
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Explaining deep convolutional models by measuring the influence of interpretable features in image classification /
Ventura, Francesco; Greco, Salvatore; Apiletti, Daniele; Cerquitelli, Tania. - In: DATA MINING AND KNOWLEDGE
DISCOVERY. - ISSN 1573-756X. - (2023). [10.1007/s10618-023-00915-x]

Original

Explaining deep convolutional models by measuring the influence of interpretable features in image
classification

Publisher:

Published
DOI:10.1007/s10618-023-00915-x

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2975913 since: 2023-02-10T16:47:54Z

Springer



Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-023-00915-x

Explaining deep convolutional models by measuring the
influence of interpretable features in image classification

Francesco Ventura1 · Salvatore Greco1 · Daniele Apiletti1 ·
Tania Cerquitelli1

Received: 15 June 2021 / Accepted: 2 January 2023
© The Author(s) 2023

Abstract
The accuracy and flexibility of Deep Convolutional Neural Networks (DCNNs) have
been highly validated over the past years. However, their intrinsic opaqueness is still
affecting their reliability and limiting their application in critical production systems,
where the black-box behavior is difficult to be accepted. This work proposes EBAnO,
an innovative explanation framework able to analyze the decision-making process
of DCNNs in image classification by providing prediction-local and class-based
model-wise explanations through the unsupervised mining of knowledge contained
in multiple convolutional layers. EBAnO provides detailed visual and numerical
explanations thanks to two specific indexes that measure the features’ influence and
their influence precision in the decision-making process. The framework has been
experimentally evaluated, both quantitatively and qualitatively, by (i) analyzing its
explanations with four state-of-the-art DCNN architectures, (ii) comparing its results
with three state-of-the-art explanation strategies and (iii) assessing its effectiveness
and easiness of understanding through human judgment, bymeans of an online survey.
EBAnO has been released as open-source code and it is freely available online.
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1 Introduction

Modern decision-making processes have been highly improvedwith the advent ofArti-
ficial Intelligence’s deep learning models (e.g., deep neural networks). Natural image
understanding is one of the fields that benefited the most from these research efforts,
with the introduction of even more accurate and complex Deep Convolutional Neural
Networks (DCNN) (Simonyan andZisserman 2015; Szegedy et al. 2016, 2017), estab-
lishing new standards in many machine-learning tasks. However, the decision-making
process of DCNN models is still far from being understood by its users since it is a
black-box, as widely highlighted by several researchers (Guidotti et al. 2018; Lepri
et al. 2017; Ribeiro et al. 2016). Moreover, it is commonly known that deep black-box
models require a huge amount of data to be trained, usually generated and evaluated
by people, increasing the risk of inheriting various forms of human prejudice and
bias (Lepri et al. 2017; Bolukbasi et al. 2016; Ribeiro et al. 2016). The critical social
impacts that deep AI models are causing on our modern society stimulate the advance-
ments in the eXplainable Artificial Intelligence (XAI) field of research (Confalonieri
et al. 2021). Many researchers are devoting efforts to explainable and interpretable
approaches, from the classification of structured and unstructured data (Datta et al.
2016; Ribeiro et al. 2016; Lundberg and Lee 2017), to recommendation systems (Lin
et al. 2020), and knowledge discovery (Yeo et al. 2020).

In the literature of explanation frameworks, applicable to the image processing
domain, both model-agnostic and domain-specific approaches are available. Model-
agnostic solutions (Ribeiro et al. 2016; Lundberg and Lee 2017) are general-purpose
and sometimes they propose visual and numerical explanations. However, their gener-
ality often limits the quality and the reliability of the provided explanations, especially
when complex neural networks are used since they are not able to mine the knowl-
edge contained in the model under analysis. Domain-specific solutions (Selvaraju
et al. 2019; Petsiuk et al. 2018; Simonyan et al. 2014), on the other hand, typically
exploit shallow model information (i.e., few network layers) and often provide only
prediction-local visual explanations. Furthermore, very few works validate their solu-
tions considering humans’ feedback (Ribeiro et al. 2016) to assess the quality and
the ease of understanding of the provided explanations. Nevertheless, explanation
frameworks are built for humans, so their validation is crucial.

To bridge such gaps, we propose EBAnO (Explaining BlAck-box mOdels), an
innovative explanation framework able to analyze the decision-making process of con-
volutionalmodels providing prediction-local and class-basedmodel-wise explanations
through unsupervised mining of the inner knowledge contained in multiple layers of
the DCNN. EBAnO provides both visual and numerical explanations, enabling both
expert and non-expert users to better understand the reasons behind the predictions
by projecting them on the input image. The main contributions of this work can be
summarized as follows.
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– The design of a novel explanation process exploiting the inner knowledge of mul-
tiple convolutional layers simultaneously.

– The introduction of a new index (nPIRP) to efficiently quantify both the influence
and the precision of the input features w.r.t a given prediction.

– The unsupervised extraction of interpretable features easily understandable by
humans and projected on the input image.

– The computation of informative class-based model-wise explanations.
– Qualitative human validation of the effectiveness and easiness of understanding
of EBAnO’s explanations through an online survey.

– Quantitative validation of the proposed approach, producing almost 10,000 expla-
nations for four state-of-the-art DCNNs on 250 input images.

– Qualitative, quantitative, and human-based comparison of EBAnO with state-of-
the-art explanation tools, i.e., LIME (Ribeiro et al. 2016), Grad-CAM (Selvaraju
et al. 2019), and Shapley values (Štrumbelj and Kononenko 2014).

EBAnO’s open-source code repository, an interactive library of explanations pro-
duced by EBAnO, and the online survey proposed to the users are available online.1

The rest of the paper is organized as follows. Section 2 presents the XAI state-
of-the-art. Sections 3, 4, 5, 6, and 7 describe the local-explanation, while Sect. 8
the model-global explanations processes implemented in EBAnO. Then, Sect. 10
reports the experiments, the qualitative and quantitative comparisons, and the human
validation results. Sect. 11 discusses the current limitations of the framework. Finally,
Sect. 12 provides conclusions and proposes future works.

2 Related work

More and more decisions, often critical and socially impacting, are taken by com-
plex, intrinsically black-box, machine-learning models (Lepri et al. 2017). Thus,
new explainable and interpretable approaches are starting to spread, highlighting the
importance of the eXplainable Artificial Intelligence (XAI) in several domains. Many
effective solutions have already been proposed, especially to explain in the domain of
structured data (Proença and vanLeeuwen2020;Yeo et al. 2020), and recommendation
systems (Díez et al. 2020; Zheng et al. 2019; Lonjarret et al. 2020).

Thiswork focuses on the explanation of visual information processing performedby
Deep Convolutional Neural Networks (DCNNs), a family of neural networks widely
spread in computer vision (Simonyan andZisserman 2015; Szegedy et al. 2016, 2017).
In this section, we discuss the state-of-the-art explainability techniques, with a specific
focus on those suitable for DCNN and computer vision.

2.1 Model-agnostic approaches

Some of the most promising efforts in the XAI field have already been collected in
Guidotti et al. (2018); Adadi and Berrada (2018) where the authors try to explore and

1 https://ebano-ecosystem.github.io.
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analyze all the possible requirements that an explanation process should be able to
fulfill.

Several techniques exploited by data scientists when dealing with black-box mod-
els are model-agnostic explainability approaches, like LIME (Ribeiro et al. 2016) and
SHAP (Lundberg and Lee 2017). In particular, LIME (Ribeiro et al. 2016) allows
to produce a prediction-local explanation of any predictive model, and it applies to
both structured and unstructured data (e.g., image, text); to compute the local expla-
nation, LIME performs a local approximation of the prediction, training a simpler and
interpretable local model around small variations of the input data. SHAP (Lundberg
and Lee 2017) proposes a unified approach to interpret local predictions produced by
any machine learning model. SHAP is based on the idea of collaborative contribution
coming from theGame Theory, measured by exploiting the concept of Shapley Values
(Shapley 1953). Thus, in the prediction process, the model outcomes are considered as
a collaborative contribution of the elements that compose the input data and the local
explanation is given by the measure of the contribution of each feature in the predic-
tion task. A further contribution in model agnostic prediction-local explanations for
structured data (i.e., tabular data) is proposed in Rajapaksha et al. (2020) by exploiting
an association rule mining approach to extract not only the rules that are supporting
the current prediction but also the ones that are contradicting it and the associations
that the model would require to change its outcome. However, while association rule
approaches are suitable for structured problems, they have limited applications on the
explanation process of machine learning tasks on unstructured data (e.g. image classi-
fication). Moreover, Kliegr et al. (2021) shows, from a psychological perspective, how
interpretable machine learning models, and in particular logical rules, can be affected
by cognitive biases. Consequently, also rule-based explanations could be affected by
them.

Model agnostic techniques are really powerful and simple to use in many domains,
but often they provide very approximate explanations, limiting their reliability in
critical contexts. They are not able to analyze the prediction process taking advantage
of the information contained in the model under analysis and to give specific outcomes
taking into account the domain of interest. For these reasons,EBAnO leverages domain
knowledge (i.e., DCNN for image classification) to producemore effective and reliable
explanations.

2.2 Domain-specific approaches

Image understanding requires more domain-specific approaches, enabling the pro-
duction of even more accurate and reliable explanations. To study the behavior of a
DCNN during the prediction process taking advantage of the knowledge contained
in the model itself, two types of approaches are the most common: (i) studying the
model inner behavior, layer by layer, visualizing their output and trying to infer the
details of the process that brought the model to a specific decision or (ii) exploiting the
information produced by the model during the prediction phase to understand which
are the portions of the input that mostly affect the decision process.
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Several interesting approaches based on a graphical analysis of the network’s neu-
rons, inspecting the architecture of different convolutional layers through visualization
techniques, have been proposed and summarized in Seifert et al. (2017). The effective-
ness of this family of techniques is out of doubt when dealing with small architectures
but they became nearly not applicable as the complexity of the network grows. Even
more important, the prediction process analysis through these graphical techniques is
strictly oriented to technical and domain expert users, limiting their applicability in
many areas of interest.

On the contrary, many approaches proposed in literature aim to understand which
portions of the input mostly affect the decision process (Binder et al. 2016; Simonyan
et al. 2014; Fong and Vedaldi 2017; Zhang et al. 2018; Petsiuk et al. 2018; Sel-
varaju et al. 2019; Sundararajan et al. 2017; Selvaraju et al. 2019; Bach et al. 2015;
Smilkov et al. 2017; Shrikumar et al. 2017). (Simonyan et al. 2014) explores strate-
gies to produce (i) prediction-local explanations exploiting the inner information of
the model, visualizing the portions of the input mostly characterizing the prediction
through saliency maps and (ii) class-local explanations exploiting the CNN model
under analysis to generate class-related images to maximize the probability of the
class-of-interest. The authors in Binder et al. (2016) propose an extension of LRP
(Bach et al. 2015), a technique which allows decomposing the prediction of a DNN
into feature relevance scores, suitable for local normalization layers’ non-linearity
in convolutional neural networks exploiting Deep Taylor Decomposition (Montavon
et al. 2015). SPRAY (Lapuschkin et al. 2019), instead, exploits Spectral clustering
on LRP (Bach et al. 2015) explanations to globally explain models over large-scale
datasets identifying typical and atypical patterns in the heatmaps. Zhang et al. (2018)
studies how to modify traditional CNNs to make them self explainable, leveraging the
idea that each convolutional layer should be activated only by a certain object part
belonging to a specific category and highlighting the object parts with feature maps.
Fong and Vedaldi (2017) proposes a paradigm that learns the minimally salient part
of an image, finding the smallest perturbation mask that brings down the classifica-
tion score. RISE (Petsiuk et al. 2018) analyses the effect of perturbing randomized
input samples to produce prediction-local explanation in a general fashion, without
taking into account the internals of themodel under analysis, andmeasuring the effects
that the deletion and insertion of input pixels have on the outcomes of the prediction
process.

Many approaches available in literature exploit the concept of input perturbation
to analyze the model reactions, like Alvarez-Melis and Jaakkola (2017); Ventura et al.
(2018); Lundberg and Lee (2017); Ribeiro et al. (2016); Selvaraju et al. (2019); Fong
and Vedaldi (2017). This idea, however, requires that the input features to be perturbed
contain meaningful information for the model, otherwise the perturbation will not be
able to highlight the importance of the perturbed portion of the image in the prediction
process. Different from most of the perturbation-based approaches that create and
evaluate a very large number of small perturbations, EBAnO implements a feature
extraction process itself that extracts more effective features directly from the latent
information hidden into the layers of the model. Therefore, EBAnO overcomes one
of the major limitations of most of the perturbation-based techniques, i.e., the quality
of their explanations depends on the number of perturbations tested, being inefficient.
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Indeed, EBAnO perturbs the right portions of the input directly as a result of the
unsupervised analysis of the input layers.

In contrast, other approaches compute features importance by back-propagating the
predictions through each layer of the network until input pixels (Selvaraju et al. 2019;
Sundararajan et al. 2017; Bach et al. 2015; Smilkov et al. 2017; Shrikumar et al. 2017;
Kapishnikov et al. 2019). For instance, Grad-CAM (Selvaraju et al. 2019) proposes
a gradient-based saliency approach to produce prediction-local explanations. It is
based on the study of the gradient output of the last convolutional layer in a DCNN,
generalizing the approach proposed in Zhou et al. (2016): it produces a saliency map
that highlights the specific regions of the input that are mostly characterizing the
prediction. Grad-CAM (Selvaraju et al. 2019) has been tested in a wide range of use
cases showing its generality and it has been human-validated to assert the clearness
of the produced explanations. However, this family of explanations, despite being
more efficient in terms of complexity and runtime than perturbation-based methods,
are often affected by noisy gradients (e.g., importance value assigned to neighboring
individual pixels is affected by high-frequency variations) or issues with some typical
layers frequent in CNN such as max pooling (Ancona et al. 2019).

Unlike most of the techniques discussed above, defined as feature-based explana-
tions, the concept-based explanations attempt to provide explanations in the form of
high-level human-readable concepts (Ghorbani et al. 2019; Yeh et al. 2020; Kim et al.
2018). TCAV (Kim et al. 2018) is a perturbation-based global explanation method
that generates explanations by measuring the importance of human-defined concepts.
Specifically, it extracts the class activation vector (CAV) by training a binary linear
classifier using some positive and negative examples of the concept and extracting
its weights. Then, it computes the directional derivates of the model’s predictions
with respect to the class activation vector to quantify the per-concept feature impor-
tance. One weakness of the approach is that the choice of examples is subjective and
strictly affects the explanations produced (and could be influenced by human biases).
ACE (Ghorbani et al. 2019) is a similar approach that, instead of the human choice
of concept samples, relies on unsupervised clustering analysis of different resolution
segments extracted from the set of images exploiting an ImageNet-trained CNN.How-
ever, it requires a further black-box model that could not reflect the feature learned
by the model to be explained, especially in domain-specific tasks (i.e., with images
really different from ImageNet). ConceptSHAP (Yeh et al. 2020) adapts Shapley val-
ues (Shapley 1953) to assign importance to each concept, and defines a completeness
score to measure how sufficient are the concepts in explaining the model. However,
being only global techniques, these methodologies are not able to explain in an effec-
tive and simple way the specific reasons behind single predictions, but only to globally
explain the model.

Finally, other new emerging approaches attempt to produce expressive and verbal
explanations. For instance, Rabold et al. (2020) extracts relational information from
the inner layers of a DCNN to build an expressive global explanation by combining
concept analysis and inductive logic programming, supporting the idea that expla-
nations looking directly in the inner latent space of the model to extracts semantic
concepts (features) are more reliable.
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In conclusion, EBAnO is a domain-specific and perturbation-based methodol-
ogy to locally and globally explain deep convolutional neural networks for image
classification. It exploits the hidden internal knowledge of the model by mining the
embedding representation (i.e., Hypercolumns) to produce more faithful, reliable and
human-readable explanations without relying on or training any additional classifier.
Moreover, it is able to visualize and measure the impact of both positively and nega-
tively influential features, exploiting two quantitative indices to measure the influence
and the precision. It is a big step forward from a preliminary idea described in Ventura
et al. (2018), and partially applied, as a completely different solution, in the Natural
Language Processing context (Ventura et al. 2022).

EBAnO deeply reshapes the authors’ previous work by (i) combining the concepts
of influence relation and influence precision,2 (ii) extending the applicability of the
approach to a new domain and considering a larger variety of DCNNs, (iii) defining a
new strategy to compute the most informative explanation, (iv) revisiting the produc-
tion of the visual explanations, (v) introducing class-based model global explanations,
(vi) providing a deep qualitative, quantitative and human-subjective comparison with
the state-of-the-art approaches, and (vii) human-validating the produced prediction-
local explanations. (viii) experimentally evaluate the influence metrics on a larger
multi-class problem (e.g., up to 1000 classes).

Despite the number of works that are exploring the explainability in the context
of image understanding, further improvements are needed to fill some gaps. EBAnO
improves the state-of-the-art by introducing a new unsupervised model-aware strat-
egy that is able to (i) extract the information contained in multiple convolutional
layers, exploiting the Hypercolumns (Hariharan et al. 2015) representation, (ii) iden-
tify relevant and interpretable input features by studying the contribution of each of
them through an iterative perturbation process, (iii) quantify the positive or negative
combination of influence relation and influence relation precision for each inter-
pretable feature, (iv) produce both visual and numerical explanations (v) provide
both detailed prediction-local and class-based model-global explanations. Although
some of EBAnO’s features are present in other techniques, it encapsulates them in
a single framework to provide human-readable, reliable and effective explanations,
suitable also for both technical expert and non-expert users.

3 Explanation process overview

EBAnO provides a detailed prediction-local explanation of a black-box outcome,
given an input image and a DCNN predictive model. The prediction-local explanation
aims to explain the reasons for the specific predicted class label of the black-boxmodel
given a single instance of an input image, and its main steps are shown in Fig. 1.

Firstly, an image is given as input to the black-box DCNN model in 1 , produc-
ing the original predicted label and probabilities in 2 . Then, the hypercolumns of
the input image are extracted from the black-box model in 3 and are processed,

2 Apreliminary version of the influence relation index (nPIR) in the context ofNatural Language Processing
has been proposed in Ventura et al. (2022).
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Fig. 1 EBAnO’s local explanation process

through an unsupervised analysis, to obtain a set of interpretable features in 4 . The
interpretable features are composed of semantically related groups of pixels (with
similar inner representation extracted from the hypercolumns) representing human-
understandable concepts that similarly influenced the original labels predicted by the
model (as detailed in Sect. 4). Then, a new version of the input image is produced for
each extracted feature by introducing some noise over their pixels (one new image for
each feature) in 5 . The perturbation step is required to understand the importance of
each interpretable feature with respect to the prediction probabilities of the original
class labels by the DCNN model (details in Sect. 5.1). To this aim, the DCNN model
is presented with the perturbed images, and the different classification probabilities
are analyzed. Comparing the probabilities before and after the perturbation, we can
meet one of the following three cases.

1. Suppose the probability of belonging to a class label decreases. In that case, the
noise over pixels of the interpretable feature (that caused an absence of the associ-
ated concept) is the main responsible for this decrease. Therefore, the feature was
positively impacting (or influential) for the prediction of the original class label for
the DCNN model.

2. If, instead, the probability remains the same, then the feature was neutral in the
prediction of the class label.

3. Finally, if the probability increases, then the feature was negatively impacting the
prediction of the original class label.

The amplitude and precision of the influence of each feature are measured with two
quantitative indices ranging from -1 to +1, namely nPIR and nPIRP (as discussed in
Sects. 5.2 and 5.3). Finally, EBAnO produces the local explanation in 6 , which
consists of a numerical explanation (with the numerical indices for all the extracted
interpretable features) and a visual explanation that shows the interpretable features
over the original pixels of the image, with the corresponding influence highlighted by
a color heatmap (as detailed in Sect. 7).
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Fig. 2 Pizza input image

Table 1 Predictions for Fig. 2
with a pre-trained VGG16

Class P(c)

Bottlecap 0.42

Pizza 0.28

Bakery 0.08

Trifle 0.06

Dining table 0.03

The ground-truth label is in bold (Pizza)

Explaining the classifier’s prediction can be useful for understanding the reasons for a
possible misleading prediction and understanding if the model focused on the correct
portion of the image, even if the predicted class label is correct. Table 1 shows an
example of wrong prediction by a pre-trained VGG16 model given the input image in
Fig. 2. The black-boxmodel predicted as most probable class label Bottlecap followed
by Pizza with respectively probabilities 0.42 and 0.28 (even if the ground truth label
was pizza). Still, the black-box nature of the model hides the reasons. In this case, an
end-user can be interested in understanding the features that influenced the model’s
predictions for both the class labels. We will use this as a running example to explain
the whole methodology in the following sections.

In Sect. 4, we provide a detailed discussion on how EBAnO is able to extract
the interpretable features from the unsupervised analysis of the hypercolumns. In
Sect. 5, we discuss the measurement of the feature importance through the process
of perturbation and, in particular, we formally define the two quantitative indices that
measure the influence and precision. In Sect. 6, we show how EBAnO automatically
discovers the best possible explanation. Finally, in Sect. 7, we discuss how the final
local explanation is produced.
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4 Interpretable feature extraction

The objective of EBAnO is to identify the input pixels that mostly contribute to
the DCNN prediction. However, the single-pixel contribution does not provide inter-
pretable results and is computationally demanding. Thus, we identify the sets of
correlated pixels mostly influencing the outcome of the black-box model, yielding
more understandable results for humans since it is simpler for a human to evaluate
macro portions of an image than single pixels. Indeed, the higher is the level of the
features (i.e., pixels belonging to full objects), the higher their interpretability is by
humans. Moreover, the higher is the fidelity of the explanation with respect to what
the model has effectively learned, the higher is the reliability of the explanation itself.
The proposed feature extraction strategy aims to identify meaningful and interpretable
portions of the input image exploiting the unsupervised clustering analysis of hyper-
columns (Hariharan et al. 2015), which are a vectorial representation of the model
across all its inner levels. The segments extracted from the input image with this
strategy are called interpretable features.

Existing state-of-the-art techniques are not suitable to obtain interpretable features
for our purposes. On the one hand, deep models for image segmentation (Minaee et al.
2020) are able to extract full segments of pixels from input images corresponding to
entire concepts (i.e., people, animals, background, etc.) that, in theory, can be used
as interpretable features for EBAnO. However, even if these high-level segments are
straightforward to understand by humans, it is impossible to assume that the whole
segment impacted more the predicted class label by the deep learning model (and not
only a part of it), increasing the risk of losing fidelity. For example, if a DCNN model
predicts the Dog class label by focusing on the dog’s eyes, by using a segmentation
model that extracts the dog’s pixels, this aspect would not be captured. Moreover,
another limitation of the segmentation models for our purposes is that it would be
required anothermodel performing the segmentation thatwould have a number of fixed
classes depending on the classification task. Consequently, the explanation process
would not be portable. For example, a model that extracts segments in images for
self-autonomous driving cars cannot be used to extract interpretable features for the
explanation of a deep model used in the medical field and vice versa.

On the other hand, other existing techniques like adversarial attacks (Akhtar and
Mian 2018) are able to create new perturbed variations of the input image that are
not perceptible to the human eyes but that cause a wrong prediction of the model.
These perturbations are composed of adversarial pixels that, added to the input image,
create a new perturbed variation that looks identical to the human eyes but that will be
misclassified by the model. However, these techniques can be used to explain some
global weaknesses of the model but not to locally explain a single prediction for a
given input image (for how the pixels are changed). Furthermore, the pixels changed
by this technique are not easily interpretable by humans and, therefore, are not suitable
for a good explanation.

For these reasons, EBAnO, by implementing itself the interpretable feature extrac-
tion strategy, is able to exploit, in an unsupervised way, the inner knowledge hidden
in the learned weights of the model in order to extract correlated portions of the image
that influenced the final output of the model similarly. Moreover, these features rep-
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Fig. 3 Hypercolumns exctraction example

resent macro-concepts that are easily interpretable by humans and reflect what the
model has effectively learned. Finally, the feature extraction strategy of EBAnO does
not require training any additional model, but it can be integrated directly into the
model to explain itself.

4.1 Hypercolumns extraction

Hypercolumns have been defined by Hariharan et al. (2015) as a vectorial representa-
tion of every input pixel. The main idea is that, if bias or knowledge have been learned
by the black-box model, they can be extracted by mining the latent information under
the form of hypercolumn, thanks to their ability to collect the information of the out-
puts related to a specific location across all the layers of the DCNN. The first layers
of the DCNN are able to generalize over the shape of objects, identifying corners
and edges, whereas the final layers are more sensitive to the semantic meaning of an
image (Bengio et al. 2013; Mahendran and Vedaldi 2016; Hariharan et al. 2015). The
hypercolumns of a specific input can be extracted feeding into the black-box model
the target image: each convolutional layer of the network outputs a tensor that is the
results of the application of the weights learned by themodel. These tensors contain all
the latent information learned by the model during the training phase. In the case of a
very deep network, using all the convolutional layers to extract the hypercolumns can
produce a very deep tensor which is difficult to manage. However, EBAnO focuses
on the most characterizing information of the model, which is usually included in the
deepest layers of the network, i.e., the deeper the layer, the more specialized it is, and
the information that can be extracted from it are very task-specific. For this reason,
the number of layers that should be considered is usually much lower than the total
number of available layers in the network. The number of layers exploited to extract
hypercolumns is a parameter that remains empirically configured, being related to
target the network’s architecture.

Figure 3 shows an example of hypercolumns extraction from a DCNN given an
input image. In this example, the last 5 convolutional layers of the DCNN model are
extracted. Then, an upscaling step is performed by exploiting bilinear interpolation to
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lead back to the original size of the input image. After the upscale, the hypercolumn
representation of the input image is composed of a tensor with the same width and
height of the original image and a number of channels equal to the sum of the channels
in the extracted layers. Notice that each pixel is represented by a vector representation
of the same dimension. In this example, after the upscaling, the final representation is
a tensor of shape (224, 224, 2560), and therefore, each pixel is represented by a vector
of dimension 2560.

4.2 Feature extraction

Through an unsupervised clustering analysis of hypercolumns, EBAnO can identify
correlated beams of vectors and subsequently detect the input areas to which they cor-
respond. EBAnO projects the grouped beams of hypercolumns on the input image by
labeling each pixel with its cluster. A peculiar feature of EBAnO is that the clustering
of the hypercolumns is not led by the pixels’ locality in the image but only by the
weights learned by the DCNN model, hence driving the explanation with the inner
information of themodel itself. Therefore, differently fromother algorithms, the image
segmentation strategy implemented in EBAnO does not consider input colors or pixel
positions, but it is strictly related to what the model has learned: the segments high-
lighted with this strategy reflect the inner knowledge of the model. Thus we expect to
provide more relevant local explanations. This is because pixels with similar represen-
tation possibly represent similar and related semantic aspects that probably affected
the original prediction of the model in a similar way. Consequently, the features are
obtained by performing a clustering analysis in a high-dimensional embedding space
defined by the hypercolumns, where each pixel is represented with a high-dimensional
dense embedding vector.

To this aim, it exploits the Faiss (Johnson et al. 2021)3 implementation of K-Means
(Lloyd 1982), an efficient similarity search and clustering of dense vectors library that
also supports GPUs. It was chosen because, from the experiments, it results in the best
in terms of effectiveness and efficiency in extracting relevant features. However, An
experimental evaluation of different clustering algorithms’ performance in the feature
extraction process of EBAnO is provided in “Appendix B”. The K-Means algorithm
requires the specification of the number of clusters k, which determines the number
of resulting image portions (i.e., our interpretable features) extracted from the input
image. However, it is impossible to know the best number of features to extract from
the input in advance. For this reason, EBAnO iteratively produces the explanations
for different possible divisions (i.e., different values of k) and chooses the best one.
Nevertheless, the process is the same for each value of k. Thus, we first discuss the
process of perturbation and influence measurement of each feature in Sect. 5. Then,
in Sect. 6, we show how the best explanation is selected among the different values of
k evaluated.

Figure 4 shows an example of interpretable features extracted from the running
example introduced in Fig. 2 with a number of clusters k = 3. The features extracted
are driven by the inner knowledge hidden in the model (hypercolumns) and reflect

3 https://github.com/facebookresearch/faiss.
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Fig. 4 Interpretable features
extraction example
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what the model has effectively learned, but also are easy to interpret and understand
by humans.

5 Measuring the features’ influence

After extracting the interpretable features, a perturbation phase is required to measure
the importance and the impact that each feature had in the originally predicted output
of the model, given the input image. Firstly, we explain the perturbation process
implemented in EBAnO in Sect. 5.1. Then, we formally define the two quantitative
indices, introduced in EBAnO, to measure the influence (nPIR) and the precision
(nPIRP) in Sects. 5.2 and 5.3.

5.1 Perturbation

Ideally, each interpretable feature could represent a relevant concept of the input
image. Our challenge is to identify the most relevant portions of the input for both the
model and the user. The perturbation of the model’s input is a well-known state-of-the-
art technique (Alvarez-Melis and Jaakkola 2017;Ventura et al. 2018;Lundberg andLee
2017; Ribeiro et al. 2016) to study the impact of input data on the prediction outcome.
Our intuition is to drive the perturbation on the specific pixels of the interpretable
features and measure the prediction difference on those concepts.

EBAnO implements an iterative perturbation process based on Gaussian blur.4

Specifically, for a given feature, the relative pixels are occluded with a sequence of
extended box filters, which approximates a Gaussian kernel (Gwosdek et al. 2012).
It requires the Gaussian radius parameter specification that we empirically set to 10.
A new perturbed image is produced for each blurred interpretable feature, and we
expect the model to miss the recognition of the corresponding concept; three results
are possible: (i) no change in prediction (the concepts represented by the feature

4 Exploiting the GaussianBlur implementation of the Pillow (Clark 2015) library. https://pillow.
readthedocs.io/en/stable/reference/ImageFilter.html(January, 2022).
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Fig. 5 Perturbed images examples with different occlusion techniques. Gaussian blur (a) is the one adopted
by EBAnO, and it blurs the feature pixels with a sequence of extended box filters, which approximates a
Gaussian kernel. Other possible occlusion techniques consist of replacing the feature pixels with black (b),
white (c), or the mean value of pixels (d).

were not relevant for the predicted class); (ii) stronger prediction (the probability of
belonging to the predicted class increases after the perturbation, hence, removing the
feature, the predicted class is better modeled); (iii) weaker prediction (the probability
of belonging to the predicted class decreases after the perturbation, hence the feature
was important to model the class).

Even if several possible perturbation solutions exist,EBAnO exploits Gaussian blur
because it is less likely to create artifacts that would cheat the model. Figure 5 shows
an example of a perturbed image, created for one of the features extracted from Fig. 4
with different perturbation techniques. The perturbation introduced by the Gaussian
blur Fig. 5a is less invasive than setting the pixels values to 0 (black occlusion in Fig.
5b), to 255 (white occlusion in Fig. 5c), or to the mean value over the entire image
(mean occlusion in Fig. 5d).

An experimental evaluation of the Gaussian blur radius parameter’s impact is pro-
vided in “Appendix A”.

5.2 Normalized perturbation influence relation—nPIR

Once applied the perturbation over each extracted feature, we want to measure the
impact that pixel occlusion has caused. Specifically, the first aspect that we want to
measure is the sign, the amplitude of the impact, and the relative influence of an inter-
pretable feature for the prediction of the class label with the normalized Perturbation
Influence Relation (nPIR) index.

Formally, let’s consider a black box model able to distinguish between a set of
classes c ∈ C and let be ci ∈ C the class-of-interest for which an explanation has to
be computed. Given an input image I ,EBAnO extracts the set of interpretable features
f ∈ F and then for each f it performs the perturbation. Let’s consider po,ci as the
probability of the original input image I (the unperturbed image) to be labeled with
the class-of-interest ci by the model, and p f ,ci as the probability of the same image to
be labeled with the same class-of-interest ci when the feature f is perturbed. If p f ,ci

is lower than po,ci , than f contains a positively influential concept for the model and
vice versa. To measure this effect, we exploit the nPIR index, which includes different
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components, in particular (i) the amplitude of the impact and (ii) its relative influence
on the perturbation process.

The amplitude of the perturbation influence, ΔI , for feature f can be measured
by: ΔI f = po,ci − p f ,ci . It ranges from −1 to 1 since the domain for probability
values falls in [0, 1]. If ΔI f > 0, the feature f has a positive influence on ci , since
its perturbation causes a decrease of the probability to belong to ci , and vice versa.

The relative influence of the perturbation as a simple ratio between the probabilities
was proposed in Ventura et al. (2018). However, it is asymmetric, as po,ci

p f ,ci
ranges from

0 to 1 in case of negative influence, but from 1 to ∞ in the other case, leading to
hard comparisons between positive and negative effects. We instead introduce the
Symmetric Relative Influence index to harmonize the measurement of each feature f
relative influence, regardless of its positiveness or negativeness: SRI f = po,ci

p f ,ci
+ p f ,ci

po,ci
.

By combining the previously described contributions, the Perturbation Influence
Relation can be defined as:

P I R f = Δ I f ∗ SRI f
= p f ,ci ∗ β − po,ci ∗ α

with α = 1 − po,ci
p f ,ci

, β = 1 − p f ,ci

po,ci

(1)

The coefficient α represents the contribution of the original input w.r.t. the perturbed
one and, similarly, β represents the contribution of the perturbation of feature f w.r.t.
the original input. The PIR, which ranges in the (−∞,+∞) interval, is finally nor-
malized in the [−1; 1] range exploiting the common Softsign function, leading to the
definition of the normalized Perturbation Influence Relation (nP I R f ):

nP I R f = so f tsign(P I R f ) (2)

Where:

so f tsign(x) = 1

1 + |x | (3)

Combining the previous equations, the formal definition of nPIR for a given class
of interest ci is provided in Eq. 4, which avoids the Eq. 1 problem of being undefined
for p f = 0 and po = 0.

nP I R f =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p3o−p2o p f +po p2f −p3f
p3o−p2o p f +po p f +po p2f −p3f

, if po,ci > p f ,ci

p3o−p2o p f +po p2f −p3f
p3f −po p2f +po p f +p2o p f −p3o

, if po,ci < p f ,ci

0, if po,ci = p f ,ci

(4)

The normalized Perturbation Influence Relation captures both the amplitude and
the relative impact. Experimental results, as reported in Sect. 10.8, show that human-
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appreciated features with a strong positive influence are characterized by nPIR greater
than 0.75, whereas the negative-influence threshold is around -0.2.

5.3 Normalized Perturbation InfluenceRelation Precision–nPIRP

The second aspect that we want to measure is if an interpretable feature influenced the
prediction of only one or several class labels. The wider the range of classes impacted
by an interpretable feature, the less that feature can be considered focused on the class
of interest: the model has not learned the concept/pattern associated with that feature
as precisely relevant only to the class of interest. This behavior can bring to light
possibly misleading knowledge, such as training bias or bad network design.

To this aim, we introduce the normalized Perturbation Influence Relation Precision
(nPIRP) index to evaluate the precision of the absolute impact of f over ci (component
ξci ) w.r.t. the sum of the positive impacts over classesC \ci (component ξC\ci ), which
are defined as:

ξci = po,ci ∗ |nP I Rci | (5)

ξC\ci =
C\ci∑

c

po,c ∗ max(0, nP I Rc) (6)

The two measurements of influence are weighted by the probability of the original
image to belong to each class so that the influences of the most probable classes
are taken into greater consideration w.r.t. the influences obtained on less probable
outcomes.
Then, the Perturbation Influence Relation Precision of a feature f is defined as:

P I RP f = ΔI f (ξci , ξC\ci ) ∗ SRI f (ξci , ξC\ci )
= ξC\ci ∗ b − ξci ∗ a

with a = 1 − ξci

ξC\ci
, b = 1 − ξC\ci

ξci

(7)

By following similar reasoning to that of nPIR, we can normalize Eq. 7 exploiting the
softsign function to obtain the Normalized Perturbation Influence Relation Precision
index:

nP I RP = so f tsign(P I RP) (8)

As nPIRP is computed for each feature and ranges in [−1; 1]. When f is very
precise on describing ci , the nPIRP has values close to 1. When f is impacting more
other classes C \ ci than the class of interest ci , the index value is close to −1. When
nPIRP is close to 0, f impacts similarly the class-of-interest and other classes as well.
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Fig. 6 Unsupervised interpretable features extraction details

6 Most informative local explanation

As introduced in Sect. 4, EBAnO implements an iterative process where different
k divisions are analyzed and evaluated to find the best cluster partitioning. We define
the local explanation produced by the best k partitioning as themost informative local
explanation.

Figure 6 shows in detail all the steps performed by EBAnO to find the most infor-
mative local explanation. Firstly, as discussed in Sect. 4.1, given an input image 1 ,
the hypercolumns are extracted from the DCNN model 2 . Then, the unsupervised
analysis of the hypercolumns is performed to extract a set of interpretable features
with the K-Means algorithm 3 . However, it is impossible to know the best number
of features to extract from the input in advance. For this reason, EBAnO produces the
explanations for different possible divisions in range K = [2, kmax ], where kmax is a
user-defined parameter of the local explanation. An important trade-off is to set kmax

so that the number of extracted features f is small enough to be manually inspected by
end-users but large enough to avoid missing details and diversity. More precisely, for
each value of k ∈ K , EBAnO extracts f = k interpretable features by clustering the
hypercolumns extracted before. Then, for each feature, it performs the perturbation (as
discussed in Sect. 5.1) and extracts from the model the new probabilities (of each new
perturbed image). Finally, it produces, for each feature of each k ∈ K , the influence
and the precision indices, respectively nPIR and nPIRP (as discussed in Sects. 5.2
and 5.3). Even if the end-user can query all possible k divisions of the images and
their relative explanations, EBAnO is able to automatically suggest the most infor-
mative local explanation (i.e., the best k division among all possible k analyzed). The
most informative local explanation is defined as the one maximizing the contrast of
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the perturbation-influence-relation values (nPIR index defined in Sect. 7) between all
their features.

Formally, for each k ∈ [2, kmax ], it is provided an explanation ek composed by a
set of interpretable features Fk (with k features). Then, for each feature f ∈ Fk , the
corresponding influence e precision indices (nPIR and nPIRP) are computed. Finally,
for each explanation ek produced by each k partitioning, it is assigned a score by
analyzing the different influence (nPIR) scores obtained by their features, as follows:

Kscore(ek) = max
f ∈Fk

(
nP I R f (ek)

) − min
f ∈Fk

(
nP I R f (ek)

)
(9)

In other words, the score assigned to each k possible division is equal to the difference
between its most influential and its least influential feature. Once computed the score
for each possible k, let E be the set of all ek explanations produced with the different
k values evaluated. The most informative explanation ê is the one maximizing the
Kscore, as follows:

ê = max
ek∈E

(
Kscore(ek)

)
(10)

The most informative explanation ê is the one proposed to the end-user as the best
explanation (even if it is possible to query all the others k divisions produced). The
score function proposed in EBAnO, defined by Eqs. 9 and 10, could be changed by
the final user according to specific needs.

7 Local explanation

Comparing the probabilities before and after each perturbation,EBAnO is able to study
the influence of each interpretable feature on a specific predicted class, producing a
local explanation with a numerical contribution and a visual part. We firstly discuss
the numerical and visual parts of the local explanation produced by EBAnO (Sects.
7.1 and 7.2). Then, we discuss in detail the local explanations produced for the running
example (Sect. 7.3).

7.1 Numerical explanation

As discussed in Sect. 5, we introduce two indices (nPIR and nPIRP), allowing the
user to objectively inspect the details of the prediction process. Differently from other
works (Lundberg and Lee 2017; Ribeiro et al. 2016), our indices (i) efficientlymeasure
the influence relation that exists between the input feature and the model outcomes in
terms of neutral, positive or negative impact, and (ii) they also consider the influence
precision of the features for the class-of-interest in a multi-class problem. Precise
features are very focused, affecting only a specific predicted class. Low-precision
features, instead, can affect many classes at the same time.

We recall that the influence sign and amplitude of a feature over the class-of-interest,
quantified by the nPIR index, can be considered:
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– positive if the predicted probability decreases after the perturbation, meaning that
the feature was positively relevant for the model;

– neutral if the predicted probability remains the same after the perturbation, mean-
ing that the feature was irrelevant for the model;

– negative if the predicted probability increases, meaning that the feature was neg-
atively relevant for the model.

Also, the distribution of the probabilities for the other classes can change accordingly
to the perturbed feature. The precision of influence of a feature, quantified by the
nPIRP index, can be considered:

– precise if the class-of-interest is the only one affected by the perturbation process
of the feature;

– not precise if the perturbation of the feature is equally affecting the class-of-interest
and at least another class;

– negatively precise if the perturbation of the feature is affecting more any of the
other classes other than the class-of-interest.

The two indices computed for each feature over a class of interest compose the
numerical explanation part of the local explanation.

7.2 Visual explanation

Along with the detailed quantitative explanation, our explanation framework provides
an easy-to-understand prediction-local visual explanation, where, each interpretable
feature is colored with a red-green gradient according to the value of nPIR. The more
a green area is intense, the more the corresponding feature is positively influential
for the class-of-interest. On the contrary, the more a red area is intense, the more the
feature is negatively impacting the class-of-interest.White areas instead, which results
almost transparent, show input portions that have a neutral impact on the prediction
process (i.e., the model is completely independent of the presence of these features).
Differently from other works (Selvaraju et al. 2019; Simonyan et al. 2014; Fong and
Vedaldi 2017; Zhang et al. 2018; Petsiuk et al. 2018), the proposed visualization is not
based on saliencymaps. A saliencymap is a simple and clear visualization strategy that
smoothly shows the relevance of contiguous areas of pixels. However, it does not allow
to differentiate the influence of multiple input areas at the same time. Instead, EBAnO
can highlight the impacts of more input regions simultaneously, with their positive and
negative contributions, including more information in a single visual representation
(as shown in the example in Sect. 7.3).

7.3 Example of local explanation

As discussed before, for the input image of the running example in Fig. 2, are produced
the output probabilities by a pre-trained VGG16 DCNN model shown in Table 1. The
model predicts the wrong Bottlecap class as most probable, followed by Pizza with
probabilities respectively 0.42 and 0.28 (even if the ground truth label was pizza). In
this case, an end-user that wants to analyze the reasons for the wrong behavior of the
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Fig. 7 Example of local explanations for two classes of interest and the image shown in Fig. 2. Each
explanation is organized with the Visual explanation (left), the map of features (center), the quantitative
explanation (right). (a) is the explanation for the Bottlecap class label, (b) for the Pizza class label

DCNN model in the predictions of the class label of the input image can inspect the
local explanation produced by EBAnO. For instance, in this case, it can be useful
to produce the local explanation for both Bottlecap and Pizza classes of interest (as
shown in Fig. 7). For both explanations, are provided the features map (center), the
visual explanation (left), and the numerical explanation (right).

For the explanation of the Bottlecap class label (the most probable class predicted
by the model) 7a, EBAnO finds the division with 5 interpretable features as the most
informative local explanation. From this local explanation, it emerges that the parts of
the image the most responsible for the wrong prediction of the model are the pixels
corresponding to the pizza borders (feature 4) with an nPIR (influence) index close to 1
and a positive nPIRP (precision). Moreover, the features corresponding to the table’s
pixels positively impacted the prediction of the Bottlecap class label, even if with
a lower amplitude. Specifically, the table’s pixels are divided into two interpretable
features based on the amplitude of their influence on the prediction. Therefore, the
corresponding pixels are colored in light green in the visual explanation (with higher
intensity on the pixels of feature 3 because it obtained a higher influence score). Finally,
the feature composed by the upper borders of pizza (feature 1) has a very small positive
impact on the prediction, obtaining an nPIR score close to 0.1.
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Instead, for the explanation of the Pizza class label, EBAnO finds the partitioning
with 3 interpretable features as the most informative local explanation 7b. The inter-
pretable feature composed of the pizza topping’s pixels highly positively impacted the
prediction of the Pizza class label. Indeed, the corresponding pixels are highlighted in
dark green in the visual explanation, and the influence score (nPIR) in the numerical
explanation is close to 1. Moreover, the second feature, composed of the pizza crust’s
pixels, positively impacted the prediction (even if less than the first one). Therefore, it is
highlighted in light green with a corresponding influence index close to 0.5. However,
this feature is not precise because the perturbation of their pixels impacted not only the
Pizza label but also other labels, obtaining a negative precision index (nPIRP). Finally,
the third interpretable feature shows that the pixels of the table negatively impacted
the original prediction of Pizza and is highlighted in light red with an influence index
close to -0.5.

The conclusion that an end-user can draw, thanks to the detailed explanations pro-
vided by EBAnO, is that the model’s prediction is unreliable because it mostly looks
from the context (table’s pixels) to predict the class label. Moreover, the pizza bor-
ders are uncertainly captured by the model that assigns its pattern to different labels
(Bottlecap and Pizza).

8 Class-basedmodel explanation

A model-global explanation is usually exploited to study the influence of a specific
concept on the whole prediction set provided by the model to detect possible bias, for
instance. In data domains like tabular data or textual data, the explanation process takes
advantage of well-defined features, i.e., columns and word tokens, that are simple to
aggregate inmodel-global explanations.Works like Lundberg and Lee (2017); Ribeiro
et al. (2016) study the behavior of the model aggregating the explanations produced
for singular predictions by feature meaning.

In the case of image inputs, instead, the DCNNmodel processes each pixel. As pre-
viously discussed, single-pixel explanations are useless for humans. Hence, EBAnO
groups prediction-local explanations according to interpretable features. Analyzed
together, nPIR and nPIRP describe the influence, in terms of both the contribution
and the precision, of each interpretable feature of an input image on the prediction
process. This information enablesEBAnO to identify behavioral patterns of the model
w.r.t the prediction of each class.

Themodel-wise challenge is to aggregate the interpretable features belonging to dif-
ferent images by their semantic meaning without using another supervised model. To
this aim, EBAnO provides an unsupervised class-based model explanation by aggre-
gating the prediction-local features according to their class-of-interest. Then, each
class-of-interest is described by all the features extracted during the local-explanation
process, exploiting their nPIR and nPIRP values. The features are projected on the
nP I R × nP I RP space, and studying their distribution allows the user to inspect the
class-wise behavior of the model during the decision-making process.

Figure 8 shows an example of a class-based model explanation for the class-of-
interest Pizza computed for a VGG16 model, aggregating three local explanations of
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Fig. 8 Class-based model
explanation example for
class-of-interest Pizza

three different input images. The figure shows the interpretable features distributed in
the nP I R × nP I RP space and their KDE distributions (Kernel Density Estimation)
on the nPIR and nPIRP axis. The plot groups the features in the four quadrants. For
instance, features being both positively influential and precise for the class-of-interest
are in the quadrant with nP I R ≥ 0 and nP I RP ≥ 0. On the top and right axis, the
KDE distributions of the features w.r.t. nPIR and nPIRP are reported.

The optimal distribution of features for a model is when all the features that are
representative for the class-of-interest are positioned on the top-right corner with
nP I R = 1, nP I RP = 1, and all the other features are close to the center with
nP I R = 0, nP I RP = 0 so that the contextual features are not influencing the
decision-making process. The presence of features spread around the plot means that
the model can be considered uncertain about their role in the prediction process. The
plot easily enables human experts to quickly drive their evaluation towards specific
features for a semantic assessment of the model behavior.

9 EBAnO- Batch

In some specific scenarios, the time required to produce an explanation could be a
bottleneck. Specifically, the execution time could become an issue when multiple
explanations of several images are needed. An example of this situation is the global
explanations, where multiple local explanations for different images predicted with
the same class-of-interest should be produced. An iterative approach that produces the
explanation of single image instances, one at a time, is not efficient. For this reason,
we also propose a batch version of the framework called EBAnO- Batch.

EBAnO- Batch takes as input a set of images and classes of interest (instead of a
single image and a class of interest) and outputs the local explanations for the entire
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set, saving them persistently on disk. In EBAnO- Batch several steps of the pipeline
are vectorized and optimized for an entire set of images to speed up the computation,
increasing the overall efficiency of the methodology. Specifically, the hypercolumns
of the entire batch are extracted in one forward pass of the DCNN, the probabilities
predicted after the perturbation of each interpretable feature of all images are produced
in batch, and the dimensionality reduction with the PCA is optimized for the entire
batch.

Exploiting EBAnO- Batch, we reduced on average by a factor of 10 the time
required to produce an explanation (by testing several batch sizes in [8, 16, 32, 64, 128]
and several models).

10 Experimental evaluation

This section is structured as follows. Sect. 10.1 describes the experimental settings.
Sections 10.2 and 10.3 present the prediction-local and the class-based global explana-
tions, respectively. Sections 10.4 and 10.5 discuss the performance of the nPIR index
in identifying the contribution of each feature in the prediction process, first across
all the tested images and models, and then compared to the state-of-the-art Shapley
values, respectively. Then, Sects. 10.6 and 10.7 qualitatively and quantitatively com-
pare EBAnO with two state-of-the-art explanation frameworks. Section 10.8 reports
the human-validation process carried out to assess the interpretability of EBAnO’s
explanations. Finally, Sect.10.9 performs a brief execution time comparison.

10.1 Experimental settings

To show the effectiveness and the reliability of the framework,EBAnO has been tested
on 4 different pre-trained DCNN models available in the Keras deep learning library
(Chollet et al. 2015)5: (M1) VGG16 (Simonyan and Zisserman 2015), (M2) VGG19
(Simonyan and Zisserman 2015), (M3) InceptionV3 (Szegedy et al. 2016), and (M4)
InceptionResNetV2 (Szegedy et al. 2017). All the models are pre-trained on the well-
known ImageNet (Russakovsky et al. 2015) dataset with 1000 classes. EBAnO has
been applied to produce prediction-local explanations for the 4 different models using
250 input images, belonging to 54 different classes. The top-10 predicted classes of
each image have been analyzed, for a total of 10,000 prediction-local explanations. The
input images have been taken from different datasets (Coco (Lin et al. 2014), ImageNet
(Russakovsky et al. 2015), Caltech (Li Fei-Fei et al. 2004), and web scraping).

The number of convolutional layers analyzed for each model has been experimen-
tally set as follows. Models M1 and M2 are relatively small DCNNs and the last 5
and 8 convolutional layers, respectively, have been considered. Instead, models M3
and M4 have a more complex structure and the last 34 and 24 convolutional layers
have been included in the analysis, respectively. We found these settings to be a fair
trade-off between feature interpretability and affordable execution complexity.

5 Keras version 2.2.4.
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Fig. 9 Mouse input image (I1)

The number of extracted features has been set to range between 2 and 10. The upper
limit prevents too small features with poor semantic meaning and low relevance for
a human user to be extracted. Thus, each explanation will be described at most by
10 features, among which the most informative explanation (Sect. 6) is automatically
proposed to the user, with the others available for further manual insights.

10.2 Prediction-local explanations

In this section we discuss in detail the insights provided by the local explanations
of EBAnO. We exploit models M1 and M4 for the discussion of the experimental
results since they are representative architectures of the two remaining models as
well. However, in “Appendix C”, a further selection of prediction-local explanations
is discussed in detail, on the results of models M2 and M3. Moreover, in “Appendix
D”, some other examples of local explanations for correctly classified images are
reported. Finally, a larger number of prediction-local explanations of all four models
is publicly available through an interactive web-based tool.6

Figure 9 shows an example input image (named I1) showing a mouse over a tailed
surface.

The predictions of M1 and M4 are shown in Table 2 and 3, respectively. By
applying EBAnO to such predictions we aim to unwrap the black-box models M1 and
M4, providing detailed explanations to answer the following questions:

– Q1. “Why is Fig. 9 representing a Toilette seat for model M1?”
– Q2. “Why is Fig. 9 not aMouse for model M1?”
– Q3. “Why is Fig. 9 aMouse for model M4?”

Answering Q1. Model M1 (VGG16) fails to predict the correct class for input I1,
providing the label Toilet seat with the highest probability, and the correct classMouse
follows with lower probability. Figure 10a shows the explanation provided by EBAnO

6 https://ebano-ecosystem.github.io/#explanation-library.
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Table 2 VGG16 (M1)
predictions for Fig. 9

Class P(c)

Toilet seat 0.23

Mouse 0.15

Soap dispenser 0.11

Washbasin 0.11

Can opener 0.06

The ground-truth label is in bold (Mouse)

Table 3 InceptionResNetV2
(M4) predictions for Fig. 9

Class P(c)

Mouse 0.99

Mousetrap 0.00

Toucan 0.00

Joystick 0.00

Computer keyboard 0.00

The ground-truth label is in bold (Mouse)

for model M1 and the class of interest Toilet seat. It identifies the most informative
explanation to consist of 9 features (Fig. 10a center). Figure 10a-left shows the visual
explanation and Fig. 10a-right shows the numerical explanation.

We recall that the visual explanation highlights in green the interpretable features
positively influencing the class-of-interest, while in red the negatively ones. We notice
that the decision of assigning the class Toilet seat is mainly due to the presence of
the horizontal lines of the background tiles. Hence, the prediction Toilet seat has been
taken because of contextual information and not because of the subject itself. Based
on the numerical explanation, where we recall that the bar chart reports the values of
nPIR (influence) and nPIRP (precision) for each feature, we confirm that feature 6,
corresponding to the lines of the tiles, is the most positively influencing. However, its
nPIRPvalue is close to 0, meaning that it is not precise at all: it is a contextual feature
similarly influencing also many other classes.

Answering Q2. Figure 10b shows the explanation produced by EBAnO for model
M1 and for the class of interestMouse, with 4 interpretable features. From the visual
explanation, we notice that theMouse is correctly associated with feature 1. However,
(i) feature 4 is strongly affecting theMouse prediction (very negative nPIR), and (ii) the
nPIRPof feature 1 is negative, as highlighted by the numerical explanation in Fig. 10b-
right. The case of positive nPIRand negative nPIRP(feature 1) describes the behavior
of the DCNNmodel: even if feature 1 is positively influencing the (correct) class, other
classes are more influenced by this feature w.r.t. the one under analysis. we can blame
feature 4 (portions of the background tiles), with its negative nPIRand negative nPIRP,
for the incorrect prediction. The decision process was mainly affected by the context
of the subject: the model correctly distinguishes among the different sections of the
input, but it evaluates the context more than the subject. Furthermore, the influence of
different features onmore than one class means that possibly the training set contained
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some bias for this subject in the given context (e.g., toilet objects often represented
with background tiles).

Answering Q3.Model M4 (InceptionResNetV2) correctly classifies the image as a
Mouse. The EBAnO explanation is reported in Fig. 10c with 5 features. Feature 1, the
mouse body, is the only feature with high influence and precision, whereas all other
features are neutral. Differently from model M1, M4 is well focused on the subject,
ignoring the context around it. Its predictions can be considered generally reliable and
it can be trusted with higher confidence thanM1: it is not by chance that the prediction
is correct.

10.3 Class-based explanations

Figure 11 shows the results of a class-basedmodel explanation computed on 50 images
classified as Dalmatian by models M1 and M4 (further considerations about models
M2 andM3 in “Appendix E”). While the features of M1 are scattered across the whole
nP I R×nP I RP area (Fig. 11a), M4 presents tidier patterns (Fig. 11b). Recalling the
optimal distribution of features introduced in Sect. 8, the class-based explanation of
M1 shows a significant uncertainty in the prediction process of the class Dalmatian.
Instead, M4 features are concentrated mostly in 0 ≤ nP I R ≤ 1 and nP I RP ≈ 1. In
details, we notice that M4 contextual features are in general in the 0 ≤ nP I RP ≤ 1,
nP I R ≈ 0 area. Such explanation describes a much more reliable prediction process
of M4 for the class of interest Dalmatian, with the model assigning a much clearer
role to each feature. This result is also coherent with the state-of-the-art knowledge:
M4, i.e. InceptionResNetV2 is known in the literature as a much more accurate and
reliable model w.r.t. M1, i.e. VGG16.

We finally note that EBAnO highlights the model uncertainty in a totally unsu-
pervised approach: it does not know the ground truth labels, and often they are not
available. Hence, the class-based model explanations are not only widely applicable,
but they also empower the end-user to better choose the model to trust based on eas-
ily readable and visual information. Moreover, exploiting EBAnO- Batch, they are
produced more efficiently and quickly, explaining entire batches of images at a time.

10.4 Feature-relevance index assessment

To provide a wide analysis of the behavior of the proposed nPIR index w.r.t. the
different DCNN models across all the 250 images of the experimental set, the distri-
butions of the nPIR minimum and maximum values have been computed and reported
in Fig. 12. Such values represent the most informative explanations computed by
EBAnO when the class of interest is equal to the top-1 prediction. If the difference
between the minimum and the maximum nPIR distributions is large, then we can sup-
port the wide applicability of the proposed approach, besides the limited number of
examples reported in the experimental results due to the space constraints.

The top influential features, with maximum nPIR, are mostly included in the
[0.8, 1.0] bin. Only models M3 and M4 have some features of the top influential
ones falling in the [0.0, 0.2] bin. However, the value of maximum nPIR never goes
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Fig. 10 EBAnO local explanations. The input image is shown in Fig. 9. Visual explanation (left), features
(center), numerical explanation (right)

below 0 for any model, hence EBAnO is always able to identify at least one positively
influential feature.

The features with minimum nPIR are predominantly located in the [−0.2, 0.2]
range, meaning that most of the less influential features are from slightly negative to
almost neutral for the prediction process. Minimum values higher than 0.2 are very
rare, confirming the large distance from the minimum and the maximum nPIR values,
which drives the right choice of the most informative explanation by EBAnO.
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Fig. 11 Class-based model explanation for the Dalmatian class on 50 input images

Fig. 12 For each testedmodel the distributions of min andmax nPIR values obtained by the prediction-local
explanations with class-of-interest equal to the top-1 predicted class for each input image
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Fig. 13 Comparison between nPIR index and Shapley values

10.5 Feature-relevance index comparison

In the state-of-the-art (see Sect. 2), the Shapley values (Štrumbelj and Kononenko
2014; Lundberg and Lee 2017) are widely used to explain the relevance of each
feature in the decision-making process. Shapley values compute the effect of all the
permutations of the possible societies of features, i.e., all the possible combinations
of portions (features) of the input images, being computationally expensive.

Figure 13 shows the comparison between nPIR and Shapley values for the input
image in Fig. 9. we analyze (a) modelM1 for the class Toilet seat, (b) modelM1 for the
class Mouse, and (c) model M4 for the class Mouse. In Fig. 13a Shapely values have
an almost flat trend with only feature 1 showing a slightly negative value, whereas
nPIR greatly amplifies the different contributions of each feature, it better highlights
the negative impact of feature 1 and it shows more clearly the positive impacts of
features 5 and 6.

In Fig. 13b the nPIR is more effective than Shapley values for the explanation
task. Feature 1 is identified by both indices as positively influencing, but nPIR marks
it more prominently. Feature 4 is negatively influential, as correctly highlighted by
nPIR, whereas Shapely values miss this contribution, being slightly positive.

In Fig. 13c, both indicators show the same behavior, with a positive contribution of
feature 1 and a neutral contribution of all the other features.

To sum up, the proposed nPIR index is more computationally efficient and better
emphasizes the contribution of the different input features, being always equal to or
better than the state-of-the-art Shapely values in all the experiments performed.

10.6 Local-explanation qualitative comparison

In this section, the local explanations of EBAnO are qualitatively compared with
those provided by state-of-the-art techniques: LIME (Ribeiro et al. 2016) and Grad-
CAM (Selvaraju et al. 2019), as representative of perturbation-based and gradient-
based explainability families, respectively. Discussions on model M1 (i.e. VGG16)
explanations are reported in this section, and further results on model M4 are reported
in “Appendix F”.
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Fig. 14 Input image (I2)

Table 4 VGG16 (M1)
predictions for Fig. 14

Class P(c)

Acoustic guitar 0.22

Electric guitar 0.09

Golden retriever 0.06

Stage 0.04

Sussex spaniel 0.03

Figure 14 shows the input image I2 taken fromRibeiro et al. (2016) as a comparison
example. M1 predicts Acoustic Guitar with a probability of 0.22 (see Table 4). The
visual explanation of LIME is reported in Fig. 15a, and the Grad explanation is in
Fig. 15b. LIME highlights in green the areas that are important for the class of interest,
and in red those negatively impacting the prediction. Instead, Grad-CAM uses warm
colors (e.g., red) for the most important areas and cold colors (e.g., blue) for the least
important portions.

The explanation provided by LIME is quite confusing, due to the presence of many
small green portions that are difficult to be interpreted or associated with a concept
of the image. we notice that LIME performs the segmentation of the image without
exploiting the knowledge contained in the network.

Grad-CAM is more precise in identifying the area of interest around the neck of
the guitar, ignoring the background areas that were identified by LIME as important.
However,Grad-CAM loses the information about the portions of the input that are neg-
atively impacting the prediction. We notice that Grad-CAM extracts the information
provided by the last convolutional layer of the network.

In general, none of the two state-of-the-art methods propose a human-readable
numerical explanation of the prediction. In details, the explanation provided by
EBAnO (Fig. 15c) (i) accurately identify concept-wise portions of the input that are
responsible for the model’s outcome (feature map in Fig. 15c-center), (ii) highlight
both the positively-influential portions and the negatively-influential ones for each
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Fig. 15 EBAnO local explanations. The input image is shown in Fig. 14. Visual explanation (left), features
(center), numerical explanation (right)
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class of interest (visual explanation in Fig. 15c-left) and (iii) quantify not only the
influence but also the precision of each image portion with numerical explanations
(Fig. 15c-right).

Regarding the example under analysis, EBAnO identifies the image portions cor-
responding to the guitar as very influential with high nPIR values and positive nPIRP
values, while, the face of the dog has been correctly identified as negatively impacting
the class Acoustic Guitar.

For completeness, the EBAnO’s explanations for the class Golden Retriever have
been provided in Fig. 15d, showing that the guitar has now a very negative impact and
the dog face is identified as playing the main role in the decision-making process.

10.7 Local-explanation quantitative comparison

In this section, we quantitatively evaluate and compare the explanations produced by
EBAnO, LIME (Ribeiro et al. 2016), andGrad-CAM (Selvaraju et al. 2019) exploiting
two quality measures: Pointing Game and Pixels Flipping (Samek and Müller 2019).
For these evaluation tasks, we created a new dataset, consisting of 150 randomly
selected images from the validation set of ImageNet Russakovsky et al. (2015) with
the relative ground truth labels and bounding boxes.7

To evaluate EBAnO, we selected the most positively influential feature for the pre-
dicted label (i.e., the one with max nP I R). For LIME, since its features have smaller
dimensions, to make a fair comparison, we selected the combination of the top-n pos-
itive features for different n ∈ [5, 10, 15, 20, 25, 50, 75, 100] as the most important
feature. For instance, for LIME-10 themost important feature is the combination of the
top-10 features. Finally, GradCAMassigns an importance score (only positive) to each
pixel based on the values of the activation map. Thus, we selected the combination
of the top-n percentiles of pixels with higher activation values as the most important
feature. We experimented with several percentiles of the non-zero activation values
topperc ∈ [5, 10, 25, 50, 75]. For instance, the feature for GradCAM-5 is computed,
for each image, by selecting the perc95 as the 95-percentile of the non-zero activa-
tion values, and taking the pixels with activation ≥ perc95 (i.e., top-5 percentile of
activation values). For each model and task, we report in the paper and discuss the
features with sizes similar to those selected by EBAnO. However, full results for all
combinations are reported in “Appendix G”.

10.7.1 Pointing game

Firstly, we compared the most relevant regions found by the explanation methods, by
measuring how much they lie on the object of the predicted label. This evaluation task
measures how much the explanations are able of localizing target objects, exploiting
the ground truth bounding boxes. This measure assumes that a well-trained classifier
will mostly focus on the object to make the prediction, at least for correct predictions.
Thus, reliable explanations for these examples should highlight important features in
the target object bounding boxes. However, this is not always true because a model

7 ILSVRC2012 https://image-net.org/challenges/LSVRC/2012/2012-downloads.php.
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could predict the right label but for the wrong reasons. Nevertheless, using well-
trained state-of-the-art models (such as VGG16, VGG19, Inception V2, and Inception
V3), this can be considered a valid evaluation metric. For this task, we kept only the
correctly classified images for each model. Then, we selected, for each image, all
and only the bounding boxes corresponding to the target object of the ground truth
label. Finally, we compared the most important regions found by each method with
the ground truth bounding boxes, measuring the percentage of pixels that lie in the
target-object bounding boxes. Table 5 shows the mean number of pixels N px , the
percentage of the pixels with respect to the total image size (target image size as input
of the model) %px , the mean number of feature pixels inside the bounding boxes

of the target class N
bbox
px , and the percentage of feature pixels inside the bounding

box %
bbox
px . Experimental results show that, in general, smaller features tend to fall

more easily into bounding boxes. However, with the same feature size, EBAnO gets
comparable or better results than LIME and GradCAM in terms of the percentage of
feature pixels that lie in the bounding box for all the experimental models. As a result,
the features identified by EBAnO, at least for correctly classified examples, tend to
be more precise in identifying regions within the target object as important features,
under the assumption that, if the model is reliable, the correct prediction shouldmostly
focus on such features to make the prediction (the second experimental task ensures
that this is true).

10.7.2 Pixel flipping

The second evaluation task consists of measuring the model performance decline by
occluding the most relevant regions. The idea is that the more precise and faithful
the pixels selected by the explanation, the larger the performance decline should be.
Precisely, we adapted the original pixel flipping experiment to our case, since the
original version requires that individual pixels can be sorted by importance score to
measure the gradual decline of the classifier by removing pixels from most important
to least important. However, EBAnO assigns the importance score to large features,
making it difficult to sort feature pixels by importance (i.e., they are considered equally
important if inside the same feature). Therefore, to make a fairer comparison, we
selected, asmuch as possible, similar-sized features by creating a singlemost important
feature as a combination of the most important features, as previously described at the
beginning of the current Section.

Table 6 shows the results by using the Gaussian blur as pixels occlusion. We report
and discuss the resultswithGaussian blur since it is the least likely to introduce artifacts
possibly cheating the network. However, full results with many occlusion types (i.e.,
introducing 0, 255, or the mean value) and for several feature sizes are available in
“Appendix G”. N px is the mean number of pixels of the selected features, %px is
the mean percentage of feature pixels with respect to the total number of pixels (of
the target size of the model), Acco is the original accuracy of the model for the 150
images, Accp is the accuracy of the model on the perturbed images (i.e., by applying
the Gaussian blur over the feature pixels), ΔAcco,p is the drop of accuracy computed
as Acco− Accp, andΔPo,p(ĉ) is the mean probability decrease for the most probable
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Table 5 Pointing Game

EBAnO LIME-75 LIME-100 GradCAM-25 GradCAM-50

M1 N px 16,284 14,138 16,164 8,826 17,495

%px 32.5% 28.2% 32.2% 17.6% 34.9%

N
bbox
px 12,106 7833 8617 7000 10,912

%
bbox
px 78.3% 57.8% 55.9% 79.0% 62.7%

EBAnO LIME-75 LIME-100 GradCAM-25 GradCAM-50

M2 N px 15,600 13,821 15,845 8,604 17,062

%px 31.1% 27.5% 31.6% 17.1% 34.0%

N
bbox
px 11,695 7,850 8,624 6,889 10,715

%
bbox
px 78.4% 59.8% 57.1% 78.8% 62.7%

EBAnO LIME-10 LIME-15 GradCAM-25 GradCAM-50

M3 N px 25,333 19,849 27,195 15,066 30,158

%px 28.3% 22.2% 30.4% 16.9% 33.7%

N
bbox
px 20,183 14,754 18,304 12,570 21,308

%
bbox
px 81.2% 75.3% 67.7% 82.7% 70.4%

EBAnO LIME-15 LIME-20 GradCAM-50 GradCAM-75

M4 N px 30,402 27,735 34,516 26,261 39,370

%px 34.0% 31.0% 38.6% 29.4% 44.0%

N
bbox
px 23,195 18,592 21,313 21,720 28,267

%
bbox
px 76.9% 67.4% 61.8% 81.9% 70.8%

Experimental comparison in Pointing Game experiments with M1 (VGG16), M2 (VGG19), M3 (Inception
v3), and M4 (Inception ResNet v2). LIME-n means that the combination of the top-n important features is
considered, while GradCAM-n means that the combination of the top-n percentile of the most important
pixels is considered. N px is the number of feature pixels, %px is the percentage of feature pixels w.r.t.

the image size, N
bbox
px is the number of feature pixels inside the bounding box, %

bbox
px is the percentage of

feature pixels inside the bounding box w.r.t. the feature size

predicted class ĉ. Even when considering fewer pixels, the occlusion of the most
important features of EBAnO causes a larger decrease of accuracy ΔAcco,p and a
larger mean decrease of probability for the most probable predicted class ΔPo,p(ĉ)
than the occlusion of the features found by LIME and GradCAM, for all the models
considered. The results obtained using the other types of occlusion are also similar, as
shown in “Appendix G”. This highlights that, probably, by mining the internal layers
of the DCNN directly, EBAnO is more precise and faithful in extracting the effective
features exploited by the model to make the prediction.

10.8 Human validation

Human beings are the main beneficiary of explanation frameworks like EBAnO and,
for this reason, their comprehensiveness and effectiveness should always be validated

123



Explaining deep convolutional models…

Table 6 Pixel Flipping

EBAnO LIME-75 LIME-100 GradCAM-25 GradCAM-50

M1 N px 15,427 14,222 16,481 8,444 16,747

%px 30.7% 28.3% 32.8% 16.8 33.4%

Acco 0.77 0.77 0.77 0.77 0.77

Accp 0.06 0.38 0.33 0.27 0.17

ΔAcco,p −0.71 −0.39 −0.44 −0.50 −0.60

ΔPo,p(ĉ) −0.76 −0.47 −0.52 −0.56 −0.66

EBAnO LIME-75 LIME-100 GradCAM-25 GradCAM-50

M2 N px 14,805 14,410 16,617 8,374 16,633

%px 29.5% 28.7% 33.1% 16.7% 33.1%

Acco 0.77 0.77 0.77 0.77 0.77

Accp 0.03 0.45 0.40 0.30 0.16

ΔAcco,p −0.74 −0.32 −0.37 −0.47 −0.61

ΔPo,p(ĉ) −0.78 -0.45 −0.49 −0.57 −0.67

EBAnO LIME-10 LIME-15 GradCAM-25 GradCAM-50

M3 N px 24,388 19,668 26,947 15,118 30,278

%px 27.3% 22.0% 30.1% 16.9% 33.9%

Acco 0.85 0.85 0.85 0.85 0.85

Accp 0.15 0.33 0.24 0.53 0.26

ΔAcco,p −0.70 −0.52 −0.61 −0.32 −0.59

ΔPo,p(ĉ) −0.78 −0.58 −0.69 −0.45 −0.68

EBAnO LIME-15 LIME-20 GradCAM-50 GradCAM-75

M4 N px 29,280 27,156 34,117 26,436 39,603

%px 32.8% 30.4% 38.2% 29.6% 44.3%

Acco 0.87 0.87 0.87 0.87 0.87

Accp 0.09 0.26 0.21 0.25 0.13

ΔAcco,p −0.78 −0.61 −0.66 −0.62 −0.74

ΔPo,p(ĉ) −0.79 −0.66 −0.70 −0.66 −0.76

Experimental comparison in Pixels Flipping experiment with M1 (VGG16), M2 (VGG19), M3 (Inception
v3), and M4 (Inception ResNet v2). LIME-n means that the combination of the top-n important feature are
considered, while GradCAM-n means that the combination of the top-n percentile of the most important
pixels is considered. N px is the number of feature pixels, %px is the percentage of feature pixels w.r.t. the
image size, Acco is the original model accuracy for the original images and Accp for the perturbed images,
ΔAcco,p is the accuracy drop caused by the feature occlusion, ΔPo,p(ĉ) is the mean probability decrease
of the predicted class

by including end-user feedbacks. To this aim, a publicly-available online survey has
been conducted,8 allowing people to assess the effectiveness and the easiness of under-
standing of the prediction-local explanations proposed by EBAnO. The main purpose
of the survey is to validate how much EBAnO explanations are human understand-

8 https://ebano-ecosystem.github.io/#ebano-survey.
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able, andwhich explanation framework the user prefers among the following:EBAnO,
LIME (Ribeiro et al. 2016), and Grad-CAM (Selvaraju et al. 2019).

The explanations in the survey have been selected to be appreciated by a gen-
eral audience, hence we included 12 images with correct class predictions, avoiding
misleading behaviors of the models or complex concepts that would require detailed
analysis or expert skills. At the time of writing, the survey has been completed by 60
people with different instruction levels: 25% bachelor, 38% master, 32% Ph.D., 5%
other; and different age ranges: 18% between 19 and 24, 51% between 25 and 29,
30% with more than 30 years.

For each image, we asked the user two questions corresponding to two different
evaluation tasks. An example is shown in “Appendix H”.

The first task evaluates the reliability and understandability of the relevant portions
of the visual explanation provided byEBAnO in terms of positive (green) and negative
(red) influence. The idea is that, at least for the correctly classified examples, if the
explanations proposed are human-readable and reliable, they should be coherent with
the human-judgment in which are the positively or negatively important features for
the prediction, given the predicted label. Results of this task report that that green areas
of the visual explanations provided by EBAnO have been chosen to be Important for
the class of interest 55% of the times, Partially Important 40% of the times, and only
5% of the times they have been considered Not Important. So, in 95% of the cases
(considering important and partially important as coherent with the positively influen-
tial features of EBAnO), the influential areas of the input (green areas) highlighted by
EBAnO are coherently characterizing the class of interest with the human-judgment.
Similarly, red areas, when present, have been coherently consideredNot Important for
the target class of interest in the 69% of the answers.

The second evaluation task asks the user to select (multiple selection allowed)which
of the visual explanations among EBAnO, LIME, and Grad-CAM are representative
and understandable for the class of interest of the proposed image. Fig. 16 shows,
for each of the 12 images, the percentage of times in which EBAnO, Grad-CAM,
and LIME have been selected as the best option in identifying the portions of the
image responsible for the prediction of the class of interest. EBAnO provided more
appreciated explanations w.r.t. the other twomethods in 67%of the cases. In particular,
EBAnO has been selected to be more interpretable than Grad-CAM in 75% of the
cases andmore interpretable than LIME on 75% of the cases as well. In absolute terms,
over the whole survey (720 answers), EBAnO has been selected 439 times as the most
interpretable explanation for the class of interest, Grad-CAM has been selected 242
times, and LIME 156 times.

We noticed that users exploit the quality of the image segmentation as an implicit
metric to evaluate the reliability of the model (i.e. the better the image portions look,
the most the prediction is considered reliable). Differently from the other methods, the
interpretable features of EBAnO directly correlate the image portions to the knowl-
edge of the model, as explained in Sect. 4.
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Fig. 16 Survey results. For each of the 12 images, we report the percentage of times that EBAnO, Grad-
CAM, and LIME have been selected as the best explanation result for the class of interest (multiple choice
allowed)

Table 7 Execution time
comparison

M1 M2 M3 M4

EBAnO 25.1 s 33.2 s 35.4 s 59.0 s

LIME 384.3 s 489.7 s 117.3 s 277.4 s

GradCAM 1.6 s 2.0 s 0.9 s 2.0 s

Mean seconds to produce a single explanation for the different expla-
nations methods and models

10.9 Execution time comparison

Finally, we also briefly compared the time required to compute an explanation by
EBAnO, LIME, andGradCAM. The execution time for all the methodologies depends
on the complexity of the models. Moreover, the execution time of EBAnO depends
also on the maximum number of different possible partitioning analyzed Kmax and
the number of convolutional layers used for the extraction of the hypercolumns. We
recall that, in our experiments, we set Kmax = 10, and the number of extracted
convolutional layers are 5 for M1, 8 for M2, 34 for M3, and 24 for M4. Instead, for
LIME, the execution time depends on the parameter which specifies the number of
perturbed local examples used to train the linear model that we set to 1000.

Table 7 shows the mean execution time (in seconds) to produce a single explana-
tion by the different techniques. The execution times were computed with an Apple
MacBook PRO 13 with M1 Chip and 16GB of RAM (then without exploiting GPU).
EBAnO is slower compared with GradCAM (gradient-based), but faster than LIME
(perturbation-based). Therefore, EBAnO also partially bridges some efficiency and
runtime gaps of perturbation-based techniques with respect to gradient-based ones.
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11 Discussion

Thiswork contributes to theXAI literature by proposing a new feature-based technique
that primarily differs in that it performs unsupervised analysis of the internal layers
of the model when generating explanations and differs in the type of perturbation
performed. In this way, effective and interpretable explanations can be generated, as
shown by the experimental results. However, this section also discusses limitations
that pave the way for future developments of the proposed approach.

11.1 Influence index

EBAnO adopted the nPIR as influence index (see Sect. 5.2). The strength of this index
is that it takes into account not only the absolute difference in probability, but also the
initial value of the class probability. The weakness of the index is its sensitivity to very
small values of the original probability po and the probability after the perturbation of
a feature p f , for a given class of interest. Such cases are those with the least interest
in producing an explanation, i.e., classes whose original predicted probability of the
model tends to be 0 are rarely requested to be explained. This limitation could be
mitigated by reducing the number of decimal digits of the probability (e.g., keeping
only 2 decimal digits).

Furthermore, EBAnO could be applied with other user-provided influence indexes
at the user’s discretion. One example of a possible influence metric is the simple
difference between the original probability and the probability after the perturbation
of a feature. Such an index would assign the same influence to a perturbation reducing
the probability from 0.6 to 0.4, and to another perturbation reducing the probability
from 0.2 to 0., whereas the second example is clearly stronger.

Similar considerations also apply to other measures, such as Eq. 10 in Sect. 6,
used to select the most informative local explanation. The metric we propose selects
the most informative feature division by maximizing the contrast between the most
and least influential features. An alternative metric could be applied, for instance, by
considering the most positively influential feature, having the highest influence index
and the smallest size (i.e., the lowest number of pixels). This can be achieved by using
a metric that considers a feature’s influence and the number of pixels at the same time.

11.2 Explainingmodels for multi-label tasks

The experimentalmodels presented in this paper used to validate the proposedmethod-
ology were trained onmulti-class tasks. In case the models were trained onmulti-label
tasks (i.e., multiple class labels can be predicted by the model for the same input
image), the proposed approach could be applied to each predicted label separately
(i.e., explaining one class/label at a time). Similarly to the local explanations provided
by EBAnO for each class, an explanation could be provided for each label. Each
explanation will show the interpretable features (i.e., pixel regions of the input image)
and their positive or negative influence on the specified class/label.
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It is currently not possible to show themost influential features (i.e., with the highest
influence index) for all predicted classes/labels in a single heatmap, because the most
influential features of different classes of interest may have overlapping regions of
pixels. This limitation can be overcome in future developments by consideringmultiple
classes/labels simultaneously when the features are extracted, the perturbations are
applied, and the indices are computed. Hence, the explanation could be shown as a
single heatmap containing only the most positively impacted regions overall.

12 Conclusions

Thiswork introducedEBAnO, a new explanation framework able to open the decision-
making black-box process of Deep Convolutional Neural Networks, providing both
prediction-local and class-based model-wise explanations through unsupervised min-
ing. Thanks to the extraction of interpretable features and the definition of a new
index that measures features’ influence and their influence precision,EBAnO provides
detailed visual and numerical explanations. The quantitative and qualitative compar-
isons w.r.t. the state-of-the-art showed that EBAnO is (i) more easily interpretable
in visually presenting the features’ influence and more detailed in their numerical
quantification. (ii) more reliable thanks to the mining of the multiple convolutional
layers of the black-box model, as demonstrated by quantitative experiments (iii) more
effective and human-readable, as it has been selected by human users as providing the
best explanations.

Future works include: i) the exploration of new influence indices that can over-
come current limitations; ii) The improvement of the approach for models trained
on multi-label tasks by considering multiple classes at the same time in producing
the explanations; iii) the application of EBAnO to even more complex tasks related
to convolutional models (e.g., object detection); iv) the extension of the approach
to domains where DCNN-based solutions exist, like audio classification and Natural
Language Processing, by generalizing the proposed approach to different scenarios
and use cases; v) the extension of the approach to multi-modal models.
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Table 8 Mean influence (nP I R), percentage of pixels (%px ), and size (N px ) of themost influential features
for different Gaussian blur radius values

Blur radius 1 5 10 15 20 50

nP I R 0.376 0.913 0.941 0.938 0.947 0.964

%px 38.6% 38.0% 37.2% 36.3% 36.3% 35.9%

N px 19,354 19,042 18,687 18,269 18,227 18,002

Appendix A: Gaussian blur perturbation assestment

The appendix sections are organized as follows. “Appendix A” evaluates the impact
of the Gaussian blur perturbation radius in the explanations produced. “Appendix B”
assesses the performance of several clustering algorithms in the feature extraction
process of EBAnO. “Appendix C and D” discuss and show some additional local
explanations. “Appendix E” shows additional results on the class-based global expla-
nations. “Appendix F” and “Appendix G” integrate the qualitative and the quantitative
experimental comparison with state-of-the-art, respectively. “Appendix H” shows the
survey structure.

To assess the impact of the Gaussian blur perturbation radius parameter on the
explanation produced by EBAnO, we evaluated its impact on the influence and size
of the most positively influential features extracted. The experiment was performed
by randomly sampling 50 images from the test set of ImageNet and producing the
explanations of the predictionsmade by the VGG16model (M1). For each explanation
produced, we measured the mean influence nP I R, the mean number of pixels %px ,
and the mean percentage of pixels with respect to the total image size %px of the
most influential feature for the best k division, using the predicted label as class-of-
interest. Table 8 shows the results for different radius ∈ [1, 5, 10, 15, 20, 50]. As can
be noticed, if the radius is large enough (radius ≥ 5), the most positively influential
features have very similar characteristics on the measured attributes. These results
show that the choice of this parameter does not have an excessive impact on the output
produced byEBAnO. Therefore, we empirically set the default value of this parameter
to 10, but the final user can change it according to its own needs.

Appendix B: Clustering algorithm assestment

We experimented with several possible clustering algorithms to extract the inter-
pretable features from the hypercolumns. Specifically, the evaluated algorithms are: the
Scikit-learn Pedregosa et al. (2011) implementations of K-Means, DBScan, Gaussian
Mixture, Spectral, and the Faiss Johnson et al. (2021) implementation of K-Means.
They all require the number of clusters as a parameter, except for DBScan. However,
even if it is usually a not trivial parameter to set a priori, in our case, it has a specific
interpretation (i.e., the number of interpretable features to extract). Therefore,EBAnO
requires the user specification of the maximum number of features to extract, and it
evaluates all the possible divisions in range [2,max_ f eatures], selecting the best (as
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Table 9 Mean influence (nP I R), percentage of pixels (%px ), and size (N px ) of themost influential features
for different clustering algorithm on the hypercolumns

Algorithm K − MeansSciki t DBScan Gaussian Mixture K − MeansFaiss Spectral

nP I R 0.94 0.97 0.95 0.94 0.88

%px 37.1% 72.4% 35.2% 38.2% 41.4%

N px 18,594 36,323 17,656 19,191 20,767

T (s) 13 s 360 s 20 s 11 s 200 s

T is the execution time, in seconds, to produce a local explanation per clustering algorithm

discussed in Sects. 4.2 and 6). Concerning DBScan, instead, it requires the specifica-
tion of two parameters: ε and MinPts. These two parameters do not have a specific
interpretation in our domain and, as a result, are difficult to set correctly. As for the
other algorithms, different ranges of parameter values could be tested. However, also
the possible ranges could change based on the size of the images processed by each
specific model.

Moreover, different clustering algorithms make different assumptions on the size
and shapes of the clusters. However, we are performing clustering of the hypercolumns
(i.e., high-dimensional embedding space) and not on the original input space. Even
if the embedding space is composed of easier relationships among the attributes and,
consequently, more regular shapes, it is not trivial to prove which algorithm better
fits the hypercolumns data features for each possible model. Therefore, we empiri-
cally evaluated the possible clustering algorithms, for our purposes, by comparing the
performance in the explanation produced. Specifically, we measured the size and the
influence of the most influential features and the execution time required to produce
the explanation. Table 9 shows the mean influence nP I R, the mean percentage of
pixels with respect to the image size %px , and the mean number of pixels N px of
the most influential features found by EBAnO. Moreover, it also reports the mean
execution time, in seconds, to produce an explanation T using the different clustering
algorithms. The results are the average from a dataset of 50 images sampled from
the validation set of ImageNet, using a MacBook Pro with M1 chip and 16 GB of
RAM. Concerning DBscan, for each image, we selected the best explanation pro-
duced for ε ∈ [0.05, 0.1, 0.5, 1.0] and MinPts ∈ [1000, 2500, 5000, 10000], while
for all the other algorithms for all possible k ∈ [2 − 5] divisions. The results show
that DBScan, despite the large number of different ε and MinPts values tested, is
ineffective because it identifies very influential features but of enormous size (mean
percentage of 72.4%). Moreover, due to the difficulty in selecting the best parameter
values a priori, it results inefficient in terms of execution time. The Spectral algorithm
poorly performs in all metrics analyzed. Finally, K − MeansSciki t ,GaussianMixture,
and K − MeansFaiss perform similarly in most of the evaluation metrics considered.
In conclusion, K − MeansFaiss has been chosen as the default hypercolumns clus-
tering algorithm because it turns out to be the fastest, given the same performance on
the other metrics, and also supports the use of the GPU to further reduce run times
when available.
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Appendix C: Additional local explanation results

Figure 17 shows a further example input image (denoted input I3) used to discuss
the results obtained with EBAnO, highlighting its power. Input I3 shows a pizza with
an uncommon heart shape. Models M2 and M3 have been exploited to predict the
label for this image. Apparently, in this case, the two models are not influenced by the
uncommon shape of the subject: both M2 and M3 produce as the most probable result
the class Pizza as reported in Tables 10 and 11, respectively. To assess the quality
and the reliability of these predictions and, thus, to assert the reliability of models M2
and M3, further investigation is needed. EBAnO enables these analyses allowing to
wrap the prediction process carried out by the black-box models producing detailed
explanations that answer questions like:

– Q4. “Why Fig. 17 is a Pizza for model M2?”
– Q5. “Why Fig. 17 is a Pizza for model M3?”

Answering Q4.Model M2 seems to have taken the correct decision, but with some
uncertainty,while predicting the content of input I3, showing aprobability of belonging
to class Pizza of 0.48 and class Bagel of 0.16. Thus, to answer the question “Why is it
a Pizza?” and consequently “Why should it be a Bagel?” we can exploit the EBAnO
engine.

Figure 18a shows the explanation that answers to Q4. The visual explanation
(Fig. 18a-left) shows that most of the features in the input are positively impacting the
classPizza: the core of the pizza (feature with id 2) is the most positively influential for
the decision, but even the table (feature with id 1) is relevant for this class. Inspecting
the numerical explanation, we can notice that feature 2 has a very positive nPIRbut a
low value of nPIRP, meaning a low precision for the class-of-interest. Instead, feature
1 shows a nPIRvalue close to 0.5, but it is very precise with a nPIRPvalue close to 1.
This means that the context of the image (the table under the pizza) is more significant
for the class pizza than the pizza itself.

Instead, Fig. 18b shows the reasons why I3 can be confused with the class Bagel.
The pizza’s seasoning (feature with id 2 in Fig. 18b) is considered influential by model
M2 for class Bagel since its nPIR is close to 0.9, but it is also very negatively precise

Fig. 17 Pizza input image (I3)
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Fig. 18 EBAnO Local explanations. The input image is shown in Fig. 17. Visual explanation (left), Inter-
pretable features (center), nPIR and nPIRP (right).(Continue) EBAnO Local explanations. The input image
is shown in Fig. 17. Visual explanation (left), Interpretable features (center), nPIR and nPIRP (right)
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Table 10 VGG19 (M2)
predictions for Fig. 17

Class P(c)

Pizza 0.48

Bagel 0.16

Corn 0.05

Pretzel 0.05

Meat loaf 0.04

The ground-truth label is in bold (Pizza)

Table 11 InceptionV3 (M3)
predictions for Fig. 17

Class P(c)

Pizza 0.76

Honeycomb 0.24

Dutch oven 0.00

Custard apple 0.00

Starfish 0.00

The ground-truth label is in bold (Pizza)

since nPIRP is strongly negative, meaning that the feature is more influential for other
classes than for Bagel. In this case, feature 2 is more influential for class Pizza, so the
prediction can be considered reliable, and the user can trust it.

Answering Q5.Model M3, while predicting the content of input I3, provides a high
probability of 0.76 for class Pizza instead, and the second relevant predicted class is
Honeycomb with a probability of 0.24, as reported in Table 11.

However, by inspecting the explanations produced by EBAnO we can understand
that the decision about assigning the class Pizza as the most probable class has been
taken into account completely wrong assumptions. Figure 18a-left shows the visual
explanation: it is clear from the strongly green sections (features 2 and 3 in the feature
map of Fig. 18a-center) that the most positively influential elements that contribute to
this decision are related to the context of the image. Instead, the pizza itself (feature
1) is slightly negative for the prediction of the class Pizza. This behavior is confirmed
by the nPIRand nPIRPindexes shown in Fig. 18a-right.

Since the reasons behind the prediction of class Pizza are completely erroneous,
it is important to check even why model M3 is predicting as second best the class
Honeycomb to if it is one of the causes of this misleading behavior. The explanation
for the class Honeycomb is shown in Fig. 18b. From the explanation, it is noticeable
that the class Honeycomb is predicted by model M3 considering mainly the pizza,
while the context is negatively impacting the prediction. This behavior is particularly
visible looking at the visual explanation in Fig. 18b-left and supported by the indexes
in Fig.18b-right.
Thus, the decision to assign class Pizza is completely biased by the context of the
image, even in this case, while the uncommon texture and pattern of the pizza are
triggering the decision to assign the Honeycomb class.
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Appendix D: Further local explanations of correct predictions

In this section, we show some examples of local explanations produced by EBAnO
with input images correctly classified by the models. By exploiting EBAnO, an end-
user can inspect the explanations to understand, even if the class label is correct, if the
model is using the correct pattern of features or not. Figures 19, 20, 21, and 22 show
some examples of local explanations for M1, M2, M3, and M4. For each example,
the most informative local explanation is selected, and we report from left to right: i)
the original image; ii) the visual explanation; iii) the feature map; iv) the numerical
explanation. If the influential features (colored in dark green in the visual explanations)
are correlated with human judgment, then the predictions can be considered correct
and trusted.

Fig. 19 Examples of Local Explanation with VGG16 model (M1)
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Fig. 20 Examples of Local Explanation with VGG19 model (M2)

Fig. 21 Examples of Local Explanation with InceptionV3 model (M3)
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Fig. 22 Examples of Local Explanation with InceptionResNetV2 (M4)

Appendix E: Additional considerations on class-basedmodel explana-
tion

Figure 23 shows a zoom on the class-based model explanations produced by EBAnO
for class-of-interestDalmatianwith modelsM1,M2,M3, andM4. A detailed descrip-
tion of explanations for models M1 and M4 is provided in the main paper.

As a further comparison, it is interesting to notice how M1 and M2 are showing a
very similar pattern having the interpretable features distributed in the whole nP I R×
nP I RP space.Moreover, alsoM3 andM4 have comparable decision-making patterns
but distributing the interpretable features on the edges of the first quadrant. This means
that the features used to predict class-of-interestDalmatian have a very high influence
precision even if the influence itself is low in some cases. This leads models M3 and
M4 to be more reliable w.r.t. M1 and M2.
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Fig. 23 Class-based model explanation with class-of-interest Dalmatian. (Continue) Class-based model
explanation with class-of-interest Dalmatian

Appendix F: Additional local explanation qualitative comparison

Figure 24 shows a further input image (denoted input I4) taken from Selvaraju et al.
(2019) paper to show a fair comparison between their local explanations and the
explanations computed by EBAnO. The comparison takes into account the input in
Fig. 24 for which model M4 predicts Bull Mastiff with a probability of 0.63 (model
outcomes are shown in Table 12). Similar to the first comparison, taking into account
the class-of-interest Bull Mastiff, LIME highlights in green the whole top area of the
input that includes the head of the dog as well as much of the background (Fig. 25a).
Instead, GRAD-CAM identifies a much more specific region corresponding only to
the head of the dog. Both methods, however, still show the same problems highlighted
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Fig. 24 Input image (I4) taken
from Selvaraju et al. (2019) for
comparison

Table 12 InceptionResNetV2
(M4) predictions for Fig. 24

Class P(c)

Bull mastiff 0.63

Tiger cat 0.11

Tiger 0.04

Tabby 0.02

Boxer 0.01

in the first comparison: LIME is not able to precisely identify the influential region,
while GRAD-CAM does not evaluate the input areas around the influential ones.

The explanation produced by EBAnO, for class-of-interest Bull Mastiff, showed
in Fig. 25c instead highlights in green the area containing the head of the dog (visual
explanation in Fig. 25c-left), also showing that it is very positively influential and
precise, with both nPIR and nPIRP equal to 1 (numerical explanation in Fig. 25c-
right). Also, the visual and numerical explanations show that the other features are
negatively impacting the prediction process, in particular for what concerns the feature
containing the cat (feature 2 in Fig. 25c-center).

For completeness, also the explanation of class-of-interest Tiger Cat is reported in
Fig. 25d, showing that the feature containing the cat (feature 5 in Fig. 25d-center) is
very positively influential for the prediction process with a nPIR value of almost 1.0
while its nPIRP value is very low giving a possible reason why the probability of class
Tiger Cat has been predicted to be only 0.11 by model M4 for this image. The dog
head is instead marked by EBAnO as correctly negatively impacting the class Tiger
Cat identifying the model behavior also in this case.
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Fig. 25 EBAnO local explanations. The input image is shown in Fig. 24. Visual explanation (left), Inter-
pretable features (center), nPIR and nPIRP (right)

123



Explaining deep convolutional models…

Appendix G: Additional local explanation quantitative comparison

This section, reports the full set of experiments carried out for the quantitative com-
parison explained in Sect. 10.7, for M1 (VGG16), M2 (VGG19), M3 (InceptionV3),
and M4 (InceptionResNetV2). We recall that LIME-n means the combination of the
top-n most important features of LIME. While, GC-n means the top-n percentile of
important pixels (i.e., with highest activation values) found by GradCAM.
The Pointing Game table reports the results of the full set of feature combinations
for LIME and GradCAM. For each of them, the mean number of pixels N px , the
percentage of the pixels with respect to the total image size (target image size as input
of the model) %px , the mean number of feature pixels inside the bounding boxes of

the target class N
bbox
px , and the mean percentage of feature pixels inside the bounding

box %
bbox
px are reported. Smaller features tend to be, as a percentage, more inside

the bounding boxes. Probably because centering features composed of fewer pixels
inside bounding boxes is a simpler task. However, for the same feature size, EBANO
achieves comparable or better performance with respect to LIME and GradCAM, for
all the experimental models.

Instead, the Pixels Flipping table reports the full set of feature combinations and
also the results for all the occlusion types tested. Specifically, the Gauss occlusion,
replaces the feature pixels with the Gaussian blur, theMean occlusion with the mean
pixel value of the image, theBlack occlusion with 0, and theWhite occlusion with 255.
For each feature combination, we reported the mean number of pixels of the features
selected N px , the mean percentage of feature pixels with respect to the total number of
pixels %px , the original accuracy of the model for the original set of images Acco, the
drop of accuracy ΔAcco,p, and the mean probability decrease for the most probable
predicted class ΔPo,p(ĉ). The best EBAnO’s performance on all models, with the
same feature size, is also confirmed for most other occlusion types (as discussed in
Sect. 10.7).
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Pointing game EBAnO LIME-5 LIME-10 LIME-15 LIME-20 LIME-25 LIME-50

M1 N px 16,284 3379 5326 6621 7617 8437 11,531
%px 32.5% 6.7% 10.6% 13.2% 15.2% 16.8% 23.0%

N
bbox
px 12,106 2675 3834 4511 4923 5321 6721

%
bbox
px 78.3% 80.1% 74.8% 70.8% 67.3% 66.1% 61.0%

M2 N px 15,600 3269 5061 6510 7492 8522 11,517
%px 31.1% 6.5% 10.1% 13.0% 14.9% 17.0% 23.0%

N
bbox
px 11,695 2726 3974 4715 5162 5589 7011

%
bbox
px 78.4% 83.5% 78.5% 75.9% 72.1% 69.7% 63.9%

M3 N px 25,333 11,240 19,849 27,195 34,329 40,873 60,075
%px 28.3% 12.6% 22.2% 30.4% 38.4% 45.7% 67.2%

N
bbox
px 20,183 9355 14,754 18,304 20,936 23,069 28,884

%
bbox
px 81.2% 84.4% 75.3% 67.7% 61.4% 56.7% 47.8%

M4 N px 30,402 11,475 20,057 27735 34,516 41,061 61,125
%px 34.0% 12.8% 22.4 % 31.0% 38.6% 45.9% 68.4%

N
bbox
px 23,195 9,437 14,798 18,592 21,313 23,525 29,16

%
bbox
px 76.9% 83.1% 74.8% 67.4% 61.8% 57.4% 47.4%

Pointing game LIME-75 LIME-100 GC-90 GC-75 GC-50 GC-25

M1 N px 14,138 16,164 3539 8826 17,495 26,214
%px 28.2% 32.2% 7.1% 17.6% 34.9% 52.2%

N
bbox
px 7833 8617 3176 7000 10,912 13,506

%
bbox
px 57.8% 55.9% 88.7% 79.0% 62.7% 51.7%

M2 N px 13,821 15,845 3446 8604 17,062 25,547
%px 27.5% 31.6% 6.9% 17.1% 34.0% 50.9%

N
bbox
px 7,850 8624 3109 6889 10,715 13,126

%
bbox
px 59.8% 57.1% 88.2% 78.8% 62.7% 51.8%

M3 N px 61,076 61,076 5995 15,066 30,158 45,292
%px 68.3% 68.3% 6.7% 16.9% 33.7% 50.7%

N
bbox
px 29,253 29,253 5,400 12,570 21,308 27,463

%
bbox
px 47.5% 47.5% 89.0% 82.7% 70.4% 60.7%

M4 N px 61711 61,711 5,196 13,096 26,261 39,370
%px 69.0% 69.0% 5.8% 14.6% 29.4% 44.0%

N
bbox
px 29,429 29,429 4963 12,083 21,720 28,267

%
bbox
px 47.2% 47.2% 95.5% 92.0% 81.9% 70.8%
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Pixel flipping EBANO LIME-5 LIME-10 LIME-15 LIME-20 LIME-25 LIME-50

M1 N px 15,427 3416 5446 6915 7846 8680 11,920
%px 30.7% 6.8% 10.9% 13.8% 15.6% 17.3% 23.8%
Acco 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Gauss ΔAcc −0.71 −0.08 −0.15 −0.20 −0.24 −0.28 −0.28
ΔPo,p(ĉ) −0.76 −0.16 −0.23 −0.29 −0.32 −0.34 −0.41

Mean ΔAcc −0.72 −0.17 −0.24 −0.31 −0.36 −0.38 −0.53
ΔPo,p(ĉ) −0.77 −0.26 −0.37 −0.44 −0.48 −0.51 −0.59

Black ΔAcc −0.76 -0.24 −0.34 −0.40 −0.46 −0.47 −0.54
ΔPo,p(ĉ) −0.77 −0.33 −0.43 −0.48 −0.52 −0.54 −0.60

White ΔAcc −0.72 −0.24 −0.29 −0.40 −0.42 −0.43 −0.55
ΔPo,p(ĉ) −0.76 −0.28 −0.38 −0.46 −0.49 −0.51 −0.58

M2 N px 14,805 3436 5320 6615 7726 8585 11,988
%px 29.5% 6.8% 10.6% 13.2% 15.4% 17.1% 23.9%
Acco 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Gauss ΔAcc −0.74 −0.10 −0.15 −0.16 −0.19 −0.20 −0.26
ΔPo,p(ĉ) −0.78 −0.15 −0.22 −0.23 −0.26 −0.29 −0.38

Mean ΔAcc −0.72 −0.18 −0.26 −0.28 −0.34 −0.36 −0.48
ΔPo,p(ĉ) −0.77 −0.27 −0.37 −0.41 −0.45 −0.48 −0.58

Black ΔAcc −0.74 −0.24 −0.29 −0.40 −0.44 −0.44 −0.49
ΔPo,p(ĉ) −0.78 −0.32 −0.41 −0.46 −0.50 −0.53 −0.58

White ΔAcc −0.73 −0.17 −0.26 −0.39 −0.42 −0.43 −0.52
ΔPo,p(ĉ) −0.77 −0.27 −0.37 −0.44 −0.48 −0.51 −0.61

M3 N px 24,388 11,117 19,668 26,947 34,134 40,606 59,230
%px 27.3% 12.4% 22.0% 30.1% 38.2% 45.4% 66.3%
Acco 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Gauss ΔAcc −0.70 −0.29 −0.52 −0.61 −0.68 −0.74 −0.78
ΔPo,p(ĉ) −0.78 −0.39 −0.58 −0.69 −0.73 −0.76 −0.81

Mean ΔAcc −0.66 −0.36 −0.60 −0.66 −0.78 −0.78 −0.82
ΔPo,p(ĉ) −0.74 −0.45 −0.65 −0.74 −0.80 −0.81 −0.83

Black ΔAcc −0.70 −0.49 −0.69 −0.76 −0.77 −0.78 −0.82
ΔPo,p(ĉ) −0.76 −0.58 −0.73 −0.78 −0.80 −0.81 −0.83

White ΔAcc −0.68 −0.41 −0.60 −0.72 −0.76 −0.77 −0.82
ΔPo,p(ĉ) −0.75 −0.51 −0.68 −0.77 −0.80 −0.81 −0.83

M4 N px 29,280 11,428 20,021 27,156 34,117 40,808 60,248
%px 32.8% 12.8% 22.4% 30.4% 38.2% 45.6% 67.4%
Acco 0.87 0.87 0.87 0.87 0.87 0.87 0.87

Gauss ΔAcc −0.78 −0.23 −0.53 −0.61 −0.66 −0.73 −0.77
ΔPo,p(ĉ) −0.79 −0.31 −0.56 −0.66 −0.70 −0.74 −0.80

Mean ΔAcc −0.77 −0.29 −0.56 −0.71 −0.78 −0.81 −0.84
ΔPo,p(ĉ) −0.78 −0.38 −0.62 −0.73 −0.78 −0.81 −0.84

Black ΔAcc −0.77 −0.43 −0.64 −0.71 −0.76 −0.79 −0.84
ΔPo,p(ĉ) −0.79 −0.47 −0.67 −0.75 −0.78 −0.80 −0.83

White ΔAcc −0.76 −0.42 −0.62 −0.73 −0.76 −0.80 −0.84
ΔPo,p(ĉ) −0.78 −0.47 −0.67 −0.75 −0.78 −0.81 −0.84
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Pixel Flipping LIME-75 LIME-100 GC-5 GC-10 GC-25 GC-50 GC-75

M1 N px 14,222 16,481 1690 3383 8444 16,747 25,081
%px 28.3% 32.8% 3.4% 6.7% 16.8 33.4% 50.0%
Acco 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Gauss ΔAcc −0.39 −0.44 −0.12 −0.25 −0.50 −0.60 −0.61
ΔPo,p(ĉ) −0.47 −0.52 −0.21 −0.34 −0.56 −0.66 −0.71

Mean ΔAcc −0.58 −0.62 −0.16 −0.28 −0.52 −0.64 −0.68
ΔPo,p(ĉ) −0.64 −0.67 −0.27 −0.40 −0.60 −0.70 −0.73

Black ΔAcc −0.59 −0.64 −0.22 −0.37 −0.56 −0.68 −0.72
ΔPo,p(ĉ) −0.64 −0.67 −0.32 −0.47 −0.66 −0.73 −0.75

White ΔAcc −0.61 −0.62 −0.18 −0.32 −0.54 −0.61 −0.68
ΔPo,p(ĉ) −0.63 −0.66 −0.27 −0.41 −0.61 −0.68 −0.73

M2 N px 14,410 16,617 1675 3355 8374 16,633 24,900
%px 28.7% 33.1% 3.3% 6.7% 16.7% 33.1% 49.6%
Acco 0.77 0.77 0.77 0.77 0.77 0.77 0.77

Gauss ΔAcc −0.32 −0.37 −0.14 −0.23 −0.47 −0.61 −0.61
ΔPo,p(ĉ) −0.45 −0.49 −0.23 −0.36 −0.57 −0.67 −0.69

Mean ΔAcc −0.56 −0.62 −0.20 −0.29 −0.49 −0.65 −0.66
ΔPo,p(ĉ) −0.64 −0.66 −0.30 −0.41 −0.61 −0.69 −0.72

Black ΔAcc −0.52 −0.61 −0.23 −0.35 −0.61 −0.69 −0.70
ΔPo,p(ĉ) −0.62 −0.67 −0.35 −0.47 −0.66 −0.72 −0.74

White ΔAcc −0.60 −0.63 −0.16 −0.30 −0.50 −0.64 −0.67
ΔPo,p(ĉ) −0.66 −0.69 −0.30 −0.42 −0.62 −0.69 −0.72

M3 N px 60,221 60,291 2980 6017 15,118 30,278 45,462
%px 67.4% 67.4% 3.3% 6.7% 16.9% 33.9% 50.9%
Acco 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Gauss ΔAcc −0.78 −0.78 −0.08 −0.14 −0.32 −0.59 −0.74
ΔPo,p(ĉ) −0.81 −0.81 −0.14 −0.23 −0.45 −0.68 −0.77

Mean ΔAcc −0.82 −0.82 −0.07 −0.16 −0.34 −0.58 −0.77
ΔPo,p(ĉ) −0.83 −0.83 −0.17 −0.24 −0.47 −0.67 −0.78

Black ΔAcc −0.82 −0.82 −0.16 −0.24 −0.44 −0.68 −0.78
ΔPo,p(ĉ) −0.83 −0.83 −0.24 −0.35 −0.58 −0.73 −0.80

White ΔAcc −0.82 −0.82 −0.06 −0.16 −0.42 −0.62 −0.78
ΔPo,p(ĉ) −0.83 −0.83 −0.18 −0.29 −0.53 −0.71 −0.80

M4 N px 60,905 60,905 2587 5237 13,187 26,436 39,603
%px 68.1% 68.1% 2.9% 5.9% 14.8% 29.6% 44.3%
Acco 0.87 0.87 0.87 0.87 0.87 0.87 0.87

Gauss ΔAcc −0.77 −0.77 −0.04 −0.14 −0.34 −0.62 −0.74
ΔPo,p(ĉ) −0.80 −0.80 −0.10 −0.19 −0.41 −0.66 −0.76

Mean ΔAcc −0.84 −0.84 −0.02 −0.16 −0.33 −0.61 −0.80
ΔPo,p(ĉ) −0.84 −0.84 −0.12 −0.22 −0.43 −0.68 −0.82

Black ΔAcc −0.84 −0.84 −0.08 −0.22 −0.45 −0.71 −0.80
ΔPo,p(ĉ) −0.83 −0.83 −0.16 −0.28 −0.50 −0.75 −0.82

White ΔAcc −0.84 −0.84 −0.05 −0.17 −0.42 −0.67 −0.83
ΔPo,p(ĉ) −0.84 −0.84 −0.13 −0.23 −0.47 −0.72 −0.83

Appendix H: Survey structure

Figure 26 shows an example question of the survey proposed to validate the human
interpretability of the prediction-local explanations producedbyEBAnO. Thequestion
is divided into three sections:

1. The user can inspect the input image with details about the model’s prediction.
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Fig. 26 Survey example question

2. Sub-questions regarding the relevance of green areas and the presence and the
irrelevance of red areas are proposed to the user.

3. The visual explanations computed by EBAnO LIME and GRAD-CAM are pro-
posed to the user who is asked to select the ones that better represent the prediction
of the target class-of-interest.
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