
21 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessing the performance of XDP and AF-XDP based NFs in edge data center scenarios / Parola, F.; Procopio, R.;
Risso, F.. - ELETTRONICO. - (2021), pp. 481-482. (Intervento presentato al convegno 17th International Conference on
emerging Networking EXperiments and Technologies, CoNEXT 2021 tenutosi a Virtual event nel December 7 - 10,
2021) [10.1145/3485983.3493352].

Original

Assessing the performance of XDP and AF-XDP based NFs in edge data center scenarios

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3485983.3493352

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970690 since: 2022-08-20T08:53:30Z

Association for Computing Machinery

Poster: Assessing the Performance of XDP and AF_XDP Based
NFs in Edge Data Center Scenarios

Federico Parola
Politecnico di Torino

federico.parola@polito.it

Roberto Procopio
TIM S.p.A.

roberto.procopio@telecomitalia.it

Fulvio Risso
Politecnico di Torino
fulvio.risso@polito.it

ABSTRACT
While servers in traditional data centers can be specialized to run
either CPU-intensive or network-intensive workloads, edge data
centers need to consolidate both on the same machine(s) due to the
reduced number of servers. This paper presents some preliminary
experiments to determine how to improve the overall through-
put of the above servers, being XDP and AF_XDP the two main
technologies into play.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network servers;
Programmable networks; • Software and its engineering →
Communications management.

KEYWORDS
Network Function Virtualization, XDP, AF_XDP

1 INTRODUCTION
Telco operators are increasingly building micro data centers at
the edge of their network, in which the few available servers are
expected to execute both telco-oriented workloads (e.g., 5G user-
plane functions) and general-purpose applications (e.g., content
caches, object recognition software, 5G control plane, etc.). While
in traditional data centers each server is dedicated to either one
of the workloads, the reduced number of servers (usually on the
order of 5-10 units) suggest that they would host a variable mix of
network-oriented and general-purpose workloads.

Technologies such as eXpress Data Path (XDP)[2] and AF_XDP,
could provide an ideal packet processing infrastructure for the
above “integrated” scenario, while other kernel-bypass technologies
(e.g. DPDK) are more suitable for servers dedicated to dataplane-
oriented tasks due to the necessity of dedicated CPU cores and
huge memory pages, and the difficulties to support applications
that require the standard TCP/IP stack. On the other side, XDP
allows to process packets in the NIC driver, retaining the possibility
to yield a packet to the Linux network stack, while AF_XDP sockets
can be used to bypass limitations of eBPF programs.

This paper presents our preliminary analysis of the interactions
between the above-mentioned packet processing mechanisms, the
underlying hardware primitives (e.g., DDIO, caches), and the run-
ning workloads, deriving insights on how to optimize the through-
put in the above target scenario.

2 EXPERIMENTS
This section presents our preliminary findings when running mixed
workloads on the same server.

xdp af_xdp combined
0

5

10

15

20

M
pp

s

Dropped (Mpps) Pass-through (Mpps) Local (Reqs/s)

0

1.5

3

4.5

6·105

Re
qs
/s

Figure 1: Throughput comparison for different technologies and dif-
ferent traffic destinations.

The choice betweenXDP andAF_XDP depends on the des-
tination of the involved traffic. We identified three different
classes of traffic that can be handled by our server, each one char-
acterized by a different type of IO processing. Dropped traffic
is the traffic that is discarded by the NF, typically a Firewall, a
DDoS Mitigator or a traffic shaper. Pass-through traffic is the
traffic that is forwarded by the machine after being processed by
one or more network functions. This can be the case of a load bal-
ancer redirecting packets towards backends running on a different
server. Local traffic is the traffic that has to be processed by an
application running on same server as the NF, e.g., traffic that is
processed by a firewall and terminated on a local pod. Even though
this three scenarios are usually combined in a common deploy-
ment, we decided to study them in isolation in order to profile the
behavior of the technologies under test and then define the best
way to combine them in a real use case. Our experiments leverage
the xdp_rxq_info and the xdpsock samples from the Linux kernel
tree1 to perform some simple packet IO in XDP and AF_XDP. For
AF_XDP we ran the user space packet processing thread on the
same core in charge of handling interrupts of the NIC and enabled
the SO_PREFER_BUSY_POLLING flag, that resulted in better perfor-
mance. We also evaluated a combined mode, in which AF_XDP
sockets are enabled but the verdict on the final destination of the
packet is taken at the XDP level. For local traffic we executed an
instance of the memcached server and measured the maximum
number of requests per second that it was able to handle.

Results in fig. 1 show that the technology achieving the best
throughput depends on the destination of the traffic: while the
combined mode achieves the best results for dropped traffic, pure
AF_XDP yields better performance when the traffic is redirected
outside the machine. The reasons for the above results can be found
in the following considerations: 1) all packets processed at the
AF_XDP level pass through an XDP program, hence dropping the
packet at this early stage can therefore save CPU cycles; 2) packets
follow a different path in the kernel if redirected at the AF_XDP or

1https://github.com/torvalds/linux/tree/v5.14/samples/bpf

Federico Parola, Roberto Procopio, and Fulvio Risso

0 2 4 6 8 10 12 14
0

10

20

Cores

M
pp

s

rs 512 + 2 ways
rs 512 + 11 ways
rs 256 + 2 ways
rs 256 + 11 ways

Figure 2: Multi-core scalabilty of router NF with different values of
DDIO LLC ways and different RX ring sizes (rs).

isolation router checksummer
0

10

20

30

YO
LO

tim
e
(s)

2 ways 5 ways 11 ways

Figure 3: YOLO execution time for different DDIO ways values,
when executed in isolation and in parallel with the router and the
checksummer running 12 cores.

XDP level, and the AF_XDP path seems to be more optimized; 3)
when working in combined mode, the buffer management model
of AF_XDP is also applied to XDP; this brings an improvement
when dropping packets but drastically reduces performance when
redirecting traffic.

Multi-core scalability of XDP and AF_XDP is heavily af-
fected by DDIO cache occupancy. We defined two test network
functions, a static router and a checksummer, recomputing the L4
checksum of the packet multiple times, and tried to scale them on
multiple cores. The blue-circle line in fig. 2 shows the throughput
of the XDP router (similar results apply to the checksummer) and
highlights how the NF scalability is far from linear when exceeding
4/6 cores, even if there is no apparent contention among cores.
Monitoring the number of cache accesses shows an increase in the
percentage of LLC misses as the number of cores grows. We suspect
this behaviour is due to the problem of leaky DMA presented in [3]
and extensively studied in [1]. We repeated the tests above applying
the solutions suggested in the two papers: increasing the number of
LLC ways at disposal of DDIO (from 2 to 11) and reducing the size
of the RX rings used by the NIC (from 512 to 256 packets). Figure 2
shows that both solutions improve the throughput, and allow to
achieve linear scalability if applied together. One interesting point
we want to further investigate is why the impact of the leaky DMA
is already visible for small packets in XDP/AF_XDP, while in the
two papers mentioned above and experimenting with DPDK, this
problem only arises for big packets.

Increasing DDIO cache occupancy does not impact on the
performance of CPU-bounded workloads. Reducing the NIC’s
RX ring size produces known drawbacks, like the inability to handle
bursts of traffic, or to buffer packets while the CPU core is busy
in other tasks. In fact, given the default values suggested by Intel
(2-ways DDIO LLC, equivalent to the 18% of the cache, and 512
packet buffers), we expect to pay our changes with a negative

impact in other applications. Therefore, we performed a set of
experiments to possibly validate our guess. In the first experiment,
shown in fig. 3, we selected the YOLO image recognition application
as an example of CPU-bounded program and run it in parallel
with an XDP-based network function to see whether changing
the DDIO cache occupancy affected the time needed by YOLO to
process a sample image. In the second experiment, we measured
the maximum number of requests served by an nginx web server
when undergoing a 10 Mpps DDoS attack, verifying if increasing
the number of DDIO LLC ways amplified the effect of the attack.
In both cases our results show no negative effects of increasing
the DDIO cache occupancy on CPU-bounded applications, while
the benefits on network functions are clearly shown in the former
section.

We plan to further investigate this phenomenon extending the
set of experiments in order to cover more scenarios possibly affected
by DDIO LLC share.

3 CONCLUSIONS
This paper presents the preliminary experiments carried out to
assess and compare the performance of XDP and AF_XDP, the two
main technologies provided by the Linux kernel for fast packet
processing. Our results show that the choice of the best technology
depends on the destination of the traffic (e.g., local vs remote), and
that the interaction with the underlying hardware mechanisms
of the CPU (DMA and DDIO) has to be tuned to achieve optimal
performance.

This preliminary results lay the foundations of our future work
that aims at providing a complete set of best practices to design
VNFs leveraging the kernel provided infrastructure.

ACKNOWLEDGMENTS
Federico Parola acknowledges support from TIM S.p.A. through
the PhD scholarship.

REFERENCES
[1] Farshin, A., et al. Reexamining direct cache access to optimize 𝑖/𝑜 intensive ap-

plications for multi-hundred-gigabit networks. In 2020𝑈𝑆𝐸𝑁𝐼𝑋 Annual Technical
Conference (2020), pp. 673–689.

[2] Høiland-Jørgensen, T., et al. The express data path: Fast programmable packet
processing in the operating system kernel. In Proceedings of the 14th international
conference on emerging networking experiments and technologies (2018), pp. 54–66.

[3] Tootoonchian, A., et al. Resq: Enabling slos in network function virtualization.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18) (2018), pp. 283–297.

	Abstract
	1 Introduction
	2 Experiments
	3 Conclusions
	Acknowledgments
	References

