fractions and 
low Mach number.

The domain is one-dimensional and represents a closed vertical tube 
7.5 m long. The tube is initially filled with a stagnant mixture of heavy 
and light fluids in equal quantities, that is:

𝑢𝑙 = 𝑢𝑔 = 0m/s

𝛼𝑙 = 𝛼𝑔 = 0.5

𝑝𝑙 = 𝑝𝑔 = 105 Pa.

The equation of state for perfect gases is used for both phases. The 
ratio of specific heats is 𝛾𝑔 = 1.4 and 𝛾𝑙 = 4.4, respectively. Reflec-
tive boundary conditions are used to simulate closed wall. The gravity 
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Fig. 5. Water-air shock tube. Numerical solution at 𝑇 = 229μs.
constant is set to g = 9.81 m/s2. Finally, densities for both phases are 
𝜌𝑙 = 3 kg/m3 and 𝜌𝑔 = 1 kg/m3.

For this test case, we are interested in the final steady state, where 
the heavy phase is precipitated in the bottom half of the domain, while 
the light phase occupies the upper half of the tube. The corresponding 
profile of volumetric fractions is characterized by a (steady) discontinu-

ity approximately located in the middle of the computational domain.

For this test case, we employ a instantaneous pressure relaxation 
model. However, both phases are allowed to have different velocities. 
Numerical results are obtained using a computational grid of 100 cells 
and a fixed ratio Δ𝑡∕Δ𝑥 = 6.0𝑒 − 4 as done in [42].

Fig. 6a shows the time evolution of volumetric fraction for the 
gaseous phase. Again, in our numerical results, the contact discontinuity 
between phases is smeared out due to the presence of additional numer-

ical dissipation in the volumetric fraction equation. Nonetheless, at the 
final integration time, 𝑇 = 1.5 s, the numerical solution approaches the 
expected steady state. Due to small compressibility effects, the interface 
between phases is not exactly located in the middle of the computa-

tional domain. This effect is observed also by [43]. Lastly, in Fig. 6b we 
report the time evolution of the pressure profile at different time steps.

6.2.3. Water faucet

In this test case, the computational domain is represented by a 12 m
long vertical tube filled with water and air. The initial conditions for 
the liquid and gas are:

𝑢𝑙 =10m/s 𝜌𝑙 =1000kg/m3 𝛼𝑙 =0.8 𝑝𝑙 =105 Pa

𝑢𝑔 =0m/s 𝜌𝑔 =1kg/m3 𝛼𝑔 =0.2 𝑝𝑔 =105 Pa

The equation of state for perfect gases is used for water vapor with 
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𝛾𝑔 = 1.4. The equation of state for stiffened gases is used for water. Nu-
merical parameters are the same as those used in the water-air shock 
tube problem. As in the previous test case, both phases are in the in-

compressible limit.

Due to the effect of gravity, a triangular wave develops in the water 
jet. As noted in [23], the Baer-Nunziato model is overly complicated 
for this problem, and other (more effective) solvers can be found in 
literature (see for instance [44]). Nonetheless, this test case is selected 
to demonstrate the capabilities of our numerical scheme to simulate 
two-phase flows also in the low-Mach regime.

To simulate the time evolution of the water faucet, instantaneous 
pressure relaxation is used, however both phases are not constrained to 
have the same velocity (as done in [23] and [42]).

Fixed water velocity 𝑢𝑙 = 10 m/s, water volumetric fraction 𝛼𝑙 = 0.8
and vapor velocity 𝑢𝑔 = 0 m/s are imposed at the top of the tube. At 
the lower boundary, a pressure outlet boundary condition is used (𝑝 =
105 Pa). The gravity constant is set to g = 9.81 m/s2.

To facilitate comparisons with numerical results reported in [42], in 
Fig. 7a, we show the volumetric fraction of vapor at time 𝑡 = 0.4 s for 
both first and second order numerical schemes (HLL numerical fluxes, 
Δ𝑡∕Δ𝑥 = 5.0𝑒 − 4 and 100 computational cells).

This problem has an analytical solution if pressure variations in the 
vapor are ignored (see [45]). The analytic expression for the volumetric 
fraction of vapor is given by:

𝛼𝑒𝑔(𝑥, 𝑡) =
⎧⎪⎨⎪⎩
1 −

𝛼𝑒
𝑙
𝑢𝑒
𝑙√

2𝑔𝑥+(𝑢𝑒
𝑙
)2
, if 𝑥 ≤ 𝑢𝑒

𝑙
𝑡+ 𝑔𝑡2

2

0.2, otherwise,

(122)

where 𝑢𝑒
𝑙
= 10 m/s and 𝛼𝑒

𝑙
= 0.8. Lastly, the time evolution of liquid 
velocity along the tube at various time step is shown in Fig. 7b.
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Fig. 6. Sedimentation test. Volumetric fraction and pressure profiles at different time steps.
Once again, our numerical results are in agreement with those pre-

sented in [42] and [23], and our numerical scheme is capable of simu-

lating correctly the transient dynamics also in the incompressible limit.

6.2.4. Rayleigh-Taylor instability

The Rayleigh-Taylor instability is encountered in a broad range of 
industrial and natural processes, such as plasma fusion reactors and 
ocean dynamics. The instability takes place at the interface between 
two fluids with different densities, and arises when a small perturbation 
appears at the material interface which separates a heavy fluid (located 
in the top half region of the domain) from a light fluid (bottom half 
of the computational domain). Due to the effect of gravity, the heavy 
fluid (subscript 𝑙) insinuates in the region occupied by the light fluid 
(subscript 𝑔) and pushes the lighter fluid in top half of the domain. 
During this process, the material interface is stretched and deformed 
while the system seeks to reduce the potential energy. Furthermore, 
due to the difference in the shear velocity between phases across the 
material interface, secondary instabilities develop, such as the Kelvin-

Helmholtz instability.

In this test case, the rectangular domain is a [0, 1 m] × [0, 2 m] and 
reflective boundary conditions are used to model solid walls. The initial 
data is given by:

𝜌𝑔 =1kg/m3, 𝑢𝑔 =0m/s, 𝑝𝑔 =105 Pa,

3 5
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𝜌𝑙 =5kg/m , 𝑢𝑙 =0m/s, 𝑝𝑙 =10 Pa.
The initial profile of the material interface is given by:

𝑦(𝑥) = 𝑦𝑐 +
0.02
𝜎
√
2𝜋
𝑒
− 𝑥−𝜇

2𝜎2

where 𝑦𝑐 = 1, 𝜎 = 0.08 and 𝜇 = 0.5.

In the lower part of the domain 𝛼𝑔 = 1 − 𝜀, while in the upper part 
𝛼𝑔 = 𝜀 and 𝜀 = 10−4. The equation of state for perfect gasses is used for 
the light fluid, while the stiffened EOS with 𝜂𝑙 = 5 ⋅ 105 Pa is used for 
the heavy phase. The gravity constant is set to g = 90 m/s2 to produce 
an accelerated dynamic of the material interface.

To simulate the dynamic of this instability, instantaneous pressure 
and velocity relaxations are used. The computational grid consists of 
300 ×600 cells. In Fig. 8, we see the development of the primary instabil-

ity as well as some secondary Kelvin-Helmholtz instabilities appearing 
in later time steps due to the difference in the shear velocity between 
the two phases.

6.2.5. Bubble drop

This test can be found in [8] and describes the dynamic of a heavy 
bubble (subscript 𝑙) dropping inside a lighter fluid (subscript 𝑔) under 
the effect of gravity (g = 90 m/s2 for this case). This test case represents 
a benchmark to assess the capability of a numerical scheme to simu-

late two-phase flows characterized by very low Mach numbers, while 
preserving at the same time a moving contact discontinuity.

For this test case the computational domain is a closed box of dimen-
sions [0, 1 m] × [0, 2 m]. The bubble is initially located at (0.5 m, 1.7 m)
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Fig. 7. Water faucet test case.
and has a radius of 0.2 m. Reflective boundary conditions are imposed 
at solid walls. The initial conditions are:

𝜌𝑔 =1kg/m3, 𝑢𝑔 =0m/s, 𝑝𝑔 =105 Pa

𝜌𝑙 =4kg/m3, 𝑢𝑙 =0m/s, 𝑝𝑙 =105 Pa

everywhere. Volume fractions are 𝛼𝑙 = 1 −𝜀 inside the bubble and 𝛼𝑙 = 𝜀
outside, with 𝜀 = 10−4. Perfect gas EOS is used for both fluids with 
𝛾𝑔 = 1.4 and 𝛾𝑙 = 4.4. In Fig. 9 the time evolution of the bubble is shown 
on a computational grid of 50 × 100 cells as done in [8]. Note that in 
the long run, numerical dissipation affects the solution and blurs the 
bubble profile. This happens to a lower extent also in [8]. Nonetheless, 
the interface instabilities are still visible at the final integration time. 
In Fig. 10, the same test case is reproduced on a finer grid of 200 × 400
cells and shows a sharper resolution of the contact interface.

6.2.6. Dam break

The dam break test is another problem involving unsteady flows 
in the weakly compressible regime (see [10], [8], [46]). The ini-

tial configuration consists of a water column (subscript 𝑙) located in 
the region [0, 0.06 m] × [0, 0.12 m]. Water is surrounded by air (sub-

script 𝑔). The computational domain is a closed box of dimensions 
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[0, 0.5 m] × [0, 0.15 m] and the initial condition is:
𝜌𝑔 =1kg/m3, 𝑢𝑔 =0m/s, 𝑝𝑔 =105 Pa

𝜌𝑙 =1000kg/m3, 𝑢𝑙 =0m/s, 𝑝𝑙 =105 Pa.

Volumetric fractions at the initial time are 𝛼𝑙 = 1 − 𝜀 inside the col-

umn and 𝛼𝑙 = 𝜀 in the rest of the domain, with 𝜀 = 10−3. The equation 
of state for perfect gases is used for air with 𝛾𝑔 = 1.4. The equation of 
state for stiffened gases is used for water. Numerical parameters are the 
same as those used in the water-air shock tube problem. As in the pre-

vious test case, both phases are in the incompressible limit. Under the 
effect of gravity (𝑔 = 9.81 m/s2), the heavy column collapses and moves 
to the right region of the domain producing a sloshing dynamics. The 
computational domain is discretized with 200 × 60 cells, and reflective 
boundary conditions are applied at domain boundaries.

Fig. 11 shows the volumetric fraction of the liquid phase at times 
𝑡 = 0 s, 0.066 s, 0.109 s, 0.164 s, 0.222 s, 0.281 s. Again the contact disconti-

nuity is smeared out due to the effect of numerical dissipation, however 
the sloshing dynamics is still visible.

6.2.7. Bubble ascension

This test case is found in [10] and [8]. It describes the ascension 
of a light air bubble (subscript 𝑔) inside a closed box filled with water 
(subscript 𝑙) under the effect of gravity (g = 9.81 m/s2). This test case 
presents several numerical difficulties. It is characterized by very low 

Mach numbers (equal to zero at time 𝑡 = 0 s and increasing up to 10−1
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Fig. 8. Rayleigh-Taylor instability, volume fractions at different time steps.

Fig. 9. Dropping bubble. Time evolution of volumetric fraction (coarse grid).
during the simulation) and a density ration between the two fluids equal 
to 1000 (𝜌𝑔 = 1 kg/m3 and 𝜌𝑙 = 1000 kg/m3).

For this test case the computational domain has dimensions [0, 2 m] ×
[0, 2 m]. The bubble is initially located at (1.0 m, 0.3 m) and has a radius 
of 0.2 m. Reflective boundary conditions are imposed at solid walls. At 
the beginning of the simulation fluids are at rest and the pressure field 
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has an hydrostatic profile. Volume fractions are 𝛼𝑔 = 1 − 𝜀 inside the 
bubble and 𝛼𝑔 = 𝜀 outside, with 𝜀 = 10−3. Perfect gas EOS is used for 
air with 𝛾𝑔 = 1.4. Stiffened gas EOS is used for water with the same pa-

rameters as those used in the water-air shock tube problem. In Fig. 12

the time evolution of the bubble is shown on a computational grid of 
400 × 400 cells. As for the other tests, in the long run, numerical dis-

sipation affects the solution and blurs the bubble profile. Nonetheless, 

the interface instabilities are still visible at the final integration time.
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Fig. 10. Dropping bubble. Time evolution of volumetric fraction (fine grid).

7. Conclusions

In this work, we propose a well-balanced Implicit-Explicit Runge-

Kutta numerical scheme for the efficient simulation of the Baer-

Nunziato model at all-Mach regimes. The numerical method is based on 
the explicit treatment of non-stiff terms, while stiff terms are kept im-

plicit to remove the time step restriction stemming from acoustic waves. 
By introducing suitable linearizations in the semi-discrete energy equa-

tion obtained in the framework of a IMEX-RK time discretization, a 
predictor-corrector scheme was derived where the implicit contribution 
of pressure waves is accounted for by solving a system of non-linear 
elliptic equations in the unknown phasic pressures. A well-balanced 
discretization of non-conservative terms was also introduced, resulting 
in a numerical scheme capable of preserving steady-state solutions, in-

cluding the so-called “lake-at-rest” state. Finally, we proved that our 
numerical scheme is asymptotic-preserving. Compared to standard ex-

plicit finite volume schemes, the time step of our method is driven by 
the mean flow velocity and not by the speed of acoustic waves. More-

over, the proposed approach is characterized by a lower computational 
complexity if compared to fully (monolithic) implicit schemes, since 
the implicit correction only requires to solve a system of non-linear el-

liptic equations. Numerical results demonstrate the capabilities of our 
numerical scheme to correctly capture shocks in the high Mach regime 
as well as to efficiently simulate flows at low Mach numbers.

In future work, the scheme will be generalized to cope with more 
general and non-linear EOS. We aim at extending the scheme by includ-

ing other approximate Riemann solvers to achieve sharper resolution of 
contact discontinuities and material interfaces.
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Fig. 12. Bubble ascension. Time evolution of volumetric fraction of the gasnon phase.
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