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Neuromorphic Computing via Fission-based Broadband
Frequency Generation

Bennet Fischer, Mario Chemnitz,* Yi Zhu, Nicolas Perron, Piotr Roztocki,
Benjamin MacLellan, Luigi Di Lauro, A. Aadhi, Cristina Rimoldi, Tiago H. Falk,
and Roberto Morandotti*

The performance limitations of traditional computer architectures have led to
the rise of brain-inspired hardware, with optical solutions gaining popularity
due to the energy efficiency, high speed, and scalability of linear operations.
However, the use of optics to emulate the synaptic activity of neurons has
remained a challenge since the integration of nonlinear nodes is
power-hungry and, thus, hard to scale. Neuromorphic wave computing offers
a new paradigm for energy-efficient information processing, building upon
transient and passively nonlinear interactions between optical modes in a
waveguide. Here, an implementation of this concept is presented using
broadband frequency conversion by coherent higher-order soliton fission in a
single-mode fiber. It is shown that phase encoding on femtosecond pulses at
the input, alongside frequency selection and weighting at the system output,
makes transient spectro-temporal system states interpretable and allows for
the energy-efficient emulation of various digital neural networks. The
experiments in a compact, fully fiber-integrated setup substantiate an
anticipated enhancement in computational performance with increasing
system nonlinearity. The findings suggest that broadband frequency
generation, accessible on-chip and in-fiber with off-the-shelf components,
may challenge the traditional approach to node-based brain-inspired
hardware design, ultimately leading to energy-efficient, scalable, and
dependable computing with minimal optical hardware requirements.

1. Introduction

The ongoing transformative success of artificial intelligence
comes at the price of a significant environmental footprint.[1,2]
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The use of brain-inspired algorithms on our
current von Neumann computing architec-
tures, which separate data processing and
storage, requires a significant amount of ex-
tra energy to maintain continuous informa-
tion exchange between units. A practical so-
lution to this energy inefficiency is optical
computing.[3–5] Computing with light uti-
lizes complex-valued electromagnetic fields
instead of electric currents to transport and
process multi-dimensional data. This en-
ables parallel processing in various optical
degrees of freedom[6] at femtojoule energy
levels per operation.[7] Recent approaches
aim to replicate mathematical core oper-
ations used in artificial neural networks
(ANNs) – the current backbone of artificial
intelligence – in ultrafast light-driven hard-
ware. Operations such as arbitrary matrix
multiplications,[8] convolutions,[9] or non-
linear activation functions[10–12] were imple-
mented in multi-component hardware to
realize single optical neural network layers.
Their inference capabilities are compara-
ble to their digital counterparts in low-level
benchmark tasks, such as time series pre-
diction or audio and image recognition.

Yet, further scaling of these design- and equipment-heavy ap-
proaches toward deep neural architectures comes with many
challenges. For instance, emulating the firing of a neuron ne-
cessitates programmable nonlinear optical interconnects which
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enact synaptic activation functions.[13–15] These interconnects are
power-hungry and difficult to scale,[16] making the sequential ar-
rangement of optical neural nodes, unlike biological neurons, po-
tentially impractical.

Neuromorphic wave computing (and related concepts[17–19])
may offer a solution to go beyond the limitations of conventional
node-by-node hardware design. The analog computing princi-
ple relies on the natural wave dynamics of a physical system
to perform computations rather than using complex heteroge-
neous hardware architectures with tailored information trajecto-
ries. Information is encoded in wave modes and processed in
the complex-number space via transient (temporary) wave phe-
nomena, such as diffraction, interference, and nonlinear (i.e.,
intensity-dependent) wave mixing. By training the timing of
these phenomena, propagating waves may be able to resample
transient nonlinear graphs comparable to nonequilibrium neu-
ral networks.[20,21] The concept is currently finding its way into
hydrodynamics,[22] acoustics,[23] and optics.[18,24,25]

In the latter, wave computing comes with unique advantages.
It presents an intrinsic, energy-efficient approach to leveraging
the ultrafast nonlinearity inherent to optical media. This not only
promises to surpass the technological limitations in power con-
sumption, data latency, and bandwidth of electro-optical signal
conversion – a major challenge in enabling deep (i.e., multi-layer)
all-optical neuromorphic computing[19,25] – but may also allow for
scaling the computational performance with the nonlinearity in
the system.[18]

Yet, questions remain about the computational merit of using
transient nonlinearities in various optical degrees of freedom, as
well as which types of wave dynamics are sufficiently complex to
perform scalable computations. Further, new metrics are needed
to quantify the scalability of such analog systems in terms of neu-
ral performance and energy efficiency.

Here, we demonstrate the broadening of optical pulses in
time and frequency within a single waveguide as a scalable re-
source for fast and powerful neuromorphic computing. Modes
(i.e., elementary waves) in time and frequency provide an energy-
efficient vehicle to explore such an approach, as they are well-
understood and controllable in optical media, particularly in the
context of broadband light generation.[26,27] We first revisit the
analogy between neural networks and wave-based neuromorphic
computing. We then introduce coherent broadband frequency
mixing mediated by the fission of higher-order solitons (i.e., self-
regulating pulses) as a specific realization of such computing.
The outstanding phase sensitivity of this complex phenomenon
is ideal for nonlinearly transforming information encoded on a
femtosecond data carrier into new frequency bands. Following
this, we show how such frequency bands can be used for effort-
less data separation or prediction solely by training a linear map-
ping of the spectral intensities to a prediction label or value. Fi-
nally, we demonstrate this concept experimentally in an “off-the-
shelf” fiber system and evaluate the system performance with var-
ious neural network benchmarks, including COVID-19 diagno-
sis. We introduce network primitives, i.e., software-based ANNs
of minimal size with similar properties, as a new method to com-
pare the performance of analog and digital platforms. Our results
complement spatial approaches in nonlinear wave computing[24]

and earlier attempts to interpret narrowband frequency mixing
in fibers as a computational kernel.[28]

2. Neuromorphic Wave Computing with Transient
Nonlinear Optics

One way to understand why optical waves may compute in a
neuromorphic manner is to visualize the analogous mathemat-
ical structure between deep neural networks and the differen-
tial equations that govern nonlinear wave propagation.[17,18,25]

This analogy is especially effective when utilizing time-frequency
modes for visualization (see Supporting Information Section A
for a formal treatment).

In an artificial neural network, such as that depicted in
Figure 1A, each neural layer typically comprises several intercon-
nected neurons. Each artificial neural node in layer k can mathe-
matically be expressed as[29]]

Xk
p = fNL

(∑
q

wk
pqXk−1

q

)
(1)

Each neuron accumulates weighted information Xk−1
q from

previous nodes, followed by a nonlinear activation function fNL( · )
(usually given by sigmoids or rectifying units). Such a nonlinear
activation resembles the synaptic response of a biological neuron
while the weights wk

pq of each layer mimic the plasticity of bio-
logical neural connections. The activation threshold and weights
are usually subject to task-specific training. The interconnections
may be random and sparse as long as the network complexity is
sufficient to address the desired inference tasks.[21,30] In general,
a multi-layer network can be interpreted as a sequence of linear
and nonlinear operations (Figure 1A).

This sequence is similar in formalism to the split-step Fourier
model, which is commonly used to simulate approximate non-
linear pulse propagation in optical waveguides.[26] This model ap-
plies linear dispersion and nonlinear wave mixing repeatedly and
consecutively in a dense sequence of operations (Figure 1B). A
single propagation step k can formally be expressed, analogously
to Eq. 1, as:

Ak
p = 

(∑
q

pqAk−1
q

)
(2)

The weighted sum corresponds to the linear temporal re-
sponse of the physical system pq applied to the complex-valued
temporal field amplitude. The sum can be understood as a dis-
cretized convolution of the field with the dispersive system re-
sponse, delayed by a time Tp − Tq. Finally, the nonlinear operator
 , in our case the third-order Kerr nonlinearity, acts as synaptic
activation.

The information flow in an optical waveguide can be visual-
ized as a virtual neural network of transient nodes, as depicted in
Figure 1C. Such nodes are aligned in a two-dimensional space in
time and frequency. An optical field input into the network corre-
sponds to complex-valued nodes at a specific time and frequency.
At every tiny step of the wave propagation, the linear dispersion
 causes the information to spread out over time (Figure 1C,
green box), while the nonlinearity mixes either the nodes over-
lapping in time or maps their product into other frequencies
(Figure 1C, orange box). Hence, the interplay between linear dis-
persion and nonlinearity mimics a transient flow of information
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Figure 1. Operational principle of neuromorphic frequency-domain wave computing. A) Example of a feed-forward neural network architecture. Each
hidden layer can be decomposed into a linear sublayer (green) performing node-wise linear weighting and summation and a nonlinear activation layer
(orange). B) Illustration of the heuristic resemblance between neural networks and fiber-based neuromorphic wave computing. Information is encoded
in the spectral phase of a femtosecond pulse before being launched into a highly nonlinear optical fiber. Nonlinear pulse propagation can be modeled
as a concatenation of linear dispersive shifts  and third-order optical nonlinear transformations  (i.e., the Kerr effect), leading to the mixing and
generation of optical frequencies. The broadband system output is then measured and weighted to provide a task-specific computational result. C)
System state representation illustrating the information flow in a transient optical network while propagating in the spectro-temporal space. An input
field is represented as a finite distribution of weights on specific transient nodes, i.e., transform-limited field entities in time and frequency. Continuously
alternating linear dispersion and nonlinearity will cause energy redistribution along time and frequency, respectively, creating highly input-specific infor-
mation trajectories. In the visualization, the field amplitudes per node are coded in both the size and color of the shape for better visibility. D) Schematic
setup of our experimental realization (see Figure S1, Supporting Information for more details). The system is trained offline by frequency selection and
weighting at the system read-out.

through a neural network. The system’s wave dynamics define
the connections within this network, which are unique for a given
system configuration (i.e., pulse and waveguide properties).

We stress that these heuristic assumptions, while intuitive,
cannot be used to deduce quantitative rules to reconstruct conclu-
sive graph topologies of the neural networks that the system can
mimic. Furthermore, they cannot be used to estimate the compu-
tational costs, such as the number of operations performed per
time.

To conclude the analogy to neural networks, trainable param-
eters are required to direct and blend information toward a pre-
diction value. In ANN algorithms, these parameters typically re-
fer to the weights of the neural interconnections between layers.
In wave systems, the free parameters are(a) the initial configu-
ration of the input field; b) the system nonlinearity and disper-
sion (i.e., both define the dominant nonlinear dynamics of the
system); and c) the field parameters read from the system out-
put. Thus, a physical wave system may be trained toward specific
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inference tasks through a priori design of the waveguide for tai-
lored wave propagation,[17,19,25] or a posteriori by optimizing the
system encoding (input layer) or read-out (output layer). In prac-
tice, the training of the waveguide parameters is very challeng-
ing as it requires precise control over local waveguide properties,
such as dispersion and nonlinearity, which are typically static af-
ter fabrication. While some solutions to this challenge exist (e.g.,
dispersion-varying fibers[31–33]), a posteriori training at system in-
put or output is more straightforward toward tailoring the non-
linear wave dynamics. This approach exploits the system’s sensi-
tivity to phase and amplitude variations at the input. As a result,
task-specific transient information graphs in nonlinear waveg-
uides can be trained in two ways: either online, by adjusting a
phase/amplitude mask of the input field[34] (known as input layer
training), or offline, by weighting the system read-out. The latter
is known as output layer training from computational concepts
such as reservoir computing[35,36] or extreme learning machines
(ELM).[18,30]

Overall, a general prerequisite for wave computing is a physical
system that: i) features a sufficiently complex, input-dependent
system response (i.e., a manifold of modal interactions); ii) re-
mains robust against noise; and iii) yields interpretable, repro-
ducible outputs.[21] Processes such as the formation of self-
regulating states of light[18,38] (e.g., solitons) or the scattering
of spatial modes[17] have been theoretically deemed suitable for
computing, and nonlinear spatial mode interactions in optical
fibers have been demonstrated experimentally.[24] Spatial modes
dominate in current demonstrations. They are easily scalable yet
require high power and environmental stability. In the following,
we introduce fission-based broadband frequency generation – a
complex interaction of robust time-frequency modes – as a novel,
versatile basis for neuromorphic wave computing in conjunction
with read-out training.

3. Results

3.1. Higher-Order Soliton Fission For Neuromorphic Wave
Computing

Soliton fission is a multi-step nonlinear process leading to the
generation of new frequencies over a bandwidth of several tens of
terahertz.[37] The process features one of the most complex yet co-
herent and tailorable pulse dynamics known in optics. It involves
the sequential split-up of pulses into a series of optical solitons,
often accompanied by a cascade of other nonlinear effects such
as self-phase modulation, non-solitonic radiation (i.e., dispersive
waves), intrapulse stimulated Raman scattering, and four-wave
mixing, to name a few. Recent studies have demonstrated that
fully connected deep neural networks with at least two hidden
layers are required to sample the full field dynamics of the soli-
ton fission process,[38] unambiguously supporting the non-trivial
input-output relationship of such a physical system.

The timing and strength of each component in this dynamic
cascade of effects strongly depend on the configuration of the op-
tical input pulse. The slightest alteration in phase or amplitude
of the incident pulse spectrum can lead to a significant change
in the output spectrum in a coherent and reproducible way, as
shown in Figure 2A–C (see also Supporting Information, Sec-
tion B and Figure S3, Supporting Information). The rich variety

of nonlinear transformations in such complex, cascaded wave dy-
namics enables the basic mapping functionalities of various neu-
ral networks to be emulated with a single physical unit.

We illustrate numerically (Figure 2D–H) and demonstrate ex-
perimentally (Figure 3B,C) the potential of soliton fission as the
backbone for neuromorphic wave computing by means of the
nonlinear exclusive OR (XOR) operation (Experimental Section
and Supporting Information). In our approach, each combina-
tion of a 2-bit sequence is encoded in the spectral phase of the
input pulse (Figure 2A,D). The simulation results (Figure 2E–
G) show a significant difference in the nonlinear system dy-
namics between input sequences with odd ([0,1], [1,0]) and even
([0,0], [1,1]) parities. Consequently, distinct broadband areas can
be identified in the output spectrum (e.g., at 1700 ± 50 nm –
Figure 2H) that yield high power for odd-numbered inputs (an
XOR result of 1) and low power for even-numbered inputs (an
XOR result of 0). This example highlights both the sensitivity of
the soliton fission process to the input phase (Figure S3, Support-
ing Information) and the system’s intrinsic ability to perform dig-
ital operations beyond the capabilities of a single perceptron.[39]

3.2. Experimental Implementation and Benchmarking

We experimentally implemented a nonlinear fiber system
(Figure 1D) consisting of a femtosecond laser source, a pro-
grammable filter for data encoding, and a highly nonlinear,
anomalous dispersive fiber for data processing (see also Exper-
imental Section and Figure S1, Supporting Information). The
system is dispersion-optimized to obtain an input pulse width
(≈140 fs) at the input facet of the nonlinear fiber in order to main-
tain pulse-to-pulse reproducibility of the transient soliton fission
dynamics (also known as coherence condition, see Experimental
Section and Figure S2, Supporting Information). This optimiza-
tion can be understood as adding a bias to the neuromorphic sys-
tem that provides another means for managing the system on top
of the regulation with optical input power.

The fiber processor is trained toward individual operations and
inference tasks using the ELM framework (i.e., offline, super-
vised readout layer training).[30] The trainable parameters are the
selected number of measured frequencies and their weights. In
contrast to other studies, we strictly omit smart nonlinear lay-
ers, such as convolutional neural networks or (nonlinear) sup-
port vector machines, which either preserve data dimensionality
or use the entire output information of the physical layer as an
input for digital classifiers. Instead, we use linear regression on
only a selected set of measured spectral intensities to obtain a
weight matrix from the system readout (Figure 3A). The selec-
tion of frequencies is a further degree of freedom in our system
training that allows us to learn about the complexity of an in-
ference task (i.e., how many inputs are needed for each specific
nonlinear regime) and the performance scaling of the proposed
approach.

With this setup, we confirm the significant advantage of phys-
ical ELMs: the computational performance of our system can be
scaled up without changes to the optical hardware simply by in-
creasing the complexity of the underlying nonlinear dynamics.
The extent and reach of nodal interactions in the transient space
depend on the amount of nonlinear optical processes involved in
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Figure 2. Coherent soliton fission as a computing resource. A–C) System sensitivity analysis. A) A single-phase window (called bit; in blue) is shifted
through the spectrum of a pulse input to a nonlinear fiber (in gray). B,C) Output spectra of a 100 m long nonlinear fiber measured for 72 different
spectral bit-positions. The variations in the spectrum demonstrate the phase sensitivity of the nonlinear broadening process for B) low phase magnitude
(𝜋/10) and C) high phase magnitude (𝜋) (see also Figure S3, Supporting Information). The purple and blue lines indicate the maximum and minimum
values per spectral read-out (called bin), respectively. D) Schematics for encoding the nonlinear 2-bit parity (XOR) problem in the spectral phase of a
femtosecond pulse. E–G) Simulated spectral evolutions of the femtosecond pulse over 50 m of commercial highly nonlinear fiber for each input encoding
in (D). H) Intensity spectra measured at the fiber output for each input in (D). The unique information trajectories in (E–G) yield easily separable intensity
features in the output spectra. This allows the XOR problem to be solved by measuring the power in a single wavelength band (see table inset) indicated
by the grey area in (H).

the dynamics, the complexity of which is likely to affect the max-
imal network topology that a wave computer can mimic. Non-
linear dynamics that undergo multiple stages and interactions,
such as higher-order soliton fission,[26,37] may even allow us to re-
produce the performance of multi-layer or deep neural networks
with relatively low training.[19,25]

In Figure 3, panels G and H, we experimentally show this in-
trinsic system scalability (the training results are presented in
Figure S5, Supporting Information) for the generalized XOR op-
eration (Experimental Section). For a given nonlinearity, as de-
fined by the soliton number N (Experimental Section), misclas-
sification becomes larger for increasing bit-lengths. We note that
rising the system nonlinearity N (e.g., by means of higher optical
power) improves the operation’s fidelity and computational per-
formance per given bit length. We observe that in the case of high
nonlinearity (N = 5), the discrepancy between training and test
accuracy is lower compared to the case of low system nonlinearity
(N = 2).

This observation indicates that the system’s aptitude for gen-
eralization (i.e., capability to infer from unseen data) improves
when the complexity of its dynamics is higher. A similar behav-
ior has been reported for ANN algorithms for increasing network

size.[40] Richer dynamics lead to a larger variety of frequency mix-
ing and conversion processes, effectively increasing the dimen-
sion of the feature space at the output. A simple search algorithm
based on equally spaced frequency bins, as we use in this work,
has, hence, a much higher chance of finding a combination of
data projections that fit an expectation value more accurately than
in a system featuring low nonlinearity. Increasing the number of
readout frequencies has a similar effect in improving prediction
accuracy, as shown in Figure 3C (see Figure S6, Supporting In-
formation for another example).

Broadband frequency conversion is capable of addressing a
fundamental problem in neuromorphic computing, namely solv-
ing entirely different classes of tasks (e.g., universal nonlinear
regression (Experimental Section and Figure S4, Supporting In-
formation), categorical regression, low- and high-feature-number
classification) without redesigning the computing basis, i.e., the
underlying neural network architecture. We assess our system’s
neuromorphic performance and flexibility by experimentally per-
forming several task-dependent, standard benchmarks with vary-
ing feature complexities. The benchmarks tested included orchid
flower classification (IRIS dataset), wine classification (WINE
dataset), age prediction of sea snails (Abalone dataset), and

Adv. Sci. 2023, 10, 2303835 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303835 (5 of 12)
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Figure 3. System training and solving the n-bit parity problem. A) Flowchart of the digital processing layers to interpret the system readout. The training
is performed offline using bin selection and linear regression. A simple search algorithm iterates through different frequency bin combinations (see
Experimental Section). For each combination, linear regression is used to predict the label (or value) of an inference task. The prediction error was
estimated through cross-validation of subsets of the training data. The best-performing combination of bins (i.e., lowest loss) defines an inference-
ready system configuration. B) Experimentally measured operation fidelity associated with the n-bit parity problem for increasing bit length and system
nonlinearity. The latter is given in units of soliton number N (Experimental Section). The best performance is achieved at higher system nonlinearity. C)
Experimentally measured operation fidelity for a 5-bit parity problem versus increasing the number of readout bins for low (left panel) and high (right
panel) system nonlinearity. Higher system nonlinearity requires fewer readout bins for optimal performance since a higher degree of frequency mixing
leads to a larger set of possible data projections. For instance, 52 bins are required at low nonlinearity to achieve 85% inference accuracy (see red line
in C), while only 10 bins are needed at high nonlinearity.

image recognition of handwritten digits (MNIST dataset); see
Experimental Section for details. The inference results are illus-
trated in Figure 4E–H (see Supporting Information, in particu-
lar, Figures S7,S8,S10, Supporting Information for training re-
sults). The hyper-parameters used for each set are summarized
in Table S1 (Supporting Information). The input features were
normalized to the same maximal phase shift (i.e., 𝜋/8) before be-
ing encoded in the spectral phase across the C-band (Experimen-
tal Section and Figure S2, Supporting Information). The maximal
phase shift was chosen to achieve a higher variation in the spec-
tral system output with minimum disturbance to the input pulse
shape (Figure S2, Supporting Information).

For the IRIS and WINE tasks, the system achieves a classifica-
tion precision of 100% for unseen test data, outperforming other
optical approaches (see Table S2, Supporting Information). The
Abalone task is a regression task based on 13 input categories,
which our system can solve effortlessly with a root-mean-square
(RMS) error <0.07. In the MNIST task, however, our system
achieves only moderate accuracies of 86.7% in assigning 10-digit
labels to handscript images. In experiments with smaller sample
batches (here 300 random images), we found that the prediction
accuracy generally improves with a higher number and smaller
spectral bandwidth of read-out bins. Yet, results always remained
below 90%. We hypothesize that the strong nonlinear mixing of

information by our system could be detrimental in the case of
MNIST, as the dataset may require significantly less nonlinearity
to become separable. Other demonstrations have achieved higher
accuracies (>90%) with purely linear digital[41] or mildly nonlin-
ear optical[42,43] networks.

A particular advantage of the proposed ultra-short pulse-based
optical schemes is a low and constant energy usage per infor-
mation carrier, largely independent of the chosen task. For in-
stance, for all results in Figures 4 and 5, our system was oper-
ated under identical conditions (89 pJ pulse energy, 140 fs pulse
duration, a soliton number of 5, see also Supporting Informa-
tion, Section G). To evaluate the potential computational advan-
tage of our technique, we identified network primitives for each
task, i.e., minimal-sized software-based ANNs with performance
benchmarks similar to our experimental system. As shown in
Figure 4, A to D (see Table S3, Supporting Information for hyper-
parameters), they require vastly different efforts in training and
energy consumption as opposed to the constant configuration of
the fiber-based ELM approach (Table S4, Supporting Informa-
tion), highlighting the energy efficiency and ease-of-use of this
scheme. We also note that even with dedicated efforts to alter the
structure and node activations of our ANN configurations, none
performed better than our experimental system in the Abalone
task.

Adv. Sci. 2023, 10, 2303835 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303835 (6 of 12)

 21983844, 2023, 35, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202303835 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Task-dependent benchmarks commonly used to evaluate neural networks. A–D) Digital artificial neural network primitives for the A) IRIS, B)
WINE, C) Abalone, and D) MNIST tasks, featuring equal performance as our experimental fiber-based processor. E–H) Operation accuracy of experimen-
tally obtained data for the encoded test sets. The system was operated under the same conditions for all sets. I–L) Spectral position (in nanometers) of
the readout bins that yield the best operational performance at 0.5 nm bin width.

Finally, we have also tested our system in a real-world scenario,
using the diagnostics of COVID-19 patients from audio samples
(INTERSPEECH 2021 challenge[44]). Based on 30 extracted fea-

Figure 5. COVID-19 diagnosis from digital speech audio record-
ings. A) Simplified scheme for feature extraction based on principle com-
ponent analysis of processed audio signals. The same selected features
have been used as input to both digital and optical classifiers for direct
comparison. B) The test results for the digital support vector machine
(UAR = 0.631) and C) The test results of the experimental fiber-based ELM
implementation (UAR = 0.7133) show a notable performance increase of
our approach compared to a digital state-of-the-art technique.

tures of each audio sample, we obtained a competitive prediction
accuracy of 77.1%, which is higher than the best software classi-
fier we could identify for unbiased data (state-of-the-art support
vector machine with 72.9% accuracy; see Figure 5, Figure S10,
Supporting Information, and Experimental Section).

4. Conclusion

Broadband frequency conversion in optical fibers can perform
various tasks commonly undertaken by artificial neural networks
at just a fraction of their training complexity and energy con-
sumption per inference. The results support the use of transient
system dynamics,[21] particularly optical nonlinear dynamics, to
emulate the functionality of multiple neural network topologies.
To ensure trainability and reproducibility, coherence (i.e., pulse-
to-pulse spectral stability) must be maintained at all times. In
anomalous dispersive fibers, this can only be achieved by strictly
adhering to the outlined guidelines[26] which includes keeping
the soliton number N below 10 and pulse durations well below
200 fs. The latter requires advanced dispersion compensation
techniques in fiber-integrated systems and low-phase altitudes
for data encoding.

Our accessible implementation uses exclusively off-the-shelf
telecom fiber components and is, in principle, transferable
to on-chip nanophotonic devices[45,46] and novel material fiber
systems.[33,47] In particular, photonic chip technologies offer full
system integration, higher energy efficiency, and potentially pi-
cosecond inference latencies for cm-scale waveguides. Also, on-
chip solutions offer highly reproducible waveguide properties
and might allow for the direct transfer of trained weights from
one chip to another. Yet, novel fiber systems are widely accessible

Adv. Sci. 2023, 10, 2303835 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303835 (7 of 12)

 21983844, 2023, 35, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202303835 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

and can open new research grounds to further explore uncom-
mon propagation dynamics for neuromorphic wave computing.
For example, specially designed dispersion with more than one or
varying zero-dispersion wavelengths might enrich the cascade of
nonlinear effects by multiple, locally distributed dispersive emis-
sions and four-wave mixing events.[31] In addition, current devel-
opments of highly nonlinear non-silica fibers[47,48] or dispersion-
engineered fibers[49] might allow for a further reduction in the
energy consumption to sub-pJ per computation.

In general, each nonlinear optical process sensitive to phase
and amplitude modulations can be used for such information
processing. Yet, the achievable performance may differ with the
dynamic range of the respective system output (e.g., bandwidth
and spectral sensitivity to the input field may vary). Overall,
frequency-domain approaches involving second-order[13,14,50] or
third-order nonlinearity (this work) seem to be a particularly
promising degree of freedom regarding sub-pJ energy consump-
tion per inference. Nonlinear systems that operate on the Kerr
effect (e.g., soliton fission, four-wave mixing) would come with
the additional benefit of frequency windows that are widely cus-
tomizable for a wide range of optical amplifiers and cascaded op-
erations.

Our experiments have shown evidence for improving compu-
tational performance with increasing system nonlinearity, con-
firming earlier theoretical predictions in non-dissipative multi-
soliton systems.[18] In summary, these findings indicate a new
approach to designing neuromorphic hardware. Instead of build-
ing neural hardware one node at a time, the system’s inherent
dynamics can be used to scale and enhance its inference capa-
bilities. Yet, in all anomalous dispersive systems, the coherence
conditions (i.e., N < 10) impose an upper bound to the scalability
of the system’s computational performance.

Moreover, by closely tracking our system accuracy with equally
performing neural network primitives, we find that our fiber-
based processor can emulate a variety of neural networks, includ-
ing multi-layer networks (see Abalone results), with a single sys-
tem setting. Considering single pulse inference and waveguides
with tailored dispersion, it is possible to attain energies as low as a
few pico-joules per inference, regardless of the task at hand. This
outperforms current GPU performance by two to three orders
of magnitude (see Supporting Information, Section G), which
contradicts some recent assumptions that nonlinear optics lacks
energy efficiency for computing.[51] However, while pulse-wise
spectral measurements exist (e.g., time-stretch techniques[52]),
new approaches to scalable ultrafast electronic-to-optical inter-
faces are required to enable information encoding at such band-
widths and rates.

Overall, computing with transient nonlinear dynamics may
open opportunities in developing a new generation of versa-
tile, cost- and energy-effective neuromorphic hardware for fu-
ture sustainable photonic computing and machine learning
applications.

5. Methods
Experimental System Implementation: The setup for the experi-

mental realization of our transient optical neural emulator is illus-
trated in Figure S1 (Supporting Information). It comprises off-the-shelf,
polarization-maintaining (PM), fiber-coupled components and devices,

thus ensuring turn-key stable operation with a reasonably compact foot-
print. A repetition-rate stabilized femtosecond laser (Menlo FC1500-250-
WG; 250 MHz repetition rate) with ≈70 nm bandwidth centered at
≈1556 nm was used as a broadband optical source. The laser emits
pulses that were stretched to >2 ps. The laser output was fed into a
dispersion-compensated erbium-doped fiber amplifier (Pritel PM-SPFA-
23) to compensate for subsequent device and coupling losses. A cus-
tomized, fully polarization-maintaining, programmable spectral filter (Fin-
isar Waveshaper 1000A/X, slow axis working only) was used to apply dis-
persion compensation and imprint phase information onto the pulse spec-
trum (C-band: 1528–1568 nm; see also Figure S2, Supporting Informa-
tion). Furthermore, a dispersion-compensating fiber (Thorlabs PMDCF,
dispersion = −100 ps

(nm⋅km)
, length ≈4.5 m) was used to pre-compress the

dispersed optical pulses (i.e., >2 ps) down to ≈400 fs (see Figure S2A,
Supporting Information) before entering the highly nonlinear fiber (OFS
Fitel, HNLF-PM, dispersion = 1.416 ps

(nm⋅km)
, nonlinear coefficient = 10.7

W−1km−1, length = 100 m). The output was measured with an optical
spectral analyzer (ANDO AQ6317B).

It was noted that the amplification causes a nonlinear broadening,
which cannot be fully compensated with the Waveshaper. Nonetheless,
the additional nonlinear phase remains constant, and pulses were identi-
cal prior to the phase encoding of data.

Autonomous Pulse Optimization: Femtosecond pulses below 200 fs
duration at the input of the highly nonlinear fiber (HNLF) were a prereq-
uisite for pulse-wise reproducibility of the broadband output spectra. The
dispersion compensating fiber (DCF) used in these experiments can pre-
compress the pulses down to ≈375 fs (see Figure S2A, Supporting Infor-
mation), as measured before they reach the HNLF (pigtail to HNLF taken
into account). A residual dispersion was caused by fabrication tolerances
of different fiber types (i.e., featuring slightly different dispersion coeffi-
cients) and limited control over fiber length (i.e., a mismatch of 10 cm
lengths was possible). Thus, additional pulse compensation was required
and was achieved by adding a custom phase mask on the programmable
spectral filter. This phase mask was based on a 5th-order polynomial, the
coefficients of which were found using a particle swarm optimization al-
gorithm to reach the shortest pulse duration, similar to earlier approaches
with genetic algorithms.[53]

The polynomial phase profile was formally expressed as:

p (𝜈) =
5∑

n = 0

𝜋n (n + 1)! ⋅ qn (𝜈 − 𝜈0)n ⋅ 10−2(n−1) (3)

with frequency range 𝜈 and center frequency 𝜈0 of the Waveshaper, and co-
efficients qn which were subject to the system optimization. The last factor
was an empirically found scaling factor to adjust the impact of higher-order
dispersion terms. The coefficients found through the system optimization
were qn ϵ [0.0367, 0.4551, 0.6852, 0.9940, 0.1275, 0.5120], while the first
entry corresponds to n = 0. Yet, it was noted that these coefficients depend
on the system configuration, such as laser source, incorporated fibers,
and their respective lengths, etc., and were generally unique to a partic-
ular fiber system. Therefore, the optimization must be repeated for differ-
ent systems. Nonetheless, for a comparable system implementation (i.e.,
similar pulse parameters and overall fiber system dispersion) the found
coefficients could be used as initial starting parameters to accelerate the
convergence of the optimization algorithm.

A commercial autocorrelator (Femtochrome FR-103XL) was used for
pulse duration monitoring during the optimization phase. A two-term
Gaussian function was fitted to the measured autocorrelation for back-
ground evaluation in relation to the main feature. The results of the pulse
optimization are shown in Figure S2A,B (Supporting Information) where
the 375 fs pulse was compressed to ≈ 140 fs (full width at half maximum)
before the HNLF.

Data Encoding: Information in our system was encoded in the spectral
phase rather than the optical amplitude of the optical pulse to maintain
high pump energies (11). Information inputs M (i.e., given by the features
f M
i of sample i in a K-sized data set) was normalized per feature group,

Adv. Sci. 2023, 10, 2303835 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303835 (8 of 12)
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i.e., f M
i = f M

i ∕max(f M
1 , f M

2 , … , f M
K ), and converted into phase values by

multiplying the feature values with a constant phase factor. This factor
was determined by the iterative optimization described below. The fea-
ture mask was added to the custom phase mask required for dispersion
compensation. Finally, the composite phase mask was imprinted onto the
pulse spectrum using the programmable filter.

This filter offers up to 400 individual bins across a bandwidth of 72 nm
(i.e., 1528–1600 nm). Each bin allows for imprinting phase values between
0 and 2𝜋. Encoding was limited to the C-band (1528–1568 nm) for all data
sets, while the attenuation was chosen to be zero over the entire C- and
L-bands. The broadband transmission of the filter was crucial to achiev-
ing pulse durations below 150 fs, given that it was impossible to main-
tain coherent soliton fission as the dominant broadening effect for longer
pulses.[26,37] An encoding example is shown in Figure S2C (Supporting
Information).

Data Acquisition: The optical spectral analyzer was interfaced with a
computer, recording the data in mW (linear scale) from the spectrometer
to avoid superimposing nonlinear transformations besides the unavoid-
able photodiode signal acquisition. It was noted that, in principle, it was
possible to achieve a more straightforward configuration by replacing the
spectrometer with spectral filters and photodiode arrays. Any further nor-
malization of the recorded data, such as softmax(⋅), commonly used by
the neural network community, was not considered.[29] To account for the
trade-off between resolution and acquisition time, a resolution ranging
from 0.2 nm to 0.55 nm was chosen, together with 1000 to 2000 sampling
points (depending on the task) to cover the entire 550 nm bandwidth of the
spectrometer (i.e., 1200–1750 nm). The dependency on the spectral reso-
lution has been studied in detail for the MNIST benchmark (see Figure S8,
Supporting Information).

Training: The underlying training framework for this system imple-
mentation resembles an extreme learning machine (ELM).[30] The ELM
concept relies on randomly connected hidden-layer nodes in a feed-
forward configuration. Such a system is trained exclusively at the output
layer using linear regression.

To find the best spectral readout bins, an equal search algorithm was
utilized to determine well-performing wavelength combinations: For a cho-
sen number of frequency channels (i.e., bins), the spectral location of the
first bin and the distance between all readout bins were iteratively varied.
Each resulting set of frequencies was used for training and evaluation. The
training was based on a p-fold cross-validation method using the mean
square error (MSE) as a loss function.[54] For cross-validation, the train-
ing set was split into p numbers of subsets. p-1 sets were used for linear
regression, and the remaining set to estimate the loss value (MSE). This
process was repeated for all circulating permutations of the p subsets.
The best MSE of all permutations was recorded for a selected number
of readout bins, determined according to the task. Subsequently, the bin
combination and corresponding weight matrix yielding the lowest MSE for
testing were selected. The equal search approach requires a few seconds
to minutes to determine the best read-out frequency channels and their
weights, depending on the chosen amount of readout bins, the number
of samples, and the resolution of the spectral recordings. For most tasks
presented here, a 5-fold cross-validation method was used (see Table S1,
Supporting Information).

For classification, the system was trained toward one-hot output labels
(sometimes referred to as “1-of-K coding”[29]). Here, the target output vec-
tor YTarget was an array of K entries representing K-number classes, with the
target class entry being 1 and all other entries being 0. To retrieve a sin-
gular prediction from the measured output vector Ypred, which was gener-
ally non-binary, the “winner-takes-it-all” approach was applied as decision
boundary (i.e., the argmax(Ypred) operation). This returned the index of the
maximum value in Ypred, thus defining the winning class.

Finally, a trained weight matrix was applied to the selected (best) read-
out bins of unseen test data to perform prediction tasks, as shown in
Figures 4 and 5 of the main text. The corresponding training times for the
neuromorphic processor are listed in Table 1. Note that the summarized
training times correspond only to the digital part of our training method
(bin search, cross-validation, and linear regression) and do not include the
experimental acquisition times (see Supporting Information, Section C).

Table 1. Overview of offline training times for each task of the neuromor-
phic processor.

Task IRIS WINE ABALONE MNIST COVID

No. of read-out bins 4 18 31 94 119

Total training time (s) 68.2936 9.1001 23.4792 3.6329 6.839745

Data Sets: All data sets for the task-dependent benchmarks were pub-
licly available (see Data Availability Statement and Figures S4,S5,S7,S10,
Supporting Information). Below, the task-independent benchmarks (i.e.,
n-bit parity and nonlinear function regression) and the pre-processing of
the MNIST and COVID-19 data are described.

n-bit parity – The generalized XOR operation (n-bit parity) acts on a
vector B⃗ containing n uniformly distributed pseudo-random integers bk
from the interval [0, 1]. The operation was formally defined as:

XOR
{

B⃗
}
=

⎧⎪⎪⎨⎪⎪⎩
0 if

n∑
k = 1

bkis even

1 if
n∑

k = 1
bkis odd.

(4)

The operation returns 0 for an even number of ones in B⃗, and 1 for an
odd number, thus giving information on the parity of a bit sequence of
length n. For the results shown in Figure 2 of the main text, the n-bit input
(i.e., random binary vector) was multiplied by a maximal phase shift of 5

3
𝜋,

which was found empirically to yield the lowest overall bit error rate.
Nonlinear function regression – The regression of a nonlinear function

was seen as the basic functionality of a neuromorphic processor to confirm
its ability to adapt to any given function (known as the universal function
approximation theorem[55]). To demonstrate universal function approxi-
mation, the normalized sinc (x) = sin(x𝜋)

x𝜋
function was used.[18,30] For the

encoding, a random phase mask (values from 0 to 1) of size 1 × 100, with
bins equally distributed in the optical C-band was implemented. Subse-
quently, 1000 randomly generated phase values between − 𝜋 and 𝜋 were
multiplied by the random phase mask and measured the result. Training
and testing were performed with equal splitting ratios (i.e., 500 samples
each) on 100 spectral bins found via our equal-distance search algorithm
(see Table S1, Supporting Information).

MNIST – The dimensionality of the original MNIST data exceeds the
available number of inputs for our system. As depicted in Figure S9 (Sup-
porting Information), the original 28× 28 pixel images were downsampled
to 10 × 10 pixels through a bicubic interpolation method. Subsequently,
the 2D image data was flattened to generate a one-dimensional vector of
size 1 × 100 and fed the result to the programmable optical filter. The flat-
tening was achieved by a straight-forward clockwise spiral unwrapping,
starting from the image’s top-left corner and ending at the center.

COVID-19 audio samples – The dataset used was available through
the INTERSPEECH 2021 ComParE challenge and contains 856 audio
samples.[44,56]

The dataset was initially split into 299 training, 281 verification, and
276 testing data samples. Low-sampling-rate recordings were explicitly re-
moved to remove biased data,[44,56] which had shown to give significantly
improved prediction results, an artifact that had also been confirmed by
the challenge holders. To reduce the impact of data imbalance (negative
samples ≫ positive samples) and to avoid potential prejudice of the bias-
corrected split, all subsets were first recombined and randomized. It was
then split into new training and test sets with a 0.75 training-to-testing
sample ratio. A custom two-fold feature extraction method was applied to
reduce the input feature size from 6000 samples to only 30 principal fre-
quency components (see Supporting Information, Section 2, paragraph
“COVID-19 data set” and Figure S9, Supporting Information).

To evaluate the performance of an imbalanced data set, such as
in the case of our COVID-19 samples, the default unweighted average

Adv. Sci. 2023, 10, 2303835 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303835 (9 of 12)
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recall (UAR) was used as the benchmark value for the INTERSPEECH
challenge.[44] The UAR was calculated as:

UAR = 1
# of classes

⋅ Sensitivity + 1
# of classes

⋅ Specificity (5)

The sensitivity was the fraction of correct (i.e., true) positives divided
by the total amount of positive (i.e., true plus false) predictions. The speci-
ficity was the fraction of correct (i.e., true) negatives divided by the total
number of negative (i.e., true plus false) predictions. UAR values above
0.5 indicate a result better than random guessing. The benchmark value
for speech recognition in challenge[56] was currently a UAR of 0.709.

Identification of Artificial Neural Network Primitives: To evaluate the
system, shallow, fully connected neural network architecture of minimum
complexity, yielding similar performance, were searched for in the n-bit
parity, IRIS, WINE, Abalone, and MNIST tasks. Such network architec-
tures, called primitives, were restricted to a maximum of 3 hidden lay-
ers and implemented using the PyTorch library.[57] To reduce the solution
space, the number of nodes D1 was iterated in the first layer across an
exponentially increasing search grid (i.e., from D1 = 4, 8, 16, …, to 4096
nodes in the first layer) and followed strict rules in calculating the node
number for subsequent layers (i.e., for 2-layer networks: number of nodes
in the 2nd layer D2 = D1/8; for 3-layer networks: D2 = D1/4, number of
nodes in the 3rd layer D3 = D2/2). Finally, the networks with the fewest
nodes were chosen and performed similarly to our experimental ELM ap-
proach as a task-specific network primitive. The final configurations and
parameters for each network primitive shown in this study are summa-
rized in Table S3 (Supporting Information).

Notably, during the search for the optimal network geometries, the use
of the MSE loss metric failed to provide a generalized solution for the
Abalone dataset (see Figure S11, Supporting Information). The predicted
ages were scattered around the weighted average of 0.3 while still achiev-
ing a reasonably low loss value (RMSE = 0.119 for 1024 nodes). To im-
prove the generalization capability, KL-divergence was implemented as a
loss metric (using the PyTorch function KLDivLoss[57]), which increased the
prediction accuracy to a converted loss of RMSE = 0.095 with 128 nodes.
It was worth noting that even though an increased performance (and gen-
eralization) was achieved with the KL-divergence metric, the evaluation
was more complex and time-consuming. Furthermore, despite those ad-
ditional efforts, any primitive architecture that came close to the low error
rate of the fiber-based setup could not be identified. Therefore, the best-
performing neural network was chosen as “primitive” in Figure 3.

For the digital performance comparison of the COVID-19 data set
(Figure S10, Supporting Information), a support vector machine (SVM)
model was implemented using the SCIKIT-LEARN toolkit with the sub-
class LINEARSVC.[58] This classifier converged faster and better than any
other tested neural network.[59] The hyper-parameter optimization was
conducted with a 5-fold cross-validation scheme and an l2 penalty as the
loss function. The optimal penalty parameter C was determined by exhaus-
tively experimenting with values from 10−5 to 10, and found 0.05 to be the
optimum value.

In all comparisons, the data partitioning (training and test sets) and
the pre-processing of input features were fixed for each data collection set
to be the same for both the digital networks and the experiment.

Definitions on Soliton Fission: Broadband light generation could be
achieved by different nonlinear optical effects, such as four-wave mix-
ing, cross- and self-phase modulation, or soliton fission, depending on
the pulse features (power, duration) and waveguide design (dispersion,
nonlinearity).[26] Soliton fission was the main method for coherent, broad-
band supercontinuum generation.[37] In short, temporal solitons were
self-regulating pulses propagating inside a waveguide due to the inter-
play of nonlinearity (i.e., Kerr effect) and dispersion. For specific input and
waveguide configurations, higher-order solitons could be generated.[26,37]

The soliton order N could be estimated according to the formula:

N2 =
T2

0 𝛾P0||𝛽2
|| (6)

Here, T0, P0, 𝛾 , and 𝛽2 denote the 1/e pulse width, the peak power,
and the nonlinear and the second-order dispersion coefficients, respec-
tively. While higher-order solitons would theoretically maintain their or-
der, perturbations (e.g., third-order dispersion, Raman) in the experimen-
tal realization eventually cause them to break apart into a maximum of
N fundamental solitons of order N’ = 1 during propagation. This split-
ting, also called soliton fission, was often accompanied by broadband
light generation due to the emission of phase-matched dispersive waves
(also known as optical Cherenkov radiation) and various related nonlinear
phenomena[26,37] This process was coherent, which means reproducible
with each optical pulse as long as the order and pulse width of the input
soliton remain small (i.e., N < 10 and T0 < 200 fs[26]).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Moser, D. Psaltis, Programming Nonlinear Propagation for Efficient
Optical Learning Machines, 2022, arXiv 2208.04951.

[35] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer, Nat. Commun.
2013, 4, 1364.
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